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Abstract

We provide a new framework for establishing strong lower bounds on the nonnega-
tive rank of matrices by means of common information, a notion previously introduced in
Wyner [1975]. Common information is a natural lower bound for the nonnegative rank of
a matrix and by combining it with Hellinger distance estimations we can compute the (al-
most) exact common information of UDISJ partial matrix. The bounds are obtained very
naturally and improve previous results by Braverman and Moitra [2012] in terms of being
(almost) optimal. We also establish robustness of this estimation under various perturba-
tions of the UDISJ partial matrix, where rows and columns are randomly or adversarially
removed or where entries are randomly or adversarially altered. This robustness translates,
via a variant of Yannakakis’ Factorization Theorem, to lower bounds on the average case and
adversarial approximate extension complexity. We present the first family of polytopes, the
hard pair introduced in Braun et al. [2012] related to the CLIQUE problem, with high av-
erage case and adversarial approximate extension complexity. The framework relies on a
strengthened version of the link between information theory and Hellinger distance from
Bar-Yossef et al. [2004]. We also provide an information theoretic variant of the fooling set
method that allows us to extend fooling set lower bounds from extension complexity to
approximate extension complexity.

1 Introduction
Nonnegative matrix factorization plays a crucial role in many disciplines of theoretical com-
puter science and mathematics, such as machine learning, data mining and data analysis, quan-
tum mechanics, probability theory, communication complexity, convex geometry, polyhedral
combinatorics, and many more. Nonnegative factorizations have also been studied very early
on in information theory, however reinterpreting them as probability distributions, and the no-
tion of common information introduced in Wyner [1975] provides a very natural information
theoretic lower bound on the nonnegative rank. Despite its many applications in different dis-
ciplines, our analysis is conducted with approximate extended formulations in mind. In fact
due to Yannakakis’s factorization theorem (see Yannakakis [1988, 1991]) and the equivalence to
a communication model given in Faenza et al. [2011] and Zhang [2012], it turns out that many
open problems regarding the size of an optimal (exact or approximate) linear representation
of a combinatorial optimization problem are equivalent to questions about the nonnegative rank
of certain matrices and the related communication problems. These open problems include
such important questions as to whether the matching polytope admits a linear programming
formulation of polynomial size, whether MAXCUT cannot be approximated better than 1/2−𝜀
via any linear program of polynomial size, or whether a generic polygon needs a linear num-
ber of inequalities in any linear representation in the worst case; for the latter for example the
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best-known lower bound is Ω(√𝑛) by Fiorini et al. [2011] and the best-known upper bound is
ҿ
ҽ𝑛 by Shitov [2013]. We refer the interested reader to the excellent surveys Conforti et al. [2010]
and Kaibel [2011] for an introduction.

A typical approach to lower bound the nonnegative rank is via techniques from communi-
cation complexity. However, these methods lose strength when the complexity of the matrix is
driven by the actual values of the entries, rather than some combinatorial support-like informa-
tion. The intuition behind this is that communication complexity often deals with boolean func-
tions where the complexity mainly stems from the combinatorial structure. In contrast, in the
framework in Faenza et al. [2011] and Zhang [2012] arbitrary nonnegative values can be output,
potentially containing a lot of information and as the protocol has to be only correct in expec-
tation this model breaks several trade-offs in communication (e.g., probability of being correct
and bits exchanged are typically strongly related). We overcome these limitations by depart-
ing from the classical views of nonnegative matrix factorization as communication problems
and related concepts (see e.g., Venkatasubramanian [2013] and Kushilevitz and Nisan [1997]).
Inspired by the recent work of Braverman and Moitra [2012], where a 2֛(֙ܵ) lower bound on
the nonnegative rank of the unique disjointness (partial) matrix (UDISJ) was established, we
establish strong lower bounds on perturbations of UDISJ by means of information theory and
common information in a new framework, which has no direct connection to communication.
These bounds translate into lower bounds for the average case and the adversarial approximate
extension complexity.
Related work
While nonnegative factorizations have a huge variety of applications we will focus on the par-
ticular link between nonnegative matrix factorization, information theory and communica-
tion complexity, as well as extended formulations. Especially for the latter, nonnegative ma-
trix factorizations and lower bounds for those are the main (arguably even the only) strong
tool to establish lower bounds on the extension complexity. As mentioned above, the rela-
tion to extended formulations and nonnegative factorizations is established by the fundamen-
tal factorization theorem of Yannakakis (see Yannakakis [1988, 1991]). Given a polytope 𝑃 =
conv ತ𝑣џ, … , 𝑣֙ಥ = ನ𝑥 ∶ 𝐴𝑥 ≤ 𝑏, a slack matrix of a polytope is given by the matrix 𝑆օ։ = 𝑏օ−𝐴օ𝑣։
for all 𝑖, 𝑗. Yannakakis’s theorem establishes that the extension complexity xc(𝑃) of a polytope
𝑃, that is the minimum number of linear inequalities needed in any linear programming for-
mulation so that its feasible region linearly projects to the given polytope 𝑃, is equal to the
nonnegative rank of any of the polytope’s slack matrices 𝑆, i.e., xc(𝑃) = rank+(𝑆). Using this
link, super-polynomial lower bound have been established in Fiorini et al. [2012b] on the ex-
tension complexity of the correlation polytope, the cut polytope, the stable set polytope, and
the TSP polytope. A crucial part of the proof is a strong lower bound on the nondeterminis-
tic communication complexity of the unique disjointness matrix (UDISJ), which was initially
obtained by Wolf [2003] using Razborov [1992]. An existence proof of a polytope with high ex-
tension complexity, or equivalently of a slack matrix with high nonnegative rank, was given in
Rothvoß [2011] via a beautiful counting argument and, by reductions, lower bounds have been
also obtained for various other polytopes (see Avis and Tiwary [2013], Pokutta and Van Vyve
[2013]).

The notion of extended formulations can be generalized to approximate extended formula-
tions, giving rise to the notion of the 𝜌-approximate extension complexity where 𝜌 is the per-
formance guarantee. Here one considers polyhedral extensions that approximately project to a
given polytope (e.g., relaxations as often used in approximation algorithms) and in Braun et al.
[2012] it was shown that (a natural linear encoding of) the CLIQUE problem cannot be approx-
imated within a factor better than 𝑛џ/ӝ−ܴ with a linear program using a polynomial number
of inequalities. A similar inapproximability result was obtained for a certain spectrahedron
(of small size) showing that SDPs have indeed much more expressive power than LPs. Subse-
quently, these bounds were improved to 𝑛џ−ܴ in Braverman and Moitra [2012], matching the
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algorithmic inapproximability result of Håstad [1999] for CLIQUE.
Algorithms for nonnegative matrix factorizations have been considered, e.g., in Arora et al.

[2012], Moitra [2012], Gillis [2012]. Regarding lower bounding techniques, works closely related
to ours are the original work of Razborov [1992] and its generalization in Braun et al. [2012], the
information theoretic approaches of Bar-Yossef et al. [2004] and Braverman and Moitra [2012],
as well as the notion of common information introduced in Wyner [1975], the notion of cor-
relation complexity from Zhang [2012], and the analysis of common information in terms of
distribution approximation in Jain et al. [2013]. We combine crucial insights from these works
linking them more closely together.
Contribution
Our main contributions can be separated into three parts. (A) We introduce a new framework
for lower bounding the rank of a matrix by means of common information and Hellinger dis-
tance. (B) In this framework we can simplify and extend previous results for the lower bound
on the nonnegative rank of the UDISJ matrix and (C) we sketch applications and implications
for (approximate) extended formulations.

While the framework is geared towards lower bounding the nonnegative rank of a matrix,
it is conceivable that some insights translate to communication complexity.

(A) A new framework for lower bounding the nonnegative rank. We interpret a nonnegative matrix fac-
torization as compression of correlation, which leads to the well-known notion of common infor-
mation introduced in Wyner [1975]: We regard a nonnegative matrix 𝑀 ∈ ℝ֕×֙

+ (after scaling)
as a joint probability distribution over rows and columns. A nonnegative factorization decom-
poses it to a sum of product distributions, i.e., making the row and column conditionally inde-
pendent. The ‘correlation complexity’ of the distribution induced by 𝑀 has to be captured by
the random variable Π choosing the summand in the factorization. We derive a strengthened
cut-and-paste property of the Hellinger distance, improving over the communication version
given in Bar-Yossef et al. [2004], which is at the core of many proofs for establishing lower
bounds later. Our main tools for the analysis are information theory, inspired by the recent
Braverman et al. [2012a,b], and Hellinger distance from Bar-Yossef et al. [2004]. Also, our tech-
nique readily extends to ‘clocked factorizations’, where Π is continuous.

