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Abstract

We prove that, for all binary-input symmetric memoryless channels, polar codes enable
reliable communication at rates within ε > 0 of the Shannon capacity with a block length,
construction complexity, and decoding complexity all bounded by a polynomial in 1/ε. Polar
coding gives the first known explicit construction with rigorous proofs of all these properties.

We give an elementary proof of the capacity achieving property of polar codes that does not
rely on the martingale convergence theorem. As a result, we are able to explicitly show that
polar codes can have block length (and consequently also encoding and decoding complexity)
that is bounded by a polynomial in the gap to capacity. The generator matrix of such polar
codes can be constructed in polynomial time using merging of channel output symbols to reduce
the alphabet size of the channels seen at the decoder.

1 Introduction

In this work, we establish that Arıkan’s celebrated polar codes [2] have the desirable property of
fast convergence to Shannon capacity. Specifically, we prove that polar codes can operate at rates
within ε > 0 of the Shannon capacity of binary-input memoryless output-symmetric (BIS) channels
with a block length N = N(ε) that grows only polynomially in 1/ε. Further, a generator matrix
of such a code can be deterministically constructed in time polynomial in the block length N . For
decoding, Arıkan’s successive cancellation decoder has polynomial (in fact O(N logN)) complexity.

Thus, the delay and construction/decoding complexity of polar codes can all be polynomially
bounded as a function of the gap to capacity. This provides a complexity-theoretic backing for the
statement “polar codes are the first constructive capacity achieving codes,” common in the recent
coding literature. As explained below, these attributes together distinguish polar codes from the
Forney/Justesen style concatenated code constructions for achieving capacity.

Our analysis of polar codes avoids the use of the martingale convergence theorem — this is
instrumental in our polynomial convergence bounds and as a side benefit makes the proof elementary
and self-contained.
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1.1 Context

Shannon’s noisy channel coding theorem implies that for every memoryless channel W with binary
inputs and a finite output alphabet, there is a capacity I(W ) > 0 and constants aW < ∞ and
bW > 0 such that the following holds: For all ε > 0 and integers N > aW /ε

2, there exists a binary
code C ⊂ {0, 1}N of rate at least I(W ) − ε which enables reliable communication on the channel
W with probability of miscommunication at most 2−bW ε2N . A proof implying these quantitative
bounds is implicit in Wolfowitz’s proof of Shannon’s theorem [24].

This remarkable theorem showed that a constant factor redundancy was sufficient to achieve
arbitrarily small probability of miscommunication, provided we tolerate a “delay” of processing
N channel outputs at a time for large enough block length N . Further, together with a converse
theorem, it precisely characterized the minimum redundancy factor (namely, 1/I(W )) needed to
achieve such a guarantee. It is also known that a block length of N > Ω(1/ε2) is required to
operate within ε of capacity and even a constant, say 0.1, probability of miscommunication; in fact,
a very precise statement that even pinned down the constant in the Ω(·) notation was obtained by
Strassen [21].

As Shannon’s theorem is based on random coding and is non-constructive, one of the principal
theoretical challenges is to make it constructive. More precisely, the goal is to give an explicit (i.e.,
constructible in deterministic poly(N) time) description of the encoding function of the code, and
a polynomial time error-correction algorithm for decoding the correct transmitted codeword with
high probability (over the noise of the channel). Further, it is important to achieve this with small
block length N as that corresponds to the delay at the receiver before the message bits can be
recovered.

For simplicity let us for now consider the binary symmetric channel (BSC) with crossover
probability p, 0 < p < 1/2, denoted BSCp (our results hold for any BIS channel). Recall that BSCp

flips each input bit independently with probability p, and leaves it unchanged with probability
1− p. The Shannon capacity of BSCp is 1 − h(p), where h(x) = −x log2 x− (1− x) log2(1− x) is
the binary entropy function. For the BSC, the capacity can be achieved by binary linear codes.

One simple and classic approach to construct capacity-achieving codes is via Forney’s concate-
nated codes [9]. We briefly recall this approach (see, for instance, [11, Sec. 3] for more details).
Suppose we desire codes of rate 1−h(p)− ε for communication on BSCp. The idea is to take as an
outer code any binary linear code Cout ⊂ {0, 1}n0 of rate 1−ε/2 that can correct a fraction γ(ε) > 0
of worst-case errors. Then, each block of b = Θ( 1

ε2
log(1/γ)) bits of the outer codeword is further

encoded by an inner code of rate within ε/2 of Shannon capacity (i.e., rate at least 1−h(p)− ε/2).
This inner code is constructed by brute force in time exp(O(b)). By decoding the inner blocks by
finding the nearest codeword in exp(O(b)) time, and then correcting up to γ(ε)n0 errors at the
outer level, one can achieve exponentially small decoding error probability. However the decoding
complexity grows like n0 exp(O(b)). Thus both the construction and decoding complexity have an
exponential dependence on 1/ε. In conclusion, this method allows one to obtain codes within ε of
capacity with a block length polynomially large in 1/ε. However, the construction and decoding
complexity grow exponentially in 1/ε, which is undesirable.1

1One can avoid the brute force search for a good inner code by using a small ensemble of capacity-achieving codes
in a Justesen-style construction [15]. But this will require taking the outer code length n0 > exp(1/ε2), causing a
large delay.
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1.2 Our result: polynomial convergence to capacity of polar codes

In this work, we prove that Arıkan’s remarkable polar codes allow us to approach capacity within
a gap ε > 0 with delay (block length) and complexity both depending polynomially on 1/ε. Polar
codes are the first known construction with this property.2

Below is a formal statement of the main result, stated for BIS channels. For general, non-
symmetric channels, the same claim holds for achieving the symmetric capacity, which is the best
rate achievable with the uniform input bit distribution.

Theorem 1. There is an absolute constant µ < ∞ such that the following holds. Let W be a
binary-input memoryless output-symmetric channel with capacity I(W ). Then there exists aW <∞
such that for all ε > 0 and all powers of two N > aW (1/ε)µ, there is a deterministic poly(N) time
construction of a binary linear code of block length N and rate at least I(W )−ε and a deterministic
N ·poly(logN) time decoding algorithm for the code with block error probability at most 2−N

0.49
for

communication over W .

Remarks:

1. Using our results about polar codes, we can also construct codes of rate I(W ) − ε with
2−Ωε(N) block error probability (similar to Shannon’s theorem) with similar claims about
the construction and decoding complexity. The idea is to concatenate an outer code that
can correct a small fraction of worst-case errors with a capacity-achieving polar code of
dimension poly(1/ε) as the inner code. A similar idea with outer Reed-Solomon codes yielding
2−Ω(N/poly(logN)) block error probability is described in [6].

2. The construction time in Theorem 1 can be made poly(1/ε)+O(N logN). As our main focus
is on the finite-length behavior when N is also poly(1/ε), we are content with stating the
poly(N) claim above.

Showing that polar codes have a gap to capacity that is polynomially small in 1/N is our
principal contribution. The decoding algorithm remains the same successive cancellation decoder
of Arıkan [2]. The proof of efficient constructibility follows the approach, originally due to Tal
and Vardy [22], of approximating the channels corresponding to different input bits seen at the
decoder by a degraded version with a smaller output alphabet. The approximation error of this
process and some of its variants were analyzed in [19]. We consider and analyze a somewhat
simpler degrading process. One slight subtlety here is that we can only estimate the channel’s
Bhattacharyya parameter within error that is polynomial in 1/N in poly(N) time, which will limit
the analysis to an inverse polynomial block error probability. To get a block error probability of
2−N

0.49
we use a two step construction method that follows our analysis of the polarization process.

As a bonus, this gives the better construction time alluded to in the second remark above.

Prior to our work, it was known that the block error probability of successive cancellation
decoding of polar codes is bounded by 2−N

0.49
for rate approaching I(W ) in the limit of N →∞ [5].

