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Abstract

Given a function f : {0, 1}n → {+1,−1}, its Fourier Entropy
is defined to be −

∑
S f̂(S)2 log f̂(S)2, where f̂ denotes the Fourier

transform of f . In the analysis of Boolean functions, an outstanding
open question is a conjecture of Friedgut and Kalai (1996), called the
Fourier Entropy Influence (FEI) Conjecture, asserting that the Fourier
Entropy of any Boolean function f is bounded above, up to a constant
factor, by the total influence (= average sensitivity) of f .

In this paper we give several upper bounds on the Fourier Entropy.
We first give upper bounds on the Fourier Entropy of Boolean func-
tions in terms of several complexity measures that are known to be
bigger than the influence. These complexity measures include, among
others, the logarithm of the number of leaves and the average depth
of a parity decision tree. We then show that for the class of Lin-
ear Threshold Functions (LTF), the Fourier Entropy is O(

√
n). It is

known that the average sensitivity for the class of LTF is Θ(
√
n). We

also establish a bound of Od(n
1− 1

4d+6 ) for general degree-d polynomial
threshold functions. Our proof is based on a new upper bound on the
derivative of noise sensitivity. Next we proceed to show that the FEI
Conjecture holds for read-once formulas that use AND, OR, XOR, and
NOT gates. The last result is independent of a result due to O’Donnell
and Tan [1] for read-once formulas with arbitrary gates of bounded
fan-in, but our proof is completely elementary and very different from
theirs. Finally, we give a general bound involving the first and second
moments of sensitivities of a function (average sensitivity being the
first moment), which holds for real-valued functions as well.
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1 Introduction

Fourier transforms are extensively used in a number of fields such as engineer-
ing, mathematics, and computer science. Within theoretical computer sci-
ence, Fourier analysis of Boolean functions evolved into one of the most useful
and versatile tools; see the book [2] for a comprehensive survey of this area.
In particular, it plays an important role in several results in complexity the-
ory, learning theory, social choice, inapproximability, metric spaces, etc. If f̂
denotes the Fourier transform of a Boolean function f , then

∑
S⊆[n] f̂(S)2 = 1

and hence we can define the (Shannon) entropy of the distribution given by

f̂(S)2:

H(f) :=
∑
S⊆[n]

f̂(S)2 log
1

f̂(S)2
. (1)

The Fourier Entropy-Influence (FEI) Conjecture, made by Friedgut and
Kalai [3] in 1996, states that for every Boolean function, its Fourier entropy
is bounded above by its total influence :

Fourier Entropy-Influence Conjecture There exists a universal con-
stant C such that for all f : {0, 1}n → {+1,−1},

H(f) 6 C · Inf(f) , (2)

where Inf(f) is the total influence of f which is the same as the average
sensitivity as(f) of f .

The notion of influence was studied by Ben-or and Linial [4] in the context
of sharing an unbiased common random bit in the distributed setting. For a
set S ⊆ [n], the influence of S on f , InfS(f), is the probability that f is not
constant upon setting all the variables not in S uniformly at random. The
total influence of f , Inf(f), is defined as

∑
S : |S|=1 InfS(f). Hence, intuitively,

the total influence may be viewed as the expected number of coordinates of
an input which, when flipped, will cause the value of f to be changed. For
example, the Parity function on n variables has total influence n. That is, the
parity function is never constant even when all but one of the variables are set.
In particular, every variable has maximum possible influence of 1. Consider
a dictator function f(x1, . . . , xi, . . . , xn) = xi. It follows that the influence of
the i-th variable is 1, whereas the rest of the variables have 0 influence. Thus,
exactly one variable has high influence. An interesting example is the Majority
function, where each variable has low influence Θ(1/

√
n). This is interesting

because Majority is a also a balanced function, that is, Pr[Majority(X) = 1] =
Pr[Majority(X) = −1] = 1

2
. Such functions, balanced and all variables having

low influence, were the main object of study in [4].
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1.1 Motivation

Resolving the FEI conjecture is one of the most important open problems in
the Fourier analysis of Boolean functions. The conjecture intuitively asserts
that if the Fourier coefficients of a Boolean function are “smeared out,” then
its influence must be large, i.e., at a typical input, the value of f changes in
several different directions. The original motivation for the conjecture stems
from a study of threshold phenomena in random graphs. The existence of
sharp thresholds for various graph properties is one of the significant dis-
coveries in the theory of random graphs [5]. Friedgut and Kalai [3] asked
how large can the threshold interval be for a monotone graph property? Con-
sider f : {0, 1}n → {0, 1} representing a monotone graph property. Define
Af (p) := Pr[f(X1, X2, . . . , Xn) = 1], where Xi’s are independent random
variables that is, 1 with probability p and 0 with probability 1−p. Let δ > 0
be a small number. By threshold interval we mean the length of the interval
[p, q] such that at p the probability that PrX [f(X) = 1] is δ, but at q the
probability is 1 − δ. Then, the length of the threshold interval is inversely
proportional to the derivative of Af (p), and by Russo’s formula [6, 7], the
derivative of Af (p) equals the total influence of f under the product measure
where each bit is 1 with probability p and 0 otherwise. Hence, the graph
property has a small threshold interval around p, that is, sharp threshold, if
and only if it has large influence (under the product measure). Therefore,
Friedgut and Kalai [3] asked for generic conditions that would force the influ-
ence to be large. Motivated by the Fourier-analytic formulae of the entropy
and influence, they conjectured that a spread-out Fourier spectrum, i.e. large
Fourier entropy, might be one such condition (cf. Eq. (2)).

The FEI conjecture has numerous applications [8]. It implies that for any
n-vertex monotone graph property, the influence is at least c(log n)2. In other
words, following the discussion in preceding paragraph it implies that for a
monotone graph property on n vertices any threshold interval is of length at
most c′(log n)−2. The best known upper bound, by Bourgain and Kalai [9],
is Cε(log n)−2+ε, for any ε > 0. That is, a lower bound of Ω((log n)2−ε) on
the influence of any n-vertex monotone graph property.

It also implies a variant of Mansour’s Conjecture [10] stating that for a
Boolean function computable by a DNF formula with m terms, most of its
Fourier mass is concentrated on poly(m)-many coefficients. A proof of Man-
sour’s conjecture would imply a polynomial time agnostic learning algorithm
for DNF’s [11] answering a major open question in computational learning
theory.
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1.2 Prior Work

The first progress on the FEI conjecture was made in 2010 in [12] showing
that the conjecture holds for random DNFs. O’Donnell et al. [13] proved
that the conjecture holds for symmetric functions and more generally for
any d-part symmetric functions for constant d. They also established the
conjecture for functions computable by read-once decision trees. Keller et
al. [14] studied a generalization of the conjecture to biased product measures
on the Boolean cube and proved a variant of the conjecture for functions with
extremely low Fourier weight on high levels. O’Donnell and Tan [1] verified
the conjecture for read-once formulas using a composition theorem for the
FEI conjecture. Wan et al. [15] studies the conjecture from the point of view
of existence of efficient prefix-free codes for the random variable, X ∼ f̂ 2,
that is distributed according to f̂ 2. Using this interpretation, they verify the
conjecture for bounded-read decision trees. It is also relatively easy to show
that the FEI conjecture holds for a random Boolean function, e.g., see [16]
for a proof. By direct calculation, one can verify the conjecture for simple
functions such as AND, OR, Majority, Tribes etc.

1.3 Our results

We report here various upper bounds on Fourier entropy that may be viewed
as progress toward the FEI conjecture.

Upper bounds by Complexity Measures The Inf(f) of a Boolean func-
tion f is used to derive lower bounds on a number of complexity parameters
of f such as the number of leaves or the average depth of a decision tree
computing f . Hence a natural weakening of the FEI conjecture is to prove
upper bounds on the Fourier entropy in terms of such complexity measures
of Boolean functions. By a relatively easy argument, we show that

H(f) = O(log L(f)), (3)

where L(f) denotes the minimum number of leaves in a decision tree that
computes f . If DNF(f) denotes the minimum size of a DNF for the function
f , note that DNF(f) 6 L(f). Thus improving Eq. (3) with O(log DNF(f))
on the right hand side would resolve Mansour’s conjecture – a long-standing
open question about sparse Fourier approximations to DNF formulas mo-
tivated by applications to learning theory – and a special case of the FEI
conjecture for DNF’s. We note that Eq. (3) also holds when the queries
made by the decision tree involve parities of subsets of variables, conjunc-
tions of variables, etc. It also holds when L(f) is generalized to the number
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of subcubes in a subcube partition that represents f . Note that for a Boolean
function

Inf(f) 6 log(Lc(f)) 6 log(L(f)) 6 D(f),

where Lc(f) is number of subcubes in a subcube partition that represents f
and D(f) is the depth of the decision tree computing f .

We also prove the following strengthening of Eq. (3):

H(f) = O(d̄(f)), (4)

where d̄(f) denotes the average depth of a decision tree computing f (observe
that d̄(f) 6 log(L(f))). Note that the average depth of a decision tree is also
a kind of entropy: it is given by the distribution induced on the leaves of
a decision tree when an input is drawn uniformly at random. Thus Eq. (4)
relates the two kinds of entropy, but only up to a constant factor. We further
strengthen Eq. (4) by improving the right-hand side in Eq. (4) to average
depth of a parity decision tree computing f , that is, queries made by the
decision tree are parities of a subset of variables.