(B) (Almost) Optimal lower bounds for (perturbations of) UDISJ. We use the new paradigm to replicate
and extend previous results for lower bounding the nonnegative rank of the UDISJ matrix in
a very concise and consistent way. The UDISJ matrix is a partial matrix 𝑀 ⊆ ℝ[֙]×[֙]

+ with
𝑀(𝑎, 𝑏) = 1 if 𝑎 ∩ 𝑏 = ∅ and 𝑀(𝑎, 𝑏) = 0 if ල𝑎 ∩ 𝑏ල = 1 with 𝑎, 𝑏 ⊆ [𝑛]. We first analyze (shifts of)
the UDISJ matrix as those are of particular importance in the study of (approximate) extended
formulations (see Braun et al. [2012] for details). To this end, we strengthen the core estimation
of Bar-Yossef et al. [2004] via the new cut-and-paste property in Theorem 4.1. The obtained
bounds for the common information of the UDISJ pattern (on 𝑛 bit strings) of ҿ−ӗ ϕЋͷ ӗ

ͳ 𝑛 when
conditioning on disjoint strings and ӝ

ӗ𝑛 in general are optimal for the case without shift and we
provide matching factorizations of (a completion of) UDISJ realizing these bounds. The lower
bounds on common information lead to lower bounds on the nonnegative rank optimal up to
a linear factor less than 2. In the case with shifts the bounds on the common information are
slightly weaker and optimal up to a factor of 1/ ln 2. Using the same framework we analyze
various perturbations of the UDISJ pattern which are crucial for analyzing the average case
and adversarial approximate extension complexity of a family of polytopes (see (C) below).
We obtain lower bounds as indicated in the table. In the following [𝑛] ≔ {1, … , 𝑛}. Shifts
refer to adding a constant to each entry of the UDISJ pattern (i.e., for pairs 𝑎, 𝑏 ⊆ [𝑛] with
ල𝑎 ∩ 𝑏ල ∈ {0, 1}), and flipping refers to replacing the entry in the matrix of a position 𝑎, 𝑏 with
ල𝑎 ∩ 𝑏ල = 0 with one for ල𝑎 ∩ 𝑏ල = 1 and vice versa.
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Perturbation log rank+ ≥ Remarks
(0) UDISJ ҿ−ӗ ϕЋͷ ӗ

ͳ 𝑛 Optimal estimation
(1) Shifts of UDISJ џ

𝑛ࠀͅ (𝜌 − 1)-shift
(2) Sets of fixed size ֙

ͳ + 𝑂(𝑛џ−ܴ) ֙
ࠀͅ − 𝑂(𝑛џ−ܴ)

Removing a fraction of rows and columns from UDISJ (remaining dimension indicated)
(3) Random 2(џ−܄)֙ × 2(џ−ܐ)֙ ( џ

ࠀͅ − 𝛼 − 𝛽)𝑛 in expectation
(4) Adversarial (1 − 𝛼)2֙ × (1 − 𝛽)2֙ ( џ

ࠀͅ − 𝛼 − 𝛽)𝑛 − log 3 removal of fractions per size
Flipping of a fraction 𝜏 of DISJ entries and NDISJ entries of (1)
(5) Random џ−ӝ࠰

𝑛(࠰−ࠀ)ͅ − 𝑂(1) with high probability
(6) Adversarial (࠰џ−џա)ࠀ

Ӟ(࠰−ࠀ)ͅ 𝑛 − 𝑂(1) with mild restrictions

The precise statements for (1) and (2) are to be found in Section 4 in Theorem 4.1, Proposition 4.3,
and Theorem 4.4, (3) and (4) in Section 5.1 in Corollary 5.3, Corollary 5.7, and Corollary 5.10,
and (5) and (6) in Section 5.2 in Theorem 5.11 and Theorem 5.13. Whereas cases (3) and (4) give
rise to lower bounds on the average and adversarial extension complexity of the hard pair in
Braun et al. [2012], cases (5) and (6) show that the UDISJ pattern is very rigid, i.e., even changing
a large fraction of entries does not reduce the nonnegative rank significantly. In a polyhedral
context these could be understood as moving vertices (changing a whole column of the slack
matrix) which is captured by this model.

(C) Applications to approximate extended formulations. We provide the first example of a family of
polytopes with high average case approximate extension complexity and adversarial approximate ex-
tension complexity. The considered family is the hard pair from Braun et al. [2012] and it is
closely related to the CLIQUE problem; a more formal definition of the pair as well as approx-
imate extension complexity is to be found in Section 2.2. The associated slack matrix has rows
indexed by cliques and columns indexed by graphs (where we confine ourselves to stable sets
only) and the entries denote the difference between the size of the clique and the largest clique
in the graph. For the subsets of graphs that corresponds to stable sets the resulting matrix
contains the UDISJ pattern as submatrix; we refer the interested reader to Braun et al. [2012]
for more details. The variants studied in (B) correspond now to the removal of cliques or sta-
ble sets and translate to lower bounds on the average case and adversarial approximate extension
complexity of the hard pair. We believe that our approach might lead to insights into the aver-
age case (approximate) extension complexity of (suitable encodings of) the CLIQUE problem
which is closely related, however considers all graphs (and hence removal of linear fractions
have stronger effects).
More precisely, in Corollary 5.14 we show that when restricting to cliques and stable sets of a
given size 𝑘, then the extension complexity remains high even for a 𝜌-approximate extended
formulation. In Corollary 5.15 we show that even when an adversary can remove an 𝛼-fraction
of cliques for each size 𝑘 and a 𝛽-fraction of stable sets for each size 𝑘, then the 𝜌-approximate
extension complexity remains high. We then combine, in Corollary 5.16, both results and show
that even if we only consider cliques and stable sets of a fixed size 𝑘 and an adversary can
remove a large fraction of cliques and stable sets, then the 𝜌-approximate extension complexity
remains high.
Finally, we obtain a new information theoretic fooling set method, in Corollary 6.1, from our frame-
work that allows for obtaining lower bounds from ‘approximate’ fooling sets. In this context,
a fooling set for a matrix 𝑀 is a set of indices (𝑎, 𝑏) so that 𝑀(𝑎, 𝑏) ≠ 0 however for any two
distinct pairs (𝑎џ, 𝑏џ), (𝑎ӝ, 𝑏ӝ), either 𝑀(𝑎џ, 𝑏ӝ) = 0 or 𝑀(𝑎ӝ, 𝑏џ) = 0 and the size of a fooling
set is a lower bound on the nonnegative rank due to the rectangle property. We can relax this
condition to only require that 𝑀(𝑎џ, 𝑏ӝ) and 𝑀(𝑎ӝ, 𝑏џ) need to be reasonably small. By doing
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so, any lower bound for the extension complexity of a polytope from a fooling set immediately
gives rise to a lower bound for 𝜌-approximate extension complexity of that polytope where 𝜌
is some small approximation factor.

Outline
In Section 2 we recall notions from information theory, distance of distributions as well as prov-
ing some basic lemmas. We also provide a brief overview of approximate extended formula-
tions. We then present the general framework for nonnegative factorizations in Section 3. In
Section 4 we apply the framework to the UDISJ matrix where we obtain a very compact proof for
its high nonnegative rank and we provide (almost) matching upper bounds. We then proceed
with considering various perturbations of the UDISJ matrix, such as random and adversarial
removal of rows and columns, and flipping of bits in Section 5. In Section 6 we introduce the
approximate fooling set method and we conclude with some final remarks in Section 7. At the
end of each section we provide implications for approximate extended formulations.

2 Preliminaries
2.1 Information theory and distance of distributions
We will now briefly recall basic notions from information theory. For a detailed introduc-
tion see Cover and Thomas [2006]. In the following, capital letters will represent random
variables; we will slightly abuse notation sometimes and also use capital letters for events.
Further, log(.) denotes the logarithm to the basis of 2 and ln(.) is the natural logarithm. Let
ℍ [𝐴] ≔ ∑ե∈ҕɵϳͷ̏(գ) ℙ [𝐴 = 𝑎] log(1/ ℙ [𝐴 = 𝑎]) denote the entropy of a discrete random vari-
able 𝐴 and for 0 ≤ 𝑝 ≤ 1 let ℍ ಪ𝑝ಫ = 𝑝 log 1/𝑝 + (1 − 𝑝) log(1 − 𝑝) be the entropy of a
coin with bias 𝑝. This definition extends to conditional entropy ℍ [𝐴 ල 𝐵] by using the respec-
tive conditional distribution, but note that expectation is automatically taken: i.e., ℍ [𝐴 ල 𝐵] =
∑թ ℙ ಪ𝐵 = 𝑏ಫ ℍ ಪ𝐴 ල 𝐵 = 𝑏ಫ.