However, the underlying analysis found in [5], which depended on the martingale convergence

2Spatially coupled LDPC codes were also recently shown to achieve capacity of general BIS channels [18]. This
construction gives a random code ensemble as opposed to a specific code, and as far as we know, rigorous bounds on
the code length as a function of gap to capacity are not available.
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theorems, did not offer any bounds on the finite-length convergence to capacity, i.e., the block
length N required for the rate to be within ε of the capacity I(W ). To quote from the introduction
of the recent breakthrough on spatially coupled LDPC codes [18]:

“There are perhaps only two areas in which polar codes could be further improved.
First, for polar codes the convergence of their performance to the asymptotic limit is
slow. Currently no rigorous statements regarding this convergence for the general case
are known. But “calculations” suggest that, for a fixed desired error probability, the
required block length scales like 1/δµ, where δ is the additive gap to capacity and where
µ depends on the channel and has a value around 4.”3

The above-mentioned heuristic calculations are based on “scaling laws” and presented in [17]. We
will return to the topic of scaling laws in Section 1.4 on related work.

We note that upper bounds on the block length N as a function of gap ε to capacity are
crucial, as without those we cannot estimate the complexity of communicating at rates within ε of
capacity. Knowing that the asymptotic complexity is O(N logN) for large N by itself is insufficient
(for example, to claim that polar codes are better than concatenated codes) as we do not know how
large N has to be! While an explicit value of µ in Theorem 1 can be calculated, it will be rather
large, and obtaining better bounds on µ, perhaps closer to the empirically suggested bound of ≈ 4,
is an interesting open problem4.

1.3 Techniques

Let us first briefly discuss the concept of polarization in Arıkan’s work, and then turn to aspects
of our work. More formal background on Arıkan’s construction of polar codes appears in Section 3
(with slightly different and notation that is more conventional in the polar coding literature). A
good, easy to read, reference on polar codes is the recent survey by Şaşoğlu [7].

Fix W to be an arbitrary symmetric channel. If we have a capacity-achieving binary linear
code C of block length N for W , then it is not hard to see that by padding the generator matrix
of C one can get an N × N invertible matrix AN with the following polarization property. Let
u ∈ {0, 1}N be a uniformly random (column) vector. Given the output y of W when the N bits
x = ANu are transmitted on it, for a 1 − o(1) fraction of bits ui, its conditional entropy given y
and the previous bits u1, . . . , ui−1 is either close to 0 (i.e., that bit can be determined with good
probability) or close to 1 (i.e., that bit remains random). Since the conditional entropies of u given
y and x given y are equal to each other, and the latter is ≈ (1 − I(W ))N , the fraction of bits ui
for which the conditional entropy given y and the previous bits u1, . . . , ui−1 is ≈ 0 (resp. ≈ 1) is
≈ I(W ) (resp. ≈ 1− I(W )).

Arıkan gave a recursive construction of such a polarizing matrix AN for N = 2n: AN = G⊗n2 Bn
where G2 = ( 1 1

0 1 ) and Bn is a permutation matrix (for the bit-reversal permutation). In addition,
he showed that the recursive structure of the matrix implied the existence of an efficiently decodable
capacity-achieving code. The construction of this code amounts to figuring out which input bit

3The second aspect concerns universality: the design of polar codes depends on the channel being used, and the
same code may not achieve capacity over a non-trivial class of channels.

4While we were completing the writeup of this paper and circulating a draft, we learned about a recent
independently-derived result in [12] stating that µ ≈ 6 would suffice for block error probabilities bounded by an

inverse polynomial. Our analysis primarily focuses on the 2−N
.49

block error probability result.
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positions have conditional entropy ≈ 0, and which don’t (the message bits ui corresponding to the
latter positions are “frozen” to 0).

The proof that AN has the above polarization property proceeds by working with the Bhat-
tacharyya parameters Zn(i) ∈ [0, 1] associated with decoding ui from y and u1, . . . , ui−1. This
quantity is the Hellinger affinity between the output distributions when ui = 0 and u1 = 1, and
is a better quantity that conditional entropy to work with. The values of the Bhattacharyya pa-
rameter of the 2n bit positions at the n’th level can be viewed as a random variable Zn (induced
by the uniform distribution on the 2n positions). The simple recursive construction of AN enabled
Arıkan to proved that the sequence of random variables Z0, Z1, Z2, . . . form a supermartingale. In
particular, Zn+1 equals Z2

n with probability 1/2 and is at most 2Zn − Z2
n with probability 1/2. 5

One can think the evolution of the Bhattacharyya parameter as a stochastic process on the
infinite binary tree, where in each step we branch left or right with probability 1/2. The polarization
property is then established by invoking the martingale convergence theorem for supermartingales.
The martingale convergence theorem implies that limn→∞ |Zn+1 − Zn| = 0, which in this specific
case also implies limn→∞ Zn(1−Zn) = 0 or in other words polarization of Zn to 0 or 1 for n→∞.
However, it does not yield any effective bounds on the speed at which polarization occurs. In
particular, it does not say how large n must be as a function of ε before E[Zn(1 − Zn)] 6 ε; such
a bound is necessary, though not sufficient, to get codes of block length 2n with rate within ε of
capacity.

Starting at the root, the expected number of steps before which Zn(1 − Zn) 6 ε for the first
time can be as large as Ω(1/ε), even for the binary erasure channel. Note that we need a bound of
n 6 O(log(1/ε)) to have any hope of obtaining a polynomial dependence of the block length on the
gap to capacity. Thus this situation demands that with high probability O(log(1/ε)) steps suffice
(for Zn(1 − Zn) to fall below ε) even though the expected number of steps for this to happen is
Ω(1/ε).

Rather than trying to control the ill-behaved random variable that counts the number of steps
needed for Zn(1−Zn) to drop below ε, we simply prove that E[Zn(1−Zn)] decreases by a constant
factor in each step. This immediately implies that E[Zn(1 − Zn)] 6 ρn for some ρ < 1, and thus
n = O(log(1/ε)) suffices to ensure E[Zn(1− Zn)] 6 ε (we call this rough polarization).

The above expectation bound is itself, however, not enough to prove Theorem 1. What one
needs is fine polarization, where the smallest ≈ I(W )N values among Zn(i) all add up to a quantity
that tends to 0 for large N (in fact, this sum should be at most 2−N

0.49
if we want the block error

probability claimed in Theorem 1). We establish this by using Chernoff-bound arguments (similar
to [5]) to bootstrap the rough polarization to a fine polarization.

Our analysis is elementary and self-contained, and does not use the martingale convergence
theorem. The ingredients in our analysis were all present explicitly or implicitly in various previous
works. However, it appears that their combination to imply a polynomial convergence to capacity
has not been observed before, as evidenced by the explicit mention of this as an open problem in
the literature, eg. [16, Section 6.6], [18, Section Ia], [23, Section I], [20, Section 1.3].

5For the special case of the binary erasure channel, the Bhattacharyya parameters simply equal the probability
that the bit is unknown. In this case, the upper bound of 2Zn − Z2

n becomes an exact bound, and the Zi’s form a
martingale.
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1.4 Related work

The simplicity and elegance of the construction of polar codes, and their wide applicability to
a range of classic information theory problems, have made them a popular choice in the recent
literature. Here we only briefly discuss aspects close to our focus on the speed of polarization.