Upper bounds on the Fourier Entropy of Polynomial Threshold
Functions The Fourier Entropy-Influence conjecture is known to be true
for unweighted threshold functions, i.e., when f(x) = sign(x1 + · · ·+ xn − θ)
for some integer θ ∈ [0..n]. This follows from a result due to O’Donnell et
al. [13] that the FEI conjecture holds for all symmetric Boolean functions.
It is known that the influence for the class of linear threshold functions is
Θ(
√
n) (where the lower bound is witnessed by Majority [17]). Recently Har-

sha et al. [18] studied average sensitivity of polynomial threshold functions
(see also [19]). They proved that average sensitivity of degree-d polynomial
threshold functions is bounded by Od(n

1−(1/4d+6)), where Od(·) denotes that
the constant depends on degree d. This suggests a natural and important
weakening of the FEI conjecture: Is Fourier Entropy of polynomial threshold
functions bounded by a similar function of n as their average sensitivity? In
this paper we answer this question in the positive. An important ingredient
in our proof is a bound on the derivative of noise sensitivity in terms of the
noise parameter.

FEI inequality for Read-Once Formulas We also prove that the FEI
conjecture holds for a special class of Boolean functions, namely Read-Once
Formulas over {AND, OR and XOR}, i.e., functions computable by a tree
with AND, OR and XOR gates at internal nodes and each variable (or its
negation) occurring at most once at the leaves. Our result is independent of
a concurrent (with the conference version of this paper) result by O’Donnell
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and Tan [1] that proves the FEI conjecture holds for read-once formulas that
allow arbitrary gates of bounded fan-in. However, our proof is completely
elementary and very different from theirs. Prior to these results, O’Donnell
et al. [13] proved that the FEI conjecture holds for read-once decision trees.
Our result for read-once formulas is a strict generalization of their result. For
instance, the tribes function is computable by read-once formulas but not by
read-once decision trees. Our proof for read-once formulas is a consequence
of a kind of tensorizability for {0, 1}-valued Boolean functions. In particular,
we show that an inequality similar to the FEI inequality is preserved when
functions depending on disjoint sets of variables are combined by AND, OR
and XOR operators.

A Bound for Real-valued Functions via Second Moment Recall [20]
that total influence Inf(f) or average sensitivity as(f) is related to f̂ by the

well-known identity: as(f) = Inf(f) =
∑

S |S| f̂(S)2. Hence, an equivalent
way to state the FEI conjecture is that there is an absolute constant C such
that for all Boolean f ,

H(f) 6 C ·
∑
S

|S| f̂(S)2 . (5)

Here, we prove that for all δ, 0 6 δ 6 1, and for all f with
∑

S f̂(S)2 = 1,

H(f) 6
∑
S

|S|1+δf̂(S)2 + (log n)O( 1
δ
) . (6)

An alternative interpretation of the above theorem states

H(f) 6 as(f)1−δ · as2(f)δ + (log n)O( 1
δ
) , (7)

where as2(f) :=
∑

S |S|2 f̂(S)2. Note that as2(f) 6 s(f)2, where s(f) is the
maximum sensitivity of f .

It is important to note that Eq. (6) holds for arbitrary, i.e., even non-

Boolean, f such that (without loss of generality)
∑

S f̂(S)2 = 1. On the
other hand, there are examples of non-Boolean f for which the FEI conjecture
Eq. (5) is false (see A).

Remainder of the paper We give basic definitions in Section 2. Sec-
tion 3 contains upper bounds in terms of complexity measures. In Section 4
and Section 5, we consider special classes of Boolean functions namely, the
polynomial threshold functions and Read-Once formulas. We then provide
bounds for real valued functions in Section 6.
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2 Preliminaries

We recall here some basic facts of Fourier analysis. For a detailed treatment,
please refer to [21, 2]. Consider the space of all functions from {0, 1}n to
R, endowed with the inner product 〈f, g〉 = 2−n

∑
x∈{0,1}n f(x)g(x). The

character functions χS(x) := (−1)
∑
i∈S xi for S ⊆ [n] form an orthonormal

basis for this space of functions w.r.t. the above inner product. Thus, every
function f : {0, 1}n −→ R of n Boolean variables has the unique Fourier
expansion: f(x) =

∑
S⊆[n] f̂(S)χS(x). The vector f̂ = (f̂(S))S⊆[n] is called

the Fourier transform of the function f . The Fourier coefficient f̂(S) of f at
S is then given by, f̂(S) = 2−n

∑
x∈{0,1}n f(x)χS(x). The norm of a function

f is defined to be ‖f‖ =
√
〈f, f〉. Orthonormality of {χS} implies Parseval’s

identity : ‖f‖2 =
∑

S f̂(S)2.
We only consider finite probability distributions in this paper. The entropy

of a distribution D is given by, H(D) :=
∑

i∈supp(D) pi log 1
pi

. In particular, the

binary entropy function, denoted by H(p), equals −p log p−(1−p) log(1−p).
All logarithms in the paper are base 2, unless otherwise stated.

We consider Boolean functions with range {−1,+1}. For an f : {0, 1}n →
{−1,+1}, ‖f‖ is clearly 1 and hence Parseval’s identity shows that for

Boolean functions
∑

S f̂(S)2 = 1. This implies that the squared Fourier
coefficients can be thought of as a probability distribution and the notion of
Fourier Entropy Eq. (1) is well-defined.

The influence of f in the i-th direction, denoted Infi(f), is the fraction of
inputs at which the value of f gets flipped if we flip the i-th bit:

Infi(f) = 2−n|{x ∈ {0, 1}n : f(x) 6= f(x⊕ ei)}| ,

where x⊕ ei is obtained from x by flipping the i-th bit of x.
The (total) influence of f , denoted by Inf(f), is

∑n
i=1 Infi(f). The influ-

ence of i on f can be shown, e.g., [20], to be Infi(f) =
∑

S3i f̂(S)2 and hence

it follows that Inf(f) =
∑

S⊆[n] |S|f̂(S)2.

For x ∈ {0, 1}n, the sensitivity of f at x, denoted sf (x), is defined to be
sf (x) := |{i : f(x) 6= f(x⊕ ei), 1 6 i 6 n}|, i.e., the number of coordinates of
x, which when flipped, will flip the value of f . The (maximum) sensitivity of
the function f , denoted s(f), is defined to be the largest sensitivity of f at x
over all x ∈ {0, 1}n: s(f) := max{sf (x) : x ∈ {0, 1}n}. The average sensitiv-
ity of f , denoted as(f), is defined to be as(f) := 2−n

∑
x∈{0,1}n sf (x). It is easy

to see that Inf(f) = as(f) and hence we also have as(f) =
∑

S⊆[n] |S|f̂(S)2.

The noise sensitivity of f at ε, 0 6 ε 6 1, denoted NSε(f), is given by
Prx,y∼εx [f(x) 6= f(y)] , where x is chosen uniformly at random, and y ∼ε
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x denotes that y is obtained by flipping each bit of x independently with
probability ε. It follows that NSε(f) = 1

2
− 1

2

∑
S(1 − 2ε)|S|f̂(S)2, see for

instance, [22], or Theorem 2.49 in [2]. Hence the derivative of NSε(f) with
respect to ε, denoted NS′ε(f), equals

∑
S 6=∅ |S|(1− 2ε)|S|−1f̂(S)2.

3 Bounding Entropy using Complexity Mea-

sures

In this section, we prove upper bounds on Fourier entropy in terms of some
complexity parameters associated to decision trees and subcube partitions.

3.1 via leaf entropy : Average Decision Tree Depth

Let T be a decision tree computing f : {0, 1}n → {+1,−1} on variable
set X = {x1, . . . , xn}. If A1, . . . , AL are the sets (with repetitions) of vari-
ables queried along the root-to-leaf paths in the tree T , then the aver-
age depth (w.r.t. the uniform distribution on inputs) of T is defined to be
d̄ :=

∑L
i=1 |Ai|2−|Ai|. Note that the average depth of a decision tree is also

a kind of entropy: if each leaf λi is chosen with the probability pi = 2−|Ai|

that a uniformly chosen random input reaches it, then the entropy of the dis-
tribution induced on the λi is H(λi) = −

∑
i pi log pi =

∑
i |Ai|2−|Ai|. Here,

we will show that the Fourier entropy is at most twice the leaf entropy of a
decision tree.

Without loss of generality, let x1 be the variable queried by the root node
of T and let T1 and T2 be the subtrees reached by the branches x1 = +1
and x1 = −1 respectively and let g1 and g2 be the corresponding functions
computed on variable set Y = X \{x1}. Let d̄ be the average depth of T and
d̄1 and d̄2 be the average depths of T1 and T2 respectively. We first observe a
fairly straightforward lemma relating Fourier coefficients of f to the Fourier
coefficients of restrictions of f .

Lemma 3.1. Let S ⊆ {2, . . . , n}.

(i) f̂(S) = (ĝ1(S) + ĝ2(S))/2.

(ii) f̂(S ∪ {1}) = (ĝ1(S)− ĝ2(S))/2.

(iii) d̄ = (d̄1 + d̄2)/2 + 1.
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Proof. Observe that

f(x1, x2, . . . , xn) = f(x1, y) =
(1 + x1)

2
g1(y) +

(1− x1)
2

g2(y)

=
1

2
(g1(y) + g2(y)) +

x1
2

(g1(y)− g2(y)).