Fact 2.1 (Properties of entropy).

Obvious bounds 0 ≤ ℍ [𝐴] ≤ log ලrange(𝐴)ල;

Monotonicity ℍ [𝐴] ≥ ℍ [𝐴 ල 𝐵];

Chain rule ℍ [𝐴, 𝐵] = ℍ [𝐴] + ℍ [𝐵 ල 𝐴].

A central notion is the mutual information 𝕀 [𝐴; 𝐵] ≔ ℍ [𝐴] − ℍ [𝐴 ල 𝐵] of two random vari-
ables 𝐴 and 𝐵, which captures how much information about 𝐴 is leaked by considering 𝐵 in-
stead. Formally, 𝐴 and 𝐵 can also be a collection of variables considered as one variable: a
comma is used to separate the components of 𝐴 or 𝐵, and a semicolon to separate 𝐴 and 𝐵
themselves: e.g., 𝕀 ಪ𝐴џ, 𝐴ӝ; 𝐵ಫ = 𝕀 ಪ(𝐴џ, 𝐴ӝ); 𝐵ಫ.

Mutual information is symmetric and extends to conditional mutual information 𝕀 [𝐴; 𝐵 ල 𝐶]
by using the respective conditional distributions where 𝐶 is a random variable. Expectation is
also automatically taken here. Note that entropy is a special case: ℍ [𝐴] = 𝕀 [𝐴; 𝐴].

We will condition on both events and random variables with the usual automatic expectation
convention, as explained above. However, conditioning on a random variable Π, the condi-
tional probability ℙ [𝐴 = 𝑎 ල Π] is a function ℙ [𝐴 = 𝑎 ල Π = 𝜋] in 𝜋, as customary.

Fact 2.2 (Properties of mutual information).

Obvious bounds If 𝐴 is a discrete variable, then 0 ≤ 𝕀 [𝐴; 𝐵 ල 𝐶] ≤ ℍ [𝐴] ≤ log ලrange(𝐴)ල

Chain rule 𝕀 ಪ𝐴џ, 𝐴ӝ; 𝐵ಫ = 𝕀 ಪ𝐴џ; 𝐵ಫ + 𝕀 ಪ𝐴ӝ; 𝐵 ල 𝐴џಫ.

Symmetry
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1. 𝕀 [𝐴; 𝐵] = 𝕀 [𝐵; 𝐴]
2. 𝕀 [𝐴; 𝐵] − 𝕀 [𝐴; 𝐵 ල 𝐶] is symmetric in 𝐴, 𝐵, 𝐶.

Monotonicity 𝕀 [𝐴; 𝐵] ≥ 𝕀 [𝐴; 𝐵 ල 𝐶] if 𝕀 [𝐴; 𝐶 ල 𝐵] = 0 or 𝕀 [𝐵; 𝐶 ල 𝐴] = 0

Independent variables

1. If 𝐴 and 𝐵 are independent, then 𝕀 [𝐴; 𝐵] = 0.
2. If 𝐴џ, … , 𝐴֙ are mutually independent, then 𝕀 ಪ𝐴џ, … , 𝐴֙; 𝐶ಫ ≥ ∑օ∈[֙] 𝕀 ಪ𝐴օ; 𝐶ಫ

In the proof of our main theorem we will rely on the (squared) Hellinger distance of two
distributions.

Definition 2.3 (Hellinger distance). Let 𝜇գ, 𝜇է be discrete distributions over the same space.
Then their squared Hellinger distance is

ℎӝ(𝜇գ; 𝜇է) ≔ 1 − ྌ
ߜ

༻𝜇գ(𝜋)𝜇է(𝜋) = 1
2 ළ༻𝜇գ − ༻𝜇էළӝ

ӝ ≥ 0,

where 𝜇գ(𝜋) and 𝜇է(𝜋) are the probabilities of the element 𝜋 under 𝜇գ and 𝜇է, respectively
and ༻𝜇ֿ with 𝑋 ∈ {𝐴, 𝐵} is to be understood coordinate-wise.

We will apply the following relation between Hellinger distance, entropy, and mutual in-
formation. The second part of Lemma 2.4 is well known and was already proven in [Bar-Yossef
et al., 2004, Lemma 6.2].

Lemma 2.4. Let 𝐴 be a (generalized) binary random variable with values 𝑎џ, 𝑎ӝ, and Π an arbitrary
random variable. Then

ℍ [𝐴 ල Π] ≤ 2ཇℙ ಪ𝐴 = 𝑎џಫ ⋅ ℙ ಪ𝐴 = 𝑎ӝಫ(1 − ℎӝ(Π|𝐴 = 𝑎џ; Π|𝐴 = 𝑎ӝ)).

In particular, if 𝐴 is uniformly distributed then 𝕀 [𝐴; Π] ≥ ℎӝ(Π|𝐴 = 𝑎џ; Π|𝐴 = 𝑎ӝ).

Proof. By [Lin, 1991, Theorem 8], when ℙ [Π = 𝜋] ≠ 0:

ℍ [𝐴 ල Π = 𝜋] ≤ 2ཇℙ ಪ𝐴 = 𝑎џ ල Π = 𝜋ಫ ⋅ ℙ ಪ𝐴 = 𝑎ӝ ල Π = 𝜋ಫ

=
2ཇℙ ಪ𝐴 = 𝑎џಫ ⋅ ℙ ಪ𝐴 = 𝑎ӝಫ

ℙ [Π = 𝜋] ཇℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎џಫ ⋅ ℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎ӝಫ.

Taking expectation proves the first claim. The second claim obviously follows from the first
one.

We will now provide a generalization to uniform variables with more values.

Lemma 2.5. Let 𝑍 be a uniform random variable on 𝑛 values, and Π another random variable. Then

𝕀 [𝑍; Π] ≥ log 𝑛 − 1
𝑛 ྌ

(ׇ)Ӟ∈ҕɵϳͷ̏˷Ѡ
Ӟ≠Ѡ

1 − ℎӝ(Π|𝑍 = 𝑧џ; Π|𝑍 = 𝑧ӝ) . (1)

Proof. First, we prove by induction on 𝑛 that for all probability distributions 𝑝џ, … , 𝑝֙:

ℍ ಪ𝑝џ, … , 𝑝֙ಫ ≤ 2 ྌ
џ≤օ<։≤֙

༻𝑝օ𝑝։. (2)

The case 𝑛 = 1 is clear, and 𝑛 = 2 is [Lin, 1991, Theorem 8], see also [Bar-Yossef et al., 2004,
Lemma 6.2]. For 𝑛 > 2, let us choose an integer 1 < 𝑘 < 𝑛. Let 𝑋 be a random variable with
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range [𝑛] and distribution ℙ [𝑋 = 𝑖] = 𝑝օ. Let 𝐼ׁ≤֍ be the indicator of the event 𝑋 ≤ 𝑘. Applying
the induction hypothesis:

ℍ ಪ𝑝џ, … , 𝑝֙ಫ = ℍ [𝑋] = ℍ ೀ𝑋, 𝐼ֿ≤֍ು = ℍ ೀ𝐼ֿ≤֍ು + ℍ ೀ𝑋 හ 𝐼ֿ≤֍ು

≤ 2༻(𝑝џ + … + 𝑝֍)(𝑝֍+џ + … + 𝑝֙) + (𝑝џ + … + 𝑝֍) ྌ
џ≤օ<։≤֍

2ཫ 𝑝օ
𝑝џ + … + 𝑝֍

⋅
𝑝։

𝑝џ + … + 𝑝֍

+ (𝑝֍+џ + … + 𝑝֙) ྌ
֍+џ≤օ<։≤֙

2ཫ 𝑝օ
𝑝֍+џ + … + 𝑝֙

⋅
𝑝։

𝑝֍+џ + … + 𝑝֙

≤ 2 ྌ
џ≤օ≤֍

༻𝑝օ ⋅ ྌ
֍+џ≤։≤֙

༻𝑝։ + 2 ྌ
џ≤օ<։≤֍

༻𝑝օ𝑝։ + 2 ྌ
֍+џ≤օ<։≤֙

༻𝑝օ𝑝։ = 2 ྌ
օ<։

༻𝑝օ𝑝։.