Starting with Arıkan’s original paper, the “rate of polarization” has been studied in several
works. However, this refers to something different than our focus; this is why we deliberately use
the term “speed of polarization” to refer to the question of how large n needs to be before, say, Zn
is in the range (ε, 1−ε) with probability ε. The rate of polarization refers to pinpointing a function
Υ with Υ(n)→ 0 for large n such that limn→∞ Pr[Zn 6 Υ(n)] = I(W ). Arıkan proved that one can

take Υ(n) = O(2−5n/4) [2], and later Arıkan and Telatar established that one can take Υ(n) = 2−2βn

for any β < 1/2 [5]. Further they proved that for γ > 1/2, limn→∞ Pr[Zn 6 2−2γn ] = 0. This
determined the rate at which the Bhattacharyya parameters of the “noiseless” channels polarize to
0 in the limit of larger n. More fine grained bounds on this asymptotic rate of polarization as a
function of the code rate were obtained in [13].

For our purpose, to get a finite-length statement about the performance of polar codes, we
need to understand the speed at which Pr[Zn 6 Υ(n)] approaches the limit I(W ) as n grows (any
function Υ with Υ(n) = o(1/2n) will do, though we get the right 2−20.49n type decay).

Restated in our terminology, in [10] the authors prove the following “negative result” concerning
gap to capacity: For polar coding with successive cancellation (SC) decoding to have vanishing
decoding error probability at rates within ε of capacity, the block length has to be at least (1/ε)3.553.
(A slight caveat is that this uses the sum of the error probabilities of the well-polarized channels
as a proxy for the block error probability, whereas in fact this sum is only an upper bound on the
decoding error probability of the SC decoder.)

Also related to the gap to capacity question is the work on “scaling laws,” which is inspired
by the behavior of systems undergoing a phase transition in statistical physics. In coding theory,
scaling laws were suggested and studied in the context of iterative decoding of LDPC codes in [1].
In that context, for a channel with capacity C, the scaling law posits the existence of an exponent µ
such that the block error probability Pe(N,R) as a function of block length N and rate R tends in
the limit of N →∞ while fixing N1/µ(C−R) = x, to f(x) where f is some function that decreases
smoothly from 1 to 0 as its argument changes from −∞ to +∞. Coming back to polar codes, in [17],
the authors make a Scaling Assumption that the probability Qn(x) that Zn exceeds x is such that
limn→∞N

1/µQn(x) exists and equals a function Q(x). Under this assumption, they use simulations
to numerically estimate µ ≈ 3.627 for the BEC. Using the small x asymptotics of Q(x) suggested
by the numerical data, they predict an ≈ (1/ε)µ upper bound on the block length as a function
of the gap ε to capacity for the BEC. For general channels, under the heuristic assumption that
the densities of log-likelihood ratios behave like Gaussians, an exponent of µ ≈ 4.001 is suggested
for the Scaling Assumption. However, to the best of our knowledge, it does not appear that one
can get a rigorous upper bound on block length N as a function of the gap to capacity via these
methods.
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2 Preliminaries

We will work over a binary input alphabet B = {0, 1}. LetW : B → Y be a binary-input memoryless
symmetric channel with finite output alphabet Y and transition probabilities {W (y|x) : x ∈ B, y ∈
Y}. A binary-input channel is symmetric when the two rows of the transition probability matrix
are permutations of each other; i.e., there exists a bijective mapping σ : Y 7→ Y where σ = σ−1

and W (y|0) = W (σ(y)|1) for all y. Both the binary erasure and binary symmetric channels are
examples of symmetric channels.

Let X represent a uniformly distributed binary random variable, and let Y represent the result
of sending X through the channel W .

The entropy of the channel W , denote H(W ), is defined as the entropy of X, the input, given
the output Y , i.e., H(W ) = H(X|Y ). It represents how much uncertainty there is in the input of
the channel given the output of the channel. The mutual information of W , sometimes known as
the capacity, and denoted I(W ), is defined as the mutual information between X and Y when the
input distribution X is uniform:

I(W ) = I(X;Y ) = H(X)−H(X|Y ) = 1−H(X|Y ) = 1−H(W ) .

We have 0 6 I(W ) 6 1, with a larger value meaning a less noisy channel. As the mutual information
expression is difficult to work with directly, we will often refer to the Bhattacharyya parameter of
W as a proxy for the quality of the channel:

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1) .

This quantity is a natural one to capture the similarity between the channel outputs when the
input is 0 and 1: Z(W ) is simply the dot product between the unit vectors obtained by taking the
square root of the output distributions under input 0 and 1 (which is also called Hellinger affinity
between these distributions).

Intuitively, the Bhattacharyya parameter Z(W ) should be near 0 when H(W ) is near 0 (meaning
that it is easy to ascertain the input of a channel given the output), and conversely, Z(W ) is near
1 when H(W ) is near 1. This intuition is quantified by the following expression (where the upper
bound is from [16, Lemma 1.5] and the lower bound is from [3]):

Z(W )2 6 H(W ) 6 Z(W ) . (1)

Given a single output y ∈ Y from a channel W , we would like to be able to map it back to X,
the input to the channel. The most obvious way to do this is by using the maximum-likelihood
decoder:

X̂ = argmax
x∈B

Pr(x|y) = argmax
x∈B

W (y|x)

where a decoding error is declared if there is a tie. Thus, the probability of error for a uniform
input bit under maximum likelihood decoding is

Pe(W ) = Pr(X̂ 6= X) =
1

2

∑
x∈B

∑
y∈Y

W (y|x) 1W (y|x)6W (y|x⊕1)
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where 1x denotes the indicator function of x. Directly from this expression, we can conclude

Pe(W ) 6 Z(W ) (2)

since 1W (y|x)6W (y|x⊕1) 6
√
W (y|x⊕ 1)/

√
W (y|x), and the channel is symmetric (so the sum over

x ∈ B and the 1/2 cancel out). Thus, the Bhattacharyya parameter Z(W ) also bounds the error
probability of maximum likelihood decoding based on a single use of the channel W .

3 Polar codes

3.1 Construction preliminaries

This is a short primer on the motivations and techniques behind polar coding, following [2, 7].
Consider a family of invertible linear transformations Gn : B2n → B2n defined recursively as follows:
G0 = [1] and for a 2N -bit vector u = (u0, u1, . . . , u2N−1) with N = 2n, we define

Gn+1u = Gn(u0 ⊕ u1, u2 ⊕ u3, . . . , u2N−2 ⊕ u2N−1) ◦Gn(u1, u3, u5, . . . , u2N−1) (3)

where ◦ is the vector concatenation operator. More explicitly, this construction can be shown to be
equivalent to the explicit form Gn = K⊗nBn (see [2, Sec. VII]) where Bn is the 2n×2n bit-reversal

permutation matrix for n-bit strings, K =

[
1 1
0 1

]
and ⊗ denotes the Kronecker product.

Suppose we use the matrix Gn to encode a N = 2n-size vector U , X = GnU , and then transmit
X over a binary symmetric channel W . It can be shown with a Martingale Convergence Theorem-
based proof [2] that for all ε > 0,

lim
N→∞

Pr
i

[
H(Ui|U i−1

0 , Y N−1
0 ) < ε

]
= I(W ). (4)

where the notation U ji denotes the subvector (Ui, Ui+1, . . . , Uj).

In words, there exists a good set of indices i so that for all elements in this set, given all of the
outputs from the channel and (correct) decodings of all of the bits indexed less than i, the value of
Ui can be ascertained with low probability of error (as it is a low-entropy random variable).

For every element that is outside of the good set, we do not have this guarantee; this suggests a
encoding technique wherein we “freeze” all indices outside of this good set to a certain predefined
value (0 will do). We call the indices that are not in the good set as the frozen set.

3.2 Successive cancellation decoder

The above distinction between good indices and frozen indices suggests a successive cancellation
decoding technique where if the index is in the good set, we output the maximum-likelihood bit
(which has low probability of being wrong due to the low entropy) or if the index is in the frozen
set, we output the predetermined bit (which has zero probability of being incorrect). A sketch of
such a successive cancellation decoder is presented in Algorithm 1.

