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Abstract

We study the complexity of approximating Boolean functions with DNFs and other depth-2
circuits, exploring two main directions: universal bounds on the approximability of all Boolean
functions, and the approximability of the parity function. In the first direction, our main positive
results are the first non-trivial universal upper bounds on approximability by DNFs:

• Every Boolean function can be ε-approximated by a DNF of size Oε(2
n/ log n).

• Every Boolean function can be ε-approximated by a DNF of width cε n, where cε < 1.

Our techniques extend broadly to give strong universal upper bounds on approximability by
various depth-2 circuits that generalize DNFs, including the intersection of halfspaces, low-
degree PTFs, and unate functions. We show that the parameters of our constructions come
close to matching the information-theoretic inapproximability of a random function.

In the second direction our main positive result is the construction of an explicit DNF that
approximates the parity function:

• PARn can be ε-approximated by a DNF of size 2(1−2ε)n and width (1− 2ε)n.

Using Fourier analytic tools we show that our construction is essentially optimal not just within
the class of DNFs, but also within the far more expressive classes of the intersection of halfspaces
and intersection of unate functions.

1 Introduction

The study of the DNF complexity of Boolean functions is one of the great success stories in com-
plexity theory. Among the many remarkably precise results in this area, let us highlight three:

Lupanov’s Theorem ([Lup61]). Any DNF computing the parity function PARn has size 2n−1 and
width n. Furthermore, every Boolean function can be computed by a DNF of size 2n−1 and width
n so the parity function has the largest DNF size and width complexity of all Boolean functions.

Quine’s Theorem ([Qui54]). Any DNF computing the majority function MAJn has size at least(
n

n/2

)
and width at least n/2. Furthermore, every monotone Boolean function can be computed by a

DNF of size
(

n
n/2

)
so MAJn is the hardest monotone function to compute with respect to DNF size.

∗Research supported by a Simons Postdoctoral Fellowship. Part of this research was completed while the author
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Korshunov–Kuznetsov Theorem ([Kor83, Kuz83]1). The optimal DNF size for a random
Boolean function is (K + o(1))(2n/ log n log log n), where 1 ≤ K ≤ 1.54169.

Our understanding of the DNF complexity of Boolean functions extends beyond the minimum
size of the DNFs computing specific functions or classes of functions. Notably, we have a good
understanding of the maximum possible correlation of small-size DNFs with the parity function.
Building on a long line of work originally motivated by the goal of showing that PARn is not in
AC

0 [FSS84, Ajt83, Yao85, H̊as86, Cai89, LMN89], and improving on a recent result of Beame et
al. [BIS12], Impagliazzo et al. and H̊astad recently showed that any DNF of size s has correlation
at most 2−Ω(n/ log s) with PARn [IMP12, H̊as12].

In this work we are interested in the DNF complexity of approximating Boolean functions.
Specifically, we say that a DNF ε-approximates the function f : {0, 1}n → {0, 1} if the function
g : {0, 1}n → {0, 1} computed by the DNF satisfies f(x) = g(x) for all but an ε fraction of the
inputs x ∈ {0, 1}n. The explicit study of the DNF complexity of approximating Boolean functions
was initiated by O’Donnell and Wimmer [OW07], who showed that for any constant ε > 0 there is
a DNF of size 2O(

√
n) that ε-approximates MAJn. They also showed that there exists a monotone

function for which every DNF that 1
100 -approximates it must have size 2Ω(n/ logn). A comparison of

these results with Quine’s theorem shows that the DNF complexity of Boolean functions is strikingly
different in the exact and approximate computation models: quantitatively, we see that it is possible
to approximate the majority function with much smaller DNFs than those that compute majority
exactly, and qualitatively we see that, unlike in the exact computation model, the majority function
is far from the hardest monotone function to approximate in terms of DNF size.

We continue the study of the DNF complexity of approximating Boolean functions, focusing
especially on the analogues of Lupanov’s theorem and the Korshunov–Kuznetsov theorem in the ap-
proximation model. As we discuss next, our results further illustrate how different DNF complexity
can be in exact and approximate computation models.

Universal bounds on approximability We begin with a simple question: is there a non-trivial
universal upper bound on the size or width of DNFs for approximating any Boolean function? To
the best of our knowledge, this question has not been considered explicitly before and a large gap
exists between the trivial upper bounds and the known limitations on any potential universal upper
bound. In fact, we believe that it is not even known whether there is a Boolean function for which
every ε-approximating DNF has size2 Ωε(2

n), whether every function can be ε-approximated by
a DNF of size 2cεn for some cε < 1 (i.e. whether every function can be approximated by a DNF
that is exponentially smaller than the trivial DNF), or whether the best universal upper bound lies
somewhere in the middle. Likewise, it is unknown whether there is a Boolean function for which
every ε-approximating DNF has width n − Oε(1), whether every function can be ε-approximated
by a DNF of width cεn for some cε < 1 (i.e. whether every function can be approximated by a
union of subcubes that each have dimension linear in n) or, once again, whether the best universal
upper bound on the width of approximating DNFs is somewhere in between.

We answer these questions in the first part of the paper. Our main positive results are the first
non-trivial universal upper bounds on the approximability of all Boolean functions with respect to

1The Korshunov–Kuznetsov theorem is the culmination of a long line of research [Gla67, Kor69, Sap72, Kor81,
Kor83, Kuz83, Pip03]. For more discussion of the history of this theorem and elegant proofs of its components, we
highly recommend Pippenger’s article [Pip03].

2For clarity of presentation in informal discussions, we use the notation Oε(·) and Ωε(·) to represent asymptotic
behaviors when ε is a fixed constant. For the dependencies on ε in the bounds, see the corresponding theorem
statements in the main body of the paper.
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Complexity measure
Upper bound Lower bound for

for all functions almost all functions

DNF width cε n (cε < 1) Ω(n)

DNF size O
(
2n/logn

)
Ω (2n/n)

AND of halfspaces (1 + o(1)) · 2n/n Ω
(
2n/n2

)

AND of unate functions 2 cεn (cε < 1) 2Ω(n) for ε < 1
16

AND of degree-d PTFs O
(
2n/nd

)
Ω
(
2n/nd+1

)

Table 1: Our universal bounds on approximating any Boolean function to constant accuracy.

both DNF size and width. Our universal bound on DNF width is asymptotically optimal, and we
accomplish this via a connection between approximating DNFs and low-density coverings of the
Boolean hypercube by Hamming balls. We show that this technique extends rather broadly to give
universal bounds on approximability by various generalizations of DNFs, including the intersection
of halfspaces, low-degree PTFs, and unate functions. We complement these upper bounds with
near-matching information-theoretic lower bounds against a random function.

