
High rate locally correctable codes via lifting

Alan Guo ∗

Abstract

We present a general framework for constructing high rate error correcting codes that are
locally correctable (and hence locally decodable if linear) with a sublinear number of queries,
based on lifting codes with respect to functions on the coordinates. Our approach generalizes the
lifting of affine-invariant codes of Guo, Kopparty, and Sudan and its generalization automorphic
lifting, suggested by Ben-Sasson et al, which lifts algebraic geometry codes with respect to a
group of automorphisms of the code. Our notion of lifting is a natural alternative to the degree-
lifting of Ben-Sasson et al and it carries two advantages. First, it overcomes the rate barrier
inherent in degree-lifting. Second, it is extremely flexible, requiring no special properties (e.g.
linearity, invariance) of the base code, and requiring very little structure on the set of functions
on the coordinates of the code.

As an application, we construct new explicit families of locally correctable codes by lifting
algebraic geometry codes. Like the multiplicity codes of Kopparty, Saraf, Yekhanin and the
affine-lifted codes of Guo, Kopparty, Sudan, our codes of block-length N can achieve N ǫ query
complexity and 1 − α rate for any given ǫ, α > 0 while correcting a constant fraction of errors,
in contrast to the Reed-Muller codes and the degree-lifted AG codes of Ben-Sasson et al which
face a rate barrier of ǫO(1/ǫ). However, like the degree-lifted AG codes, our codes are over an
alphabet significantly smaller than that obtained by Reed-Muller codes, affine-lifted codes, and
multiplicity codes.

∗CSAIL, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, USA. aguo@mit.edu. Research

supported in part by NSF grants CCF-0829672, CCF-1065125, and CCF-6922462, and an NSF Graduate Research

Fellowship

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 53 (2013)

Contents

1 Introduction 3

1.1 Error correcting codes and locally correctable codes 3
1.2 Previous work . 3
1.3 Our results . 4
1.4 Comparison of parameters . 5

2 Preliminaries 6

2.1 Notation . 6
2.2 Terminology . 7

3 Definitions 7

3.1 Lifting . 8
3.2 Double transitivity . 8

4 Distance of lifted codes 9

5 Correction algorithms 11

5.1 One-shot correcting . 12
5.2 Fractal correcting . 12

6 Base codes 13

6.1 Reed-Solomon code . 13
6.2 Hermitian code . 13
6.3 Hermitian tower . 14

6.3.1 Constructing endomorphisms . 15
6.3.2 Closeness to double transitivity . 16

7 Explicit Constructions 17

7.1 Lifting the Hermitian code . 17
7.2 Lifting the Hermitian tower . 20

7.2.1 Warm up: lifting from the 3rd level . 21
7.2.2 Beyond the 3rd level . 22

8 Conclusion 24

2

1 Introduction

We present a general framework for constructing long locally correctable codes from short base
codes via the operation of lifting. Our notion of lifting generalizes affine lifting, automorphic
lifting, and high-degree sampling defined in previous works, and we use it to obtain new explicit
high rate locally correctable codes by lifting certain algebraic geometric codes.

1.1 Error correcting codes and locally correctable codes

We begin with some coding theory preliminaries. A code C of block length N over an alphabet R
is a subset of RN . Elements f ∈ C are codewords. Typically Σ is used to denote the alphabet, but
we use R because it is helpful to think of a codeword f not as a vector in RN , but as a function
f : D → R (D for domain, R for range), where we identify D with [N] = {1, . . . , N}. Typically one
thinks of C as the image of some encoding map Enc : RK

0 → RN which injectively maps K-symbol
messages over an alphabet R0 to N -symbol codewords (here R0 may be different from R). The
rate of the code C is K/N , which measures the efficiency of our encoding. We want to make K/N
as large as we can. Another important parameter of a code is the minimum pairwise distance
between distinct codewords. The (Hamming) distance between two words f, g ∈ RN is the number
of coordinates in which they differ, i.e.

∆(f, g) , {i ∈ [N] | xi 6= yi}.

The distance ∆(C) of C is simply min{∆(f, g) | f, g ∈ C, f 6= g}. We want ∆(C) to be as large as
possible. We often look at the normalized distance δ(f, g), which is simply 1

N∆(f, g), and similarly
δ(C) = 1

N∆(C).
The motivation behind error correcting codes is to make information robust to noise. The

original message m ∈ RK
0 is encoded into some codeword Enc(m) ∈ RN . Noise may corrupt some

symbols of Enc(m), resulting in a new word r ∈ RN , the received word. The number of symbols
corrupted is exactly ∆(Enc(m), r). If the number of errors is small, say less than ∆(C)/2, then
Enc(m) is the unique codeword in C within Hamming distance ∆(C)/2 of r, and one can uniquely
decode r to get m, since Enc is injective.

To decode a received word, it may be necessary to examine the entire word. In some settings,
the received word is prohibitively large, and one wishes only to decode one symbol of the message.
Codes with which one can do this by querying only a small number of symbols of the input are
known as locally decodable codes. A related concept is the notion of locally correctable code. Such
a code allows one to correct a symbol of the codeword (rather than a symbol of the message) by
querying only a few symbols of the input. The main parameters of interest are the rate and the
query complexity, or locality, the number of symbols queried to recover a single symbol. These
codes are the focus of this work. We formally define these notions in Section 2.

1.2 Previous work

Until recently, there were no known locally correctable codes with sublinear query complexity
and rate greater 1/2. The Reed-Muller code was the first locally correctable code, with the first
correction procedure proposed by Reed [9], which happened to be a local correction procedure. The
m-variate Reed-Muller over Fq with degree parameter r consists of all m-variate polynomials of
total degree less than r. More precisely, a codeword is the list of evaluations of such a polynomial

3

on all points of Fm
q . The idea behind the local correction procedure is to pick a random line passing

through the point whose value we wish to correct, view the restriction of the polynomial to the line
as a corrupted Reed-Solomon codeword, and use a Reed-Solomon decoding algorithm to correct the
value on the line. For any ǫ > 0, the Reed-Muller codes can achieve query complexity N ǫ by taking
m = 1/ǫ and N = qm. Unfortunately, the m-variate Reed-Muller code with positive distance (by
taking r to be a constant fraction of q) can never exceed 1/m! in rate. This certainly never exceeds
1/2.

The recent work of Kopparty, Saraf, and Yekhanin [7] introduced the first locally correctable
codes that can achieve rate greater than 1/2, and in fact can achieve any rate arbitrarily close to 1.
More precisely, for any ǫ, α > 0, the multiplicity code can achieve query complexity N ǫ and rate
1−α while correcting a constant fraction of errors. One may view multiplicity codes as a variant of
Reed-Muller codes, where each codeword consists of evaluations of a low-degree polynomial along
with its partial derivatives.

An alternative to the multiplicity codes are the lifted Reed-Solomon codes of Guo, Kopparty,
and Sudan [5]. These are yet another variant of Reed-Muller codes — more precisely, they are
supercodes of Reed-Muller codes with vastly greater dimension but the same distance. The main
idea behind lifted codes is the notion of “lifting” — an operation first introduced in [2] to prove
negative results in property testing. Essentially, the lifting operation takes a short base code
C ⊆ {Ft

q → Fq} and “lifts” it to a longer code C′ ⊆ {Fm
q → Fq}, for m > t, such that codewords of

C′ are those f : Fm
q → Fq whose restriction to every t-dimension affine subspace is a codeword of C.

Guo et al [5] obtain locally correctable codes with query complexity N ǫ and rate 1 − α by lifting
the Reed-Solomon code. Our work generalizes this notion of lifting.

The work of Ben-Sasson et al [1] presents another way to build long locally correctable codes
from short base codes via the “degree-lifting” operation. Degree-lifting abstracts the process of
obtaining the Reed-Muller codes from the Reed-Solomon code and applies it to algebraic geometry
codes. By degree-lifting certain algebraic geometry codes, such as the Hermitian code, Ben-Sasson
et al obtain locally correctable codes with Reed-Muller-like properties but significantly smaller
alphabet. Unfortunately, degree-lifting faces the same rate barrier that the Reed-Muller codes
face, for essentially the same reason. Two key contributions of [1] which we use in our work are
the notions of a group being “close” to doubly transitive, and the fractal correction algorithm.
In particular, a conceptual contribution of [1] is the observation that the “uniformity” of the
automorphism group of an algebraic geometry code yields good local correctability properties. Our
work generalizes this observation. Ben-Sasson et al also suggests the idea of “automorphic lifting”,
a natural generalization of the affine lifting of [5] to apply to algebraic geometry codes. Our work
further generalizes this idea. Moreover, our notion of lifting encapsulates the notion of high-degree
sampling used in [1] as well. The idea of high-degree sampling is to restrict not to automorphisms,
but to “high-degree views”. For instance, instead of restricting to lines to decode the Reed-Muller
code, one may restrict to curves parametrized by quadratic equations.

1.3 Our results

In this work, we introduce a lifting framework which abstracts the lifting operation used by [5]
and the automorphic lifting suggested by [1] as well as the high-degree restrictions used by [1].
Our framework applies to arbitrary codes and arbitrary sets of functions (as opposed to invariant
codes under some group of (generalized) automorphisms). In particular, unlike the degree-lifting
operation of [1], our lifting operation does not require an algebraic notion of “degree”. Informally,

4

our lifting operation is defined as follows. Let Φ be a set of functions from D → D. The m-variate
lift of C ⊆ {D → R} with respect to Φ is the code whose codewords are those f : Dm → R such
that the univariate function f(σ1(x), . . . , σm(x)) is a codeword of C for all (σ1, . . . , σm) ∈ Φm. For
affine-lifting, the domain is D = Fq and Φ is the group of affine permutations on Fq, and in [5] the
base code is taken to be affine-invariant. More generally, for automorphic lifting, Φ is some group
of automorphisms on D under which C is invariant. Our definition of lifting requires neither C to
be Φ-invariant, nor even Φ to be a group.