Definition 1. A polar code with frozen set F ⊂ {0, 1, . . . , N − 1} is defined as

CF = {Gnu | u ∈ {0, 1}N , uF = 0} .
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Algorithm 1: Successive cancellation decoder

input : yN−1
0 , F , W

output: uK−1
0

1 û← zero vector of size N
2 for i ∈ 0..N − 1 do
3 if i ∈ F then
4 ûi ← 0

5 else

6 if
Pr(Ui=0|U i−1

0 =ûi−1
0 ,Y N−1

0 =yN−1
0 )

Pr(Ui=1|U i−1
0 =ûi−1

0 ,Y N−1
0 =yN−1

0 )
> 1 then

7 ûi ← 0

8 else
9 ûi ← 1

10 return ûF

Remark. The probability ratio on line 6 can be computed with a näıve approach by

recursively computing (where n = lgN) W
(i)
n (yN−1

0 , ûi−1
0 |x) for x ∈ B according to the

recursive evolution equations (5),(6),(7). The result is true if the expression is larger for
x = 1 than it is for x = 0, as by Bayes’s theorem,

Pr(Ui = 0|U i−1
0 = ûi−1

0 , Y N−1
0 = yN−1

0 ) =
W

(i)
n (yN−1

0 , ûi−1
0 |0) Pr(ui = 0)

Pr(U i−1
0 = ûi−1

0 , Y N−1
0 = yN−1

0 )
,

and the term in the denominator is present in both the Ui = 0 and Ui = 1 expression and
therefore cancels in the division; the Pr(ui = 0) term cancels as well for a uniform prior on
ui (which is necessary to achieve capacity for the symmetric channel W ).
The runtime of the algorithm can be improved to O(N logN) by computing the probabilities
on line 6 with a divide-and-conquer approach as in [2]. We note that this runtime bound
assumes constant-time arithmetic; consideration of n-bit arithmetic relaxes this bound to
O(Npolylog(N)). For a treatment of more aggressive quantizations, see [12, Chapter 6].

By (4), if we take F to be the positions with conditional entropy exceeding ε, the rate of such
a code would approach I(W ) in the limit N →∞.

To simplify the probability calculation (as seen on line 6 of Algorithm 1 and explained further

in the comments), it is useful to consider the induced channel seen by each bit, W
(i)
n : B → YN×Bi,

for 0 6 i 6 2n − 1. Here, we are trying to ascertain the most probable value of the input bit Ui by
considering the output from all channels Y N−1

0 and the (decoded) input from all channels before
index i. Since the probability of decoding error at every step is bounded above by the corresponding

Bhattacharyya parameter Z by (2), we can examine Z(W
(i)
n ) as a proxy for Pe(W

(i)
n ).

It will be useful to redefine W
(i)
n recursively both to bound the evolution of Z(W

(i)
n ) and to

facilitate the computation. Consider the two transformations − and + defined as follows:

W−(y1, y2|x1) =
∑
x2∈B

1

2
W (y1|x1 ⊕ x2)W (y2|x2) (5)
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and

W+(y1, y2, x1|x2) =
1

2
W (y1|x1 ⊕ x2)W (y2|x2), (6)

where we associate − with a “downgrading” transformation and + with a “upgrading” transfor-

mation. We notice that W− = W
(0)
1 (the transformation − adds uniformly distributed noise from

another input x2, which is equivalent to the induced channel seen by the 0th bit) and W+ = W
(1)
1

(where here we clearly have the other input bit).

More generally, by the recursive construction (3), one can conclude that the W
(i)
n process can

be redefined in a recursive manner as

W
(i)
n+1 =


(
W

(bi/2c)
n

)−
if i is even(

W
(bi/2c)
n

)+
if i is odd

(7)

with the base channel W
(0)
0 = W .

Importantly, we can now state the following lemma, which relates the Bhattacharyya parameters
of the subchannels to the block error probability obtained by successive cancellation decoding.

Lemma 2. The block error probability of Algorithm 1 on a polar code C of length n with frozen

set F is bounded above by the sum of the Bhattacharyya parameters
∑

i∈F Z(W
(i)
n ).

The proof is a simple application of the union bound. The probability of the i’th bit (that is not
frozen) being misdecoded given the channel outputs and the input bits with index < i is bounded

above by Z(W
(i)
n ) by Equation (2).

Importantly, the evolution processes (5) and (6) preserve information in the sense that

I(W−) + I(W+) = 2I(W ), (8)

which follows by the chain rule of mutual information, as (suppose X1 is the input seen at W− and
X2 is the input seen at W+ and Y1, Y2 are the corresponding output variables)

I(W−) + I(W+) = I(X1;Y1, Y2) + I(X2;Y1, Y2|X1) = I(X1, X2;Y1, Y2) = 2I(W ).

3.3 Bounds on Z(W−) and Z(W+)

The general technique of the proof of these bounds is borrowed from [2, 16], and the results are
rederived in Appendix A for clarity and completeness.

Proposition 3. Z(W+) = Z(W )2 for all binary symmetric channels W .

Proposition 4. Z(W )
√

2− Z(W )2 6 Z(W−) 6 2Z(W )−Z(W )2 for all binary symmetric chan-
nels W , with equality holding in the upper bound on Z(W−) if the channel W is an erasure channel.

10



4 Speed of polarization

Our first goal is to show that for some m = O(log(1/ε)), we have that Pri[Z(W
(i)
m ) 6 2−O(m)] >

I(W ) − ε (the channel is “roughly” polarized). We will then use this rough polarization result to

show that, for some n = O(log(1/ε)), “fine” polarization occurs: Pri[Z(W
(i)
n ) 6 2−2βn ] > I(W )−ε.

This approach is similar to the bootstrapping method used in [4].

4.1 Rough polarization

We will use what we call the symmetric Bhattacharyya parameter as a proxy for how polarized a
channel is (in a sense, how close to 0 or 1 it is):

Y (W ) = Z(W )(1− Z(W )).

To relate Y (W
(i)
n ) back to Z(W

(i)
n ), it is useful to define the sets (where ρ ∈ (0, 1)):

Agρ =

{
i : Z(W (i)

n ) 6
1−
√

1− 4ρn

2

}
, Abρ =

{
i : Z(W (i)

n ) >
1 +
√

1− 4ρn

2

}
, and (9)

Aρ = Agρ ∪Abρ = {i : Y (W (i)
n ) 6 ρn} .

We associate Agρ with the “good” set (the set of i such that the Bhattacharyya parameter, and
therefore probability of misdecoding, is small) and Abρ with the “bad” set. We record the following
useful approximations, both of which follow from

√
1− 4ρn > 1− 4ρn.

Fact 5. For i ∈ Agρ, Z(W
(i)
n ) 6 2ρn, and for i ∈ Abρ, Z(W

(i)
n ) > 1− 2ρn.

4.1.1 Binary erasure channel

If W is the binary erasure channel, we have I(Wn) = 1−Z(Wn) and Z(W−n ) = 2Z(Wn)−Z(W 2
n).

In this case, we can show the following.

Proposition 6. For the binary erasure channel W , for all α ∈ (3/4, 1), there exists a constant cα
such that for all ε > 0 and m > cα log(1/ε) we have

Pr
i

(
Z(W (i)

m ) 6 2αm
)
> I(W )− ε.