Approximating the parity function In the second part of the paper we turn our attention to
the parity function. Despite decades of intensive study of the circuit complexity of this function,
large gaps remain between the minimal size and width of DNFs that ε-approximate PARn for
constant values of ε > 0. For instance, while the random restriction method shows that any DNF
that ε-approximates PARn must have size 2Ωε(n), the precise dependence on ε in this bound is
unclear, leaving open a wide range of possibilities. On one extreme, it is possible that the true
lower bound is Ωε(2

n) (so that we only gain a linear savings on the size of DNFs by requiring them
to approximate parity rather than compute it directly) and on the other it is possible that the true
bound is 2cεn for some cε < 1 (so that DNFs that approximate PARn are exponentially smaller than
those that compute the same function exactly).

We resolve this question by showing, perhaps somewhat surprisingly, that the right answer falls
in the latter extreme. Our construction of an explicit DNF approximator for PARn, when combined
with information-theoretic lower bounds against a random function, also shows that the landscape
of DNF complexity changes dramatically when we move from exact to approximate computation:
while PARn is the hardest function to compute exactly by DNFs, it can be approximated by DNFs
of size exponentially smaller than that required for almost every other function. The remainder
of the paper is then devoted to proving the optimality of our DNF approximator for PARn. Using
Fourier analytic tools, we show that the dependence on ε in our DNF construction is essentially the
best possible, and furthermore, our construction is near-optimal even within the far more expressive
classes of the intersection of halfspaces and the intersection of unate functions.

1.1 Our results

Universal bounds Our first result is the first non-trivial universal upper bound on the size of
DNF approximators for all Boolean functions.

Theorem 1. Every Boolean function can be ε-approximated by a DNF of size Oε(2
n/ log n).

The proof of Theorem 1, presented in Section 3, is obtained with a randomized algorithm
that constructs an explicit approximating DNF. In Section 4 we complement Theorem 1 with an
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asymptotically optimal universal upper bound on the width of DNFs required to approximate any
function.

Theorem 2. Every Boolean function can be ε-approximated by a DNF of width cε n, where cε < 1
depends only on ε.

Theorem 2 highlights an interesting (and stark) contrast between exact and approximate com-
putation with respect to DNF width: not only is the DNF width of a random Boolean function
at least n − log(3n), every term in any DNF computing it has to have width at least n − log(3n)
(see e.g. Theorem 3.21 of [CH11]). Therefore, while every 1-monochromatic subcube in a random
function has dimension at most log(3n), Theorem 2 shows that every Boolean function can be
ε-approximated by the union of 1-monochromatic subcubes all of which have dimension Ωε(n).

Theorem 2 is obtained by exploiting a connection between approximating DNFs and low-density
coverings of the Boolean cube by Hamming balls. This technique extends rather broadly to give
strong universal bounds on approximability by the intersection of unate functions and low-degree
PTFs.

Theorem 3. Every Boolean function can be ε-approximated by the intersection of 2 cεn unate
functions, where cε < 1 depends only on ε.

Theorem 4. For every positive integer d, every Boolean function can be O(1/n)-approximated by
the intersection of O(2n/nd) degree-d PTFs.

Using a theorem of Kabatyanski and Pachenko on the existence of asymptotically perfect cov-
ering codes of radius 1 [KP88], we obtain improvements on both the accuracy and size of our
approximators in Theorem 4 when d = 1 (i.e. the intersection of LTFs). See Section 4 for the
details.

In Section 5 we turn our attention to lower bounds, giving a lower bound on the size complexity
of approximating DNFs for almost all functions that nearly matches the universal upper bound of
Theorem 1.

Theorem 5. For almost every Boolean function f , any DNF that ε-approximates f has size
Ωε(2

n/n).

The proof of Theorem 5 is obtained by extending Pippenger’s elegant information-theoretic
proof [Pip03] of Kuznetsov’s theorem showing that the DNF size of a random Boolean function is
at least (1 + o(1))(2n/ log n log log n) [Kuz83]. Notably, our extension is rather general, and also
implies strong bounds on the inapproximability of a random function by other types of depth-2
circuits; due to space considerations we do not list the associated corollaries here. We remark that
our construction of small-width DNF approximators in Theorem 2 is asymptotically optimal. We
prove in the second part of the paper that any ε-approximator for PARn must have width at least
(1− 2ε)n, and also show that the same proof extends easily to show that almost every function has
ε-approximating DNF width Ωε(n).

Approximating the parity function In Section 6 we turn our focus to the complexity of
approximating the parity function. We begin with a deterministic construction of a DNF that
approximates PARn with one-sided error.

Theorem 6. The parity function can be ε-approximated by a DNF f of width (1 − 2ε)n and size
2(1−2ε)n. Furthermore, f has one-sided error: if PARn(x) = 1 then f(x) = 1.
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Complexity measure Upper bound Lower bound

DNF width (1− 2ε)n (1− 2ε)n

DNF size 2(1−2ε)n maxδ>0 {δ 2(1−2ε−2δ)n, (12 − ε)2
1−2ε
1+2ε

n}
AND of halfspaces 2(1−2ε)n 2Ωε(n) assuming Klivans et al.’s conjecture

AND of unate functions 2(1−2ε)n 2Ω(n) for ε < 1
16

Table 2: Our bounds for approximating PARn to accuracy ε.

We point out the interesting contrast between this upper bound on size and the lower bound
of Theorem 5: although PARn is the hardest function to compute exactly with respect to DNF
size, Theorems 6 and 5 together show that it is in fact exponentially easier to approximate than
almost every other function. We prove the optimality of our construction by giving matching lower
bounds on the size and width of DNF approximators for PARn.

Theorem 7. Any DNF that ε-approximates PARn has width at least (1− 2ε)n.

Theorem 8. Any DNF that ε-approximates PARn has size at least

s ≥ max

{
max
δ>0

δ 2(1−2ε−2δ)n,
(
1
2 − ε

)
2

1−2ε
1+2ε

n

}
.

The width lower bound is obtained by applying Amano’s bound on the total influence of small-
width DNFs [Ama11], and the first size lower bound is obtained by combining Amano’s theorem
with an elementary truncation argument. The second lower bound on size uses a sharpening of
Boppana’s bound on the total influence of small-size DNFs [Bop97], obtained in concurrent work
by the present authors using the entropy method [BTW13].