Now we turn to the proof of the lemma. For simplicity, let us assume that the range of 𝑍 is
[𝑛] and we introduce the shorthand 𝑝օ(𝜋) = ℙ [𝑍 = 𝑖 | Π = 𝜋]. Applying (2) to the distribution
of 𝑍 conditioned on Π:

ℍ [𝑍 | Π = 𝜋] ≤ ྌ
օ≠։

ཇ𝑝օ(𝜋)𝑝։(𝜋).

We take now expectation of both sides. Because (if Π is non-discrete, the left-hand side below
should be the Radon–Nikodym derivative d(Π|𝑍 = 𝑖)/dΠ)

ℙ [Π = 𝜋 | 𝑍 = 𝑖]
ℙ [Π = 𝜋] = ℙ [𝑍 = 𝑖 | Π = 𝜋]

ℙ [𝑍 = 𝑖] = 𝑛𝑝օ(𝜋),

we obtain
ℍ [𝑍 | Π] ≤ 1

𝑛 ྌ
օ≠։

1 − ℎӝ(Π|𝑍 = 𝑖; Π|𝑍 = 𝑗) .

As 𝕀 [𝑍; Π] = ℍ [𝑍] − ℍ [𝑍 | Π], the result follows.

2.2 Approximate extended formulations
We will now briefly introduce the necessary notions and results from (approximate) extended
formulations. For a more complete overview we refer the interested reader to the excellent
surveys Conforti et al. [2010] and Kaibel [2011] as well as Pashkovich [2012], Braun et al. [2012].

The approximate extended formulation model is based on a pair of polyhedra 𝑃 ⊆ 𝑄. The facets
of the outer polyhedron 𝑄 correspond to the (generators of) objective functions of interest, and
the vertices of the inner polytope 𝑃 correspond to feasible solutions. The extension complexity
xc(𝑃, 𝑄) of the pair 𝑃, 𝑄 is defined to be the minimum number of facets of a polyhedron 𝐾 having
an affine image sandwiched between 𝑃 and 𝑄, i.e., there is an affine map proj ∶ 𝐾 → 𝑄 with
𝑃 ⊆ proj 𝐾. We might want to think of (the projection of) 𝐾 as being a relaxation of 𝑃 which
we only require to be exact for the objective functions generated over 𝑄. The polyhedron 𝑄
is typically given by the inequalities of the form 𝑐𝑥 ≤ maxׁ∈֟ 𝑐𝑥 where 𝑐 is a linear objective
function of interest. In order to study the size of such relaxations, we need the concept of a
slack matrix.

Definition 2.6 (Slack matrix of a pair of polyhedra). Given a polytope 𝑃 = conv ತ𝑣џ, … , 𝑣֙ಥ
and a polyhedron 𝑄 = ನ𝑥 ∶ 𝐴𝑥 ≤ 𝑏, the slack matrix of the pair 𝑃, 𝑄 is given by the matrix 𝑆օ։ =
𝑏օ − 𝐴օ𝑣։ for all 𝑖, 𝑗.

It turns out that Yannakakis’s factorization theorem (see Yannakakis [1988, 1991]) extends
to this case and it holds:

Theorem 2.7 (Pashkovich [2012], Braun et al. [2012]). Let 𝑃, 𝑄 be a polyhedral pair and let 𝑆 be any
of its slack matrices. Then rank+ 𝑆 − 1 ≤ 𝑥𝑐(𝑃, 𝑄) ≤ rank+ 𝑆. (Equality holds if 𝑃, 𝑄 are polytopes)
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We obtain the notion of the 𝜌-approximate extension complexity of the pair 𝑃, 𝑄
Definition 2.8 (𝜌-approximate extension complexity). Let 𝑃, 𝑄 be a polyhedral pair and let 𝜌 ≥
1. The 𝜌-approximate extension complexity of 𝑃, 𝑄 is defined as xc(𝑃, 𝜌𝑄), where 𝜌𝑄 is the 𝜌-dilate
of 𝑄 (and we assume 𝑃 ⊆ 𝜌𝑄).

This notion corresponds precisely to the minimum number of facets in any polyhedral re-
laxation of 𝑃 so that for any linear objective function generated from 𝑄 (as positive combination
of the facets) the maximum over the relaxation is within a factor of at most 𝜌 compared to the
maximum over 𝑃. This coincides with the standard notion of an approximation factor.

If 𝑆 is a slack matrix for the pair 𝑃 = conv ತ𝑣џ, … , 𝑣֙ಥ and 𝑄 = ನ𝑥 ∶ 𝐴𝑥 ≤ 𝑏, then a slack
matrix ̃𝑆 for the pair 𝑆, 𝜌𝑄 is obtained simply as ̃𝑆օ։ = 𝑆օ։ + (𝜌 − 1)𝑏օ with the above definition,
i.e., we shift the slack matrix by adding positive entries. We obtain

Corollary 2.9. Let 𝑃 = conv ತ𝑣џ, … , 𝑣֙ಥ, 𝑄 = ನ𝑥 ∶ 𝐴𝑥 ≤ 𝑏 be a polyhedral pair and let 𝑆 be the
associated slack matrix. Then

rank+(𝑆 + (𝜌 − 1)𝐵) − 1 ≤ xc(𝑃, 𝜌𝑄) ≤ rank+(𝑆 + (𝜌 − 1)𝐵),

where 𝐵օ։ = 𝑏օ for all 𝑖, 𝑗. (Equality holds if 𝑃, 𝑄 are polytopes)

We are mainly interested in the pair 𝑃 = COR(𝑛) ≔ conv ಾ𝑏𝑏֯ ∶ 𝑏 ∈ {0, 1}֙ಿ, 𝑄 = 𝑄(𝑛) =
ಾ𝑥 ∈ ℝ֙×֙

+ ∶ ⟨2 diag(𝑎) − 𝑎𝑎֯ , 𝑥⟩ ≤ 1, 𝑎 ∈ {0, 1}֙ಿ from Braun et al. [2012], where both the ver-
tices of 𝑃 and edges of 𝑄 are indexed by subsets of [𝑛], and the slack matrix 𝑀 of the pair is
𝑀(𝑎, 𝑏) = (1 − ල𝑎 ∩ 𝑏ලӝ) which is an extension of the unique disjointness matrix. The vertices of
𝑃 are considered as possible cliques, and the facets of 𝑄 are discrete subgraphs, i.e., stable sets.

3 Lower bounds via common information
Our approach is a combination of the sampling framework introduced in Braverman and Moitra
[2012], previous lower bounding techniques given in Bar-Yossef et al. [2004] relying on the
Hellinger distance, and common information approach of Wyner [1975]. We will use the fol-
lowing link between the nonnegative rank of a matrix and a latent random variable Π choosing
rank-1 matrices in the decomposition, which is equivalent to the framework in Wyner [1975].
Recall that random variables are denoted by capital letters.

Definition 3.1 (Common information). Let 𝐴, 𝐵 be random variables, and 𝑍 an event, a random
variable or a mixture of both. The common information of 𝐴, 𝐵 given 𝑍 is the quantity

ℂ [𝐴; 𝐵 ල 𝑍] ≔ inf
ڊ ∶ գ⟂է∣ڊ
գ˷է∣ׇ⟂ڊ

𝕀 [𝐴, 𝐵; Π ල 𝑍] , (3)

where the infimum is taken over all random variables Π in all extensions of the probability
space making

1. 𝐴 and 𝐵 conditionally independent given Π,

2. 𝑍 and Π conditionally independent given 𝐴 and 𝐵.

The Π satisfying the above conditions will be called seed.

Remark 3.2. Common information was introduced in [Wyner, 1975, Eq (1.10)]. We extended this
definition in the obvious way to the conditional version, which will play a crucial role later. The
term seed for Π was adopted from Jain et al. [2013].

The conditional independence of 𝑍 and Π formulates the natural requirement to forbid Π
making use of the external condition 𝑍.