(i) and (ii) now follow by linearity of the Fourier transform.

Let {Bi}L1
i=1 be the variable sets queried along the root-to-leaf paths in T1

and similarly let {Ci}L2
i=1 be the variable sets queried along the root-to-leaf

paths in T2. Then, note that the variable sets {Ai}Li=1, where L = L1 + L2,
queried along the root-to-leaf paths in T are given by

{Bi ∪ {x1}}L1

i=1

⋃
{Ci ∪ {x1}}L2

i=1 .

It thus follows that

d̄ :=
L∑
i=1

|Ai|2−|Ai|

=

L1∑
1=1

(|Bi|+ 1)2−|Bi|−1 +

L2∑
1=1

(|Ci|+ 1)2−|Ci|−1

=
1

2

L1∑
1=1

|Bi|2−|Bi| +
1

2

L1∑
1=1

2−|Bi| +
1

2

L2∑
1=1

|Ci|2−|Ci| +
1

2

L2∑
1=1

2−|Ci|

=
1

2
d̄1 +

1

2
+

1

2
d̄2 +

1

2
,

where the last line follows by applying the definition of average depth to T1
and noting that

∑L1

1=1 2−|Bi| = 1 for the decision tree T1 and similarly for T2.
This proves (iii).

Remark 3.1. Note that g1 and g2 differ on an input y if and only if f is
sensitive to x1 at (x1, y). In particular, it is easy to see 1

4
‖g1−g2‖2 = Inff (1)

and 1
4
‖g1 + g2‖2 = 1− Inff (1).

Using Lemma 3.1 and concavity of entropy we establish the following
technical lemma, which relates the entropy of f to entropies of restrictions
of f .

Lemma 3.2. Let g1 and g2 be defined as before in Lemma 3.1. Then,

H(f) 6
1

2
H(g1) +

1

2
H(g2) + 2 . (8)
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Proof. We will use the concavity of the function x log 1
x

(for 0 6 x 6 1)1. For
simplicity of notation below, let N ′ := {2, . . . , n}.

H(f) =
∑
T⊆[n]

f̂(T )2 log
1

f̂(T )2

=
∑
S⊆N ′

f̂(S)2 log
1

f̂(S)2
+ f̂(S ∪ {1})2 log

1

f̂(S ∪ {1})2

6
∑
S⊆N ′

(f̂(S)2 + f̂(S ∪ {1})2) log
2

f̂(S)2 + f̂(S ∪ {1})2

=
∑
S⊆N ′

ĝ1(S)2 + ĝ2(S)2

2
log

4

ĝ1(S)2 + ĝ2(S)2
(by Lemma 3.1 (i) and (ii))

=
1

2

∑
S⊆N ′

ĝ1(S)2 log
1

ĝ1(S)2 + ĝ2(S)2
+

1

2

∑
S⊆N ′

ĝ2(S)2 log
1

ĝ1(S)2 + ĝ2(S)2

+
∑
S⊆N ′

ĝ1(S)2 + ĝ2(S)2

6
1

2

∑
S⊆N ′

ĝ1(S)2 log
1

ĝ1(S)2
+

1

2

∑
S⊆N ′

ĝ2(S)2 log
1

ĝ2(S)2
+ 2.

The first inequality follows from the concavity of x log 1
x
, and the last be-

cause of the monotonicity of Logarithm, and Parseval’s identitiy, that is,∑
S⊆N ′ ĝ1(S)2 =

∑
S⊆N ′ ĝ2(S)2 = 1.

Let d̄(f) denote the minimum average depth of a decision tree computing
f . As a consequence of Lemma 3.2 we obtain the following theorem.

Theorem 3.3. For every Boolean function f , H(f) 6 2 · d̄(f).

Proof. The proof is by induction on the number of variables of f .

H(f) 6
1

2
H(g1) +

1

2
H(g2) + 2 (by Lemma 3.2)

6 d̄1 + d̄2 + 2 (by induction, H(gi) 6 2d̄i for i = 1, 2)

= 2d̄ (by Lemma 3.1 (iii)).

Remark 3.2. The constant 2 in the bound of Theorem 3.3 cannot be replaced
by 1. Indeed, let f(x, y) = x1y1 + · · · + xn/2yn/2 mod 2 be the inner product

1That is, x log 1
x + y log 1

y 6 (x + y) log 2
x+y .
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mod 2 function. Then because f̂(S)2 = 2−n for all S ⊆ [n], H(f) = n. On
the other hand, it can be shown that d̄(f) = 3

4
n− o(n). Hence, the constant

must be at least 4/3. We will see later (Theorem 3.5 and Remark 3.3) that
the above proof technique cannot yield a constant factor better than 2.

3.1.1 Average Parity Decision Tree Depth

Applying a linear transformation L on a Boolean function f , we obtain
another Boolean function Lf which is defined as Lf(x) := f(Lx), for all
x ∈ {0, 1}n. We begin with a useful observation.

Proposition 3.4. Let f : {0, 1}n → {+1,−1} be a Boolean function. For
an invertible linear transformation L ∈ GLn(F2), H(f) = H(Lf).

Proof. The porposition follows if we show that L permutes the Fourier-
spectrum of f . Let us consider the Fourier coefficients of Lf . Let a row
vector y ∈ {0, 1}n denote a subset S ⊆ [n], that is, yi = 1 iff i ∈ S. Then,

L̂f(y) =
∑

x∈{0,1}n
Lf(x) · (−1)〈y,x〉 =

∑
x∈{0,1}n

f(Lx) · (−1)〈yL
−1,Lx〉

=
∑

z∈{0,1}n
f(z) · (−1)〈yL

−1,z〉 = f̂(yL−1).

Let T be a parity decision tree computing f : {0, 1}n → {+1,−1} on
variable set X = {x1, . . . , xn}. Also, let L be an invertible linear transfor-
mation. Note that a parity decision tree computing f also computes Lf
and vice versa. This implies that, after applying a linear transformation,
we can always assume that a variable is queried at the root node of T . Let
us denote the new variable set, after applying the linear transformation, by
Y = {y1, . . . , yn}. Without loss of generality, let y1 be the variable queried at
the root. Let T1 and T2 be the subtrees reached by the branches y1 = 0 and
y1 = 1 respectively, and let g1 and g2 be the corresponding functions com-
puted on variable set Y \ {y1}. Using Proposition 3.4, we see that the proofs
of Lemma 3.1 and Lemma 3.2 go through in the setting of parity decision
trees too. Hence, we get the following strengthening of Theorem 3.3.

Theorem 3.5. For every Boolean function f , H(f) 6 2 · ⊕-d̄(f), where
⊕-d̄(f) denotes the minimum average depth of a parity decision tree comput-
ing f .

11



Remark 3.3. The constant 2 in the bound of Theorem 3.5 is optimal, that
is, it cannot be replaced by a smaller number. As before, we consider the inner
product mod 2 function. It’s Fourier entropy is n, but(
n
2

+ 1
)
> ⊕-d̄(f) > Inf(f) = 1

2n

∑n
k=1 k ·

(
n
k

)
= n

2
.

3.2 via L1-norm : Decision Trees and Subcube Parti-
tions

Note that a decision tree computing a Boolean function f induces a partition
of the cube {0, 1}n into monochromatic subcubes, i.e., f has the same value
on all points in a given subcube, with one subcube corresponding to each
leaf. But there exist monochromatic subcube partitions that are not induced
by any decision tree. Consider any subcube partition C computing f (see
Definition 3.7). There is a natural way to associate a probability distribution

with C: Ci has probability mass 2−(number of co-ordinates fixed by Ci). Let
us call the entropy associated with this probability distribution partition
entropy. Based on the results of the previous subsection, a natural direction
would be to prove that the Fourier entropy is bounded by the partition
entropy. Unfortunately we were not quite able to show that but, interestingly,
there is a very simple proof to see that the Fourier entropy is bounded by
the logarithm of the number of partitions in C. In fact, the proof gives a
slightly better upper bound of the logarithm of the spectral-norm of f . For
completeness sake, we note this observation but we remark that it should be
considered folklore.

Lemma 3.6. (Folklore) Let f : {0, 1}n → R be such that
∑

S f̂(S)2 6 1. Let

L1(f) :=
∑

S |f̂(S)| be the L1-norm of the Fourier transform of f . Assume,
further, that L1(f) > 1. Then, H(f) 6 O(logL1(f)).

Proof. There are many ways to prove this, but we present one particular
proof.

Let L := L1(f), and θ := 1/(16L2). Define G := {S : |f̂(S)| > θ}. Note
that for x > 16, log x 6

√
x. We thus have log 1

|f̂(S)| 6
1√
|f̂(S)|

, for S 6∈ G.

Therefore,

H(f) =
∑
S

f̂(S)2 log
1

f̂(S)2
6
∑
S∈G

f̂(S)2 log
1

f̂(S)2
+ 2

∑
S 6∈G

f̂(S)2
1√
|f̂(S)|

6 log
1

θ2

∑
S∈G

f̂(S)2 + 2 max
S 6∈G

√
|f̂(S)|

∑
S 6∈G

|f̂(S)|

6 log(256L4) + 2 · 1

4L
· L = 4 logL+ 8.5.