In Section 7 we provide further evidence of the optimality of our DNF approximators for PARn.
Assuming a noise sensitivity conjecture of Klivans et al. [KOS04], we prove that ε-approximating
PARn even with the intersection of halfspaces requires size 2Ωε(n), matching the size of our DNF
approximators in Theorem 6.3

Theorem 9. Assume the KOS conjecture holds. Let f be computed by the intersection of k halfs-
paces, and suppose f ε-approximates PARn. Then k = 2Ωε(n).

Naturally we would like an unconditional proof of Theorem 9. We are able to accomplish this
for all ε < 1

16 , and in fact, our proof holds against the more expressive class of the intersection of
unate functions.

Theorem 10. Fix ε < 1
16 . Let f be computed by the intersection of k unate functions and suppose

f ε-approximates PARn. Then k = 2Ω(n).

2 Preliminaries

All probabilities and expectations are with respect to the uniform distribution and logarithms
are base 2 unless otherwise stated. For strings x, y ∈ {0, 1}n, we write dist(x, y) to denote the

3Since the class of halfspaces is closed under negation, universal bounds on approximability by the intersection of
halfspaces immediately imply identical universal bounds for the disjunction of halfspaces, a strict superclass of DNFs.
Likewise for the intersection of unate functions, a further generalization of the intersection of halfspaces.
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Hamming distance between x and y. We write Vol(d) to denote the quantity
∑d

i=0

(
n
d

)
, the volume

of a Hamming ball of radius d.

We say that a Boolean function f is sensitive at coordinate i ∈ [n] on input x if f(xi=0) 6=
f(xi=1), where xi=b is x with its i-th coordinate set to b. We write s(f, x, i) to denote the indicator
for this event, and s(f, x) to denote

∑n
i=1 s(f, x, i). We say that f is monotone in direction i if

f(xi=0) ≤ f(xi=1) for all x, and anti-monotone in direction i if f(xi=0) ≥ f(xi=1) for all x. A
Boolean function f is unate if for all i ∈ [n], f is either monotone or anti-monotone in direction i.

The subcube C ⊆ {0, 1}n corresponding to the pair of disjoint sets S0, S1 ⊆ [n] is the set of
elements x ∈ {0, 1}n for which xi = 0 for every i ∈ S0 and xi = 1 for every i ∈ S1. The free
coordinates of C are the coordinates in [n] \ (S0 ∪ S1). The subcube C is 1-monochromatic with
respect to f if f(x) = 1 for every x in C. Each term in a DNF corresponds to a 1-monochromatic
subcube, and so a DNF may be viewed geometrically as a union of 1-monochromatic subcubes.

A degree-d polynomial threshold function (PTF) is a Boolean function f(x) = sgn(p(x)), where
p : {0, 1}n → R is a degree-d polynomial. If d = 1 we refer to f as a linear threshold function
(LTF), or a halfspace. It is straightforward to verify that halfspaces are unate.

2.1 Fourier analysis over the Boolean hypercube

Every Boolean function f : {−1, 1}n → {−1, 1} has a Fourier expansion f(x) =
∑

S⊆[n] f̂(S)χS(x),

where the numbers f̂(S) ∈ [−1, 1] are the Fourier coefficients of f . We write Wk[f ] =
∑

|S|=k f̂(S)
2

to denote the total Fourier weight of f at level k.

Definition 11. The influence of coordinate i ∈ [n] on a Boolean function f , denoted Inf i[f ], is the
probability Pr[f(x) 6= f(x⊕i)], where x⊕i denotes x with its i-th bit flipped. The total influence
of f is Inf [f ] =

∑n
i=1 Inf i[f ].

Definition 12. The noise sensitivity of a Boolean function f : {−1, 1}n → {−1, 1} at noise rate δ,
denoted NSδ[f ], is the probability Pr[f(x) 6= f(y)], where x ∼ {−1, 1}n is uniformly random and
y is obtained from x by flipping each coordinate independently with probability δ.

Both total influence and noise sensitivity have well-known Fourier formulas:

Inf [f ] =
∑

S⊆[n]

|S| · f̂(S)2.

NSδ[f ] =
1

2

n∑

k=0

(1− (1− 2δ)k) ·Wk[f ].

3 Universal upper bound on DNF size

In this section we prove that every Boolean function can be ε-approximated by a DNF of size
Oε(2

n/ log n). The proof of this result is obtained via a randomized construction that, given a
function f , constructs an explicit approximating DNF for f of the required size.

Before presenting the construction, let us first informally describe the intuition behind it. In
order to build a good approximator for f , the construction must identify a small family of subcubes
that (i) cover almost all of the inputs x ∈ {0, 1}n for which f(x) = 1, and (ii) cover almost none
of the inputs x for which f(x) = 0. For most functions f , these constraints are roughly equivalent
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to the requirement that the subcubes in the family should have relatively small overlap with each
other over f−1(1) while having large overlap with each other over f−1(0).

Our construction meets these apparently conflicting requirements with a two-stage process. In
the first stage, the algorithm selects a (small) random subset S of f−1(0) and defines the random
function g to take the value 1 on every input in f−1(1)∪S. The second stage selects a random subset
of the large subcubes that are 1-monochromatic in g. The union of those subcubes corresponds
to a small DNF that computes a function h that is close to f provided that S is small enough (in
which case constraint (ii) is satisfied) and that most elements in f−1(1) are covered by many large
subcubes that are 1-monochromatic in g (in which case constraint (i) is also satisfied). As we see
below, with the right parameter settings, we can guarantee that both those events happen with
large probability.

Theorem 1. Let ε ≥ 10/n.4 Every Boolean function f : {0, 1}n → {0, 1} can be ε-approximated
by a DNF of size 4 ln(4/ε) · 2n−d and width n− d, where

d = log log2/ε

(
n

ln(4/ε) log log2/ε n

)
.

That is, every f can be ε-approximated by a DNF of size Oε(2
n/ log n) and width n−Ωε(log logn).