A conceptual contribution of our work is to show that if Φ is sufficiently close to uniform in
the sense of Ben-Sasson et al [1], then this suffices for the lift to have good distance and be locally
correctable. We show that there is nothing essential about the symmetry of the base code under
Φ, nor the fact that Φ is a group. Thus, designing good lifted codes “merely” involves choosing a
good set Φ with respect to which to lift. On the one hand, including too many functions in Φ kills
the rate of the lifted code, since every function adds a constraint on the lifted code. On the other
hand, including too few functions in Φ kills the distance of the lifted code, since we want enough
functions in Φ to make it “close” to doubly transitive.

As an application, we construct two explicit families of locally correctable codes via lifting. The
first family arises from lifting the Hermitian code, the algebraic geometry code that [1] degree-lift.
We obtain high rate locally correctable codes similar to the lifted Reed-Solomon codes, except
over a significantly smaller alphabet. Our second construction is actually an infinite collection of
families arising from lifting levels of the Hermitian function field tower, which was used in [10] in
the context of classical error correcting codes, and in [6] in the context of list decoding. Our Φ in
this case is not a group and consists of high-degree maps, yet the lifts still achieve high rate.

Though our explicit constructions use algebraic geometry codes as base codes, our exposition
is elementary and self-contained. Invoking the language of algebraic function field theory is only
necessary to prove the properties of the base codes; the properties themselves can be stated in
elementary terms, and we do so. We refer the interested reader who wishes to see the proofs of
these facts to the book of Stichtenoth [11] on algebraic function fields and codes.

1.4 Comparison of parameters

We compare the parameters of the constant rate locally correctable codes found in the literature,
including the ones constructed in this paper. We start with some easy comparisons. The lifted
Reed-Solomon code of Guo, Kopparty, Sudan [5] is strictly better than the Reed-Muller code, as it
is a strict supercode with the same distance. In fact, with m variables over Fq, the two codes have
the same length, alphabet, and query complexity, but the rate of Reed-Muller is bounded above by
1
m! (even as its distance goes to 0) whereas the rate of the lifted Reed-Solomon code approaches 1
as its distance goes to 0. Similarly, the lifted Hermitian code (Theorem 7.1) has the same length,
alphabet, and query complexity as that of the degree-lifted Hermitian code of Ben-Sasson et al [1],
but the rate of the degree-lifted Hermitian code is bounded above by 1

m! whereas the rate of the
lifted Hermitian code approaches 1 as its distance goes to 0.

To compare the various families of high rate locally correctable codes, we normalize their pa-
rameters. Namely, we fix the block length to N , the rate to 1 − α, query complexity to N ǫ, and
compare the alphabet size and error correcting rate of each code. The results are summarized in
the table below.

5

Code Alphabet size Error correcting rate

Multiplicity [7] NΩ((1/ǫ)(1/ǫ)) Ω(ǫα)

Lifted Reed-Solomon [5] N ǫ αO((2/ǫ)(1/ǫ) log(1/ǫ))

Lifted Hermitian (Theorem 7.1) N ǫ/3 αO((8/ǫ)(2/ǫ) log(1/ǫ))

In order for the lifted Reed-Solomon to match the alphabet size of the lifted Hermitian code
(by taking locality N ǫ/3), its error correcting rate must become αO((6/ǫ)(3/ǫ) log(1/ǫ)) which is worse
than that of the lifted Hermitian code for sufficiently small ǫ.

In comparison with the multiplicity codes of [7], the lifted Hermitian code achieves a much
smaller alphabet but also much poorer (though still positive constant) error correction rate. The
smaller alphabet is not necessarily an advantage, since one can simply concatenate the multiplicity
codes with a suitably good linear code over an alphabet of constant size and still achieve N ǫ

locality, 1−α rate, and constant distance. However, the lifted Hermitian code may outperform the
multiplicity code in certain concrete settings of parameters.

Organization. In Section 2 we introduce standard notation and terminology used in the paper.
In Section 3 we present the key definitions and notions used in the paper, in particular the definitions
of invariance and lifting. In Section 4 we show that if a set of functions is sufficiently “close to
doubly transitive”, lifting a code with respect to the set yields a code with good distance. In
Section 5 we show in addition that the lifted codes are locally correctable. We emphasize that
Sections 3, 4, and 5 apply to arbitrary base codes, not necessarily algebraic or even linear codes.
In Section 6, we introduce the base codes used in our constructions. We review the Reed-Solomon
code as a warmup, and then present the Hermitian code and the Hermitian tower code which we
lift in Section 7 to obtain explicit high rate locally decodable codes with small alphabet size. We
conclude in Section 8.

2 Preliminaries

2.1 Notation

For integers a < b, let [a, b] denote the the set {a, a + 1, a + 2, . . . , b} and let [a] denote [1, a].
Throughout the paper, we let Φ denote a set of functions mapping D → D. We assume that Φ
contains the identity id : D → D which fixes every element of D. We say Φ acts on D.

Let f : D → R and let σ ∈ Φ where Φ acts on D. The function f ◦ σ : D → R is defined by

(f ◦ σ)(x) = f(σ(x))

for all x ∈ D. Let m ≥ 1 and let σ = (σ1, . . . , σm) ∈ Φm. For a function f : Dm → R, define the
function f |σ : D → R by

(f |σ)(x) = f(σ1(x), . . . , σm(x))

for all x ∈ D. For a set Φ acting on D and a point u ∈ Dm, define the automorphisms passing
through u to be

Φu , {σ ∈ Φm | σ1 = id, σi(u1) = ui ∀i ∈ [2,m]}.

6

For an event A, let 1A denote the indicator variable for A, i.e.

1A =

{
1 if A

0 otherwise.

Let f, g : D → R. The (relative) distance between f and g, is

δ(f, g) , Ex∈D[1f(x)6=g(x)].

For a collection C ⊆ {D → R} of functions, the distance between f : D → R and C is

δ(f, C) , min
g∈C

δ(f, g).

For a code C ⊆ {D → R}, the distance of C is

δ(C) , min
f,g∈C
f 6=g

δ(f, g)

If q is a prime power, let Fq denote the finite field of order q, which is unique up to isomorphism.

2.2 Terminology

For an algorithm A and function f , let Af denote the algorithm A given oracle access to f .

Definition 2.1 (Locally correctable code). A code C ⊆ {D → R} is (q, τ)-locally correctable if
there exists a randomized algorithm A satisfying the following properties:

1. Af makes at most q queries to f ;

2. If there exists g ∈ C such that δ(f, g) ≤ τ , then for every x ∈ D we have Af (x) = g(x) with
probability at least 2/3 over the randomness of A.

Definition 2.2 (Locally decodable code). A code C ⊆ {D → R} is (q, τ)-locally decodable if C
is the image of an encoding function Enc : Rk → RD and there exists a randomized algorithm A
satisfying the following properties:

1. Af makes at most q queries to f ;

2. If there exists m ∈ Rk such that δ(f,Enc(m)) ≤ τ , then for every i ∈ [k] we have Af (i) = mi

with probability at least 2/3 over the randomness of A.

For linear codes, local correctability is stronger than local decodability, since one can arrange
the generator matrix of the code such that the message is part of the codeword.

3 Definitions

In this section we give the key definitions in the paper, namely Φ-lifting and the notion of a set Φ
being “close” to doubly transitive, which is borrowed from [1].

7

3.1 Lifting

Definition 3.1. Let Φ act on D and let C ⊆ {D → R}. The m-dimensional Φ-lift of C, denoted
LiftmΦ (C), is the set

LiftmΦ (C) , {f : Dm → R | f |σ ∈ C for all σ ∈ Φm}.

We say C ⊆ {D → R} is Φ-invariant if whenever f ∈ C and σ ∈ Φ we also have f ◦ σ ∈ C.
Notice that Definition 3.1 does not require that C be Φ-invariant, or even that Φ be a group! Indeed,
Φ-invariance only ensures us that

Lift1Φ(C) = C

and if in addition is a group, then the lift operation composes:

LiftmΦn(LiftnΦ(C)) = Liftmn
Φ (C)

where Φn acts on Dm componentwise, i.e. if ϕ = (ϕ1, . . . ϕm) ∈ Φm and x = (x1, . . . , xm) ∈ Dm,
then ϕ(x) = (ϕ1(x1), . . . , ϕn(xn)).

The affine lifting found in [5] is (almost) an example of our notion of lifting. Take D = R = Fq

and Φ to be the group of affine permutations on D, i.e. maps of the form x 7→ ax + b for a ∈ F
∗
q,

b ∈ Fq. Then LiftmΦ (C) consists of all f : Fm
q → Fq such that f |L ∈ C for all lines L that are not axis-

parallel. The affine-lifted codes in [5] consider every line, including the axis-parallel ones. Though
we could have defined Φ-lifting to properly generalize affine-lifting, we chose our definition because
it is cleaner to state, makes proofs cleaner, and makes negligible difference in the parameters we
care about. We point out that one limitation of our definition is that we can only lift a domain D
to a direct product Dm, whereas the affine lifting of [5] allows lifting from F

m
q to F

n
q for any m ≤ n.

Though any code can be lifted, our constructions in the paper use linear codes as the base
code. A code C ⊆ {D → R} is linear if R = F is a field and C is a F-vector space. To argue that
the lifted code is large, we argue that it has large dimension by showing it contains many linearly
independent codewords. To do so, we need the following fact, which is straightforward to verify.

Proposition 3.2. If C is linear over F, then so is LiftmΦ (C).

3.2 Double transitivity

Now we define the notions of “closeness” to double transitivity that we will work with. There are
two such notions, taken from [1].

Definition 3.3. A set Φ acting on a set D is doubly transitive if it is transitive on pairs in Φ, i.e.
for every x1 6= x2 ∈ D and y1 6= y2 ∈ D, there exists σ ∈ Φ such that σ(x1) = y1 and σ(x2) = y2.