It is worthwhile to observe that the partitions in Razborov [1992] serve a similar purpose,
i.e., making Alice and Bob conditionally independent.
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Definition 3.3 (Induced distribution). Let 𝑀 be a nonnegative matrix. Its induced distribution
consists of a random row 𝐴 of 𝑀, and a random column 𝐵 of 𝑀 with probabilities

ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏ಫ = 𝑀(𝑎, 𝑏)
∑ׁ˷ׅ 𝑀(𝑥, 𝑦)

for every row 𝑎 and column 𝑏. We define the common information of 𝑀 conditioned on 𝑍 as

ℂ [𝑀 | 𝑍] ≔ ℂ [𝐴; 𝐵 ල 𝑍] . (4)

Common information is a continuous measure of information contained in a factorization
and it is easily seen that it lower bounds (the log of) the nonnegative rank as it bounds ℍ [Π]
from below. Note however that we consider the common information conditioned on 𝑍 to fine-tune
the distribution of 𝐴, 𝐵 for better bounds; we also need to condition as we will work with partial
matrices and equivalently only partially-defined distributions.

Lemma 3.4. Every factorization of a nonnegative matrix 𝑀 induces a seed with range of size of the
number of summands in the factorization. In particular, log rank+ 𝑀 ≥ ℂ [𝑀 | 𝑍] for any condition 𝑍.

Proof. Let a factorization of 𝑀 be given by

𝑀(𝑎, 𝑏) = ྌ
ߜ

𝛼ߜ(𝑎)𝛽ߜ(𝑏).

We introduce a fresh random variable Π running through the index 𝜋 in the factorization,
therefore having the same number of values as the number of summands. Given 𝐴, 𝐵, the
value of Π is chosen with private probabilities (in particular independent of 𝑍 given 𝐴, 𝐵)

ℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎, 𝐵 = 𝑏ಫ = 𝛼ߜ(𝑎)𝛽ߜ(𝑏)
𝑀(𝑎, 𝑏) .

(When 𝑀(𝑎, 𝑏) = 0, i.e., ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏ಫ = 0, then the distribution of Π can be chosen arbitrar-
ily.) It readily follows that

ℙ [Π = 𝜋] =
∑ׁ˷ׅ 𝛼ߜ(𝑥)𝛽ߜ(𝑦)

∑ׁ˷ׅ 𝑀(𝑥, 𝑦) ,

ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏 ල Π = 𝜋ಫ = 𝛼ߜ(𝑎)𝛽ߜ(𝑏)
∑ׁ˷ׅ 𝛼ߜ(𝑥)𝛽ߜ(𝑦) .

The right-hand side of the last formula is a product with every term depending only on either
𝑎, 𝜋 or 𝑏, 𝜋, verifying the conditional independence of 𝐴 and 𝐵 given Π.

Finally, by choosing a minimal factorization, the range of Π has size rank+ 𝑀:

log rank+ 𝑀 ≥ ℍ [Π] ≥ 𝕀 [𝐴, 𝐵; Π ල 𝑍] ≥ ℂ [𝑀 | 𝑍] .

The following lemma formulates the cut-and-paste property for correlation complexity,
which is stronger than the communication version. It will be useful to lower bound common
information.

Lemma 3.5 (Cut & paste). Let 𝐴, 𝐵 be discrete random variables conditionally independent given a
third variable Π. Let Πե˷թ denote the distribution of Π conditioned on 𝐴 = 𝑎 and 𝐵 = 𝑏. Then

ཇℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏џಫཇℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝಫ 1 − ℎӝ(ΠեѠ˷թѠ ; ΠեӞ˷թӞ)
= ཇℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏ӝಫཇℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏џಫ 1 − ℎӝ(ΠեѠ˷թӞ ; ΠեӞ˷թѠ) (5)
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for all values 𝑎џ, 𝑎ӝ of 𝐴 and values 𝑏џ, 𝑏ӝ of 𝐵. As a consequence, for nonzero ℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏џಫ and
ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝಫ:

ℎӝ(ΠեѠ˷թѠ ; ΠեӞ˷թӞ) ≥ 1 − ཫℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏ӝಫ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏џಫ
ℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏џಫ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝಫ . (6)

As a special case when 𝐴, 𝐵 are the random row and column of the induced distribution of a nonnegative
matrix 𝑀, and 𝑀(𝑎џ, 𝑏џ) and 𝑀(𝑎ӝ, 𝑏ӝ) are nonzero,

ℎӝ(ΠեѠ˷թѠ ; ΠեӞ˷թӞ) ≥ 1 − ཫ𝑀(𝑎џ, 𝑏ӝ)𝑀(𝑎ӝ, 𝑏џ)
𝑀(𝑎џ, 𝑏џ)𝑀(𝑎ӝ, 𝑏ӝ) . (7)

Remark 3.6. If ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏ಫ = 0 then Πե˷թ is undetermined but for the statement above, it
can be chosen arbitrarily.

Proof. By independence,

ℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏џ ල Πಫ ⋅ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝ ල Πಫ = ℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏ӝ ල Πಫ ⋅ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏џ ල Πಫ .

This can be written (if Π is discrete) via multiplying with ℙ [Π = 𝜋]ӝ as

ℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏џಫ ℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎џ, 𝐵 = 𝑏џಫ ⋅ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝಫ ℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝಫ
= ℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏ӝಫ ℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎џ, 𝐵 = 𝑏ӝಫ⋅ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏џಫ ℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎ӝ, 𝐵 = 𝑏џಫ ,

𝜋 ∈ range(Π).

(In general, instead of ℙ ಪΠ = 𝜋 ල 𝐴 = 𝑎, 𝐵 = 𝑏ಫ one should write the Radon–Nikodym deriva-
tive dΠե˷թ/dΠ above, and integrate instead of summing up below.) Taking square root and
summing up

ཇℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏џಫ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝಫ 1 − ℎӝ(ΠեѠ˷թѠ ; ΠեӞ˷թӞ)
= ཇℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏ӝಫ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏џಫ 1 − ℎӝ(ΠեѠ˷թӞ ; ΠեӞ˷թѠ)
≤ ཇℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏ӝಫ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏џಫ.

Using the latter inequality, it also follows

ℎӝ(ΠեѠ˷թѠ ; ΠեӞ˷թӞ) ≥ 1 − ཫℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏ӝಫ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏џಫ
ℙ ಪ𝐴 = 𝑎џ, 𝐵 = 𝑏џಫ ℙ ಪ𝐴 = 𝑎ӝ, 𝐵 = 𝑏ӝಫ .

4 An almost tight lower bound for (shifts of) UDISJ
In this section we will estimate the common information of matrices containing (shifts of) the
UDISJ patterns. We prove the following main theorem.

Theorem 4.1. Let 𝑀 be a nonnegative matrix with rows and columns indexed by all subsets of [𝑛]
satisfying

𝑀(𝑎, 𝑏) =
⎧ഥ
⎨ഥ⎩

1 if 𝑎 ∩ 𝑏 = ∅
1 − 𝜀 if ල𝑎 ∩ 𝑏ල = 1 (8)

for all 𝑎, 𝑏 ⊆ [𝑛]. Let 𝐶 = (𝐶џ, … , 𝐶֙) be a collection of 𝑛 fair coins independent of the induced
distribution of 𝑀. If 𝐶օ is heads, then let 𝐷օ be the indicator of 𝑖 belonging to the subset 𝐴 indexing
the random row of 𝑀. If 𝐶օ is tails, let 𝐷օ be the indicator of 𝑖 belonging to the subset 𝐵 indexing the
random column. Let 𝐷 = (𝐷џ, 𝐷ӝ, … , 𝐷֙) be the collection of the 𝐷օ; as a shorthand let 𝐷 = 0 denote
𝐷џ = 0, … , 𝐷֙ = 0. Then

ℂ [𝑀 ල 𝐷 = 0, 𝐶] ≥ 𝜀𝑛
8 . (9)
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Proof. Let 𝐴օ and 𝐵օ be the indicator of 𝑖 ∈ 𝐴 and 𝑖 ∈ 𝐵, respectively. Let Π be a seed for
𝐴, 𝐵. We reduce the analysis to the case 𝑛 = 1. Observe that ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐 ල 𝐷 = 0ಫ =
ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐ಫ / ℙ [𝐷 = 0] = 1/4֙ provided the values 𝑎, 𝑏, 𝑐 imply 𝐷 = 0. In other
words, 𝐴, 𝐵, 𝐶 are jointly uniformly distributed conditioned on 𝐷 = 0, hence the pairs {(𝐴։, 𝐵։) ∶
𝑗 ∈ [𝑛]} are independent given 𝐷 = 0, 𝐶, so that

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] ≥ ྌ
։∈[֙]