Proof. We may assume that min{Pr[f(x) = 0],Pr[f(x) = 1]} ≥ ε, since otherwise f is ε-close to
constant and the claim is trivially true. Let g : {0, 1}n → {0, 1} be the random function obtained
by setting g(x) = 1 for all x ∈ f−1(1), and for each x ∈ f−1(0), we independently set g(x) = 1 with
probability ε/2 and g(x) = 0 otherwise. Let G denote the induced distribution over all Boolean
functions. Since EG [Prx∈f−1(0)[g(x) = 1]] = ε/2, we apply the Chernoff bound to deduce that

Pr
G

[
Pr

f−1(0)
[f(x) 6= g(x)] ≥ ε

]
≤ e−ε2·2n/3. (1)

Let us call a subcube C special if C has dimension exactly d and the d free coordinates of C
are {dk + 1, . . . , dk + d} for some k = 0, . . . , ⌊n/d⌋ − 1. There are ⌊n/d⌋ · 2n−d special subcubes in
total, and every x ∈ {0, 1}n is contained in exactly ⌊n/d⌋ special subcubes. Let h : {0, 1}n → {0, 1}
be the union of a random subset of the 1-monochromatic special subcubes in g where each 1-
monochromatic special subcube C in g is included in h with probability (ε/2)#{x∈C : f(x)=1}. The
probability, over the randomness of g and h, that a fixed special subcube C is included in h is there-
fore exactly (ε/2)2

d

, since the probability that C is 1-monochromatic in g is (ε/2)#{x∈C : f(x)=0},
and the probability that C is then included in h is (ε/2)#{x∈C : f(x)=1}. Note that h is a DNF of
width n− d, and h−1(1) ⊆ g−1(1); in particular, the error of h on the 0-inputs of f is at most that
of g, and (1) remains true with h in place of g. Next we argue that

Pr
G

[
Pr

f−1(1)
[f(x) 6= h(x)] ≥ ε

]
≤ 1/4. (2)

Fix x ∈ f−1(1). The probability that h(x) = 0 (i.e. h(x) 6= f(x)) is the probability that none of
the ⌊n/d⌋ special subcubes containing x are included in h. Since any two of these ⌊n/d⌋ special
subcubes intersect only at x, their inclusion probability are independent and so we have

Pr
G
[h(x) = 0] =

(
1−

(ε
2

)2d)⌊n/d⌋

≤ e−(ε/2)2
d
n/d < ε/4,

4Our lower bounds in Section 6 imply that any DNF that ε-approximates PARn has size Ω(2n) and width n−O(1)
when ε = O(1/n), and so the universal upper bounds are only of interest for ε = ω(1/n).
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where we have used our choice of d in the final inequality. This gives us

E
G

[
Pr

f−1(1)
[f(x) 6= h(x)]

]
< ε/4,

and so

Pr
G

[
Pr

f−1(1)
[f(x) 6= h(x)] ≥ ε

]
≤ 1/4,

matching the claimed bound in (2) above. It remains to bound the DNF size of h. Since there are

⌊n/d⌋ · 2n−d special subcubes, and each is included with probability (ε/2)2
d

, we have

E
G
[DNF-size[h]] =

(ε
2

)2d ⌊n
d

⌋
2n−d

≤
ln(4/ε) log log2/ε n

d
· 2n−d

≤ 2 ln(4/ε) · 2n−d.

Here in the final inequality we use the fact that d ≥ (log log2/ε n)− 1 for n sufficiently large (which
in turn holds since ln(4/ε) log log2/ε n <

√
n). Again, we apply Markov’s inequality to say that

Pr
G

[
DNF-size[h] ≥ 4 ln(4/ε) · 2n−d

]
≤ 1/2. (3)

Taking a union bound over (1), (2), and (3), we conclude that there must exist some h such that
DNF-size[h] ≤ 4 ln(4/ε) · 2n−d, DNF-width[h] = n− d, and Pr[f(x) 6= h(x)] ≤ ε and this completes
the proof.

4 Approximation via Hamming ball covers of the hypercube

In this section we introduce a general method for constructing small depth-2 circuits with top gate
OR that approximate an arbitrary Boolean function f ,5 to which there are three main components.
We first show that for any radius d, all but an ε fraction of {0, 1}n can be covered with Oε(2

n/Vol(d))
Hamming balls of radius d. Next, we approximate f restricted to each Hamming ball with the
desired second layer gate (e.g. an LTF, degree-d PTF, or unate function6); these sub-approximators
approximate f to high accuracy within the ball, and label all points outside the ball 0. Finally, our
overall approximator for f is simply the Oε(2

n/Vol(d))-wise disjunction of these sub-approximators.
We begin with a short proof of the first claim:

Lemma 4.1. For every ε > 0 and d > 0 there is a collection of ln(1/ε)(2n/Vol(d)) Hamming balls
of radius d that covers all but an ε fraction of {0, 1}n.
Proof. Let C be a random collection of ln(1/ε)(2n/Vol(d)) Hamming balls of radius d with centers
picked uniformly at random with replacement from {0, 1}n. For any x ∈ {0, 1}n, the probability

that x is not covered by C is (1−Vol(d) · 2−n)
ln(1/ε)(2n/Vol(d)) ≤ exp(− ln(1/ε)) = ε. Therefore

C covers all but an ε fraction of points in {0, 1}n in expectation, and so there is a collection of
ln(1/ε)(2n/Vol(d)) many Hamming balls of radius d that covers all but an ε fraction of {0, 1}n.

5As alluded to in the introduction, since the classes of LTFs, degree-d PTFs, and unate functions are each closed
under negation, if f can be approximated by a disjunction of k of them then ¬ f can be approximated by an
intersection (i.e. conjunction) of k of them. We focus our exposition on depth-2 approximators with top gate OR,
noting that they immediately imply the existence of universal approximators with top gate AND of the same size.

6For our construction of DNF approximators the sub-approximators are themselves DNFs instead of conjunctions;
we may do this since the disjunction of DNFs is itself a DNF.
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4.1 Approximating Boolean functions restricted to Hamming balls

Next we construct sub-approximators for Boolean functions restricted to Hamming balls. To be
precise, when we write “f restricted to a Hamming ball B of radius d”, we mean the function fB
that agrees with f on all points within B and takes value 0 on all points outside B. Since the bulk
of the points in B lie on its surface, our sub-approximators may err on all the points in the interior
of B (i.e. the points at distance < d from the center of B). We begin with sub-approximators that
are small-width DNFs:

Proposition 4.2. Let z ∈ {0, 1}n and d ∈ [n]. Let f : {0, 1}n → {0, 1} be the characteristic
function of a subset of the Hamming ball of radius d centered at z. There is a DNF g of width n−d
satisfying g(y) = f(y) for all y such that dist(y, z) = d, and g(y) = f(y) = 0 for all y such that
dist(y, z) > d.