12



It is well-known [23, 24] and easy to prove2 that the L1-norm of a function,
f , is at most the minimum number of leaves, L(f), in a decision tree comput-
ing f . In fact, even if we allow the queries at each internal node of a decision
tree to be parities or conjunctions of subsets of variables (or more generally
any function with bounded L1-norm), then also we have L1(f) = O(L(f)).
Let us consider how other complexity measures associated with a Boolean
function compare with L1-norm. We start with some definitions.

The decision tree depth D(f) of a function f is the minimum depth (length
of a longest root-to-leaf path) of a decision tree computing f . The degree
deg(f) is the degree of the (unique) multilinear polynomial over R that rep-
resents f . The block sensitivity bsf (x) on an input x is the maximum number
of disjoint subsets B1, . . . , Bt of [n] such that for all j, f(x) 6= f(x ⊕ eBj),
where eBj is the characteristic vector of the set Bj. The block sensitivity bs(f)
is maxx bsf (x). The certificate complexity C(f) measures how many of the
variables have to be given a value in order to fix the value of f . More pre-
cisely, an f -certificate of an input x is a subset S of [n] with an assignment

α ∈ {0, 1}|S| such that x|S = α, and for all input y such that y|S = x|S,
f(x) = f(y). The size of a certificate is the cardinality of the subset S. The
certificate complexity Cf (x) on an input x is the size of a smallest f -certificate
for x. The certificate complexity C(f) of a function is maxx Cf (x).

Fig. 1 illustrates known relationship between the measures; a→ b implies
that a = O(b). It is easy to see that the relationships in the figure follows
more or less from their definitions. Thus, using Lemma 3.6 with Fig. 1, we
could bound Fourier entropy by combinatorial measures. In particular, we
immediately have

H(f) = O(logL(f)),H(f) = O(D(f)), and H(f) = O(deg(f)). (9)

Remark 3.4. A natural question to ask is how important Boolean-ness of
functions is in the entropy upper bounds. While Lemma 3.6 holds for real-
valued functions as well, we note that the inequalities in Eq. (9) hold only
for Boolean-valued functions. In fact, we give examples in A to show that
these bounds fail for non-Boolean functions.

3.3 via Concentration : Subcube Partitions

As established before, we can generalize the bound H(f) = O(logL(f)) in
Eq. (9) to subcube partitions, that is, H(f) = O(logLc(f)). Nevertheless, we

2See also Lemma 3.8.
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s(f) bs(f) C(f)

logL1(f) deg(f)
co-dimension of

subcube partitions

Inf(f)

avg.
certificate
complexity

subcube
partition
entropy

logLc(f) logL(f) D(f)

⊕-d̄(f) d̄(f)

Figure 1: Relationship among complexity measures.

present the generalization to subcube partitions here. Our goal is to illustrate
a different approach. The approach uses the concentration property of the
Fourier transform and uses a general, potentially powerful, technique. One
way to do this is to use a result due to Bourgain and Kalai (Theorem 3.2 in
[14]). However, we give a more direct proof for the special case of subcube
partitions.

Definition 3.7. A subcube C of the cube Bn := {0, 1}n is given by a mapping
(partial assignment) α : [n]→ {−1,+1, ∗} and is defined to be the set of all
vectors in Bn that agree with α on coordinates fixed, i.e., assigned a non-∗
value, by α: C := Cα := {x ∈ Bn : α(i) 6= ∗ =⇒ xi = α(i)}. We use
A := {i ∈ [n] : α(i) 6= ∗} to denote the set of fixed coordinates of α and
denote the cube C also by the pair (A,α). The cardinality of the set A is
called the co-dimension of C.

For a function f : {0, 1}n → {+1,−1}, a partition C = {C1, . . . , Cm} of
Bn into subcubes Ci such that f is constant on each Ci is called a (monochro-
matic) subcube partition with respect to f . If C is a subcube partition
monochromatic w.r.t. f , we also say C computes f . We define the co-
dimension of a subcube partition C as, maxi co-dimension(Ci).

We denote by Lc(f) the minimum number of subcubes in a subcube par-
tition that computes f .

The most natural subcube partitions w.r.t. a function f are the ones
induced by decision trees computing f : the set of all inputs reaching a leaf

14



of the decision tree is given by a subcube Cα, where α denotes the partial
assignment defined by the path from the root to that leaf. But there exist
subcube partitions that are not induced by any decision tree.

Suppose f is computed by a subcube partition C = {C1, . . . , CL}, where
Ci = (Ai, αi). Let φi : {0, 1}n → {0, 1} be the characteristic function of the
subcube Ci : φi(x) = 1 if x ∈ Ci and φi(x) = 0 otherwise. Let βi ∈ {−1,+1}
be the value of f on Ci. Then, clearly

f(x) =
L∑
i=1

βiφi(x).

By linearity of the Fourier transform, it follows that f̂(S) =
∑L

i=1 βiφ̂i(S).
A simple calculation shows that, for the characteristic function φ of a subcube
C = (A,α), the Fourier transform is given by φ̂(S) = 2−|A|χS(α) if S ⊆ A
and φ̂(S) = 0 otherwise. It follows that

f̂(S) =
∑

i : S⊆Ai

2−|Ai| · βiχS(αi). (10)

In particular, f̂(S) 6= 0 =⇒ ∃i S ⊆ Ai.
The following lemma directly follows from the above observations.

Lemma 3.8 ([25]). Let f be computed by the subcube partition C = {C1, . . . , CL},
where Ci = (Ai, αi). Then,

(i)
∑
S

|f̂(S)| 6 L, and

(ii) For any integer t > 0,
∑
|S|>t

f̂ 2(S) 6
∑
|Ai|>t

2−|Ai|.

Proof. Using Eq. (10),∑
S

|f̂(S)| =
∑
S

|
∑

i : S⊆Ai

βiχS(αi)2
−|Ai|| 6

∑
S

∑
i : S⊆Ai

2−|Ai| = L.

By Eq. (10), if |S| > t, the contribution to f̂(S) comes from only the Ci
such that |Ai| > t. Let g ≡

∑
|Ai|>t βiφi be the restriction of f to subcubes

with codimension > t. It is then clear that∑
|S|>t

f̂(S)2 =
∑
|S|>t

ĝ(S)2 6
∑
S

ĝ(S)2 = 2−n
∑
|Ai|>t

|Ci| =
∑
|Ai|>t

2−|Ai|.

This proves (ii).
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Combining Lemma 3.8(i) and Lemma 3.6, it immediately follows that
H(f) = O(logLc(f)).

However, we give here a different approach to prove essentially the same
result. The approach uses the concentration property of the Fourier trans-
form and illustrates a general, potentially powerful, technique. One way to
do this is to combine Lemma 3.8(ii) with the following result due to Bourgain
and Kalai:

Theorem 3.9 (Bourgain-Kalai, cited in [14]). For f : {0, 1}n → {+1,−1},
suppose that there exist c0 > 0, 0 < a < 1/2, and integer k, such that for all
t, ∑

S:|S|>t

f̂(S)2 6 ec0k · e−at.

Then, for any α > 1, there exists a set Bα such that

(i) log |Bα| 6 C · αk, where C depends only on a and c0, and

(ii)
∑

S 6∈Bα f̂(S)2 6 n−α.

However, we give a more direct proof here that nevertheless derives state-
ments analogous to (i) and (ii) of Theorem 3.9, but for the special case of
subcube partitions.

Theorem 3.10. Let f : {0, 1}n → {+1,−1} be computed by a subcube par-
tition C of size L. Then,

H(f) 6 2 logL(f) + 2 log n+ 2.

Corollary 3.11. Let f : {0, 1}n → {+1,−1} depend on all its variables and
be computed by a subcube partition C of size L(f). Then, for some absolute
constant c > 1,

H(f) 6 c · logL(f).

Proof. We use the observation that a function that depends on all its n
variables requires a subcube partition of size at least n + 1 to compute it.
This is proved in Lemma 3.12 below. It follows that log n 6 logL(f) and
using this in Theorem 3.10, we get the corollary.

Proof. (of Theorem 3.10) To bound entropy via concentration, we use the
following simple idea. Suppose E is a subset of Fourier coefficients of a
Boolean function f such that

∑
S∈E f̂(S)2 = ε. For a subset of coefficients B,
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let H(B) denote the Fourier entropy restricted to that set B, appropriately
normalized. Then a simple manipulation shows∑

S

f̂(S)2 log
1

f̂(S)2
= (1− ε)H(E) + εH(E) + H(ε), (11)

where H(p) := p log 1
p

+ (1− p) log 1
1−p is the binary entropy function.

Now, let

Bt := {S : ∃ i |Ai| 6 t such that S ⊆ Ai}.

Note that if S 6∈ Bt, then every set Ai that contains S must have size larger
than t. Hence, using Eq. (10), only sets of size larger than t contribute to such
f̂(S). We now argue as in the proof of Lemma 3.8(ii). Let g ≡

∑
|Ai|>t βiφi

be the restriction of f to subcubes with co-dimension > t. It is then clear
that∑
S 6∈Bt

f̂(S)2 =
∑
S 6∈Bt

ĝ(S)2 6
∑
S

ĝ(S)2 = 2−n
∑
|Ai|>t

|Ci| =
∑
|Ai|>t

2−|Ai| < 2−tL.