Definition 3.4 ([1]). A set Φ acting on a set D is (ǫ, α)-doubly transitive if, for every x1, x2 ∈ D,
for at least 1 − ǫ fraction of points x ∈ D, the random variable σ(x) is uniformly distributed on
1− α fraction of D, where σ is chosen uniformly from the set {σ ∈ Φ | σ(x1) = x2} = Φ(x1,x2).

When Φ is a group acting transitively on D, double transitivity is equivalent to
(

1
|D| , 0

)
-double

transitivity (see [1, Lemmas 6.8, 6.9]). Indeed, given x1, x2 ∈ D, for every point x 6= x1, the random
variable σ(x) is uniformly distributed on D, when σ is drawn from those mapping σ(x1) = x2.
However, σ(x1) itself will always equal x2.

8

Example 3.5. Let D = Fq and Φ = {x 7→ ax + b | a ∈ F
∗
q, b ∈ Fq}. Then Φ is (1q , 0)-double

transitive. This follows from the fact that Φ is doubly transitive on D. Another way to see this
is to note that, given x1, x2 ∈ D, σ(x1) = x2 implies σ(x) = a(x − x1) + x2 for some a ∈ F

∗
q.

Therefore, for every x 6= x1 and every y ∈ Fq, there exists a unique σ such that σ(x) = y, namely
the one with a = (y − x2)(x− x1)

−1.

The second notion of “closeness” to double transitive involves distributions that are statistically
close to uniform. The precise definition is as follows.

Definition 3.6. Let p1, p2 be two distributions on D, i.e.
∑

x∈D p1(x) =
∑

x∈D p2(x) = 1 and
p1(x), p2(x) ≥ 0 for all x ∈ D. The distance between p1 and p2 is

‖p1 − p2‖ , max
A⊆D

∣∣∣∣∣
∑

x∈A

p1(x)−
∑

x∈A

p2(x)

∣∣∣∣∣ .

Definition 3.7 ([1]). A set Φ acting on a setD is (α, ǫ)-close to c-steps uniform if, for every x1, x2 ∈
D, for at least 1− ǫ fraction of points x ∈ D, if one uniformly randomly chooses w1, . . . , wc−1 ∈ D
and σ1, . . . , σc ∈ Φ such that σ1(x1) = x2 and σi(wi−1) = σi−1(wi−1) for 2 ≤ i ≤ c, then the random
variable σc(x) is α-close to uniformly distributed on D.

The motivation behind Definition 3.7 is the use of fractal correcting in [1]. Intuitively, one may
think of f |σ as f restricted to some curve in Dm. For simplicity assume m = 2. To correct the
received word f at a particular point x, the usual approach is to pick a random curve passing through
x and correct the shorter word f restricted to the curve. Parametrize the curve by (x, σ(x)). Then
the condition that the curve passes through x = (x1, x2) is equivalent to σ(x1) = x2. If the curve
samples D uniformly, then with high probability the curve does not contain too many corrupted
points. If Φ is not doubly transitive, however, then random curves may not sample D2 uniformly.
The intuition behind fractal correcting is to first pick a random curve σ1 passing through x (i.e.
σ1(x1) = x2), then pick a random point (w1, σ1(w1)) sitting on the point, then pick another random
curve σ2 passing through (w1, σ1(w1)) (i.e. σ2(w1) = σ1(w1)) and so on. After c steps, the cth
curve σc will sample the space nearly uniformly. We elaborate on this in Sections 4 and 5.

4 Distance of lifted codes

In this section we show that if C is a linear code with constant positive distance, and the set Φ acting
on the domain D is nearly doubly transitive, then LiftmΦ (C) has constant positive distance. Our
lower bound on the distance of LiftmΦ (C) degrades as m grows, but for our purposes m is constant,
so the distance of the lift is constant as well. We emphasize that the results in this section apply
to any code C, even non-linear codes.

We begin by lower bounding the distance of the lift when the set is close to doubly transitive,
in the sense of Definition 3.4, i.e. when Φ is (ǫ, α)-double transitive.

The following lemma will be used in proving both Theorems 4.2 and 5.1.

Lemma 4.1. Let Φ acting on D be (ǫ, α)-double transitive. Let m ≥ 1 and let f, g ∈ {Dm → R}.
Fix x ∈ Dm. Then

Eσ∈Φx [δ(f |σ , g|σ)] ≤ ǫ+
δ(f, g)

(1− α)m−1
.

9

Proof. Let D′ ⊆ D be the set of z ∈ D such that σ(z) is uniform over 1− α fraction of D, when σ
is chosen uniformly from Φx, as in Definition 3.4. Note that |D′| ≥ (1− ǫ)|D|. We have

Eσ∈ΦxEz∈D[1f |σ(z)6=g|σ(z)] = Ez∈DEσ∈Φx [1f |σ(z)6=g|σ(z)]

= Ez /∈D′Eσ∈Φx [1f |σ(z)6=g|σ(z)] + Ez∈D′Eσ∈Φx1f |σ(z)6=g|σ(z)]

≤ ǫ+ Ez∈D′Eσ∈Φx [1f |σ(z)6=g|σ(z)]

≤ ǫ+
δ(f, g)

(1− α)m−1

where the final inequality follows from the fact that the last m− 1 coordinates of σ(z) are uniform
over (1 − α)m−1 fraction of Dm−1 and in the worst case all the disparate points of f and g all lie
in this subset.

Theorem 4.2. Let C ⊆ {D → R} be a code with distance δ, and Φ acting on D is (ǫ, α)-doubly
transitive. Then δ(LiftmΦ (C)) ≥ (1− α)m−1(δ − ǫ).

Proof. Let f, g ∈ LiftmΦ (C) be distinct and fix x ∈ Dm such that f(x) 6= g(x). By Lemma 4.1,

Eσ∈Φx [δ(f |σ , g|σ)] ≤ ǫ+
δ(f, g)

(1− α)m−1
.

Therefore, there exists σ ∈ Φx such that δ(f |σ , g|σ) ≤ ǫ + δ(f,g)
(1−α)m−1 . But f |σ(x1) = f(x) 6=

g(x) = g|σ(x1), so f |σ and g|σ are distinct codewords of C and hence δ ≤ ǫ + δ(f,g)
(1−α)m−1 , i.e.

δ(f, g) ≥ (1− α)m−1(δ − ǫ).

Next we prove a similar result when Φ is close to doubly transitive in the sense of Definition 3.7,
i.e. is to (α, ǫ)-close to c-steps uniform. First, some straightforward but useful facts.

Lemma 4.3. If X and Y are independent and X is α-close to uniform over S and Y is β-close
to uniform over T , then (X,Y) is α+ β-uniform over S × T .

Corollary 4.4. If Xi ∈ D is α-close to uniform for each i ∈ [m] and are independent, then
(X1, . . . ,Xm) ∈ Dm is mα-close to uniform.

The following lemma will be used in proving both Theorems 4.6 and 5.3.

Lemma 4.5. Let Φ acting on D be (α, ǫ)-close to c-steps uniform. Let m ≥ 1 and let f, g ∈ {Dm →
R}. Fix x ∈ Dm. Then

Eσ1∈ΦxEw1∈DEσ2∈Φσ1(w1)
· · ·Eσc∈Φσc−1(wc−1)

[δ(f |σc , g|σc)] ≤ δ(f, g) + ǫ+mα.

Proof. Let D′ ⊆ D be the set of z ∈ D such that σc(z) is α-close to uniform, as in Definition 3.7.
Note that |D′| ≥ (1− ǫ)|D|. Then

Eσ1∈ΦxEw1∈DEσ2∈Φσ1(w1)
· · ·Eσc∈Φσc−1(wc−1)

Ez∈D

[
1f |σc(z)6=g|σc(z)

]

= Ez∈DEσ1∈ΦxEw1∈DEσ2∈Φσ1(w1)
· · ·Eσc∈Φσc−1(wc−1)

[
1f |σc(z)6=g|σc(z)

]

≤ ǫ+ Ez∈D′Eσ1∈ΦxEw1∈DEσ2∈Φσ1(w1)
· · ·Eσc∈Φσc−1(wc−1)

[
1f |σc(z)6=g|σc(z)

]

≤ ǫ+ δ(f, g) +mα.

10

Theorem 4.6. Let C be a code with distance δ, and Φ is (α, ǫ)-close to c-steps uniform. Then
δ(LiftmΦ (C)) ≥ δc −mα− ǫ.

Proof. Let f, g ∈ LiftmΦ (C) be distinct and let τ = δ(f, g). Fix x ∈ D such that f(x) 6= g(x). We
claim that, for each i ∈ [c], there exists wi−1 ∈ D and σi ∈ Φσi−1(wi−1) such that

0 < Ewi∈DEσi+1∈Φσi(wi)
· · ·Eσc∈Φσc−1(wc−1)

Ez∈D

[
1f |σc(z)6=g|σc(z)

]
≤
τ +mα+ ǫ

δi−1
.

We prove the claim by induction. The base case i = 1 follows by taking σ0 ∈ Φx, w0 = x1, and
noting that, by Lemma 4.5, since

Eσ1∈ΦxEw1∈DEσ2∈Φσ1(w1)
· · ·Eσc∈Φσc−1(wc−1)

Ez∈D

[
1f |σc(z)6=g|σc(z)

]
≤ τ +mα+ ǫ,

there exists σ1 ∈ Φx such that

Ew1∈DEσ2∈Φσ1(w1)
· · ·Eσc∈Φσc−1(wc−1)

Ez∈D

[
1f |σc(z)6=g|σc(z)

]
≤ τ +mα+ ǫ.