Proof. For each y such that dist(y, z) = d and f(y) = 1 we include a term Ty in the DNF g defined
as follows: Ty is the conjunction of literals ℓi for each i ∈ [n] such that yi 6= zi, where ℓi = xi if
zi = 1, and ¬xi otherwise. The key property of Ty is that it accepts only y among all

(
n
d

)
inputs

at distance exactly d from the center z, and it rejects any input at distance greater than d from z.
Since each term Ty has width exactly n− d, it follows that g is a DNF of width n− d that satisfies
the claimed properties.

Note that the DNFs g constructed in Proposition 4.2 are unate since no variable occurs both
positively and negated in them; if the literal ℓi occurs in g then ¬ ℓi does not occur in g. This
observation yields the following corollary of Proposition 4.2:

Corollary 4.3. Let z ∈ {0, 1}n and d ∈ [n]. Let f : {0, 1}n → {0, 1} be the characteristic function
of a subset of the Hamming ball of radius d centered at z. There is a unate function g satisfying
g(y) = f(y) for all y such that dist(y, z) = d, and g(y) = f(y) = 0 for all y such that dist(y, z) > d.

Finally we construct sub-approximators that are low-degree PTFs. These sub-approximators
have the nice feature that they have one-sided error.

Proposition 4.4. Let z ∈ {0, 1}n and d ∈ [n]. Let f : {0, 1}n → {0, 1} be the characteristic
function of a subset of the Hamming ball of radius d centered at z. There is a degree-d PTF
g(x) = sgn(p(x)) satisfying g(y) = f(y) for all y such that dist(y, z) = d, and g(y) = f(y) = 0 for
all y such that dist(y, z) > d. Furthermore, g(y) = 1 for all y such that dist(y, z) < d.

Proof. The polynomial p(x) will be L(x) +D(x)− θ, where θ = n− d+ 1
2(n

d
)
,

L(x) =
∑

i∈[n] : zi=1

xi +
∑

i∈[n] : zi=0

(1− xi),

and

D(x) =
1

2
(
n
d

)
∑

y : dist(y,z)=d

f(y)=1

1differ(y,z)(x),

where 1differ(y,z)(x) = 1 iff x agrees with y on the coordinates that y and z differ on (and 0
otherwise). For any y such that dist(y, z) = d, the indicator 1differ(y,z) is a function of d variables
and hence is computed by a degree-d polynomial. Note that L(y) = n−dist(y, z) for all y ∈ {0, 1}n.
Since D(y) ∈ [0, 1/2] for all y ∈ {0, 1}n and the threshold θ is set to be n− d+ 1

2(n
d
)
, it follows that

9



p(y) > 0 for all y such that dist(y, z) > d, and p(y) < 0 for all y such that dist(y, z) < d. Finally
for all y such that dist(y, z) = d, we have D(y) = 0 if f(y) = 0 and D(y) = 1

2(n
d
)
otherwise (since

1differ(y,z)(y) = 1), and so p takes the correct sign on these inputs.

4.2 Combining the sub-approximators

To combine the sub-approximators from the last section, we use the following bound on the surface-
to-volume ratio of Hamming balls.

Lemma 4.5. Fix 1 ≤ d ≤ n. Then Vol(d − 1) ≤ d
n−d+1Vol(d). In particular, if d = ρn for some

ρ ≤ 1/2, then Vol(d− 1) ≤ 2ρ ·Vol(d).

Proof. Let x ∈ {0, 1}n be drawn uniformly at random from the Hamming ball of radius d − 1
around 0, let i ∈ [n] be drawn uniformly at random from the coordinates j for which xj = 0, and
let y ∈ {0, 1}n be the input obtained by flipping the i-th coordinate of x.

By the chain rule, the joint entropy of x, y, and i is

H(x,y, i) = H(x) +H(i | x) +H(y | x, i)
≥ log Vol(d− 1) + log(n− d+ 1) (4)

since x is drawn uniformly at random from a set of size Vol(d− 1), i is drawn uniformly from a set
of size at least n− d+1, and y is completely determined by x and i. A different application of the
chain rule also yields

H(x,y, i) = H(y) +H(i | y) +H(x | y, i)
≤ log Vol(d) + log d (5)

since the support of y has size Vol(d), the support of i has size at most d, and x is completely
determined by y and i. Combining (4) and (5) and re-arranging the terms completes the proof.

Theorem 2. Every Boolean function f can be ε-approximated by a DNF of width (1− ρ)n, where
ρ = ε/(4 ln(2/ε)). In particular, every Boolean function can be 0.01-approximated by a DNF of
width c · n, where c < 1 is an absolute constant.

Proof. Let d = ρn where ρ ≤ 1/2 will be chosen later. By Lemma 4.1, there is a collection of
ln(2/ε)(2n/Vol(d)) Hamming balls of radius d that cover all but an ε/2 fraction of {0, 1}n. We
approximate f restricted to each Hamming ball with the DNF of width n− d given by Proposition
4.2. Note that the disjunction g of these DNFs is itself a DNF of width n− d, and

Pr[f(x) 6= g(x)] ≤ ε

2
+ ln(2/ε)

Vol(d− 1)

Vol(d)

≤ ε

2
+ 2ρ ln(2/ε),

where the final inequality is by Lemma 4.5. Here the first inequality is a union bound over the
ε/2 fraction of uncovered points and the error of the ln(2/ε)(2n/Vol(d)) sub-approximators, each
of which errs on at most Vol(d − 1) points. It suffices to ensure that 2ρ ln(2/ε) ≤ ε/2, and so we
may take ρ = ε/(4 ln(2/ε)).

As noted in Corollary 4.3 the DNF sub-approximators in Theorem 2 are unate. Viewing our
overall approximator as a disjunction of unate functions instead of a disjunction of DNFs gives us
the following:

10



Theorem 3. Every Boolean function f can be ε-approximated by the disjunction (equivalently, the
intersection) of ln(2/ε) 2(1−H(ρ))n unate functions, where ρ = ε/(4 ln(2/ε)). In particular, every
Boolean function can be 0.01-approximated by the intersection of O(2 c n) unate functions, where
c < 1 is an absolute constant.

Using the PTF sub-approximators of Proposition 4.4 in place of the DNF sub-approximators
of Proposition 4.2, an identical proof to the one for Theorem 2 yields approximators that are the
intersection of degree-d PTFs:

Theorem 4. Let d = ρn where ρ ≤ 1/2. Every Boolean function f can be (ε+O (ln(1/ε)ρ))-
approximated by the disjunction (equivalently, the intersection) of ln(1/ε)(2n/Vol(d)) degree-d PTFs.
In particular, for any constant d every Boolean function can be O(1/n)-approximated by the inter-
section of O(2n/nd) degree-d PTFs.