(12)

Since
∑

i 2
−|Ai| = 1, we have that |{i : |Ai| 6 t}| 6 2t. Since every S ∈ Bt

is a subset of some Ai with |Ai| 6 t, it follows

|Bt| 6
∑
|Ai|6t

2|Ai| 6 2t · |{i : |Ai| 6 t}| 6 22t. (13)

Fix t := log(Ln). We can now estimate the Fourier entropy of a subcube
partition:

H(f) =
∑
S

f̂ 2(S) log
1

f̂ 2(S)

= (1− 1/n)H(f̂ 2(S) : S ∈ Bt) + (1/n)H(f̂ 2(S) : S 6∈ Bt) + H(1/n)

6 (1− 1/n) log |Bt|+ 1/n · n+ H(1/n)

6 2t+ 1 + H(1/n)

6 2 logL+ 2 log n+ 2.

The second equality follows from using Eq. (11) and Eq. (12), and the
next inequality follows from Eq. (13).

Lemma 3.12. Suppose f : {0, 1}n → {+1,−1} depends on all its variables.
Then any subcube partition that computes f must have at least n+1 subcubes
in it.

Proof. To prove this lemma, we will use the following theorem proved in [26].
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Theorem: Suppose f : {0, 1}n → {+1,−1} depends on all its variables.
Then there must exist an index i ∈ [n] such that at least one of the restric-
tions f�xi=0 or f�xi=1 must depend on all the remaining variables in [n] \ {i}.

We can now prove the lemma by induction on n. For n = 1, the claim
is trivial since if the function depends on a variable, the variable and its
complement must be in different (single point) subcubes. For n > 1, we note
that since the function depends on all its variables, for every variable xj,
there must be at least one subcube fixing xj = 0 and at least one subcube
fixing xj = 1. Now, let xi be a variable given by the above theorem such
that, say, f�xi=0 depends on all its n − 1 variables. By induction, we must
have at least n subcubes in the restricted partition computing f�xi=0, where
the restricted partition is obtained by restricting each of the subcubes in the
original partition computing f to xi = 0 half-cube. In the xi = 1 half-cube,
we must have at least one subcube, namely the one that restricts xi = 1
in the original partition. All the n subcubes previously counted are disjoint
from this since they either restricted xi = 0 in the original partition or they
didn’t restrict xi at all. So, all together we must have n+ 1 subcubes in the
original partition computing f .

4 Upper bound on Fourier Entropy of Thresh-

old Functions

In this section, we establish a better upper bound on the Fourier entropy
of polynomial threshold functions. We show that the Fourier entropy of a
linear threshold function is O(

√
n), and we also show that for a degree-d

threshold function it is Od(n
1− 1

4d+6 ). We remark that the bound is significant
because the average sensitivity of a linear threshold function on n variables
is O(

√
n). Moreover, Majority over n bits Majn is a linear threshold function

such that both Inf(Majn) and H(Majn) are Ω(
√
n). Also our upper bound on

the Fourier entropy of degree-d threshold functions is of the same order as
the best known upper bound on their average sensitivity [18, 19].

For f : {0, 1}n → {+1,−1}, let W k[f ] :=
∑
|S|=k f̂(S)2 and W>k[f ] :=∑

|S|>k f̂(S)2. We first note a simple inequality.

Proposition 4.1. [17] For any f : {0, 1}n → {+1,−1}, ε ∈ (0, 1
2
],∑

S:|S|>1/ε

f̂(S)2 6
2

1− e−2
NSε(f).
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Using Proposition 4.1 we prove our main technical lemma which translates
a bound on noise sensitivity to a bound on the derivative of noise sensitivity.

Lemma 4.2. Let f : {0, 1}n → {+1,−1} be such that NSε(f) 6 α · εβ, where
α is independent of ε and β < 1. Then,

NS′ε(f) 6
5

1− e−2
· α

1− β
· (1/ε)1−β .

Proof. We start with the formula for the derivative of noise sensitivity in
terms of the Fourier weights.

NS′ε(f) =
n∑
k=1

W k[f ] · k · (1− 2ε)k−1

=
t∑

k=1

W k[f ] · k · (1− 2ε)k−1 +
n∑

k=t+1

W k[f ] · k · (1− 2ε)k−1, (t = b1/εc)

6
t∑

k=1

W k[f ] · k +
n∑
k=t

W k[f ] · k · (1− 2ε)k−1. (14)

Let T1 :=
∑t

k=1W
k[f ] · k, and T2 :=

∑n
k=tW

k[f ] · k · (1− 2ε)k−1. We will
bound these sums individually using Proposition 4.1.

T1 =
t∑

k=1

W k[f ] · k 6
t∑

k=1

W>k[f ] 6
2

1− e−2
t∑

k=1

NS 1
k
(f)

6
2

1− e−2
t∑

k=1

α · k−β ' 2

1− e−2
· α · t

1−β

1− β

6
2

1− e−2
· α

1− β
· (1/ε)1−β. (15)
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T2 =
n∑
k=t

W k[f ] · k · (1− 2ε)k−1

6 t ·W>t[f ] · (1− 2ε)t−1 +
∑
k>t+1

(1− 2ε)k−1W>k[f ]

6
2

1− e−2

[
t · NS 1

t
(f) +

∑
k>t+1

(1− 2ε)k−1NS 1
k
(f)

]

6
2

1− e−2

[
t · α · t−β +

∑
k>t+1

(1− 2ε)k−1 · α · k−β
]

6
2

1− e−2

[
α · t1−β + α · (t+ 1)−β

∑
k>t+1

(1− 2ε)k−1

]

6
2

1− e−2

[
α · t1−β + α · (t+ 1)−β · (1− 2ε)t

2ε

]
6

3

1− e−2
· α · (1/ε)1−β. (16)

Using Eq. (15) and Eq. (16), in Eq. (14), we obtain the claimed bound in
the lemma.

From [13] we have the following bound on entropy.

Lemma 4.3. [13] Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,

H(f) 6 (3 + log2 e) · Inf[f ] + log2 e ·
n∑
k=1

W k[f ]k ln
n

k
.

This lemma suggests that one way to prove a non-trivial upper bound on
Fourier entropy is to bound the second summand on the right in a general
way. Using Lemma 4.2, we prove another technical lemma that provides a
bound on

∑n
k=1W

k[f ]k ln n
k
. The first few steps in the proof below are the

same as in [13].

Lemma 4.4. Let f : {0, 1}n → {+1,−1} be a Boolean function. Then,

n∑
k=1

W k[f ]k ln
n

k
6 exp(1/2) · 5

1− e−2
· α

(1− β)2
· (4n)1−β .
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Proof.

n∑
k=1

W k[f ]k ln
n

k
6

n∑
k=1

W k[f ]k ·
n∑
j=k

1

j
6

n∑
j=1

1

j

j∑
k=1

W k[f ]k

6
n∑
j=1

1

j

j∑
k=1

W k[f ]k · exp(1/2)(1− 1

2j
)k−1,[

since exp(1/2)(1− 1
2j

)m > 1,∀m 6 (j − 1)
]

6
n∑
j=1

1

j
· exp(1/2) · NS′1

4j
(f)

6 exp(1/2) · 5

1− e−2
· α

1− β
·

n∑
j=1

1

j
· (4j)1−β

6 exp(1/2) · 5

1− e−2
· α

1− β
· 41−β ·

n∑
j=1

j−β

6 exp(1/2) · 5

1− e−2
· α

(1− β)2
· 41−β · n1−β. (17)

Using Lemma 4.4 and Lemma 4.3, we obtain the following theorem which
bounds the Fourier entropy of a Boolean function.

Theorem 4.5. Let f : {0, 1}n → {+1,−1} be a Boolean function such that
NSε(f) 6 α · εβ. Then

H(f) 6 C ·
(

Inf[f ] +
α

(1− β)2
· (4n)1−β

)
,

where C is a universal constant.

In particular, for polynomial threshold functions, there exist non-trivial
bounds on their noise sensitivity.

Theorem 4.6 (Peres’s Theorem). [17] Let f : {0, 1}n → {+1,−1} be a
linear threshold function. Then NSε(f) 6 O(

√
ε).

Theorem 4.7. [18] For any degree-d polynomial threshold function f : {0, 1}n →
{+1,−1} and 0 < ε < 1, NSε(f) 6 2O(d) · ε1/(4d+6).

As corollaries of Theorem 4.5, using Theorem 4.6 and Theorem 4.7, we
obtain the following bounds on the Fourier entropy of polynomial threshold
functions.
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Corollary 4.8. Let f : {0, 1}n → {+1,−1} be a linear threshold function.
Then, H(f) 6 C ·

√
n, where C is a universal constant.

Corollary 4.9. Let f : {0, 1}n → {+1,−1} be a degree-d polynomial thresh-

old function. Then, H(f) 6 C ·2O(d)·n1− 1
4d+6 , where C is a universal constant.

5 Entropy-Influence Inequality for Read-Once

Formulas

In this section, we will prove the Fourier Entropy-Influence conjecture for
read-once formulas using AND, OR, XOR, and NOT gates. We note that
a concurrent (with the conference version of this paper) and independent
result of O’Donnell and Tan [1] proves the conjecture for read-once formulas
with arbitrary gates of bounded fan-in. But since our proof is completely
elementary and very different from theirs, we choose to present it here.

It is well-known that both Fourier entropy and average sensitivity add up
when two functions on disjoint sets of variables are added modulo 2.

Fact 5.1. Let f = g1 ⊕ g2 for gi : {0, 1}Vi → {−1,+1}, where V1 ∩ V2 = ∅.
Let V = V1 ∪ V2. Then,

1. H(f) = H(g1) + H(g2)

2. as(f) = as(g1) + as(g2).