Proof. We can rearrange the evolution Equation (7) and apply Propositions 3 and 4 for the BEC
case to obtain the equation

Y (W
(i)
n+1) = Y (W (bi/2c)

n ) ·

{
Z(W

(bi/2c)
n )(1 + Z(W

(bi/2c)
n )) i mod 2 ≡ 1

(1− Z(W
(bi/2c)
n ))(2− Z(W

(bi/2c)
n )) i mod 2 ≡ 0

(10)

Since
√
z(1 + z) +

√
(1− z)(2− z) 6

√
3 for all z ∈ [0, 1] (observed originally by [4], and Y (W ) 6

1/4, we can conclude the geometrically decaying upper bound Ei
[√

Y (W
(i)
n )
]
6 1

2

(√
3

2

)n
. There-

fore, by Markov’s inequality, we have

Pr
i

[Y (W (i)
n ) > αn] 6

1

2

(
3

4α

)n/2
. (11)
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We have Ei[Z(W
(i)
n )] = Ei[Z(W

(i)
n−1)] = Z(W ), and so

Pr
i

(Abα) min
i∈Abα

Z(W (i)
n ) 6 E

i
[W (i)

n ] = Z(W ) .

Since Agα ⊂ Aα and Agα is disjoint from Abα, we have Pr(Abα) = 1−Pr(Agα)−Pr(Aα), and we obtain

Pr(Agα) > 1− Z(W )

mini∈Abα(Z(W
(i)
n ))

− Pr(Aα) > 1− Z(W )

1− 2αn
− 1

2

(
3

4α

)n/2
(12)

where we have used (11) to bound the probability of Aα and Fact 5 to lower bound mini∈Abα Z(W
(i)
n ).

BYy Fact 5, Z(W
(i)
n ) 6 2αn for i ∈ Agα. Together with (12) we can conclude that for all

α ∈ (3/4, 1), there is some constant cα such that for all ε > 0 and m > cα log(1/ε), so that

Pr
i

[Z(W (i)
m ) 6 2αm] > Pr(Agα) > 1− Z(W )− ε = I(W )− ε.

4.1.2 General symmetric channels

For a general symmetric channel, we can no longer rely on the explicit value of Z((W
(i)
n )−) and

must rely on the upper and lower bounds of Proposition 4. To analyze this situation further, we
derive a bound on the symmetric Bhattacharyya parameter. By Propositions 3 and 4, we can write

Z(W
(i)
n+1) = Z(W (bi/2c)

n )2 for i odd

Z(W (bi/2c)
n )

√
2− Z(W

(bi/2c)
n )2 6 Z(W

(i)
n+1) 6 2Z(W (bi/2c)

n )− Z(W (bi/2c)
n )2 for i even .

This means we can also write the corresponding expression for Y (W
(i)
n+1):

Y (W
(i)
n+1) = Z(W

(i)
n+1)(1− Z(W

(i)
n+1))

= Z(W (bi/2c)
n )2(1− Z(W (bi/2c)

n )2) for i odd

6
(

2Z(W (bi/2c)
n )− Z(W (bi/2c)

n )2
)(

1− Z(W (bi/2c)
n )

√
2− Z(W

(bi/2c)
n )2

)
for i even

where we have used both sides of the bound from Proposition 4 to form the second expression.

After rearrangement of terms, the expression above becomes

Y (W
(i)
n+1) 6 Y (W (bi/2c)

n ) ·

Z(W
(bi/2c)
n )(1 + Z(W

(bi/2c)
n )) for i odd

(2− Z(W
(bi/2c)
n ))

1−Z(W
(bi/2c)
n )

√
2−Z(W

(bi/2c)
n )2

1−Z(W
(bi/2c)
n )

for i even
. (13)

We first state a bound on the evolution of

√
Y (W

(i)
n+1) in terms of the parameters above.

Proposition 7. Let f(z) = 1
2

(√
z(1 + z) +

√
(2− z)1−z

√
2−z2

1−z

)
and Λ = maxz∈[0,1] f(z). Then

E
i mod 2

√
Y (W

(i)
n+1) 6 Λ

√
Y (W

(bi/2c)
n ) . (14)

where the meaning of the expectation is that we fix bi/2c and allow i mod 2 to vary.

12



Proof. Expanding the expectation expression with (13), obtain

E
i mod 2

√
Y (W

(i)
n+1) 6 f(Z(W (bi/2c)

n ))

√
Y (W

(bi/2c)
n ).

Since Z(W ) ∈ [0, 1] for all channels W , the bound with Λ follows.

We now bound Λ away from 1 which implies a geometric decay of the expected value Ei[
√
Y (W

(i)
n )]

taken over a uniformly random i, 0 6 i 6 2n − 1.

Proposition 8. Let Λ be defined as in Proposition 7. Then we have Λ < 1.

We relegate the proof of Proposition 8 to the appendix, but we note that Λ < 19/20, which can
be verified numerically by maximizing f(z) as defined over the interval [0, 1]. While preparing this
paper, we found a more precise numerical bound in [13] that (14) holds with Λ = 1.85/2, which
was obtained by using a tighter expression for f(z).

Corollary 9. Taking Λ as defined in Proposition 7, Pri[Y (W
(i)
n )] > αn] 6 1

2

(
Λ2

α

)n/2
Proof. Clearly we have

E
i

√
Y (W

(i)
n+1) 6 Λn

√
Y (W ) 6 Λn · 1

2
and we can therefore use Markov’s inequality to obtain the desired consequence.

With the corollary in hand, we are ready to state the result for general symmetric channels:

Proposition 10. For all binary-input symmetric channels W and ρ ∈ (Λ2, 1), there exists a
constant cρ (independent of W ) such that for all ε > 0 and m > bρ log(1/ε), we have

Pr
i

(Z(W (i)
m ) 6 2ρm) > I(W )− ε.

Proof. We have

Pr(Aρ) max
i∈Aρ

(I(W (i)
n )) + Pr(Abρ) max

i∈Abρ
I(W (i)

n ) + Pr(Agρ) max
i∈Agρ

I(W (i)
n ) > E

i
(I(W (i)

n )) = I(W ) (15)

where the last equality follows by the conservation of mutual information in our transformation as
stated in equation (8).

From [2, Proposition 1], I(W )2 6 1 − Z(W )2 for any binary discrete memoryless channel W .

As mini∈Abρ Z(W
(i)
n ) > 1 − 2ρn by Fact 5, we have maxi∈Abρ I(W

(i)
n ) 6 2ρn/2. Using this together

with equation (15), obtain

Pr(Aρ) + Pr(Abρ) · 2ρn/2 + Pr(Agρ) > I(W )

where we used the trivial inequality (apparent from the definition of I of a binary-input channel)

Z(W
(i)
n ) 6 1 for every i. Rearranging terms, using the bounds Pr(Aρ) 6 1

2(Λ2/ρ)n/2 from Corollary

9 and Z(W
(i)
n ) 6 2ρn for i ∈ Agρ from Fact 5, we get

Pr[Z(W (i)
m ) 6 2ρm] > Pr(Agρ) > I(W )− 1

2
(Λ2/ρ)m/2 − 2ρm/2 . (16)

Clearly, if ρ > Λ2, there is a constant bρ such that m > bρ log(1/ε) implies that the above lower
bound is at least I(W )− ε.
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4.2 Fine polarization

The following lemma simplifies some of the arithmetic in the following proposition and specifies
one of the constants.

Lemma 11. For all γ > 0, β ∈ (0, 1/2) and ρ ∈ (0, 1), there exists a constant θ(β, γ, ρ) such that
for all ε ∈ (0, 1), if m > θ(β, γ, ρ) · log(2/ε), then(

lg(2/ρ)γ

2
+ 1

)
exp

(
−(1− 2β)2 lg(2/ρ)m

2

)
< ε/2 .

Proof. We can rewrite this expression as c1 exp(−c2m) < ε for constants c1, c2 that are independent
of ε and the result is clear.

Proposition 12. Given ε ∈ (0, 1/2), a binary input memoryless channel W , a parameter δ ∈
(0, 1/2), there exists a constant cδ (independent of W and ε) such that if n0 > cδ log(1/ε) then

Pr
i

[
Z(W (i)

n0
) 6 2−2δn0

]
> I(W )− ε.