Moreover, this expectation is positive because f(x) 6= g(x). Now suppose we have proved the i− 1
case. The restrictions f |σi−1 and g|σi−1 are distinct codewords of C (since they disagree at wi−2)
and hence for at least δ-fraction of wi−1 ∈ D we have f(σi−1(wi−1)) 6= g(σi−1(wi−1)). Restricting
to these wi−1, we get

0 < δ · Eσi∈Φσi−1(wi−1)
Ewi∈DEσi+1∈Φσi(wi)

· · ·Eσc∈Φσc−1(wc−1)
Ez∈D

[
1f |σc(z)6=g|σc(z)

]
≤
τ +mα+ ǫ

δi−2

and the claim thus follows.
From the i = c case of the claim, it follows that there exists σc ∈ Φ such that

0 < Ez∈D

[
1f |σc(z)6=g|σc(z)

]
≤
τ +mα+ ǫ

δc−1
.

Thus f |σ and g|σ are distinct codewords of C, so we have δ ≤ τ+mα+ǫ
δc−1 .

5 Correction algorithms

In this section we describe how to locally correct a lifted code, given a decoding algorithm for the
base code. We present two correcting methods. The first is one-shot correcting, which abstracts the
local correcting algorithms for Reed-Muller codes and the affine-lifted Reed-Solomon codes of [5],
and is also used for correcting degree-lifted AG codes in [1]. The idea is to pick a random curve
passing through the point which we would like to correct, view the restriction of the received word
to the curve as a received word that should be close to a codeword of the base code, and then
use the base code decoder to correct the point. The second method is fractal correcting, which
was introduced by Ben-Sasson et al [1]. The idea is to recursively perform one-shot correcting. To
correct a point, pick a random curve passing through it. However, now recursively correct each
point on the curve. If Φ is close to c-steps uniform, then fractal correcting with recursion depth
c should succeed with high probability. The analysis of the fractal correction algorithm is found
in [1], but we include a proof here for completeness. We emphasize that, as in Section 4, the results
of this section apply to arbitrary codes C.

11

5.1 One-shot correcting

The one-shot correcting algorithm A works as follows. To compute Af (x):

1. Pick σ ∈ Φx uniformly at random.

2. Use the decoding algorithm for C to correct f |σ to some function g ∈ C.

3. Output g(x1).

Theorem 5.1. Let C ⊆ {D → R} be a code with distance δ and suppose Φ is (ǫ, α)-doubly transitive.
Let L = LiftmΦ (C). Suppose

δ(f,L) < (1− α)m−1 ·min{δ/6 − ǫ, (δ − ǫ)/2}.

Then there exists a unique f̂ ∈ L such that δ(f, f̂) ≤ δ(f,L) and for any x ∈ Dm we have
Af (x) = f̂(x) with probability at least 2/3 over the randomness of A.

Proof. By Theorem 4.2, δ(L) ≥ (1−α)m−1(δ−ǫ). Since δ(f, f̂) < δ(L)/2, f̂ is unique. Fix x ∈ Dm.
By Lemma 4.1,

Eσ∈Φx [δ(f |σ , f̂ |σ)] ≤ ǫ+
δ(f, f̂)

(1− α)m−1
≤ ǫ+

δ(f,L)

(1− α)m−1
.

By Markov’s inequality, with probability at least 2/3, δ(f |σ, f̂ |σ) ≤ 3
(
ǫ+ δ(f,L)

(1−α)m−1

)
< δ/2. Step 2

of the algorithm finds some g ∈ C such that δ(f |σ , g) < δ/2. But both g, f̂ |σ ∈ C and δ(g, f̂ |σ) < δ,
so in fact g = f̂ |σ. Therefore, A

f (x) = g(x1) = f̂ |σ(x1) = f̂(x).

Corollary 5.2. If C ⊆ {D → R} has distance δ and Φ acting on D is (ǫ, α)-doubly transitive, then
LiftmΦ (C) is (q, τ)-locally correctable for q = |D| and τ = O((1 − α)m−1(δ − ǫ)).

5.2 Fractal correcting

The c-step fractal correction algorithm Ac works as follows. To compute Af
c (x):

1. If c = 1, output Af (x).

2. Otherwise, c > 1. Pick σ ∈ Φx uniformly at random.

3. Compute f ′ , Af
c−1|σ . That is, for each z ∈ D let f ′(z) = Af

c−1(σ(z)).

4. Use the decoding algorithm for C to correct f ′ to some function g ∈ C.

5. Output g(x1).

Theorem 5.3. Let C ⊆ {D → R} be a code with distance δ and suppose Φ acting on D is (α, ǫ)-
close to c-steps uniform. Let L = LiftmΦ (C). Suppose

δ(f,L) < min

{
1

3
(δ/2)c − ǫ−mα, (δc − ǫ−mα)/2

}
.

Then there exists a unique f̂ ∈ L such that δ(f, f̂) ≤ δ(f,L) and for any x ∈ Dm we have

Af
c (x) = f̂(x) with probability at least 2/3 over the randomness of A.

12

Proof. By Theorem 4.6, δ(L) ≥ δc − ǫ −mα. Since δ(f, f̂) < δ(L)/2, f̂ is unique. Fix x ∈ Dm.
For i ∈ [c], let pi denote the average probability that the ith bottom-most level of the recursion
fails. Our goal is to show that pc ≤ 1/3. We will show in fact that pi ≤

1
3(δ/2)

c−i for all i ∈ [c].

By Lemma 4.5, the average of δ(f |σc , f̂ |σc) over all σc chosen in the bottom-most level is at most
δ(f,L) + ǫ+mα, so by Markov’s inequality with probability at most 2

δ (δ(f,L) + ǫ+mα) we have

δ(f |σc , f̂ |σc) > δ/2, i.e. p1 ≤
2
δ (δ(f,L) + ǫ+mα) ≤ 1

3(δ/2)
c−1.

Now inductively assume pi ≤
1
3 (δ/2)

c−i. The average value of δ(f |σc−i+1 , f̂ |σc−i+1) is at most

pi. By Markov’s inequality, with probability at most 2
δpi we have δ(f |σc−i , f̂ |σc−i) > δ/2, so pi+1 ≤

2
δpi ≤

1
3 (δ/2)

c−(i+1).

Corollary 5.4. If C ⊆ {D → R} has distance δ for some Φ that is (α, ǫ)-close to c-steps uniform,
where c = O(1), then LiftmΦ (C) is (q, τ)-locally correctable for q = |D|c and τ = O(δc − ǫ−mα).

6 Base codes

In this section we review existing codes, in particular the Reed-Solomon code, the Hermitian code,
and the Hermitian tower code, the latter two which we use in Section 7 to construct new high rate
locally correctable codes over small alphabets.

Algebraic geometry codes. The Reed-Solomon and Hermitian codes are instances of algebraic
geometry codes. Since we can describe our base codes, our lifted codes, and their properties without
using any terminology typically used in the context of AG codes (e.g. the language of algebraic
function fields), we avoid using such terminology and stick to an elementary exposition. In fact,
the only deep results from the theory of algebraic function fields that we use can be stated in
elementary terms. The interested reader is referred to [11] for details on the theory of algebraic
function fields and codes.

6.1 Reed-Solomon code

Let q be a prime power. The Reed-Solomon code RSq[r] ⊆ Fq[x]/(x
q − x) can be defined as

RS[r] , spanFq
{xi | i < r}.

It is a [q, r, q − r + 1]q-code. Note that its alphabet size q = N where N is its block size. One can
identify Fq[x]/(x

q − x) with {Fq → Fq}. Consider the group Φ consisting of all affine permutations
on Fq, i.e. Φ = {x 7→ ax + b | a ∈ F

∗
q, b ∈ Fq}, which acts on Fq. Clearly RSq[r] is Φ-invariant.

Moreover, Φ is doubly transitive (Example 3.5) and |Φ| = q(q − 1), so it is just large enough to be
doubly transitive. In [5], it was shown that LiftmΦ (RSq[(1 − δ)q]) has block length qm, distance at

least δ − 1
q (which also follows from Theorem 4.2), and rate at least 1 − δ

Ω
(

1
mm logm

)

when q is a
power of 2.

6.2 Hermitian code

Let q be a prime power. The Hermitian curve H ⊆ F
2
q2 is the set

H , {(x, y) | N(x) = Tr(y)}

13

where N : Fq2 → Fq is the norm N(x) = x1+q and Tr : Fq2 → Fq is the trace Tr(x) = x + xq.
It can be shown that N is multiplicative and is a surjective group homomorphism from F

∗
q2 → F

∗
q

(and hence a (q + 1)-to-1 map on F
∗
q2) and that Tr is additive and is a surjective Fq-linear map

from Fq2 → Fq (and hence a q-to-1 map on Fq2). It follows that |H| = q3, since for every x ∈ Fq2

there are exactly q values of y ∈ Fq2 such that Tr(y) = N(x).

The Hermitian code Hermq[r] ⊆ Fq2 [x]/(x
q2 − x, yq

2
− y,N(x)− Tr(y)) is defined as

Hermq[r] , spanFq2
{xiyj | qi+ (q + 1)j < r, j < q}.

It follows from the Riemann-Roch theorem that Hermq[r] is a [q3, r − g, q3 − r + 1]q2 -code, where

g = q(q−1)
2 is the genus of the curve H (one can also deduce this by counting the number of

“degrees” d which cannot be obtained by a sum qi+ (q + 1)j). Though the Hermitian code has a
worse rate-distance trade-off than the Reed-Solomon code, its alphabet size is significantly smaller
(q2 compared to a block length of q3).

Consider the group Φ of maps (x, y) 7→ (ax+ b, aq+1y + abqx+ c) for a ∈ F
∗
q2 , (b, c) ∈ H. One

can verify that this a group of order q3(q2 − 1) acting on H and moreover Hermq[r] is Φ-invariant.
For interesting values of r, the group Φ is the largest group under which the Hermitian code is
invariant [12]. The group Φ is not doubly transitive, but it is shown in [1] that it is almost doubly
transitive, in both the senses of Definitions 3.4 and 3.7. We recall the precise statements.

Proposition 6.1 ([1, Theorem 6.3]). Let Φ be as above. Then Φ is (ǫ, α)-doubly transitive for
ǫ = 1

q2
and α = 1− 1

q .