Improvements via covering codes. It is natural to ask if Lemma 4.1 can be improved. The
strongest possible improvement is a covering of all of {0, 1}n with (1 + o(1))(2n/Vol(d)) Hamming
balls of radius d, a covering code with efficiency asymptotically approaching that of a perfect code.
This is a longstanding open problem in the field of covering codes [CHLL05], and even the d = 2
case remains open. The d = 1 case was resolved in the affirmative by Kabatyanski and Pachenko
[KP88]:

Theorem 13 (Kabatyanski and Pachenko). All of {0, 1}n can be covered by (1 + o(1))(2n/n)
Hamming balls of radius 1.

Using Theorem 13 in place of the approximate cover given by Lemma 4.1 allows us to sharpen
the parameters of Theorem 4 in the case of d = 1 (i.e. intersection of LTFs). As an added bonus,
since all of {0, 1}n is covered and our LTF sub-approximators in Proposition 4.4 have one-sided
error within each Hamming ball, our overall approximator has one-sided error as well.

Theorem 14. For every Boolean function f : {0, 1}n → {0, 1} there is a Boolean function g
computed by the disjunction (equivalently, the intersection) of (1 + o(1))(2n/n) halfspaces that
((1 + o(1))/n)-approximates f . Furthermore, these approximators have one sided error: g(x) = 1
whenever f(x) = 1.

A generalization of Theorem 13 for Hamming balls of larger radii d > 1 would imply analogous
improvements of Theorem 4 for the intersection of degree-d PTFs. The current best bound for gen-
eral d is due to Krivelevich et al. who show that all of {0, 1}n can be covered withO(d log d)(2n/Vol(d))
many Hamming balls of radius d [KSV03]; however, using this in place of Lemma 4.1 does not yield
any improvements on the parameters of our constructions.

5 Inapproximability of a random function

We write fn to denote a uniformly random Boolean function with arity n.

Theorem 15. Let F1, F2, F3, . . . be an infinite sequence of Boolean functions indexed by N, where
Fk has arity k. Let C be a class of Boolean functions. For any ε > 0 and f : {0, 1}n → {0, 1},
let optε[f ] denote the smallest k such that there exists g1, . . . , gk ∈ C and Fk(g1, . . . , gk) is an
ε-approximator for f . Then

E[optε[fn]] ≥ (1−H(ε)) · 2n

log(e · |C|) .
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Proof. Let t = |C|, and fix a numbering g1, . . . , gt of the t Boolean functions in C. Let X =
〈X1, . . . ,Xt〉 be a vector of indicator random variables where Xi = 1 iff gi occurs in the optimal
ε-approximator Fk(g1, . . . , gk) for fn (if there are multiple ε-approximators achieving minimal size
we fix an arbitrary one to be the optimal).

Since fn determines X and H(fn) = 2n, we have H(fn,X) = 2n as well. Furthermore, since
X uniquely determines a Boolean function and there are 2H(ε)·2n Boolean functions that are ε-close
to it, we have H(fn |X) ≤ H(ε) · 2n. Applying the chain rule, we see that

H(X) = H(fn,X)−H(fn |X) ≥ (1−H(ε)) · 2n. (6)

For each i ∈ [t], we write pi = E[Xi] to denote that probability that gi occurs in the optimal
ε-approximator for fn, and so Et[pt] = E[optε[fn]]/t. and note that

H(X) ≤
t∑

i=1

H(Xi) =
t∑

i=1

H(pi) = t ·E
t
[H(pt)]

≤ t ·H(E
t
[pt])

= t ·H
(
E[optε[fn]]

t

)

where we have used the concavity of the binary entropy function. Finally, using the inequality
H(p) ≤ p log(e/p), we get

H(X) ≤ t ·H
(
E[optε[fn]]

t

)

≤ E[optε[fn]] · log
(

e · t
E[optε[fn]]

)

≤ E[optε[fn]] · log(e · t).

Combining this upper bound with the lower bound of (6) completes the proof.

Since there are 3n conjunctions over {0, 1}n and 2n
d+1+O(n) degree-d PTFs over {0, 1}n [Cho61],

applying Theorem 15 immediately implies strong bounds on the inapproximability of a random
function by DNFs and the intersection of low-degree PTFs, respectively.

Theorem 5. Suppose fn is ε-approximated by a size-s DNF. Then s = Ω(1−H(ε)) · 2n/n.

Theorem 16. Suppose fn is ε-approximated by the intersection of k degree-d PTFs. Then k =
Ω(1−H(ε)) · 2n/nd+1.

The two remaining lower bounds in Table 1 are both witnessed explicitly by the parity function.
We show in Section 6 that any DNF that ε-approximates PARn must have width (1−2ε)n (Theorem
7), and in Section 7 that the intersection of 2Ωε(n) unate functions is required to ε-approximate
PARn for any ε < 1

16 (Theorem 10). In fact, we will see that our proof of the former extends easily
to show that DNFs that ε-approximate a random function have width Ωε(n).

6 Approximating the parity function

We begin this section, and the second part of our paper, with a deterministic construction of a
small-size small-width DNF that ε-approximates PARn with one-sided error.
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Lemma 6.1. Let B1, B2, . . . , Bℓ ⊆ [n] be linearly independent 7 sets of coordinates. Define k =
|B1 ∪ B2 ∪ · · · ∪ Bℓ|. There is a DNF of size 2k−ℓ and width k that accepts exactly all x ∈ {0, 1}n
such that

⊕
i∈B1

xi =
⊕

i∈B2
xi = · · · =

⊕
i∈Bℓ

xi = 0 (i.e. the set of all strings with even Hamming
weight within B1, B2, . . . , and Bℓ). We write even(B1, . . . , Bℓ) to denote this DNF.

Proof. By linear independence, there are exactly 2−ℓ · 2|B1∪···∪Bℓ| = 2k−ℓ possible settings of the
k coordinates in B1 ∪ · · · ∪ Bℓ that satisfy

⊕
i∈B1

xi = · · · =
⊕

i∈Bℓ
xi = 0. The DNF will be a

disjunction of all 2k−ℓ such settings, each of which is computed by a conjunction of k literals.

Theorem 6. For every ε > 0 there is a DNF f of width (1 − 2ε)n and size 2(1−2ε)n that ε-
approximates PARn. Furthermore f has one-sided error: if PARn(x) = 1 then f(x) = 1.