𝕀 ೖ𝐴։, 𝐵։; Π  𝐷 = 0, 𝐶

Now observe that the distribution of 𝐴։, 𝐵։, Π, 𝐷։, 𝐶։ given 𝐷օ = 0 and 𝐶օ for all 𝑖 ≠ 𝑗 satisfies the
assumptions for the case 𝑛 = 1. This can be seen by computing the probabilities via summing
up the ones of 𝐴, 𝐵. Therefore the case 𝑛 = 1 provides 𝕀 ೖ𝐴։, 𝐵։; Π  𝐷 = 0, 𝐶 ≥ 𝜀/8, which
concludes the proof as ∑։∈[֙] 𝕀ೖ𝐴։, 𝐵։; Π  𝐷 = 0, 𝐶 ≥ ܴ֙

ͅ follows.
It remains to prove the case 𝑛 = 1. Suggestively, we write 𝒜 for heads and ℬ for tails, so

e.g., 𝐷џ = 𝐴џ if 𝐶џ = 𝒜 . In a first step we identify the terms that need to be estimated:

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] = 𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐷џ = 0, 𝐶џಫ

= 𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐷џ = 0, 𝐶џ = 𝒜ಫ + 𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐷џ = 0, 𝐶џ = ℬಫ
2

Now the event 𝐷џ = 0, 𝐶џ = 𝒜 is the same as 𝐴џ = 0, 𝐶џ = 𝒜 . As 𝐶џ is independent of 𝐴џ, 𝐵џ, Π
(recall that Π is a seed), we obtain

𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐷џ = 0, 𝐶џ = 𝒜ಫ = 𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐴џ = 0ಫ .

Let Πեթ denote the distribution of Π given 𝐴џ = 𝑎 and 𝐵џ = 𝑏. As 𝐴џ, 𝐵џ is a uniform binary
variable given 𝐴џ = 0 by Equation (8), Lemma 2.4 applies:

𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐴џ = 0ಫ ≥ ℎӝ(Πաա; Πաџ).

All in all, we obtain

𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐷џ = 0, 𝐶џ = 𝒜ಫ ≥ ℎӝ(Πաա; Πաџ).

Similarly,

𝕀 ಪ𝐴џ, 𝐵џ; Π ල 𝐷џ = 0, 𝐶џ = ℬಫ ≥ ℎӝ(Πաա; Πџա).

Thus

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] ≥ ℎӝ(Πաա; Πաџ) + ℎӝ(Πաա; Πџա)
2

≥ ತℎ(Πաա; Πաџ) + ℎ(Πաա; Πџա)ಥӝ

4 ≥ ℎӝ(Πաџ; Πџա)
4 ≥ 𝜀

8,

where the second inequality follows with Cauchy-Schwarz and the third one is the triangle
inequality. The last inequality follows from Lemma 3.5 by the independence of 𝐴џ and 𝐵џ given
Π:

ℎӝ(Πաџ; Πџա) ≥ 1 − ཫℙ ಪ𝐴џ = 0, 𝐵џ = 0ಫ ⋅ ℙ ಪ𝐴џ = 1, 𝐵џ = 1ಫ
ℙ ಪ𝐴џ = 0, 𝐵џ = 1ಫ ⋅ ℙ ಪ𝐴џ = 1, 𝐵џ = 0ಫ = 1 − ༻1 − 𝜀 ≥ 𝜀

2. (10)

Remark 4.2. The proof of Theorem 4.1 is mostly identical to the one in Bar-Yossef et al. [2004], ex-
cept the better cut-and-paste relation. This is due to considering correlation compression instead
of a protocol manifesting in ℙ ಪΠ ල 𝐴 = 𝑎, 𝐵 = 𝑏ಫ, and not ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏 ල Πಫ, decomposing into
a product 𝛼ߜ(𝑎)𝛽ߜ(𝑏) (see Lemma 3.5).
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We will now provide an upper bound on the common information of the matrices occurring
in Theorem 4.1, showing that our estimation is tight up to a factor of 1/ ln 2. The factor stems
from estimating mutual information by the squared Hellinger distance via Lemma 2.4. We will
also derive the exact common information for the case 𝜀 = 1.

Proposition 4.3 (Common Information of UDISJ). With 𝐶, 𝐷 as in Theorem 4.1:

1. The lower bound of Theorem 4.1 is optimal up to a factor of 1/ ln 2 for small 𝜀: There is an extension
𝑀 of UDISJ with

ℂ [𝑀 ල 𝐷 = 0, 𝐶] ≤  𝜀
8 ln 2 + 𝑂(𝜀ӝ) 𝑛.

2. For 𝜀 = 1, we have for all extensions 𝑀

log rank+(𝑀) ≥ ℂ [𝑀 ල 𝐷 = 0, 𝐶] ≥ 6 − 3 log 3
4 ⋅ 𝑛 ≈ 0.3113 ⋅ 𝑛,

and there is an 𝑀 realizing this bound.

Proof. We establish the case 𝑛 = 1 and then generalize to all 𝑛 by a simple tensor argument. We
consider the explicit decomposition of

𝑀 = ഒ1 1
1 1 − 𝜀ഓ = ⎛⎜

⎝
џ
ӝ

џ−√ܴ
ӝџ+√ܴ

ӝ
џ−ܴ

ӝ
⎞⎟
⎠

+ ⎛⎜
⎝

џ
ӝ

џ+√ܴ
ӝџ−√ܴ

ӝ
џ−ܴ

ӝ
⎞⎟
⎠

into nonnegative rank-1 matrices. For the induced seed Π we have

𝕀 [𝐴, 𝐵; Π] = 2
4 − 𝜀 ഒ1 − ℍ ബ1 + √𝜀

2 ഭഓ = 𝜀
4 ln 2 + 𝑂(𝜀ӝ)

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] = 1 − 1
2ℍ ബ 1

2 + √𝜀ഭ − 1
2ℍ ബ 1

2 − √𝜀ഭ = 𝜀
8 ln 2 + 𝑂(𝜀ӝ).

via an easy calculation (see Appendix A.1). For 𝜀 = 1 we can say more: The decomposition
is optimal in both the conditional and unconditional case, and we can explicitly determine the
common information. For the unconditional case ℂ[𝑀] = ӝ

ӗ as proved in [Witsenhausen, 1976,
Theorem 7].

The conditional case follows by a functional relationship between the conditional and un-
conditional mutual information for every seed Π (see Appendix A.1), which by taking infimum
leads to

ℂ [𝑀] = 4
3ℂ [𝑀 ල 𝐷 = 0, 𝐶] + ℍ [𝐴, 𝐵] − 4

3ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] . (11)

In particular, ℂ [𝑀 ල 𝐷 = 0, 𝐶] = (6 − 3 log 3)/4 ≈ 0, 3113. Thus, with the lower bound from
Theorem 4.1, the claims follow for 𝑛 = 1.

To generalize the above decomposition to all 𝑛, we take 𝑛 independent copies (𝐴օ, 𝐵օ, Πօ ∶ 𝑖 ∈
[𝑛]) of the variables. This distribution is obviously induced by the matrix 𝑀(𝑎, 𝑏) = (1 − 𝜀)ලե∩թල

extending UDISJ, given Π the variables 𝐴 and 𝐵 are independent, and 𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] =
∑օ∈[֙] 𝕀 ಪ𝐴օ, 𝐵օ; Πօ ල 𝐷օ = 0, 𝐶օಫ. Finally, the lower bound for the case 𝑛 = 1 and 𝜀 = 1 generalizes
by the same argument as in Theorem 4.1.

Equation (11) highlights the importance of conditioning: the strength of log rank+(𝑀) ≥
ℂ [𝑀 | 𝑍] depends on the choice of the condition 𝑍. Given the optimality of the estimation by
means of common information, further improvements on the lower bound will only be possible
by considering a different condition.