Proposition 6.2 ([1, Theorem 7.3]). Let Φ be as above. Then Φ is (α, ǫ)-close to 2-steps uniform
for α = ǫ = 1

q .

In fact, we show in Theorem 6.6 (by letting n = 2) that we can take ǫ = 0 in Proposition 6.2.
Applying Theorem 4.6 and Corollary 5.4 to the above facts, we immediately get the following.

Theorem 6.3. Let Φ be the group of automorphisms on H of the form (x, y) 7→ (ax + b, aq+1y +
abqx+ c). Let r = (1 − δ)q3, so that Hermq[r] has distance δ. Then LiftmΦ (Hermq[r]) has distance
at least δ2 − m

q and is (q6, O(δ2 − m
q))-locally correctable.

Note that, though the Φ-lift of Hermq[(1− δ)q3] has distance roughly δ2 which is less than that
of the degree-lift, whose distance is δ (see [1]), its error correcting capability is the same.

6.3 Hermitian tower

The Hermitian tower is an extension of the Hermitian code and was discussed in [10], and also
used for list decoding constructions in [6]. Let q be a prime power. The nth Hermitian tower curve
Hn ⊆ F

n
q2 is the set

Hn , {(x1, . . . , xn) | N(xi) = Tr(xi+1) ∀i ∈ [n− 1]}

where the norm N and the trace Tr are as defined above. It is straightforward to verify that
|Hn| = qn+1.

14

Let In ⊆ Fq2 [x1, . . . , xn] be the ideal generated by xq
2

i − xi for all i ∈ [n], and let Jn ⊆
Fq2 [x1, . . . , xn] be the ideal generated by N(xi) − Tr(xi+1) for all i ∈ [n − 1]. The nth Hermitian
tower code Hermn

q [r] ⊆ Fq2 [x1, . . . , xn]/(In + Jn) is defined as

Hermn
q [r] , spanFq2



x

i1
1 · · · xinn

∣∣∣∣∣∣

n∑

j=1

qn−j(q + 1)j−1ij < r, xi < q ∀i ≥ 2



 .

The genus of the curve is at most nqn, so Hermn
q [r] is a [qn+1, r− nqn, qn+1 − r]q2-code. Though it

has even worse rate-distance trade-off than the base Hermitian code, its alphabet size is significantly
smaller for a given block length.

6.3.1 Constructing endomorphisms

In this section we will construct a set Φn acting on Hn which will be close to doubly transitive.
Unlike in the cases of the previous codes, Φn is not a group.

For a ∈ Fq2 , we define “scalings” σa : Hn → Hn as follows. For x = (x1, . . . , xn) ∈ Hn, define

(σa)i(x) = a(q+1)i−1
xi, and define σa(x) = ((σa)1(x), . . . , (σa)n(x)). One can verify that the image

of σa is indeed contained in Hn. The identity is σ1 and also σ−1
a = σa−1 .

For b = (b1, . . . , bn) ∈ Hn, we define “translations” τb : Hn → Hn as follows. We will define
(τb)i for each i ∈ [n] and then define τb(x) = ((τb)1(x), . . . , (τb)n(x)). For each i ∈ [n], define
(τb)i(x) = xi + pi + bi for a specific pi, which is a polynomial in x1, . . . , xi−1, b1, . . . , bi−1.

Definition 6.4. The q-weight of a number M is the sum of its digits in base q. The q-weight
of a monomial xi11 · · · xinn is the sum of the q-weights of the exponents. For a polynomial p ∈
F[x1, . . . , xn, y1, . . .], the (x, q)-weight of p is the maximum over all monomials of p of the q-weights
of the monomial, where only the xi are considered.

We will define pi such that it has (x, q)-weight i− 1 for i ≥ 2. Define p1 = 0. Assume i ≥ 2 and
pi−1 (and hence (τb)i−1) is defined. Expanding N((τb)i−1(x)), we get

N(xi−1 + pi−1 + bi−1) = N(xi−1) +N(pi−1) + Tr(pqi−1xi−1 + bqi−1pi−1 + bqi−1xi−1) +N(bi−1)

= Tr(xi) +N(pi−1) + Tr(pqi−1xi−1 + bqi−1pi−1 + bqi−1xi−1) + Tr(bi).

Write pi−1 in the form

pi−1 =
∑

ij

αijxij

(by arbitrarily singling out a variable from each monomial; one can check by induction that every
monomial has some x variable) where ij ≤ i−1 and the αij are polynomials in x1, . . . , xi−1, b1, . . . , bi−1

with (x, q)-weight at most i− 3. Then

N(pi−1) =
∑

ij

N(αij)N(xij) + Tr(p′)

for some polynomial p′ in x1, . . . , xi−1, b1, . . . , bi−1 of (x, q)-weight at most i − 2. Also note that
N(αij) has (x, q)-weight at most i − 2. Using the fact that N(xij) = Tr(xij+1), the fact that the

15

image of N is contained in Fq, and the fact that Tr is Fq-linear, we have

N(pi−1) = Tr



∑

ij

N(αij)xij+1 + p′


 .

Define
pi ,

∑

ij

N(αij)xij+1 + p′ + pqi−1xi−1 + bqi−1pi−1 + bqi−1xi−1

which has (x, q)-weight at most i − 1 (since raising to the qth power does not increase q-weight)
and so

N(xi−1 + pi−1 + bi−1) = Tr(xi + pi + bi).

This completes the definition of (τb)i for each i, and hence the definition of τb. By construction,
the image of τb is contained in Hn. The identity translation is τ0 (one can check that substitution
b = 0 in pi yields the zero polynomial).

6.3.2 Closeness to double transitivity

For the rest of this section, we will focus on Φn, the set of maps ϕa,b for (a, b) ∈ F
∗
q2 ×Hn, where

ϕa,b = τb ◦ σa, where σa and τb are as defined in Section 6.3.1. In particular, we show that Φn is
close to 2-steps uniform when q is a power of 2.

Lemma 6.5. Let X be a random variable with values in S of size |S| = q2, and let E be an event
of probability 1/q. If X|E is uniform, then X is 1

q -close to uniform.

Proof. For x ∈ S, let p(x) = Pr[X = x], pE(x) = Pr[X = x | E], and pE(x) = Pr[X = x | E], so
that p(x) = pE(x)/q + pE(x)(1 − 1/q). Then, for any A ⊆ S,

∑

x∈A

p(x)−
|A|

q2
=

1

q

(
∑

x∈A

pE(x)−
|A|

q2

)
+

(
1−

1

q

)(∑

x∈A

pE(x)−
|A|

q2

)

=
1

q

(
∑

x∈A

pE(x)−
|A|

q2

)

which is bounded in absolute value by 1
q .

Theorem 6.6. Assume q is a power of 2. Then Φn is (1q , 0)-close to 2-steps uniform.

Proof. Fix y, z ∈ Hn. We are randomly choosing automorphisms ϕ,ψ ∈ Φn and w ∈ Hn such that
ϕ(x) = y and ψ(w) = ϕ(w). Write

ϕi(x) = a(q+1)i−1
xi + pi(x, a, b) + bi

and
ψi(x) = c(q+1)i−1

xi + pi(x, c, d) + di.

where pi(x, a, b) does not involve xj, bj for j ≥ i. The condition ϕ(y) = z forces

zi = ϕi(y) = a(q+1)i−1
yi + pi(y, a, b) + bi

16

which implies
bi = zi − a(q+1)i−1

yi − pi(y, a, b)

and hence
ϕi(x) = a(q+1)i−1

(xi − yi) + pi(x, a, b) − pi(y, a, b) + zi

The condition ψ(w) = ϕ(w) forces

c(q+1)i−1
wi + pi(w, c, d) + di = a(q+1)i−1

(w − yi) + pi(w, a, b) − pi(y, a, b) + zi

which implies

di = −c(q+1)i−1
wi + a(q+1)i−1

(w − yi)− pi(w, c, d) + pi(w, a, b) − pi(y, a, b) + zi

and hence

ψi(x) = c(q+1)i−1
(xi − wi) + a(q+1)i−1

(wi − yi)− pi(w, c, d) + pi(w, a, b) − pi(y, a, b) + zi.

Thus we want to show that, for all x ∈ Hn, if we randomly choose a, c, w then ψ(x) is 1
q -close

to uniform on Hn. Fix u ∈ Hn. Let E be the event that aq+1 = cq+1, which happens with
probability 1

q . Observe that the coefficient of wi in σxi(x) is a(q+1)i−1
− c(q+1)i−1

= a2
i−2(q+1) −

c2
i−2(q+1) = (aq+1 − cq+1)2

i−2
for i ≥ 2, since q is a power of 2. If E holds, then this coefficient

is nonzero (since aq+1 6= cq+1 also implies a 6= c), and so we can solve ψi(x) = ui for wi in terms
of a, c, y, z, w1, . . . , wi−1, and thus there exists a unique w ∈ Hn such that ψ(x) = u, i.e. ψ(x) is
uniform on Hn conditioned on E. By Lemma 6.5, ψ(x) is 1

q -close to uniform on Hn.

7 Explicit Constructions

In this section, we describe explicit constructions of high rate locally correctable codes. In Sec-
tion 7.1 we construct codes by lifting the Hermitian code (see Section 6.2 for the definition of the
base code) and in Section 7.2 we construct codes by lifting the Hermitian tower (see Section 6.3 for
the definition of the base code).

7.1 Lifting the Hermitian code

In this section we prove the following.

Theorem 7.1. Given ǫ, α,N0 > 0, for infinitely many N ≥ N0 there exists a code of length N ,
rate 1− α, alphabet size N ǫ/3 and is (N ǫ, αO((8/ǫ)(2/ǫ) log(1/ǫ)))-locally correctable.

We prove this using lifted Hermitian codes. We defer the proof to the end of the section.
Let m ≥ 1, let q = 2ℓ > m, let c > 0 such that ℓ − c > ⌈log2m⌉, and let r = (1 − 2−c)q3.