Proof. Let k = log( 1
2ε). For i = 1, . . . , k, let Bi,0 = {j ∈ [n] : ji = 0} and Bi,1 = {j ∈ [n] : ji =

1} = [n] \ Bi,0.
8 Consider the function f =

∨
z∈{0,1}k even(B1,z1 , . . . , Bk,zk). For any z ∈ {0, 1}n,

the union of the blocks B1,z1 , . . . , Bk,zk has size (1 − 2−k)n = (1 − 2ε)n. So by Lemma 6.1, f is a
DNF of width (1− 2ε)n and size 2k · 2(1−2ε)n−k = 2(1−2ε)n.

For any x ∈ {0, 1}n such that PARn(x) = 1 and every i ∈ [k], either even(Bi,0) or even(Bi,1) is
true. Thus, for each such x there is some z ∈ {0, 1}k for which even(B1,z1 , . . . , Bk,zk) = 1 and we
have f(x) = 1. Finally, when PARn(x) = 0, then the probability that it has even Hamming weight
in all of the blocks Bi,zi is 2

−k = 2ε. Therefore, the probability that f(x) 6= PARn(x) is
1
2 · 2ε = ε,

as we wanted to show.

We remark that Theorem 6 actually establishes a stronger result: every s-sparse F2-polynomial
(i.e. the parity of s conjunctions) can be ε-approximated by a DNF of size 2(1−2ε)s. For example,
for any ε > 0 the inner-product-mod-2 function (x1∧y1)⊕ . . .⊕(xn/2∧yn/2) can be ε-approximated

by a DNF of size 2(
1
2
−ε)n.

6.1 Lower bounds on DNF width and size

We begin with a simple lemma relating the total influence of close Boolean functions.

Lemma 6.2. For any functions f, g : {0, 1}n → {0, 1}, the total influence of f and g satisfies
|Inf [f ]−Inf [g]| ≤ 2Pr[f(x) 6= g(x)]·n. In particular, if f is ε-close to PARn then Inf [f ] ≥ (1−2ε)n.

Proof. We think of g as being obtained from f by flipping the values of an ε = Pr[f(x) 6= g(x)]
fraction of inputs. Let f∗ denote f with the value of a single input x∗ flipped, and note that
|s(f, x∗) − s(f∗, x∗)| ≤ n, that |s(f, y) − s(f∗, y)| ≤ 1 for all y such that dist(x∗, y) = 1, and that
s(f, z) = s(f∗, z) for all other z such that dist(x∗, z) ≥ 2. It follows that |Inf [f ] − Inf [f∗]| ≤
n+n = 2n, and taking a union bound over all x∗ such that f(x∗) 6= g(x∗) completes the proof.

Building on the bounds on Boppana and Traxler [Bop97, Tra09] and resolving an open problem
of O’Donnell, Amano proved that the total influence of a Boolean function is at most its DNF
width [Ama11].

Theorem 17 (Amano). Let f be a width-w DNF. Then Inf [f ] ≤ w.

Combining Lemma 6.2 and Theorem 17 yields a lower bound on the width of any DNF that
ε-approximates PARn, matching the width of our construction in Theorem 6 exactly.

7More formally, let these sets correspond to linearly independent vectors under the usual correspondence between
subsets of [n] and vectors in Fn

2 .
8Here, the notation ji represents the ith bit of the binary representation of j.
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Theorem 7. Let f be a width-w DNF that ε-approximates PARn. Then w ≥ (1− 2ε)n.

Straightforward Fourier-analytic computations show that the total influence of a random Boolean
function is n/2 in expectation (see e.g. Theorem 6 of [BCS97]), and so by the same reasoning used
to establish Theorem 7, we see that DNFs that ε-approximate a random function have width at
least (12 − 2ε)n = Ωε(n), as had been claimed at the end of Section 5. Next we turn to lower
bounds on size of DNFs that ε-approximate PARn, giving two incomparable bounds. The first
simply combines Amano’s theorem with an elementary truncation argument.

Theorem 8. (first lower bound) Let f be a size-s DNF that ε-approximates PARn. Then s ≥
δ 2(1−2ε−2δ)n for all δ > 0.

Proof. We use the folklore observation that dropping all terms of width greater than log(s/δ) in
f yields a DNF g that is δ-close to f (to see this, note that each dropped term is satisfied with
probability less than 2− log(s/δ) = δ/s, and taking a union bound yields an approximation error that
is less than δ). Since g is an s-term DNF of width log(s/δ) that is (ε + δ)-close to PARn, and we
may apply Theorem 7 to get log(s/δ) ≥ (1− 2(ε+ δ))n; rearranging completes the proof.

The second lower bound on size uses a sharpening of the Boppana’s O(log s) bound on the
total influence of size-s DNFs [Bop97], obtained in concurrent work by the present authors via the
entropy method [BTW13]. For the sake of completeness, we include its short proof here.

Theorem 18. Let f : {0, 1}n → {0, 1} be a size-s DNF with E[f ] = µ. Then Inf [f ] ≤ 2µ log(s/µ).

Proof. Consider a fixed ordering of the terms in the DNF for f , and define three random variables:
X is a uniform random x ∈ f−1(1), Y is the indicator of uniform random subset of sensitive
coordinates of X, and T is the first term in the DNF satisfied by X. We consider the joint entropy
of these three random variables. Applying the chain rule, we see that

H(X,Y,T) = H(X) +H(Y |X) +H(T |X,Y)

= H(X) +H(Y |X) + 0

= n− log(1/µ) + Inf [f ]/(2µ).

We claim that H(X,Y,T) ≤ n + log s, noting that this implies the claimed upper bound by
rearranging the terms. Again applying the chain rule, we have

H(X,Y,T) = H(T) +H(X |T) +H(Y |X,T)

≤ log s+E
T

[n− |T|] +E
T

[|T|]
= n+ log s.

Here the expectations are with respect to the distribution where the weight of a term T is the
probability that a uniformly random x ∈ f−1(1) satisfies T . The inequality uses that fact that the
number of inputs satisfying a term T is 2n−|T |, and if x satisfies T it can only be sensitive on the
coordinates fixed by T .

Theorem 8. (second lower bound) Let f be a size-s DNF that ε-approximates PARn. Then s ≥
(12 − ε) · 2

(1−2ε)n
(1+2ε) .