Observe that Proposition 4.3 also establishes that in general it will not be possible to lower
bound the common information (or the entropy of Π for that matter) by means of the non-
negative rank from below. This rules out a tight characterization of the nonnegative rank of a
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matrix 𝑀 in terms of the entropy of Π or the mutual information of Π and (𝐴, 𝐵) whose infi-
mum is the common information of 𝑀. At its core the gap between common information and
the nonnegative rank stems from the fact that the mutual information is a continuous measure
whereas the nonnegative rank is not. However, when relaxing the notion of nonnegative rank
to rank(ܨ)

+ (𝑃) ≔ min ಾrank+(𝑃ໞ) ∣ 𝑃 − 𝑃ໞџ ≤ 𝛿ಿ where ‖.‖џ is the total variance, then

log rank(ܨ)
+ (𝑀) ≤ 𝑂(ℂ [𝑀] + 1)/𝛿

as shown in [Jain et al., 2013, Corollary 1.1].
A 𝜌-shift �̃� of a (partial) matrix 𝑀 is obtained by adding 𝜌 to each entry of the (partial)

matrix. Such shifts are at the core of the study of the complexity of approximate extended
formulations (see Braun et al. [2012]), for which it is more natural to write the shift in the form
𝜌 − 1 instead of 𝜌. We obtain the following theorem, slightly improving over Braverman and
Moitra [2012] in terms of the explicit constants:

Theorem 4.4 (Nonnegative rank of shifted UDISJ). Let 𝑀 ∈ ℝӝ֚×ӝ֚
+ be a (𝜌−1)-shift of the unique

disjointness matrix UDISJ, i.e.,

𝑀(𝑎, 𝑏) ≔
⎧ഥഥ
⎨ഥഥ⎩

𝜌 if 𝑎 ∩ 𝑏 = ∅,
𝜌 − 1 if ල𝑎 ∩ 𝑏ල = 1
≥ 0 otherwise

for some 𝜌 ≥ 1. Then rank+(𝑀) ≥ .ࠀͅ/2֙ If 𝜌 = 1, then rank+(𝑀) ≥ 2
Ӏ−Ә ϖЌ Ә

ʹ ⋅֙ ≥ 2աѵӗџџӗ⋅֙.

Proof. Clearly follows from Lemmas 3.4 and 3.5 together with Theorem 4.1 and Proposition 4.3.

4.1 Application to (approximate) extended formulations
We immediately obtain strengthened versions of [Braun et al., 2012, Theorems 7 and 8] as
proven in [Braverman and Moitra, 2012, Section 4] by plugging in the improved lower bound
on the nonnegative rank of 𝑀:

Theorem 4.5 (Inapproximability of CLIQUE). Let 𝜌 ⩾ 1, let 𝑛 be a positive integer and let 𝑃 =
COR(𝑛), 𝑄 = 𝑄(𝑛) be as in Braun et al. [2012]. Then xc(𝑃, 𝜌𝑄) = .ࠀͅ/2֙ In particular if 𝜌 = 𝑛џ−ܴ

for some constant 𝜀 < 1, then xc(𝑃, 𝜌𝑄) = 2֙ܵ/ͅ. Therefore for the linear encoding defined in Braun
et al. [2012], every 𝑛џ−ܴ-approximate EF of CLIQUE has size 2֙ܵ/ͅ, for all 0 < 𝜀 < 1.

The latter lower bound for CLIQUE matches the algorithmic inapproximability of Håstad
[1999].

5 Robustness of the UDISJ matrix
We will now show that the above lower bound on the nonnegative rank of UDISJ is robust
with respect to random and adversarial removal of rows and columns as well as random and
adversarial change of entries in the matrix. To this end we will first formulate the case 𝑛 = 1 of
Theorem 4.1 for general distribution to incorporate noise as well as adversarial flips of bits.

Lemma 5.1 (Information from noised-up submatrices). Let (𝐴, 𝐵) ∈ {0, 1}ӝ with distribution

𝐵 = 0 𝐵 = 1
𝐴 = 0 𝛼 𝛾
𝐴 = 1 𝛽 𝛿
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with 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1. Then

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π] ≤
3ཇ𝛼 max(𝛽, 𝛾) + 𝛼ཇ𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 ,

where Π is a seed for 𝐴, 𝐵 with condition 𝐷 = 0, 𝐶, and 𝐷, 𝐶 are as in Theorem 4.1.

Proof. We estimate

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π]

= 𝛼 + 𝛾
2𝛼 + 𝛽 + 𝛾 ℍ ಪ𝐴, 𝐵 ල 𝐷 = 0, 𝐶 = 𝒜, Πಫ + 𝛼 + 𝛽

2𝛼 + 𝛽 + 𝛾 ℍ ಪ𝐴, 𝐵 ල 𝐷 = 0, 𝐶 = ℬ, Πಫ

Now the event 𝐷 = 0, 𝐶 = 𝒜 is the same as 𝐴 = 0, 𝐶 = 𝒜 . As 𝐶 is independent of 𝐴, 𝐵, Π, we
obtain

ℍ ಪ𝐴, 𝐵 ල 𝐷 = 0, 𝐶 = 𝒜, Πಫ = ℍ [𝐴, 𝐵 ල 𝐴 = 0, Π] .
Let Πեթ denote the distribution of Π given 𝐴 = 𝑎 and 𝐵 = 𝑏. Lemma 2.4 applies:

ℍ [𝐴, 𝐵 ල 𝐴 = 0, Π] ≤ 2༻𝛼𝛾
𝛼 + 𝛾 ⋅ (1 − ℎӝ(Πաա; Πաџ)).

All in all, we obtain

ℍ ಪ𝐴, 𝐵 ල 𝐷 = 0, 𝐶 = 𝒜, Πಫ ≤ 2༻𝛼𝛾
𝛼 + 𝛾 ⋅ (1 − ℎӝ(Πաա; Πաџ)).

Similarly,

ℍ ಪ𝐴, 𝐵 ල 𝐷 = 0, 𝐶 = ℬ, Πಫ ≤
2ཇ𝛼𝛽
𝛼 + 𝛽 ⋅ (1 − ℎӝ(Πաա; Πџա)).

Thus

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π] ≤
2ཇ𝛼 max(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 ⋅ (2 − ℎӝ(Πաա; Πաџ) − ℎӝ(Πաա; Πџա)).

Finally we estimate the Hellinger distances:

ℎӝ(Πաա; Πաџ) + ℎӝ(Πաա; Πџա) ≥ ತℎ(Πաա; Πաџ) + ℎ(Πաա; Πџա)ಥӝ

2

≥ ℎӝ(Πաџ; Πџա)
2 ≥

1 − ཇ𝛼𝛿/(𝛽𝛾)
2 .

The last inequality follows from Lemma 3.5 by the independence of 𝐴 and 𝐵 given Π. Combin-
ing the estimates finishes the proof:

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π] ≤
2ཇ𝛼 max(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 ⋅ ⎛⎜⎜⎜
⎝

2 −
1 − ཇ𝛼𝛿/(𝛽𝛾)

2
⎞⎟⎟⎟
⎠

=
3ཇ𝛼 max(𝛽, 𝛾) + 𝛼ཇ𝛿 max(𝛽, 𝛾)/(𝛽𝛾)

2𝛼 + 𝛽 + 𝛾 =
3ཇ𝛼 max(𝛽, 𝛾) + 𝛼ཇ𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 .
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5.1 Adversarial and random removal of rows and columns
In the random setting we choose a submatrix 𝑆 randomly, and we are bounding the expectation
of the nonnegative rank. The rough idea is summing over minimal factorizations for subma-
trices to obtain a factorization of the original UDISJ matrix. Even though this factorization
has a huge number of summands, these are expected to be very similar, and thus reveal little
information.

The distribution of the submatrix 𝑆 will not be uniform in general: the probability of a given
submatrix will be proportional to the sum of its entries.

We shall denote by 𝑥 ∈ 𝑆 the event that the row, column or entry 𝑥 is contained in 𝑆.

Theorem 5.2. Let 𝑀 be a nonnegative matrix, and 𝒮 be a family of submatrices of 𝑀 with every entry of
𝑀 contained in exactly a 𝛾-fraction of the members. Let 𝑆 ∈ 𝒮 be a random submatrix with distribution
ℙ [𝑆 = 𝑠] = ∑(ե˷թ)∈֭ 𝑀(𝑎, 𝑏)/𝛾 ල𝒮ල ∑ե˷թ 𝑀(𝑎, 𝑏). Then

𝔼 ಪℂ [𝑆 ල 𝑍]ಫ ≥ ℂ [𝑀 | 𝑍] + log 𝛾. (12)

Proof. The key to the proof is to construct the right probability space for comparing ℂ [𝑆 ල 𝑍]
and ℂ [𝑀 | 𝑍].