Let Φ be the group of automorphisms on the Hermitian curve H ⊆ F
2
q2 of the form (x, y) 7→

(ax+ b, aq+1y+ abqx+ c), and let L = LiftmΦ (Hermq[r]). By Theorem 6.3, L has distance 2−2c − m
q

and is O(q6, O(2−2c − m
q))-locally correctable. Its length is q3m and alphabet size is q2. The only

missing parameter is the rate, to which we devote the rest of this section.
After lifting, the domain of our code is

Hm = {(x1, y1, . . . , xm, ym) ∈ F
m
q2 | N(xk) = Tr(yk) ∀k ∈ [m]}.

17

A monomial on Hm is a monomial of the form
∏m

k=1 x
ik
k y

jk
k with ik < q2 and jk < q for all k ∈ [m].

The reason for these conditions is to ensure the monomials define distinct functions on Hm. In
fact, one can show the monomials on Hm form a basis of {Hm → Fq2} as a Fq2-vector space.

Definition 7.2. Let p be a prime. Let a, b ∈ N and consider their base p representations a =∑
i≥0 aip

i and b =
∑

i≥0 bip
i where each ai, bi ∈ [0, p − 1]. Then a is the in the p-shadow of b,

denoted a ≤p b, if ai ≤ bi for all i. Moreover, for a, b, c ∈ N, we say (a, b) ≤p c if ai + bi ≤ ci for
all i.

The following generalized theorem of Lucas will be crucial for our analysis later. For a+ b ≤ c,
we let

(a
b,c

)
denote the standard trinomial coefficient a!

b!c!(a−b)! which is the coefficient of xbyc in the

expansion of (x+ y + 1)a. Note that the standard binomial coefficient is
(
a
b

)
=
(
a
b,0

)

Theorem 7.3 ((Generalized) Lucas’ theorem). Let a, b, c ∈ N with p-ary representations given by
ai, bi, ci. Then (

a

b, c

)
≡
∏

i≥0

(
ai
bi, ci

)
mod p.

In particular,
(a
b,c

)
mod p is nonzero only if (b, c) ≤p a.

Our strategy for lower bounding dimFq2
L is to lower bound the number of monomials on Hm

in L. For a monomial f(x1, y1, . . . , xm, ym) =
∏m

k=1 x
ik
k y

jk
k and a map σ ∈ Φm where σk(x, y) =

(akx+ bk, a
q+1
k y + akb

q
kx+ ck), we have

f(σ(x, y)) =
m∏

k=1

(akx+ bk)
ik
(
aq+1
k y + bqkx+ ck

)jk

=
m∏

k=1


 ∑

dk≤pik

(· · ·)xdk




 ∑

(d′k ,ek)≤pjk

(· · ·)xd
′

kyek




=
∑

∀k dk≤pik,(d
′

k,ek)≤pjk

(· · ·)x
∑m

k=1 dk+d′ky
∑m

k=1 ek

where the (· · ·) indicate constants which do not matter. Thus, the monomial f is in L if the
following holds: for all k ∈ [m], for all dk ≤p ik and all (d′k, ek) ≤p jk, after reducing the monomial

x
∑m

k=1 dk+d′ky
∑m

k=1 ek modulo the ideal I , (xq
2
− x, yq

2
− y, xq+1 − yq − y), the resulting sum of

monomials xiyj all satisfy qi+(q+1)j < r. The basis of monomials on H given by xiyj with i < q2

and j < q provides a canonical way to reduce monomials modulo I. To reduce xiyj , we perform the
following steps. While i ≥ q2 or j ≥ q, if i ≥ q2, reduce xiyj to xi−q2+1yj ; if j ≥ q, reduce xiyj to
xi+q+1yj−q − xiyj−q+1. At each step, either the degree of x is strictly decreasing or the degree of y
is strictly decreasing, and the degree of y never increases, so this process will eventually terminate.

Lemma 7.4. For a ∈ N, let ai denote the ith bit in the binary representation of a, i.e. a =∑
i≥0 ai2

i. Let b = 2 + ⌈log2m⌉. Let

Good = {(i1, . . . , im, j1, . . . , jm) | ∃s ∈ [2ℓ− c, 2ℓ− b− 1]∀t ∈ [0, b]∀k (ik)s+t = (jk)s+t = 0}.

If (i1, . . . , im, j1, . . . , jm) ∈ Good, then
∏m

k=1 x
ik
k y

jk
k ∈ LiftmΦ (C).

18

Proof. For a ∈ N, the condition a < r = (1−2−c)q3 is equivalent to the condition ∃s′ ∈ [3ℓ−c, 3ℓ−1]
such that as′ = 0. For each k ∈ [m], fix dk ≤p ik and (d′k, ek) ≤p jk. The hypothesis implies
that (dk)s+t = (d′k)s+t = (ek)s+t = 0 for all t ∈ [0, b]. It suffices to show that after reducing
x
∑m

k=1 dk+d′ky
∑m

k=1 ek modulo I into a sum of monomials xiyj with i < q2 and j < q, each of them
satisfies (i)t = (j)t = 0 for some t ∈ [2ℓ− c, 2ℓ − 1], for this would imply

(qi+ (q + 1)j)t+ℓ = (qi)t+ℓ + ((q + 1)j)t+ℓ = (i)t + (j)t = 0

and since t+ ℓ ∈ [3ℓ− c, 3ℓ− 1] this implies the lemma.
Let d =

∑m
k=1 dk + d′k and let e =

∑m
k=1 ek. Consider three cases.

Case 1. d < q2, e < q. In this case, the monomoial xdye does not reduce, so it suffices to
show that (d)s+b = (e)s+b = 0. The only way one of these is 1 is by carrying from the lower
order bits, so we may ignore the higher order bits and assume without loss of generality that
(dk)s′ = (d′k)s′ = (ek)s′ = 0 for s′ ≥ s+ b. Then dk, d

′
k, ek < 2s, so

∑m
k=1 dk + d′k < (m2s+1) < 2s+b

and thus (d)s+b = 0 and similarly
∑m

k=1 ek < m2s < 2s+b so (e)s+b = 0.

Case 2. d ≥ q2, e < q. In this case, the monomial xdye reduces to xd mod (q2−1)ye. By the
previous case, (e)s+b = 0, so it only remains to show (d mod (q2−1))s+b = 0. Doubling d cyclically
permutes the bits of d mod (q2−1). In particular, (2d mod (q2−1))i = (d mod (q2−1))i−1 mod 3ℓ−1.
Then (23ℓ−1−s−bd mod (q2 − 1))i = (d mod (q2 − 1))i+s+b+1−3ℓ. Therefore, it suffices to show that
(23ℓ−1−s−bd mod (q2 − 1))3ℓ−1 = 0. Since the bits of order [s, s + b] of dk, d

′
k are zero, the bits

of order [3ℓ − 1 − b, 3ℓ − 1] of 23ℓ−1−s−b times dk, d
′
k, ek are zero, hence 23ℓ−1−s−bdk mod (q2 −

1) < 23ℓ−1−b and similarly for d′k. Therefore
∑m

k=1 2
3ℓ−1−s−b(dk + d′k) mod (q2 − 1) < 23ℓ−1 so

(23ℓ−1−s−bd mod (q2 − 1))3ℓ−1 = 0, and in fact (23ℓ−1−s−bd mod (q2 − 1))3ℓ−2 = 0, so we can
conclude that (d mod (q2 − 1))3ℓ−1 = (d mod (q2 − 1))3ℓ−2 = 0, which we need in Case 3.

Case 3. e ≥ q. We induct on the (q, q + 1)-weighted degree qd + (q + 1)e. In this case, after
reducing the y-degree by one step, the monomial reduces to xd+q+1ye−q − xdye−q+1. The latter
monomial has strictly smaller (q, q+1)-weighted degree, so by induction it is in L. Thus it suffices to
deal with xd+q+1ye−q. Repeating this reduction and ignoring the monomials with strictly smaller
(q, q + 1)-weighted degree, after at most m reductions (since ek < q and so e < mq) we have
xd+u(q+1)ye mod q for some u ≤ m, which further reduces to xd+u(q+1) mod (q2−1)ye mod q. This is
almost Case 2, except for the additional u(q + 1) in the exponent of x. By Case 2, (d mod (q2 −
1))s+b−1 = (d mod (q2 − 1))s+b = 0 and (e mod q)s+b = 0. Note that since ⌈log2m⌉ < ℓ − c,
u(q+1) ≤ m(q+1) < 22ℓ−c+2ℓ−c < 2s+1. Write d mod (q2−1) as d′+2s+b+1d′′ where d′ < 2s+b−1.
Then d+u(q+1) mod (q2−1) = d′+u(q+1)+2s+b+1d′′ < 2s+b−1+2s+1+2s+b+1d′′ < 2s+b+2s+b+1d′′

so (d+ u(q + 1) mod (q2 − 1))s+b = 0.

Lemma 7.5. Let Good be defined as in Lemma 7.4. Let b = 2 + ⌈log2m⌉. Then

|Good| ≥ q3m(1− (1− 2−mb)c/b).

Proof. We show the equivalent assertion that, by picking i1, . . . , im < q2 and j1, . . . , jm < q uni-
formly at random, the probability that (i1, . . . , im, j1, . . . , jm) ∈ Good is 1− (1− 2−mb)c/b) at least.
Note that each jk < q so we only need to consider the ik. Partition [3ℓ− c, 3ℓ− 1] into c/b intervals

19

each of length b. Let Ei be the event that (ik)t = 0 for all k ∈ [m] and all t in the ith interval. By
Lemma 7.4, if

∨
iEi then (i1, . . . , im, j1, . . . , jm) ∈ Good, so the probability of landing in Good is

at least

Pr

[
∨

i

Ei

]
= 1− Pr

[
∧

i

Ei

]
= 1− (1− 2−mb)c/b.