Our main result here is to show that somewhat analogous “tensorizabil-
ity” properties hold when composing functions on disjoint sets of variables
using AND and OR operations.

For f : {0, 1}n → {+1,−1}, let fB denote its 0-1 counterpart: fB ≡ 1−f
2

.
Let’s define the following 0-1 variant of H:

H(fB) :=
∑
S

f̂B(S)2 log
1

f̂B(S)2
. (18)

An easy relation enables translation between H(f) and H(fB):

Lemma 5.2. Let p = Pr[fB = 1] = f̂B(∅) =
∑

S f̂B(S)2 and q := 1 − p.
Then,

H(f) = 4 ·H(fB) + ϕ(p), where (19)

ϕ(p) := H(4pq)− 4p(H(p)− log p). (20)
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Now, let f = AND(g1, g2) for gi : {0, 1}Vi → {−1,+1}, where V1∩V2 = ∅.
Let V = V1 ∪ V2. Let giB ≡ 1−gi

2
and pi = ĝiB(∅). It is then obvious that

fB ≡ g1B · g2B.

Lemma 5.3. With the above notations, the following identities hold:

1. For all S ⊆ V , f̂B(S) = ĝ1B(S ∩ V1) · ĝ2B(S ∩ V2)

2. H(fB) = p2 ·H(g1B) + p1 ·H(g2B)

3. as(f) = p2 · as(g1) + p1 · as(g2).

Proof of this lemma follows by direct computation and is omitted.

For 0 6 p 6 1, let’s also define: ψ(p) := p2 log
1

p2
− 2 H(p). (21)

I Intuition: Before going on, we pause to give some intuition about the
choice of the function ψ and the function κ below in Eq. (24). In the FEI con-
jecture (Eq. (2)), the right hand side, Inf(f), does not depend on whether we
take the range of f to be {−1,+1} or {0, 1}. In contrast, the left hand side,
H(f), depends on the range being {−1,+1}. Just as the usual entropy-
influence inequality composes w.r.t. the parity operation (Fact 5.1) with
{−1,+1} range, we expect a corresponding composition with {0, 1} range
to hold for the AND operation (and by symmetry for the OR operation).
However, Lemma 5.2 shows the translation to {0, 1}-valued functions results
in the annoying additive “error” term ϕ(p). Such additive terms that depend
on p create technical difficulties in the inductive proofs below and we need
to choose the appropriate functions of p carefully.

For example, we know 4 H(fB) + ϕ(p) = H(f) = 4 H(1 − fB) + ϕ(q)
from Lemma 5.2. If the conjectured inequality for the {0, 1}-valued entropy-
influence inequality has an additive error term ψ(p) (see Eq. (22) below),
then we must have H(fB) −H(1 − fB) = ψ(p) − ψ(q) = (ϕ(q) − ϕ(p))/4 =
p2 log 1

p2
− q2 log 1

q2
, using Eq. (20). Hence, we may conjecture that ψ(p) =

p2 log 1
p2

+ (an additive term symmetric w.r.t. p and q). Given this and the
other required properties, e.g., Lemma 5.4 below, for the composition to go
through, we are lead to the definition of ψ in Eq. (21). Similar considerations
w.r.t. composition by parity operation (in addition to those by AND, OR,
and NOT) leads us to the definition of κ in Eq. (24). J

Let us define the FEI01 Inequality (the 0-1 version of FEI) as follows:

H(fB) 6 c · as(f) + ψ(p), (22)

where p = f̂B(∅) = Prx[fB(x) = 1] and c is a constant to be fixed later.
The following technical lemma gives us the crucial property of ψ:
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Lemma 5.4. For ψ as in Eq. (21) and p1, p2 ∈ [0, 1], p1ψ(p2) + p2ψ(p1) 6
ψ(p1p2).

Since the proof of the lemma is somewhat technical, we move the proof
to B. Given this lemma, an inductive proof yields our theorem for read-once
formulas over the complete basis of {AND,OR,NOT}. We now complete the
proof.

Lemma 5.5. Suppose fB = AND(g1B, g2B), where the gi depend on disjoint
sets of variables. If each of the gi satisfies the FEI01 Inequality (22), then
so does f .

Proof.

H(fB) = p2 H(g1B) + p1 H(g2B) by Lemma 5.3(2)

6 p2(c · as(g1) + ψ(p1)) + p1(c · as(g2) + ψ(p2)) since gi satisfy Eq. (22)

= c · (p2as(g1) + p1as(g2)) + (p2ψ(p1) + p1ψ(p2)

6 c · as(f) + ψ(p) by Lemma 5.3(3) and Lemma 5.4

Lemma 5.6. If f satisfies FEI01 inequality (22), then so does its negation,
i.e., 1− f .

Proof. Note that H(1− f) = H(f)− p2 log 1
p2

+ q2 log 1
q2

and because H(p) =

H(q), ψ(p)− ψ(q) = p2 log 1
p2
− q2 log 1

q2
.

Corollary 5.7. Suppose fB = OR(g1B, g2B), where the gi depend on disjoint
sets of variables. If each of the gi satisfies the FEI01 Inequality (22), then
so does f .

Proof. Note that 1 − fB = (1 − g1B) · (1 − g2B) and apply lemmas 5.5 and
5.6.

Theorem 5.8. The FEI01 inequality (22) holds for all read-once Boolean
formulas using AND, OR, and NOT gates, with constant c = 5/2.

Proof. Let f be computed by a read-once Boolean formula. We assume
without loss of generality that negations only appear at the bottom with
leaves. We proceed by induction on the underlying tree. At the leaves f is
a literal associated with a single variable, say x1. Then, since fB(∅) = 1/2
and fB({1}) = −1/2, we calculate H(fB) = 1

4
log 4 + 1

4
log 4 = 1, as(f) = 1,

p = 1/2, and ψ(1/2) = −3/2. Thus with c = 5/2, Eq. (22) is satisfied.
Now, Lemma 5.5 and Corollary 5.7 imply that at every AND gate and

OR gate, the inequality (22) is preserved, i.e., if it holds at both the inputs,
it also holds at the output.
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We now proceed to show that the above result can be extended to read-
once formulas that include XOR gates as well. To switch to the usual FEI
inequality (in the {−1,+1} notation), we combine Eq. (22) and Eq. (19) to
obtain

H(f) 6 10 · as(f) + κ(p), where (23)

κ(p) := 4ψ(p) + ϕ(p) = −8 H(p)− 8pq − (1− 4pq) log(1− 4pq). (24)

Since it uses the {−1,+1} range, we expect that Eq. (23) should be
preserved by parity composition of functions. The only technical detail is
to show that the function κ also behaves well w.r.t. parity composition. We
show that this indeed happens. Consider f ≡ g1 ⊕ g2. Since parity is a
simple product over {−1,+1} range we have f = g1 · g2, and therefore,
p = p1q2 + p2q1. Thus we only need to show

Lemma 5.9. For κ as defined by Eq. (24), κ(p1) + κ(p2) 6 κ(p1q2 + p2q1).

Again, due to the technical nature of the proof, we move it to B.
We can now prove the following composition lemma which leads us to the

main theorem of this section.

Lemma 5.10. Suppose f = g1 · g2, where the gi depend on disjoint sets of
variables. If each of the gi satisfies the entropy-influence inequality (23), then
so does f .

Proof.

H(f) = H(g1) + H(g2) by Fact 5.1(i)

6 10 · as(g1) + κ(p1) + 10 · as(g2) + κ(g2) since gi satisfy Eq. (23)

= 10 · as(f) + κ(p1) + κ(p2) by Fact 5.1(ii)

6 10 · as(f) + κ(p) by Lemma 5.9.

Theorem 5.11. If f is computed by a read-once formula using AND, OR,
XOR, and NOT gates, then H(f) 6 10 Inf(f) + κ(p).

Proof. We use induction on the tree given by the formula computing f to
prove Eq. (23). Without loss of generality we assume that negations are only
at the bottom with leaves. So the leaves are input variables or their negations
and the claim that they satisfy Eq. (23) can be verified by direct calculation.
At any internal node, its two inputs are given by subformulas depending on
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disjoint sets of variables by the read-once property of the formula. When
the internal node is an AND or OR gate, the claim follows from Eq. (19),
Lemma 5.5, Corollary 5.7, and Eq. (24). When the internal node is an XOR
gate, the claim follows from Lemma 5.10. Thus Eq. (23) holds at the root of
the tree and hence for f .

Remark 5.1. The parity function on n variables shows that the bound in
Theorem 5.11 is tight; it is not tight without the additive term κ(p). It is
easy to verify that −10 6 κ(p) 6 0 for p ∈ [0, 1]. Hence the theorem implies
H(f) 6 10 Inf(f) for all read-once formulas f using AND, OR, XOR, and
NOT gates.

6 A Bound for Real valued Functions via Sec-

ond Moment

An equivalent way to state the Fourier-entropy Influence conjecture is: there
exists a universal constant C such that for all f : {0, 1}n → {+1,−1},

H(f) 6 C ·
∑
S⊆[n]

|S|f̂(S)2.

In this section, we relax the Boolean-ness condition on f , and consider real
valued functions f : {0, 1}n → R defined over Boolean hypercube. We
obtain a nontrivial bound on the entropy (suitably defined) of such functions.