Proof. Fix a β ∈ (δ, 1/2), and let γ = δ
β−δ . Let ρ be an appropriate constant for Proposition 10,

and bρ be the associated constant. We will define

cδ = (1 + γ) max{2bρ, θ(β, γ, ρ), 2/ρ, cβ},

where cβ is defined as a bound on m such that if m > cβ, then

1− β
1− 2

− n
cρ
β
6 1;

cβ = − lg(β)
2 lg(2/ρ)β suffices.

Fix an n0 > cδ log(1/ε), m = 1
1+γn0 and n = n0 − m = γm. We first start with a set of

roughly polarized channels; by our choice of cδ, m > bρ log(2/ε) and we can apply Proposition 10
and conclude

Pr
i

[
Z(W (i)

m ) 6 2ρm
]
> I(W )− ε/2 . (17)

Denote Wg to be this roughly polarized set of all W
(i)
m such that Z(W

(i)
m ) 6 2ρm, and R(m) to

be the set of all associated indices i. Fix a M ∈ Wg and define a sequence {Z̃(i)
n } where

Z̃
(i)
n+1 =

{
(Z̃

(bi/2c)
n )2 i mod 2 ≡ 1

2Z̃
(bi/2c)
n i mod 2 ≡ 0

, (18)

with the base case Z
(0)
0 = Z(M). Clearly Z(M

(i)
n ) 6 Z̃

(i)
n . (Recall that X

(i)
n is the polarization

process done for n steps with i determining which branch to take for arbitrary binary input channel
X.)

Let cρ = d n
2m lg(2/ρ)e. Fix a β ∈ (0, 1/2). Define a collection of events {Gj(n) : 1 6 j 6 cρ}:

Gj(n) =

{
i :

∑
k∈[jn/cρ,

(j+1)n/cρ)

ik > βn/cρ

}
; (19)
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here, ik indicates the k’th least significant bit in the binary representation of i. Qualitatively
speaking, Gj occurs when the number of 1’s in the j’th block is not too small.

Since each bit of i is independently distributed, we can apply the Chernoff-Hoeffding bound
[14] (with p = 1/2 and ε = 1/2− β) to conclude

Pr
i

(i ∈ Gj(n)) 6 1− exp(−2(1/2− β)2n/(cρ))

= 1− exp((1− 2β)2n/(2cρ)) (20)

for all j ∈ [cρ].

Define
G(n) =

⋂
j

Gj(n). (21)

Applying the union bound to G(n) with (20), obtain

Pr
i

(i ∈ G(n)) > 1− cρ exp(−(1− 2β)2n/(2cρ)). (22)

Now we develop an upper bound on the evolution of Z̃ for each interval of n/cρ squaring/doubling
operations, conditioned on i belonging to the high probability set G(n).

Fix an interval j ∈ {0, 1, . . . , cρ}. By the evolution equations (18) and the bound provided
by (19), it is easy to see that the greatest possible value for Z̃(j+1)n/cρ is attained by (1 − β)n/cρ
doublings followed by βn/cρ squarings. Therefore,

lg Z̃
bi/2jn/cρc
(j+1)n/cρ

6 2βn/cρ
(

(1− β)n/cρ + lg Z̃
bi/2(j−1)n/cρc
jn/cρ

)
.

Cascading this argument over all intervals j, obtain

lgZ(M (i)
n ) 6 lg Z̃(i)

n

6 2nβ lgZ(M) +
n

cρ
(1− β)(2βn/cρ + 22βn/cρ + · · ·+ 2nβ) (23)

6 2nβ lgZ(M) +
n

cρ
(1− β)

2nβ

1− 2
− n
cρ
β

= 2nβ

(
lgZ(M) +

n

cρ

1− β
1− 2

− n
cρ
β

)
6 2nβ(lgZ(M) + n/cρ) as m > cβ

As M ∈ Wg, Z(M) 6 2ρm, and n/cρ 6 2m lg(2/ρ), we can bound above as

6 −2nβ lg(2/ρ)m (24)

6 −2nβ as m > 2/ρ

This shows that
Z(W (i)

n0
) 6 2−2βn = 2−2δn0 ,
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where the equality is due to the definition of n and m, as long as the first m bits of i are in R(m)
and the last n bits of i are in G(n). The former has probability at least I(W ) − ε/2 by (17) and
the latter has probability at least

1− cρ exp(−(1− 2β)2n/(2cρ)) > 1−
(

lg(2/ρ)γ

2
+ 1

)
exp

(
−(1− 2β)2 lg(2/ρ)m

2

)
> 1− ε/2

by our choice of cδ and Lemma 11.

Putting the two together with the union bound, obtain

Pr
i

[
Z(W (i)

n0
) 6 2−2δn0

]
> I(W )− ε.

The following corollary will be useful in the next section, where we will deal with an approxi-
mation to the Bhattacharyya parameter.

Corollary 13. Proposition 12 still holds with a modified set W̃g where W̃g ⊃ Wg and Z
(
W̃g

)
6

√
3ρm (instead of 2ρm) with a modified constant c̃δ.

Proof. The changes that need to be made follow from Equation (24), where lgZ(M) is used. With
the extra square root, an extra factor of 1/2 appears outside of the lg, which means cρ needs to be
adjusted by a constant factor. In addition, lg(2/ρ) needs to be adjusted to lg(3/ρ), but this is also
just a constant change.

5 Efficient construction of polar codes

The construction of a polar code reduces to determining the frozen set of indices (the generator
matrix then consists of columns of Gn = K⊗nBn indexed by the non-frozen positions). The core
component of the efficient construction of a frozen set is estimating the Bhattacharyya parameters

of the subchannels W
(i)
n . In the erasure case, this is simple because the evolution equation offered

by Proposition 4 is exact. In the general case, the näıve calculation takes too much time: W
(i)
n has

an exponentially large output alphabet size in terms of N = 2n.

Our goal, therefore, is to limit the alphabet size of W
(i)
n while roughly maintaining the same

Bhattacharyya parameter. With this sort of approach, we can select channels with relatively good
Bhattacharyya parameters. The idea of approximating the channel behavior by degrading it via
output symbol merging is due to [22] and variants of it were analyzed in [19]. The approach is also
discussed in the survey [7, Section 3.3]. Since we can only achieve an inverse polynomial error in
estimating the Bhattacharyya parameters with a polynomial alphabet, we use the estimation only
up to the rough polarization step, and then use the explicit description of the subsequent good
channels that is implicit in the proof of Proposition 12.

For completeness, we include the full analysis of the code construction and conclude Theorem 1
in this section. We note that revised versions of the Tal-Vardy work [22] also include a polynomial
time algorithm for code construction by combining their methods with the analysis of [19]. However,
as finite-length bounds on the speed of polarization were not available to them, they could not claim
poly(N/ε) construction time, but only cεN time for some unspecified cε.
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For our binning, we deal with the marginal distributions of the input bit given an output symbol.
A BIS channel W defines a marginal probability distribution W (y|x). We invert this conditioning
to form the expression

p(0|y) = Pr
x

(x = 0|W (x) = y) =
1

2

W (y|0)

Prx(W (x) = y)

for a uniformly distributed input bit x. In addition, we introduce the one-argument form

p(y) = Pr
x

(W (x) = y)

for the simple probability that the output is y given an uniformly distributed input bit x.

Proposition 14. For a binary-input symmetric channel W : B → Y and all k > 0, there exists a
channel W̃ : B → Ỹ such that H(W ) 6 H(W̃ ) 6 H(W ) + 2 lg(k)/k, |Ỹ| 6 k + 1, and the marginal

probability distribution W̃ (y|x) is computable, by Algorithm 2, in time polynomial in |Y| and k.