Putting together Lemmas 7.4 and 7.5 with the discussion above, we immediately obtain the
following.

Theorem 7.6. Let m ≥ 1, let c > 0 and let δ = 2−c. Let q be a power of 2 such that δq > m, and
let r = (1 − δ)q3. Let Φ be the group of automorphisms on the Hermitian curve H ⊆ F

2
q2 of the

form (x, y) 7→ (ax+ b, aq+1y + abqx+ c) and let L = LiftmΦ (Hermq[r]). Let b = 2 + ⌈log2m⌉. Then

the rate of L is at least 1− (1− 2−mb)c/b ≥ 1− e−c/(b2mb).

Putting everything together, we now prove Theorem 7.1.

Proof of Theorem 7.1. Fix ǫ, α,N0 > 0. Recall that we want, for infinitely many N ≥ N0, a code
of length N , rate 1− α, alphabet size N ǫ/3, and is (N ǫ,Ω(1))-locally correctable.

Set m = ⌈2/ǫ⌉. Let b = 2+⌈log2m⌉ and set c ≥ b ·2mb ln 1
α . Let δ = 2−c, set q to be a power of 2

such that δq > m and q3m ≥ N0. SetN = q3m and set r = (1−δ)q3. Let L = LiftmΦ (Hermq[r]) where
Φ is the usual automorphism group of the Hermitian curve H ⊆ F

2
q2 . By our choice of parameters

and Theorem 7.6, L has block length q3m = N , rate at least 1 − e−c/b2mb
≥ 1 − α, alphabet size

q2 ≤ N ǫ/3, has query complexity q6 ≤ N ǫ, and can correct up to δ2 = αO((8/ǫ)(2/ǫ) log(1/ǫ)).

Explicitness of code. Although a lifted code is not a priori explicit even if the base code
is, Lemma 7.4 shows that the lifted Hermitian code (more accurately, a subcode with the same
parameter guarantees) is explicit in the following way. Let Good be defined as in Lemma 7.4.
The Fq2-span of monomials in Good have the same rate guarantees as the full lift, its block length
and alphabet size and locality are the same, and certainly its distance is at least as good, since
it is a subcode. Moreover, to encode a message m ∈ F

Good
q2 into a codeword Enc(m) ∈ F

Hm

q2 , first
compute all the monomials in Good, which can be done by iterating over every monomial on Hm

and checking if it is in Good, which can be done in polynomial time. Then interpret the symbols of
m as coefficients of the monomials in Good and let Enc(m) be the evaluations of m on every point
of Hm.

7.2 Lifting the Hermitian tower

Let m,n ≥ 1, let q = 2ℓ, let κ > 0, and let r = (1 − 2−κ)qn+1, so that Hermn
q [r] has distance 2−c.

Let Φ = Φn be the set of maps defined in Sections 6.3.1 and 6.3.2, and let L = LiftmΦ (Hermn
q [r]). By

Theorems 4.6 and 6.6, L has distance 2−2κ− m
q and is O(q2(n+1), O(2−2κ − m

q))-locally correctable.

Its length is qm(n+1) and alphabet size is q2. The only missing parameter is the rate, to which we
devote the rest of this section.

20

7.2.1 Warm up: lifting from the 3rd level

As a warm up, we estimate dimFq2
L when n = 3. As in Section 7.1, we consider monomials on

Hm
3 , which have the form

m∏

k=1

xakk y
bk
k z

ck
k

where ak < q2, bk, ck < q for all k ∈ [m]. Also as in Section 7.1, we lower bound dimFq2
L by

lower bounding the number of monomials on Hm
3 in L. We consider what happens to a monomial∏m

k=1 x
ak
k y

bk
k z

ck
k when we substitute (xk, yk, zk) 7→ ϕ(k)(x, y, z) for some ϕ = (ϕ(1), . . . , ϕ(m)) ∈ Φm.

Though we may explicitly write out ϕa,b(x, y, z), the constants do not matter, only the monomials
that appear. For instance, though we know that (ϕa,b)1(x, y, z) = ax+ b1, for our purposes it only
matters that it takes the form (· · ·)x+ (· · ·) where the (· · ·) denote constants that do not matter.
Similarly, we have

(ϕa,b)2(x, y, z) = (· · ·)x+ (· · ·)y + (· · ·)

(ϕa,b)3(x, y, z) = (· · ·)x+ (· · ·)y + (· · ·)z + (· · ·)xqy + (· · ·)

so substituting ϕ(k)(x, y, z) for (xk, yk, zk) in
∏m

k=1 x
ak
k y

bk
k z

ck
k , we get

=
m∏

k=1

(
(· · ·)x+ (· · ·)

)ak(
(· · ·)x+ (· · ·)y + (· · ·)

)bk(
(· · ·)x+ (· · ·)y + (· · ·)z + (· · ·)xqy + (· · ·)

)ck

=
m∏

k=1


 ∑

αk≤pak

(· · ·)xαk




 ∑

(α′

k ,βk)≤pbk

(· · ·)xα
′

kyβk




 ∑

(α′′

k ,β
′

k,δk,γk)≤pck

(· · ·)xα
′′

k+qδkyβ
′

k+δkzγk




=
∑

∀k
αk≤pak

(α′

k ,βk)≤pbk
(α′′

k ,β
′

k,δk,γk)≤pck

(· · ·)x
∑m

k=1 αk+α′

k+α′′

k+qδky
∑m

k=1 βk+β′

k+δkz
∑m

k=1 γk .

Thus, the monomial
∏m

k=1 x
ak
k y

bk
k z

ck
k is in L if the following holds: for all k ∈ [m], for all αk ≤p ak,

all (α′
k, βk) ≤p bk, and all (α′′

k, β
′
k, δk, γk) ≤p ck, after reducing the monomial

x
∑m

k=1 αk+α′

k+α′′

k+qδky
∑m

k=1 βk+β′

k+δkz
∑m

k=1 γk

modulo the ideal I , I3 + J3 (defined in Section 6.3), the resulting sum of monomials xaybzc all
satisfy q2a+ q(q+1)b+ (q+1)2c < r. The basis of monomials on H3 given by xaybzc with a < q2,
b, c < q induces a canonical way to reduce monomials modulo I. To reduce xaybzc, perform the
following steps. While a ≥ q2 or b ≥ q or c ≥ q, if a ≥ q2, replace xa with xa−q2+1; if b ≥ q, replace
yq with xq+1 − y; if c ≥ q, replace zq with yq+1 − z. The maximum (q2, q(q +1), (q +1)2)-weighted
degree of monomials is nondecreasing after each step, and moreover the weight is shifted towards
z → y → x, so this process will eventually terminate.

Lemma 7.7. For a ∈ N, let ai denote the ith bit in the binary representation of a, i.e. a =∑
i≥0 ai2

i. Let b = O(1) + ⌈log2m⌉ where the O(1) is a sufficiently large constant. Suppose
ℓ > m+ κ+O(1) for sufficiently large O(1). Define Good3 to be the set

{(a1, . . . , am, b1, . . . , bm, c1, . . . , ck) | ∃s ∈ [2ℓ−κ, 2ℓ− b−1] ∀t ∈ [0, b] ∀k (ak)s+t = (ck)s+t−ℓ = 0}}.

If (a1, . . . , am, b1, . . . , bm, c1, . . . , cm) ∈ Good3, then
∏m

k=1 x
ak
k y

bk
k z

ck
k ∈ L.

21

Proof. Fix αk ≤p ak, (α
′
k, βk) ≤p bk, and (α′′

k, β
′
k, δk, γk) ≤p ck for all k ∈ [m]. Similar to the proof

of Lemma 7.4, it suffices to show that, after reducing

x
∑m

k=1 αk+α′

k+α′′

k+qδky
∑m

k=1 βk+β′

k+δkz
∑m

k=1 γk

modulo I into a sum of monomials xaybzc with a < q2, b, c < q, each of them satisfies (a)s+b =
(b)s+b = (c)s+b = 0. By assumption,

(αk)s+t = (α′
k)s+t = (α′′

k)s+t = (βk)s+t = (β′k)s+t = (δk)s+t = (γk)s+t = 0

for all k ∈ [m] (recall that bk, ck < q). As the details are similar to the proof of Lemma 7.4, we
omit many details from this proof.

Let α =
∑m

k=1 αk + α′
k + α′′

k + qδk, let β =
∑m

k=1 βk + β′k + δk and let γ =
∑m

k=1 γk. If
α < q2, β, γ < q, then xαyβzγ does not need to be reduced, and one can verify that (α)s+b =
(β)s+b = (γ)s+b = 0. If α ≥ q2, then we simply reduce to xα mod (q2−1)yβzγ and as long as
b is sufficiently large, say b = 3 + ⌈log2m⌉ (since α is the sum of 4m numbers). If β ≥ q,
then xαyβzγ reduces by one step to xα + q − 1yβ − qzγ − xαyβ−q+1zγ . By induction on the
(q2, q(q + 1), (q + 1)2)-weighted degree q2α + q(q + 1)β + (q + 1)2γ, it suffices to consider the
monomial xα+q+1yβ−qzγ . Repeating this reduction, we are left with xα+u(q+1)yβ mod qzγ for u ≤ 3m,
since the β < 3mq, and by a similar argument to Case 3 in the proof of Lemma 7.4, we have
(α+ u(q+1) mod (q2 − 1))s+b = (β mod q)s+b = (γ)s+b = 0. Finally, if γ ≥ q, we reduce as we did
for β ≥ q, and by a similar argument we are done, by increasing b by a sufficiently large constant
independent of q and m.

Lemma 7.8. Let b and Good3 be defined as in Lemma 7.7. Then

|Good3| ≥ q4m(1− (1− 2−2mb)κ/b).

Proof. Same idea as the proof of Lemma 7.5.

Putting together Lemmas 7.7 and 7.8, we obtain the following.