In particular, we show that for all f such that
∑

S f̂(S)2 = 1, and for all
δ ∈ (0, 1],

H(f) 6
∑
S

|S|1+δf̂(S)2 + (log n)O( 1
δ
).

Our proof below uses the following lemma:

Lemma 6.1. For any t, let T ⊆ {S | |f̂(S)| 6 1/t}. Suppose |T | 6 t. Then,

∑
S∈T

f̂(S)2 log

(
1

f̂(S)2

)
6 2.

Furthermore, for any k,

∑
S:|S|6k

f̂(S)2 log

(
1

f̂(S)2

)
6 2 + 2k log n.
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Proof. We will prove the second part of the lemma since that includes proof
of the first part. First note that the number of summands in the second part
is at most nk. Let Sk := {S | |f̂(S)| < 1/nk}, then∑

S∈Sk

f̂(S)2 log

(
1

f̂(S)2

)
6

2

nk

∑
S∈Sk

|f̂(S)| log

(
1

|f̂(S)|

)
6 2,

where the last inequality follows from the fact that |f̂(S)| log(1/|f̂(S)|) < 1,
since x log(1/x) < 1, for all 0 6 x 6 1.

Now for all S such that |S| 6 k and S 6∈ Sk, log(1/|f̂(S)|) 6 k log n.
Hence, ∑

S:|S|6k and S 6∈Sk

f̂(S)2 log

(
1

f̂(S)2

)
6 2k log n.

We now state and prove the main theorem of this section.

Theorem 6.2. If f =
∑

S⊆[n] f̂(S)χS is a real-valued function on the domain

{0, 1}n such that
∑

S f̂(S)2 = 1, then, for any δ ∈ (0, 1],∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
6
∑
S⊆[n]

|S|1+δf̂(S)2+2(2 log n)
1+δ
δ +O(log log n/ log(1+δ)) .

Proof. Since the proof consists of careful counting, we highlight our proof
strategy first. We partition the Fourier coefficients into suitable parts and
then upper bound each part. We start with suitably chosen sets A0, B0 ⊆ 2[n]

and then inductively construct the sets A1, B1, . . . , Ak, Bk. The Ai’s represent
the new Fourier coefficients whose total entropy we are able to upper bound.
The Bi’s represent the Fourier coefficients that are not yet accounted for.
Our construction yields that as k increases Bk only consists of those f̂(S) for
which |S| < ψ(k, n, δ), where ψ is a suitable function of k, n and δ. Finally
an appropriate choice of k gives us the desired inequality.

Following this strategy, we start by describing the sets Ai and Bi.

Let A0 be the set of all S ⊆ [n] for which |S|1+δ is at least log
(

1

f̂(S)2

)
.

That is,
A0 := {S | f̂(S)2 > 1/2|S|

1+δ}.
Clearly, ∑

S∈A0

f̂(S)2 log

(
1

f̂(S)2

)
6
∑
S∈A0

|S|1+δf̂(S)2. (25)
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Now, let A1 be all the S ⊆ [n] for which |f̂(S)| < 2−n. Since |A1| is
clearly at most 2n, Lemma 6.1 above applies and we conclude that

∑
S∈A1

f̂(S)2 log

(
1

f̂(S)2

)
6 2. (26)

Further let B1 = {0, 1}n \ (A0 ∪ A1). By the definition of A0 and A1,

B1 ⊆
{
S | 1

22n
6 f̂(S)2 6

1

2|S|1+δ

}
.

It follows that B1 ⊆ {S | |S| 6 (2n)1/(1+δ)}. Let r1 := (2n)1/(1+δ). Thus,
|B1| 6

∑r1
i=0

(
n
i

)
< nr1 .

Next, let A2 := {S ∈ B1 : |f̂(S)| 6 1/nr1} and B2 := B1 \ A2.
First, note that, since A2 ⊆ B1 and |B1| 6 nr1 , Lemma 6.1 can be applied

to A2 and hence the contribution of coefficients from A2 is at most 2.
We also have,

B2 ⊆
{
S | 1

n2r1
6 f̂(S)2 6

1

2|S|1+δ

}
.

Let r2 = (log(n2r1))1/(1+δ) = (2r1 log n)1/(1+δ). It is then clear that for S ∈ B2,
we must have |S| 6 r2 and thus |B2| 6 nr2 .

Continuing this way, we define

rk+1 := (2rk log n)1/(1+δ),

Ak+1 := {S ∈ Bk | |f̂(S)| 6 1/nrk}, and

Bk+1 := Bk \ Ak+1.

In general, then,

Bk+1 ⊆
{
S | 1

n2rk
6 f̂(S)2 6

1

2|S|1+δ

}
.

Thus Bk+1 ⊆ {S | |S| 6 rk+1}, and so, |Bk+1| 6 nrk+1 . Since Ak+1 ⊆ Bk,
|Ak+1| 6 nrk and Lemma 6.1 can be applied to Ak+1.

It is easy to see by induction that for k > 1,

rk = (2 log n)
1
δ (1−(1+δ)−k+1) · (2n)(1+δ)

−k
.

Thus, rk 6 (2 log n)
1
δ · (2n)(1+δ)

−k
.

By taking k∗ := log log 2n/ log(1 + δ), we get rk∗ 6 2(2 log n)
1
δ .
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We repeat the above process up to k∗ times. For each k 6 k∗, the
coefficients from Ak contribute at most 2 to the entropy by the first part
of the lemma. Note that for all sets S ∈ Bk∗ , |S| 6 rk∗ . For k = k∗, we
apply the second part of proof of Lemma 6.1 and conclude that coefficients
from Bk∗ contribute at most 2rk∗ log n 6 2 · (2 log n)1+

1
δ . Moreover, note

that A0 ∪ A1 ∪ · · · ∪ Ak∗ ∪ Bk∗ is a cover of 2[n]. Hence, we accounted for
contributions to the entropy from all coefficients.

Altogether, we get the total entropy to be at most

∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
6
∑
S⊆[n]

|S|1+δf̂(S)2+2 log log 2n/ log(1+δ)+2(2 log n)1+
1
δ .

As a corollary to Theorem 6.2, we obtain an upper bound (cf. Eq. (7)) on
the Fourier Entropy of a real-valued function in terms of the first and second
moments of the sensitivities of the function.

Corollary 6.3. If f =
∑

S⊆[n] f̂(S)χS is a real-valued function on the domain

{0, 1}n such that
∑

S |f̂(S)2| = 1, then, for any δ ∈ (0, 1],

∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
= as(f)1−δas2(f)δ+2(2 log n)

1+δ
δ +O(log log n/ log(1+δ)),

where as2(f) :=
∑

S |S|2f̂(S)2.

Note that in the above statements as(f) is defined via its Fourier expan-

sion, that is, as(f) :=
∑

S |S|f̂(S)2. Similarly, as2(f), in spite of having a

combinatorial definition (see Lemma 6.5), is defined to be
∑

S |S|2f̂(S)2.
The proof of Corollary 6.3 is straightforward from the following lemma.

Lemma 6.4. Let f : {0, 1}n → R, and 0 6 δ 6 1. Then

as(f)1−δas2(f)δ >
∑
S⊆[n]

|S|1+δf̂(S)2.

But for proving Lemma 6.4, we require Lemma 6.5 below. Lemma 6.5
seems to be well-known; see for instance, [27, Eq. 2.11] or [2, Ex. 2.20].
For completeness, we give here a proof by Alex Samorodnitsky (personal
communication).
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Lemma 6.5. For f : {0, 1}n → {+1,−1},

1

2n

∑
x

sf (x)2 =
∑
S⊆[n]

|S|2f̂(S)2 = as2(f).

Proof. Consider the following function L : {0, 1}n → R,

L(x) =


n for |x| = 0.
−1 for |x| = 1.

0 for |x| > 1.

Consider the convolution L ∗ f(x) := 1
2n

∑
z f(x ⊕ z)L(z). It is easy to see

that

L ∗ f(x) =
2sf (x)f(x)

2n
.

Using Parseval’s identity we obtain:

1

2n

∑
x

(2sf (x)/2n)2 =
∑
S⊆[n]

L̂ ∗ f(S)2 =
∑
S⊆[n]

L̂(S)2f̂(S)2.

It is also easy to see that for any S ⊆ [n], L̂(S) = 2|S|/2n. So we obtain

1

2n

∑
x

4sf (x)2 =
∑
S⊆[n]

4|S|2f̂(S)2.

This completes the proof.

We now prove Lemma 6.4.

Proof. (of Lemma 6.4) For δ = 0, this is the Fourier expression for average
sensitivity. For δ = 1, this is Lemma 6.5. We next prove it for δ = 1/2. We

treat f̂(S)2 as the probability associated to the set S and use the following
version of the Cauchy-Schwartz inequality: for any two random variables
X, Y : Ω→ R, we have

√
E(X2)

√
E(Y 2) > E(XY ). Choosing X(S) =

√
|S|

and Y (S) = |S| immediately yields the desired inequality for the value of
δ = 1

2
in light of Lemma 6.5.

In general, we can show the following: if the desired inequality holds for
δ = α and δ = β then the inequality must also hold for δ = α+β

2
. To show

this, one may apply the Cauchy-Schwartz inequality with X(S) = |S|(1+α)/2
and Y (S) = |S|(1+β)/2.