Algorithm 2: Binning algorithm

input : W : B → Y, k > 0
output: W̃ : B → Ỹ

1 Initialize new channel W̃ with symbols ỹ0, ỹ1 . . . ỹk with W̃ (ỹ|x) = 0 for all ỹ and x ∈ B
2 for y ∈ Y do

3 p(0|y)← 1
2

W (y|0)
Prx(W (x)=y)

4 W̃ (ỹbkp(0|y)c|0)← W̃ (ỹbkp(0|y)c|0) +W (y|0)

5 W̃ (ỹbkp(0|y)c|1)← W̃ (ỹbkp(0|y)c|1) +W (y|1)

6 return W̃

Proof. First, it is clear that the algorithm runs in time polynomial in |Y| and k; k bits of precision
is more than sufficient for all of the arithmetic operations, and the operations are done for each
symbol in Y.

For ỹ ∈ Ỹ, let Iỹ be the set of y associated with the symbol ỹ; that is, all y such that p(0|y)
falls in the interval of [0, 1] associated with ỹ (which is [j/k, (j + 1)/k) for ỹ = ỹj).

For the lower bound, it is clear that H(W ) 6 H(W̃ ). Juxtaposing the definitions of H(W ) and

H(W̃ ) together, obtain (defining the binary entropy function h(x) = −x lg x− (1− x) lg(1− x)):

H(W ) =
∑
y∈Y

p(y)h(p(0|y)) 6
∑
ỹ∈Ỹ

∑
y∈Iỹ

p(y)

 (h(p(0|ỹ)))) = H(W̃ )

where the inequality is due to the concavity of h(x).

Using the fact mini ai/bi 6
∑

i ai/
∑

i bi 6 maxi ai/bi, we can bound

p(0|ỹ) =
p(ỹ|0)p(0)

p(ỹ)
=

1

2

∑
y∈Iỹ p(y|0)∑
y∈Iỹ p(y)
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with the expressions
min
y∈Iỹ

p(0|y) 6 p(0|ỹ) 6 max
y∈Iỹ

p(0|y)

which implies, for all y ∈ Iỹ,

p(0|ỹ)− 1

k
6 p(0|y) 6 p(0|ỹ) +

1

k
.

We will need to offer a bound on h(p(0|ỹ)) as a function of h(p(0|y)). h(x) is concave and obeys
|h′(x)| 6 lg k if 1/k < x < 1−1/k. Define the “middle set” ỹm = {ỹi : 0 < i < k−1}, corresponding
with intervals where p(0|ỹm) is in the range 1/k < x < 1 − 1/k. Then, by the concavity of h(x),
for all ỹ ∈ ỹm and y ∈ Iỹ, we have h(p(0|ỹ)) 6 h(p(0|y)) + 2 lg(k)/k.

We now provide a bound for the remaining symbols ỹ0, ỹk−1 and ỹk. ỹk is trivial because
it represents all symbols where p(0|y) = 1, and merging those symbols together still results in
p(0|ỹ) = 1. For ỹ0, we have

h(p(0|ỹ)) 6 h(1/k) 6 2 lg(k)/k 6 h(p(0|y)) + 2 lg(k)/k

and similarly for ỹk−1.

With these expressions in hand, we can now write

H(W̃ ) =
∑
ỹ∈Y

∑
y∈Iỹ

p(y)h(p(0|ỹ)))

6
∑
ỹ∈Y

∑
y∈Iỹ

p(y)(h(p(0|y)) + 2 lg(k)/k)

6 H(W ) + 2 lg(k)/k

We note that a slightly different binning strategy [22] can achieve an approximation error of
O(1/k). We chose to employ a simple variant that still works for our purposes. We will iteratively
use the binning algorithm underlying Proposition 14 to select the best channels. The following
corollary formalizes this.

Corollary 15. Let Ŵ
(i)
n indicate the result of using Algorithm 2 after every application of the

evolution Equations (7); that is,

Ŵ
(i)
n =

˜̃
W̃+

−
. .
.

where the + or − is chosen depending on the corresponding bit, starting from the least significant
one, of the binary representation of i ∈ {0, 1, . . . , 2n − 1}. Then

H(W (i)
n ) 6 H

(
Ŵ

(i)
n

)
6 H(W (i)

n ) +
2n+2 lg(k)

k
.

Proof. The lower bound is obvious as the operation ·̃ never decreases the entropy of the channel,
as mentioned in the proof of Proposition 14.

For the upper bound, we’d like to consider the error expression summed over all W
(i)
n :

2n−1∑
i=0

H

(
Ŵ

(i)
n

)
−

2n−1∑
i=0

H(W (i)
n ) =

2n−1∑
i=0

H

(
Ŵ

(i)
n

)
− 2nH(W ) (25)
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as Eb∈{+,−}H(W b) = H(W ) by (8). At every approximation stage, we have, from Proposition 14,

H

 ˜̂
W

(bi/2c)
m

+
+H

 ˜̂
W

(bi/2c)
m

−
 6 2

(
H

(
Ŵ

(bi/2c)
m

)
+

2 lg k

k
.

)

Applying this to every level of the expression (25) (colloquially speaking, we strip off the ˜s n
times), obtain

2n−1∑
i=0

H

(
Ŵ

(i)
n

)
− 2nH(W ) 6

2 lg k

k
(2 + 22 + · · ·+ 2n) 6

2n+2 lg k

k
.

Since the sum of all of the errors H

(
Ŵ

(i)
n

)
−H(W

(i)
n ) is upper bounded by 2n+2 lg k

k , each error is

also upper bounded by 2n+2 lg k
k (since no error is negative due to the lower bound).

We are now in a position to restate and prove our main theorem (Theorem 1).

Theorem. There is an absolute constant µ <∞ such that the following holds. Let W be a binary-
input output-symmetric memoryless channel with capacity I(W ). Then there exists aW < ∞ such
that for all ε > 0 and all powers of two N > aW (1/ε)µ, there is a deterministic poly(N) time
construction of a binary linear code of block length N and rate at least I(W )−ε and a deterministic
O(N logN) time decoding algorithm with block error probability at most 2−N

0.49
.

Proof. Fix an N that is a power of 2, and let n0 = lg(N). Define m,n, ρ as they are in Proposition

12. Utilizing the definition of ·̂ from Corollary 15 with k =
(

2
ρ

)2m
, let Ŵg be the set of all channels

W
(i)
m such that H

(
Ŵ

(i)
m

)
6 3ρm, and let R̂(m) be the set of corresponding indices i. Define the

complement of the frozen set

F̂n0 = {i | 0 6 i 6 2n0 − 1, im−1
0 ∈ R̂(m), in0−1

m ∈ G(n0 −m)}

where G(n) is defined in Equation 21 and the notation ikj = i/2j mod 2k−j+1 means the integer

with the binary representation of the jth through kth bits of i, inclusive. We note that this set F̂n0

is computable in poly(1/ε,N) time: R̂(m) is computable in poly(1/ε) time because k 6 poly(1/ε)
and G(n0 −m) is computable in O(N) time as it is just counting the number of 1 bits in various
intervals.

By Corollary 15 we can conclude that i ∈ R(m) implies i ∈ R̂(m) because Z(W
(i)
m ) 6 2ρm

implies H(W
(i)
m ) 6 Z(W

(i)
n ) 6 2ρm. This in turn implies H(Ŵ

(i)
m ) 6 3ρm by our choice of k and

the approximation error guaranteed by Corollary 15. Therefore, we have

Pr
i<2m

(i ∈ R̂(m)) > Pr
i<2m

(i ∈ R(m))

and also that all M ∈ Ŵg satisfy Z(M) 6
√
H(M) 6

√
3ρm, where the former inequality is from

(1).
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Applying Corollary 13 with our modified set Ŵg, we can now conclude Pr(i ∈ F̂n0) > I(W )− ε
and Z(W

(i)
n0 ) 6 2−2δn0 for all i in F̂n0 . This implies that∑

i∈F̂n0

Z(W (i)
n ) 6 N2−N

δ
.