Theorem 7.9. Let m ≥ 1, let κ > 0 and let δ = 2−κ. Let q be a power of 2 such that δq >
Ω(m) for sufficiently large constant inside the Ω, and let r = (1 − δ)q4. Let Φ = Φ3 and let
L = LiftmΦ (Herm3

q[r]). Let b = O(1) + ⌈log2m⌉ for sufficiently large O(1). Then the rate of L is at

least 1− (1− 2−2mb)κ/b ≥ 1− e−κ/b22mb
.

In particular, to achieve query complexity N ǫ and rate 1−α, takem = ⌈2/ǫ⌉, c =
⌈
b22mb ln(1/α)

⌉
,

δ = 2−c, and q such that q4m = N . We are left with error correction rate δ2 = αO((O(1/ǫ)(4/ǫ) log(1/ǫ))

and alphabet size N ǫ/4.

7.2.2 Beyond the 3rd level

Now we consider the case for general n. As the n = 3 case contains the essential ideas behind the
general case, we will omit many details in our analysis for general n. Again, we consider monomials
on Hm

n , which have the form
m∏

k=1

n∏

j=1

x
ijk
jk

22

where for all k ∈ [m], i1k < q2 and ijk < q for all j ∈ [2, n]. We lower bound dimFq2
L by lower

bounding the number of monomials on Hm
n in L. We would like to consider what happens to a

monomial when we substitute

(x1k, . . . , xnk) 7→ ϕ(k)(x1, . . . , xn)

for some ϕ = (ϕ(1), . . . , ϕ(m)) ∈ Φm. Again, we only care about the monomials that appear in

the ϕ
(k)
j . However, as n grows, the polynomial (ϕa,b)n becomes increasingly complicated, with

increasingly many monomials of increasing higher degree. Thus, we will not be able to get a very
good lower bound on the rate of L, though it will be constant if m and n are constant.

Lemma 7.10. For a ∈ N, let ai denote the ith bit in the binary representation of a, i.e. a =∑
i≥0 ai2

i. Let b = O(n) + ⌈log2m⌉ where the O(n) is a sufficiently large constant times n. Define
Goodn to be the set of (ijk)j∈[n],k∈[m] such that there exists s ∈ [2ℓ − κ, 2ℓ − b − 1] such that for
all t ∈ [0, b] and for all k ∈ [m], (i1k)s+t = 0 and (ijk)s+t−ℓ = 0 for j ∈ [2,m]. If (ijk)j∈[n],k∈[m] ∈

Goodn, then
∏m

k=1

∏n
j=1 x

ijk
jk ∈ L.

Proof. The proof is essentially the same idea as the proof of Lemma 7.7 so we omit the details.

The key point is that the ϕ
(k)
j have (x, q)-weight (see Definition 6.4) at most n, so when expanding

out
m∏

k=1

n∏

j=1

(ϕ
(k)
j (x1, . . . , xn))

ijk

into a sum
∑

(· · ·)

n∏

j=1

x
ij
j

each ij is the sum of nO(1)m terms. Thus, we need to b to be on the order of the logarithm of that,
or O(n) + ⌈log2m⌉.

Lemma 7.11. Let b and Goodn be defined as in Lemma 7.10. Then

|Goodn| ≥ q(n+1)m(1− (1− 2−nmb)c/b.

Putting together Lemmas 7.10 and 7.11 we obtain the following.

Theorem 7.12. Let m ≥ 1, let κ > 0 and let δ = 2−κ. Let q be a power of 2. Let r = (1− δ)qn+1.
Let Φ = Φn and let L = LiftmΦ (Hermn

q [r]). Let b = O(n) + ⌈log2m⌉ for O(n) a sufficiently large

constant times n. Then the rate of L is at least 1− (1− 2−nmb)κ/b ≥ 1− e−κ/b2nmb
.

To achieve query complexity N ǫ and rate 1−α, take m = ⌈2/ǫ⌉, κ =
⌈
b2nmb ln(1/α)

⌉
, δ = 2−κ,

and q such that q(n+1)m = N . We are left with error correction rate δ2 = αO(O(n/ǫ)(2n/ǫ) log(1/ǫ)) and
alphabet size N ǫ/(n+1).

Remark 7.13. The observative reader may notice a discrepancy between the bounds for the general
n case and for the specific cases n = 2 and n = 3. In particular, for query complexity N ǫ and rate
1 − α, our bound for the error correction rate for general n is αO(O(n/ǫ)(2n/ǫ) log(1/ǫ) whereas our
specific bounds for n = 2 and n = 3 suggest a bound of αO(O(n/ǫ)(2(n−1)/ǫ) log(1/ǫ)). In fact, this latter

23

bound holds — in our definition of Goodn, we do not need (i2k)s+t−ℓ = 0 for any k ∈ [m] as long
as we take ℓ− (m+ κ) to be sufficiently large. The reason is that (ϕa,b)2(x) = aq+1x2 + abq1x2 + b2
is an affine map, unlike (ϕa,b)j for j ≥ 3. Consequently, when expanding out

m∏

k=1

n∏

j=1

(ϕ
(k)
j (x1, . . . , xn))

ijk

into a sum
∑

(· · ·)

n∏

j=1

x
ij
j

the term ij is the sum degrees in the p-shadow of ijk and also q times degrees in the p-shadow of ijk,
except when j = 1 or j = 2. Thus, the fact that the ϕ have high degree prevents us from obtaining
a bound like αO(O(n/ǫ)(2/ǫ) log(1/ǫ)), which would mean our constructions drastically improve with
each increment in n, for sufficiently small ǫ.

Remark 7.13 motivates the search for tower codes which admit an automorphism group that
is close to doubly transitive. However, it seems difficult to find function field towers correspond-
ing to Riemann-Roch spaces over one-point divisors which admit large automorphism groups. A
well-known tower, the Garcia-Stichtenoth tower [3, 4], is defined by the points (x1, . . . , xn) ∈ F

n
q2

satisfying

Tr(xi+1) =
N(xi)

Tr(xi)
∀i ∈ [1, n − 1].

It is shown in [8] that the only automorphisms of the code stabilizing the pole divisor is the group
corresponding to “scaling” by a ∈ F

∗
q for various a.

8 Conclusion

In this work, we presented a general framework for constructing high rate locally correctable codes.
Our framework is an abstraction of affine lifting [5], automorphic lifting [1], and high-degree lift-
ing [1]. We showed that the lift of a code with good distance with respect to some Φ that is close to
doubly transitive also has good distance, and moreover this holds even when the base code is not
invariant under Φ or when Φ is not a group. We showed how one can generalize the construction
of the lifted Reed-Solomon code of [5] to lift other algebraic geometry codes, such as the Hermitian
code and the Hermitian tower, the latter with respect to a hand-crafted non-group Φ, to obtain
locally correctable codes that can attain query complexity N ǫ and rate 1 − α while correcting a
constant fraction of errors, for any given ǫ, α > 0.

We believe the lifting framework deserves further study. Lifted codes naturally have good
locality properties. A natural direction to explore the local testability of lifted codes. A local tester
is given oracle access to a word f and must distinguish whether f ∈ C or δ(f, C) > ǫ for some given
constant ǫ > 0. The work of [5] shows that affine lifting naturally yields affine-invariant locally
testable codes. An interesting question is whether lifting algebraic geometry codes yields locally
testable codes, and what kind of assumptions on Φ are necessary (for example, that the base code
is Φ-invariant or that Φ is a group). In fact, [5] shows that both local correctability and local
testability follows generically from affine lifting. In our work, local correctability follows generically
from lifting — the instantiation of algebraic geometric base codes is only used to analyze the rate.
It would be interesting to see if local testability follows generically from lifting as well.

24

Acknowledgements

Thanks to Eli Ben-Sasson for helpful discussions and in particular for suggesting Theorem 4.6.
Thanks to Madhu Sudan for his helpful comments and encouragement. Thanks to Badih Ghazi
and Henry Yuen and for carefully proofreading parts of this paper and for helpful comments on the
writing.

References

[1] Eli Ben-Sasson, Ariel Gabizon, Yohay Kaplan, Swastik Kopparty, and Shubhangi Saraf. A new
family of locally correctable codes based on degree-lifted algebraic geometry codes. Electronic
Colloquium on Computational Complexity (ECCC), 19:148, 2012.

[2] Eli Ben-Sasson, Ghid Maatouk, Amir Shpilka, and Madhu Sudan. Symmetric LDPC codes
are not necessarily locally testable. In IEEE Conference on Computational Complexity, pages
55–65. IEEE Computer Society, 2011.

[3] Arnaldo Garcia and Henning Stichtenoth. A tower of Artin-Schreier extensions of function
fields attaining the Drinfeld-Vlădut bound. Inventiones Mathematicae, 121:211–222, 1995.

[4] Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behavior of some towers of
function fields over finite fields. Journal of Number Theory, 61(2):248–273, December 1996.

[5] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In
Robert D. Kleinberg, editor, ITCS, pages 529–540. ACM, 2013.

[6] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers and
improved optimal rate list decoding. In Howard J. Karloff and Toniann Pitassi, editors, STOC,
pages 339–350. ACM, 2012.

[7] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-
time decoding. In Lance Fortnow and Salil P. Vadhan, editors, STOC, pages 167–176. ACM,
2011.

[8] Thorsten Lagemann. On automorphisms and subtowers of an asymptotically optimal tower of
function fields. Unpublished manuscript, 2007.

[9] Irving S. Reed. A class of multiple-error-correcting codes and the decoding scheme. IEEE
Transactions on Information Theory, 4:38–49, 1954.

[10] Ba-Zhong Shen. A justesen construction of binary concatenated codes that asymptotically
meet the zyablov bound for low rate. IEEE Transactions on Information Theory, 39(1):239–
242, 1993.

[11] Henning Stichtenoth. Algebraic function fields and codes. Universitext. Springer, 1993.

[12] Chaoping Xing. On automorphism groups of the hermitian codes. IEEE Transactions on
Information Theory, 41(6):1629–1635, 1995.

25

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