Hence, by continuity, the desired inequality holds for any δ ∈ [0, 1].
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A Non-Boolean functions with large Fourier

Entropy

A decision tree for a non-Boolean, say R-valued, function f can be defined by
a natural generalization of the one for a Boolean-valued function. It queries
the (Boolean) input variables as in the usual decision tree, but produces a
value in R at each leaf. It must guarantee that on all inputs that reach a
leaf the function value must be constant and equal to the value produced at
that leaf.

Our next example shows that Fourier entropy cannot be upper bounded
by log(number of leaves) for non-Boolean f in contrast to Inequality (9) for
Boolean functions. In fact, there is an exponential gap:

Lemma A.1. There exists a function f : {0, 1}n → R satisfying
∑

S f̂(S)2 =
1 such that

∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
= Ω(n), but logL(f) = O(log n).

Proof. Consider the following function:

f(x) =

√
2d(x)

n+ 2
,

where d(x) = n + 1, if x = 0n, else it is the first index in x that is 1. Note
that this function has a decision tree same as the OR function and thus have
only n+ 1 leaves. Now to see that

∑
S⊆[n] f̂(S)2 = 1 consider the following:

∑
x

f(x)2 =
∑

i∈[n+1]

∑
x:d(x)=i

f(x)2 =
∑
i∈[n]

2n−i
2i

n+ 2
+

2n+1

n+ 2
= 2n,

and thus from Parseval’s identity we have
∑

S⊆[n] f̂(S)2 = 1.

It is easy to check that for any set S ⊆ [n] if k is the largest index in S
then

|f̂(S)| = 1

2n

(
2n−k

√
2k

n+ 2
−

n∑
i=k+1

2n−i
√

2i

n+ 2
−
√

2n+1

n+ 2

)
≈ 1√

n2k
.

And from this it follows that the entropy for the Fourier coefficient squares
is around n/2 + log n whereas log(L(f)) = log(n).
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Our next example shows that Fourier entropy can be logarithmically
larger than the degree for non-Boolean functions in contrast to Inequality (9)
for Boolean functions.

Lemma A.2. There exists a function f : {0, 1}n → R of degree d satisfying∑
S f̂(S)2 = 1 such that

∑
S⊆[n]

f̂(S)2 log

(
1

f̂(S)2

)
= Ω(d log n).

Proof. Consider the following function f =
∑

S⊆[n] f̂(S)χS, where f̂(S) =

1/
√(

n
2

)
if |S| = 2, and f̂(S) = 0 otherwise. It is easy to see that the

H(f) = log
(
n
2

)
, whereas Inf(f) =

∑
S⊆[n]

|S|f̂(S)2 = 2.

So now if we put uniform weights on k-sized sets, that is, f̂(S) = 1/
√(

n
k

)
if |S| = k, and f̂(S) = 0 if |S| 6= k, we will get Inf(f) = k and H(f) = log

(
n
k

)
>

k log n − k log k. Choosing k =
√
n, we will have H(f) = Ω(

√
n log n)

and Inf(f) =
√
n. Since the degree of the function is d =

√
n, we get

H(f) = Ω(d · log n).

B Proofs from Section 5

Lemma 5.4 restated: For ψ as defined by Eq. (21) and p1, p2 ∈ [0, 1],

p1 · ψ(p2) + p2 · ψ(p1) 6 ψ(p1p2).

Proof. We need to prove that p1ψ(p2) + p2ψ(p1)− ψ(p1p2) 6 0.
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Let’s begin by manipulating the l.h.s.:

p1ψ(p2) + p2ψ(p1)− ψ(p1p2)

= p1

(
p22 log

1

p22
− 2 H(p2)

)
+ p2

(
p21 log

1

p21
− 2 H(p1)

)
− (p1p2)

2 log
1

(p1p2)2
+ 2 H(p1p2)

= 2p1p2 (−p2 log p2 − p1 log p1 + p1p2 log p2 + p1p2 log p1) + 2 (H(p1p2)− p2 H(p1)− p1 H(p2))

= 2p1p2 (−p2q1 log p2 − p1q2 log p1) + 2 (−(1− p1p2) log(1− p1p2) + p2q1 log q1 + p1q2 log q2)

= 2p1q2 (−p1p2 log p1 + log q2) + 2p2q1 (−p1p2 log p2 + log q1)− 2(1− p1p2) log(1− p1p2)

6 2(1− p1p2)
(
−p1p2 log(p1p2) + log

q1q2
1− p1p2

)
since p1q2, p2q1 6 (1− p1p2)

6 2(1− p1p2)
(
−p1p2 log(p1p2) + log

(1−√p1p2)2

(1− p1p2)

)
since q1q2 = (1− p1)(1− p2) 6 (1−√p1p2)2,
e.g., by the AM-GM inequality p1 + p2 > 2

√
p1p2.

Since p1p2 ∈ [0, 1], it suffices to show the (univariate) inequality τ(x) :=

−x lnx + ln (1−
√
x)2

1−x 6 0 for x ∈ [0, 1]. Since the boundary cases are easy to
verify, it suffices to prove the that τ(x) 6 0 for x ∈ (0, 1). Note that τ(0) = 0
and hence it suffices to prove that τ ′(x) < 0 for x ∈ (0, 1). But

τ ′(x) = −1 + ln
1

x
− 1√

x(1− x)

6 −1 +

√
1

x
− 1√

x(1− x)
since ln y 6

√
y

= −1−
√
x

1− x
< 0 for x ∈ (0, 1).

Lemma 5.9 restated: For κ as defined by Eq. (24) and p1, p2 ∈ [0, 1],

κ(p1) + κ(p2) 6 κ(p1q2 + p2q1).

Proof. In the following, we will let p = p1q2+p2q1, and q = 1−p = p1p2+q1q2.
To begin with, we observe that (1 − 4pq) = (p − q)2 and that (p − q) =

(p1 − q1)(p2 − q2), i.e., parity operation on independent Boolean variables
results in multiplying their biases, and hence (1−4pq) = (1−4p1q1)(1−4p2q2).
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Using this, we relate the third terms on either side of the inequality to be
proved.

(1− 4pq) log(1− 4pq) = (1− 4p1q1)(1− 4p2q2) log((1− 4p1q1)(1− 4p2q2))

= (1− 4p2q2) ((1− 4p1q1) log(1− 4p1q1))

+ (1− 4p1q1) ((1− 4p2q2) log(1− 4p2q2))

6 (1− 4p1q1) log(1− 4p1q1) + (1− 4p2q2) log(1− 4p2q2)

+ 64p1q1p2q2,

The last inequality follows from the fact −(1 − 4piqi) log(1 − 4piqi) 6 8piqi,
which in turn follows from the inequality x log 1

x
6 3 2(1 − x) for x ∈ [0, 1].

Thus, we have

−(1− 4p1q1) log(1− 4p1q1)− (1− 4p2q2) log(1− 4p2q2)

+ (1− 4pq) log(1− 4pq) 6 64p1q1p2q2. (27)

Next, we simplify the second terms:

pq = (p1q2 + p2q1)(p1p2 + q1q2) = p1q1(p
2
2 + q22) + p2q2(p

2
1 + q21)

= p1q1(1− 2p2q2) + p2q2(1− 2p1q1)

= p1q1 + p2q2 − 4p1q1p2q2.

Hence, we have

−8p1q1 − 8p2q2 + 8pq = −32p1q1p2q2. (28)

3Any constant c > 1
ln 2 can be used instead of 2.
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Finally, the first terms:

H(p) = H(p1q2 + p2q1)

= (p1q2 + p2q1) log
1

(p1q2 + p2q1)
+ (p1p2 + q1q2) log

1

(p1p2 + q1q2)

= p1q2 log
1

p1q2
+ p1q2 log

p1q2
(p1q2 + p2q1)

+ p2q1 log
1

p2q1
+ p2q1 log

p2q1
(p1q2 + p2q1)

+ similar terms for the second summand

= q2(−p1 log p1) + p1(−q2 log q2) + p2(−q1 log q1) + q1(−p2 log p2)

+ p1q2 log
p1q2

(p1q2 + p2q1)
+ p2q1 log

p2q1
(p1q2 + p2q1)

+ similar terms from the second half

= −p1 log p1(q2 + p2)− q1 log q1(p2 + q2)− p2 log p2(q1 + p1)− q2 log q2(p1 + q1)

+ p1q2 log
p1q2

(p1q2 + p2q1)
+ p2q1 log

p2q1
(p1q2 + p2q1)

+ p1p2 log
p1p2

(p1p2 + q1q2)

+ q1q2 log
q1q2

(p1p2 + q1q2)

= H(p1) + H(p2)− (p1q2 + p2q1) H

(
p1q2

(p1q2 + p2q1)

)
− (p1p2 + q1q2) H

(
p1p2

(p1p2 + q1q2)

)
6 H(p1) + H(p2)− 2 min{p1q2, p2q1} − 2 min{p1p2, q1, q2} using H(p) > 2 min{p, q}
6 H(p1) + H(p2)− 2p1q2p2q1 − 2p1p2q1q2 since min{p, q} > pq for 0 6 p, q 6 1

= H(p1) + H(p2)− 4p1q1p2q2.

Hence, we have

−8 H(p1)− 8 H(p2) + 8 H(p) 6 −32p1q1p2q2. (29)

Combing Eq. (27), Eq. (28), Eq. (29), and the definition of κ Eq. (24), we
obtain

κ(p1) + κ(p2)− κ(p) 6 0

and this concludes the proof.
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