Taking δ = .499 and µ = c̃δ, we can conclude the existence of an aW such that for N > aW (1/ε)µ,∑
i∈F̂n0

Z(W (i)
n ) 6 2−N

.49
,

as such µ satisfies the conditions of Corollary 13. The proof is now complete since by Lemma 2, the
block error probability of polar codes with a frozen set F under successive cancellation decoding is
bounded by the sum of the Bhattacharyya parameters of the channels not in F .

6 Future work

The explicit value of µ found in Theorem 1 is a large constant and far from the empirically suggested
bound of approximately 4. Tighter versions of this analysis should be able to minimize the difference
between the upper bound suggested by Theorem 1 and the available lower bounds.

We hope to extend these results shortly to channels with non-binary input alphabets, utilizing
a decomposition of channels to prime input alphabet sizes [8]. Another direction is to study the
effect of recursively using larger `× ` kernels instead of the 2 × 2 matrix K = ( 1 1

0 1 ). Of course in
the limit of `→∞, by appealing to the behavior of random linear codes we will achieve µ ≈ 2, but
the decoding complexity will grow as 2`. The trade-off between µ and ` for fixed ` > 2 might be
interesting to study.
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A Proofs of Z-parameter evolution equations

The Z-parameter evolution equations are a special case of the lemmas in [16], specifically in the
appendices to Chapters 2 and 3, and the proof techniques used here are based on the proofs of
those lemmas.

Proof of Proposition 3. This can be done directly by definition. Let Y be the output alphabet of
Wn. Then

Z(W+
n ) ,

∑
y∈B×Y2

√
W+
n (y|0)W+

n (y|1)

=
1

2

∑
x∈B,y1,y2∈Y

√
Wn(y1|x⊕ 0)Wn(y2|0)Wn(y1|x⊕ 1)Wn(y2|1)

=
1

2

∑
x∈B,y1∈Y

√
Wn(y1|x)Wn(y1|x⊕ 1)

∑
y2∈Y

√
Wn(y2|0)Wn(y2|1)

=
∑
y1∈Y

√
Wn(y1|0)Wn(y1|1)

∑
y2∈Y

√
Wn(y2|0)Wn(y2|1)

, Z(Wn)2

where the first step is the expansion of the definition of W+
n and the rest is arithmetic.

Proof of Proposition 4. We first show Z(W−n ) 6 2Z(Wn) − Z(Wn)2. Again, let Y be the output
alphabet of Wn. Then we have

Z(W−n ) ,
∑

y1,y2∈Y

√
W−n (y1, y2|0)W−n (y1, y2|1) (26)

=
1

2

∑
y1,y2∈Y

√∑
x1∈B

Wn(y1|x1)Wn(y2|x1)
∑
x2∈B

Wn(y1|1⊕ x2)Wn(y2|x2)

=
1

2

∑
y1,y2∈Y

√
(Wn(y1|0)Wn(y1|1))

√
(Wn(y2|0)Wn(y2|1))

√
Wn(y1|0)

Wn(y1|1)
+
Wn(y2|0)

Wn(y2|1)
+
Wn(y1|1)

Wn(y2|0)
+
Wn(y2|1)

Wn(y2|0)
(27)
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and we note that we can define a probability mass function p(y) =

√
Wn(y|0)Wn(y|1)

Z(Wn) over Y, so we
write

=
Z(Wn)2

2

∑
y1,y2∈Y

p(y1)p(y2)

√
Wn(y1|0)2 +Wn(y1|1)2

Wn(y1|0)Wn(y1|1)
+
Wn(y2|0)2 +Wn(y2|1)2

Wn(y2|0)Wn(y2|1)

and introducing f(y) =
√
Wn(y|0)/Wn(y|1) +

√
Wn(y|1)/Wn(y|0), we can write

=
Z(Wn)2

2
E

y1,y2∼p(y)

√
f(y1)2 + f(y2)2 − 4 (28)

6
Z(Wn)2

2
(E(f(y1)) + E(f(y2))− 2) using

√
a+ b− c 6

√
a+
√
b−
√
c when a, b > c

and since Ey1∼p(y)[f(y1)] = 2/Z(Wn),

= 2Z(Wn)− Z(Wn)2

For the lower bound, we can apply Jensen’s inequality twice to the function
√
x2 + a which is

convex for a > 0, together with f(yi)
2 > 4, to obtain

Z(W−n ) =
Z(Wn)2

2
E

y1,y2∼p(y)

√
f(y1)2 + f(y2)2 − 4

>
Z(Wn)2

2

√(
E

y1∼p(y)
f(y1)

)2
+
(

E
y2∼p(y)

f(y2)
)2
− 4

= Z(Wn)
√

2− Z(Wn)2.

We note that p(y) = 0 for all y where either Wn(y|0) or Wn(y|1) is zero, so the expressions involving
f(y) are well-defined even if f(y) is not defined for all y.

In the case that W is a binary erasure channel, the expression (28) can be simplified to obtain
a tight bound. If y is an erasure symbol, then f(y) = 2, and otherwise, p(y) = 0. This means that
we simply have

E
y1,y2∼p(y)

√
f(y1)2 + f(y2)2 − 4 = E

y∼p(y)
f(y)

and the equality follows.

B Analytic bound on geometric decay rate of Y (W
(i)
n )

The bounds on f as stated in Proposition 8 can be found by numerically maximizing f in the range
[0, 1], but it is difficult to verify that f is indeed concave in the range [0, 1] without resorting to
more numerical approaches. In this section, we offer an analytic justification that f is bounded by
a constant less than 1 on the interval [0, 1].

First, we state the following lemma to make future analysis easier.

Lemma 16. (2− z)1−z
√

2−z2
1−z 6 2.1(1− z).
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With this in hand, we can easily prove the proposition.

Proof of Proposition 8. Using Lemma 16, we have (where we are newly defining g(z)):

f(z) 6
1

2

(√
z(1 + z) +

√
2.1
√

1− z
)
, g(z).

Since g(z) is continuous over [0, 1] and g(0) < 2 and g(1) < 2, to prove the existence of some
Λ < 1 such that f(z) 6 Λ for all z ∈ [0, 1], it is sufficient to show that g(z) 6= 2 at any point in
[0, 1].

Therefore, we only need to consider the roots of the equation√
z(1 + z) +

√
2.1
√

1− z − 2 = 0.

Expanding the surds, obtain the polynomial equation (which has roots wherever g(z)−2 has roots)

h(z) , 100z4 + 620z3 − 259z2 − 422z + 361 = 0

which has two complex roots and two real roots at −6.5 and −1. Since h(z) has roots wherever
g(z)− 2 has roots and none occur in [0, 1], we have proven the proposition.

We then prove the lemma, which is an observation that the (2− z)1−z
√

2−z2
1−z is very “close” to

the linear function 2(1− z), and is indeed bounded above by 2.1(1− z).

Proof of Lemma 16. We use the same technique that we used in the proof of Proposition 8. We
define the continuous function

f̃(z) , (2− z)(1− z
√

2− z2)− 2.1(1− z)2 .

After squaring and simplifying, the equation f̃(z) = 0 implies

g̃(z) , 1− 64z + 266z2 − 544z3 + 641z4 − 400z5 + 100z6 = 0

We can pull out a factor of (z − 1)2 to obtain

1− 62z + 141z2 − 200z3 + 100z4 = 0

which is a polynomial that has two complex roots, one root at approximately z0 = 0.017, and one
root at approximately 1.269. As g̃(z) has a zero whenever f̃(z) does and f̃(z) is continuous on
[0, 1], it is sufficient to test f̃(0) > 0, f̃(z0) > 0 (to conclude that z0 is not a root of f̃), and f̃(1) > 0
to conclude the lemma.
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