Proof. Let E[f ] = µ. Since PARn is balanced and f is ε-close to PARn, we have µ ∈ [12 − ε, 12 + ε].
Combining Lemma 6.2 and Theorem 18, we get 2µ log(s/µ) ≥ Inf [f ] ≥ (1− 2ε)n, and rearranging
yields the claimed lower bound: s ≥ µ · 2(1−2ε)n/2µ ≥ (12 − ε) · 2(1−2ε)n/(1+2ε).
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7 Lower bounds for intersection of LTFs and unate functions

In this section we provide further evidence of the optimality of our DNF approximators for PARn.
We begin by showing that a noise sensitivity conjecture of Klivans et al. [KOS04] implies that
ε-approximating PARn even with the intersection of halfspaces requires size 2Ωε(n), matching the
size of our DNF approximators in Theorem 6.

Conjecture 1 (Klivans-O’Donnell-Servedio). Let f be a Boolean function computed by the inter-
section of k halfspaces. Then NSδ[f ] ≤ O(

√
log k

√
δ).

Theorem 9. Assume the KOS conjecture and let ε < 1/2. Let f be a Boolean function computed
by the intersection of k halfspaces and suppose f ε-approximates PARn. Then k = 2Ωε(n).

Proof. Since f is ε-close to PAR, we have Wn[f ] = f̂([n])2 ≥ (1 − 2ε)2, and so by the Fourier
expression for noise sensitivity at noise rate δ we get

NSδ[f ] ≥ 1
2 − 1

2

(
(1− 2ε)2(1− 2δ)n + (1− (1− 2ε)2)

)
.

Assuming upper bound onNSδ[f ] given by Conjecture 1 and taking δ = 1/n, we haveO(
√
log(k)/n) ≥

NS1/n[f ] and

NS1/n[f ] ≥
1

2
− 1

2

(
(1− 2ε)2

e
+ (1− (1− 2ε)2)

)
.

The quantity on the RHS is positive for any ε < 1/2, and so rearranging yields the claimed lower
bound on k.

Naturally, we would like an unconditional proof of Theorem 9. We are able to accomplish
this for any fixed ε < 1

16 , and in fact, our lower bound holds against the more expressive class of
intersection of unate functions.

Lemma 7.1. Let f : {0, 1}n → {0, 1} be a Boolean function computed by the intersection of k
unate functions. Suppose S∗ ⊆ {0, 1}n is a set of 0-inputs of f such that for all pairs x, y ∈ S∗,
there exists a coordinate i ∈ [n] such that xi 6= yi and s(f, x, i) = s(f, y, i) = 1. Then k ≥ |S∗|.

Proof. Let f be computed by the intersection of k unate functions g1, . . . , gk. We will show that
for any x ∈ S∗ there must be some gj such that gj(x) = 0 and gj(y) = 1 for all other y ∈ S∗, noting
that the claimed lower bound k ≥ |S∗| follows immediately.

Fix x ∈ S∗. Since f(x) = 0 and f is computed by the intersection of g1, . . . , gk, certainly there
must be some gj such that gj(x) = 0. We claim that gj(y) = 0 for all other y ∈ S∗. Seeking a
contradiction, suppose there is some y ∈ S∗, y 6= x such that gj(y) = 0. Since x, y ∈ S∗, there is
some coordinate i ∈ [n] such that xi 6= yi and s(f, x, i) = s(f, y, i) = 1. Without loss of generality,
suppose gj is monotone in the i-th direction, and that xi = 0 whereas yi = 1. It follows that
gj(y

⊕i) = 0 and hence f(y⊕i) = 0, contradicting the assumption that s(f, y, i) = 1.

Note that Lemma 7.1 can be used to lower bound the number of unate functions whose in-
tersection computes PARn exactly: taking S∗ to be the set of all 0-inputs of PARn, we get an
optimal lower bound of k ≥ |S∗| = 2n−1. Next we use Lemma 7.1 to show that even functions that
approximate PARn require exponentially many unate functions.

Theorem 10. Fix ε < 1
16 . Let f : {0, 1}n → {0, 1} be a Boolean function that is computed by the

intersection of k unate functions and suppose f ε-approximates PARn. Then k = 2Ωε(n).
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Proof. Let ε = 1
16 − γ, where γ > 0. We first note that since f is ε-close to PARn, the expected

0-sensitivity of f must be large:

E[s(f, x) | f(x) = 0] =
Inf [f ]

Pr[f(x) = 0]

≥ (1− 2ε)n

(1 + 2ε)

≥ (1− 4ε)n =

(
3

4
+ 4γ

)
n.

Therefore a constant fraction of the 0-inputs of f have sensitivity at least (34+γ)n. Since Pr[f(x) =
0] ≥ 1

2 − ε, it follows that there is a set S ⊆ {0, 1}n of Ω(2n) inputs such that f(x) = 0 and
s(f, x) ≥ (34 + γ)n for all x ∈ S. Note that for every pair x, y ∈ S share at least (12 + 2γ)n

sensitive coordinates. Next we note that for every x ∈ S, there are at most 2H( 1
2
+γ)n inputs y ∈ S

that are at distance (12 + γ)n from x. It follows that there is a subset S∗ ⊆ S of size at least

|S|/2H( 1
2
+γ)n = 2Ω(n) such that for all x, y ∈ S∗, there exists some i ∈ [n] such that xi 6= yi and

s(f, x, i) = s(f, y, i) = 1. Applying Lemma 7.1 yields the claimed lower bound.

8 Conclusion

Having obtained asymptotically matching universal bounds on the approximability of all Boolean
functions with respect to DNF width in this work, the natural next step would be to do likewise
for DNF size, closing the current gap between Ωε(2

n/n) and Oε(2
n/ log n).

Open Problem 1. Obtain matching universal bounds on the approximability of all Boolean func-
tions with respect to DNF size. That is, determine the function ϕ(n) such that every Boolean
function f can be ε-approximated by a DNF of size Oε(2

n/ϕ(n)), and there exists an f such that
any ε-approximator for f has size Ωε(2

n/ϕ(n)).

Another open problem is to prove that the size of our DNF approximators for PARn in Theorem
6 is optimal even up to the exact dependence on ε in the exponent, closing the current gap between
(1− 2ε)n and (1−2ε)

(1+2ε)n. One way to accomplish this is to further improve on the sharpening of Bop-

pana’s influence bound on small-size DNFs we obtained in [BTW13]; we believe that understanding
this basic complexity measure of DNFs is a fundamental question in its own right. We restate here
the conjectured bound from [BTW13], which would be tight by considering the parity function on
log(s) + 1 variables.

Conjecture 2. Let f be computed by a size-s DNF. Then Inf [f ] ≤ log(s) + 1.
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