Let 𝐴, 𝐵 be the random row-column pair of the induced distribution of 𝑀. Given 𝐴, 𝐵 let
𝑆 ∈ 𝒮 be chosen uniformly with the restriction 𝐴, 𝐵 ∈ 𝑆:

ℙ ಪ𝑆 = 𝑠 ල 𝐴 = 𝑎, 𝐵 = 𝑏ಫ = 1
𝛾 ල𝒮ල , (𝑎, 𝑏) ∈ 𝑠. (13)

This induces the same distribution on 𝑆 as given in the theorem:

ℙ [𝑆 = 𝑠] = ྌ
(ե˷թ)∈֭

ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏ಫ ℙ ಪ𝑆 = 𝑠 ල 𝐴 = 𝑎, 𝐵 = 𝑏ಫ

= ྌ
(ե˷թ)∈֭

𝑀(𝑎, 𝑏)
∑ׁ˷ׅ 𝑀(𝑥, 𝑦)

1
𝛾 ල𝒮ල =

∑(ե˷թ)∈֭ 𝑀(𝑎, 𝑏)
∑ׁ˷ׅ 𝑀(𝑥, 𝑦) ⋅ 𝛾 ල𝒮ල .

Note that given 𝑆, the distribution of 𝐴, 𝐵 is the one induced by 𝑆, i.e., for (𝑎, 𝑏) ∈ 𝑠:

ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏 ල 𝑆 = 𝑠ಫ = ℙ ಪ𝑆 = 𝑠 ල 𝐴 = 𝑎, 𝐵 = 𝑏ಫ ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏ಫ
ℙ [𝑆 = 𝑠] = 𝑀(𝑎, 𝑏)

∑(ׁ˷ׅ)∈֭ 𝑀(𝑥, 𝑦) .

This leads to the following interpretation of 𝔼 ಪℂ [𝑆 ල 𝑍]ಫ: For every 𝑠 ∈ 𝒮 consider the prob-
ability space conditioned on 𝑆 = 𝑠. Introduce seeds Π֭ for 𝐴 and 𝐵. For every such collection
{Π֭ ∶ 𝑠 ∈ 𝒮}, glue it together to a random variable Π, i.e., Π = Π֭ given 𝑆 = 𝑠. (Here the ranges
of Π֭ are considered pairwise disjoint without loss of generality. In particular, Π determines
𝑆.) Then

𝔼 ಪℂ [𝑆 ල 𝑍]ಫ = inf
(֫∋֭∶֮ڊ) seeds

𝕀 [𝐴, 𝐵; Π ල 𝑍, 𝑆] .

By construction, Π is a seed for 𝑀, therefore

𝕀 [𝐴, 𝐵; Π ල 𝑍] ≥ ℂ [𝑀 | 𝑍] .
Now by the chain rule

𝕀 [𝐴, 𝐵; Π ල 𝑍] − 𝕀 [𝐴, 𝐵; Π ල 𝑍, 𝑆] = 𝕀 [𝐴, 𝐵; 𝑆 ල 𝑍]
= ℍ [𝑆 ල 𝑍] − ℍ [𝑆 ල 𝑍, 𝐴, 𝐵] ≤ log ල𝒮ල − log 𝛾 ල𝒮ල = − log 𝛾,

as 𝑆 is uniform given 𝐴, 𝐵, 𝑍 (because 𝑆 is both uniform and independent of 𝑍 given 𝐴, 𝐵 by
construction). Rearranging provides

𝕀 [𝐴, 𝐵; Π ල 𝑍, 𝑆] ≥ 𝕀 [𝐴, 𝐵; Π ල 𝑍] + log 𝛾 ≥ ℂ [𝑀 | 𝑍] + log 𝛾,
and taking infimum over Π produces the result.
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We obtain the following corollary.

Corollary 5.3. Let 0 < 𝛼, 𝛽 < 1 and let 𝑆 be a random 2(џ−܄)֙ × 2(џ−ܐ)֙ submatrix of UDISJ with
distribution ℙ [𝑆 = 𝑠] = 𝑐 ∑(ե˷թ)∈֭ 𝑠(𝑎, 𝑏) for a suitable 𝑐 > 0. Then 𝔼 ಪrank+ 𝑆ಫ ≥ .֙(ܐ−܄−ͅ/ܴ)2

Proof. By Jensen’s inequality and Theorems 4.1 and 5.2 with 𝑍 being 𝐶, 𝐷 = 0 the conditional
from Theorem 4.1

𝔼 ಪrank+ 𝑆ಫ ≥ 𝔼 ೀ2ℂ[֫ ල ׇ]ು ≥ 2𝔼ಪℂ[֫ ල ׇ]ಫ ≥ .֙(ܐ−܄−ͅ/ܴ)2

Remark 5.4. It is worthwhile to compare the bounds from Corollary 5.3 to the special case of
forbidding 𝐴 and 𝐵 to contain certain elements 𝑖 ∈ [𝑛]. Say, 𝐴 must not contain the first 𝛼𝑛
elements, and 𝐵 must not contain the last 𝛽𝑛 elements. Provided 𝛼 + 𝛽 < 1, this means that
actually only the (1 − 𝛼 − 𝛽)𝑛 elements in the middle count, hence we obtain the significantly
larger lower bound rank+ 𝑆 ≥ 2ܴ/ͅ⋅(џ−ܐ−܄)֙. However, this is not unexpected: the removal of
rows and columns by forbidding elements is rather homogeneous, whereas a random removal
could potentially remove much more information.

We will now switch our attention to adversarial removal of rows and columns. The follow-
ing observation is useful to understand what type of bounds we can expect.
Observation 5.5 (Existence of a large subset with no disjoint pairs). With 𝛼 = 𝛽 = 1/2 the adver-
sary can choose

𝑆 = {(𝐴, 𝐵) ∣ 𝐴 ⊆ [𝑛], 1 ∈ 𝐴} × {𝐵 ∣ 𝐵 ⊆ [𝑛], 1 ∈ 𝐵} .
Clearly, ල𝑆ල = 2ӝ(֙−џ) and hence 1/4 of all pairs, however all pairs intersect, hence the partial
matrix 𝑆 is 0.

This is the largest submatrix with no disjoint pairs, as can be seen as follows. Let 𝑆գ be the
set of rows, and 𝑆է be the set of columns of 𝑆. We identify rows and columns with the subsets
of [𝑛] indexing them. If 𝑆 has no disjoint pairs, then for all 𝑋 ⊆ [𝑛] it is impossible that 𝑋 ∈ 𝑆գ
and [𝑛] ∖ 𝑋 ∈ 𝑆է). Thus

ල𝑆գල + ල𝑆էල = ྌ
ֿ⊆[֙]

𝐼ֿ∈֫դ + 𝐼[֙]∖ֿ∈֫ը ≤ 2֙.

Comparing the geometric mean and the arithmetic mean, we obtain

ල𝑆գල ⋅ ල𝑆էල ≤ ഒල𝑆գල + ල𝑆էල
2 ഓ

ӝ
= 2ӝ֙/4 = 2ӝ(֙−џ).

The main tool for the adversarial case is the following insight.

Theorem 5.6. Let 𝑀 be a nonnegative matrix, and 𝑆 be a submatrix of 𝑀. Let 𝑍 be a condition, which
is a mixture of an event 𝑍̏ԩ̏ϳӅ and random variables. Furthermore, let 𝐴, 𝐵 be the random row-column
pair of the induced distribution of 𝑀, and 𝐼 be the three-valued indicator of whether 𝐴, 𝐵 ∈ 𝑆, 𝐴 ∉ 𝑆 or
𝐴 ∈ 𝑆 but 𝐵 ∉ 𝑆. Then

ℙ ಪ𝐴, 𝐵 ∈ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ ℂ [𝑆 ල 𝑍, 𝐼] ≥ ℂ [𝑀 | 𝑍] − ℙ ಪ𝐴 ∉ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ ℍ [𝐴 ල 𝑍]
− ℙ ಪ𝐵 ∉ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ ℍ [𝐵 | 𝑍] − log 3. (14)

Proof. Given 𝐴, 𝐵 ∈ 𝑆 and 𝑍, we choose an arbitrary seed Π֫ of 𝐴, 𝐵 for 𝑆. We define a seed
Π֓ for 𝑀 via

Π֓ ≔
⎧ഥഥ
⎨ഥഥ⎩

Π֫ if 𝐴, 𝐵 ∈ 𝑆,
𝐴 if 𝐴 ∉ 𝑆,
𝐵 if 𝐴 ∈ 𝑆 but 𝐵 ∉ 𝑆
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with the values of Π֓ being pairwise distinct in the three cases. It follows

ℂ [𝑀 | 𝑍] ≤ 𝕀 ಪ𝐴, 𝐵; Π֓ ල 𝑍ಫ = 𝕀 ಪ𝐴, 𝐵; Π֓ ල 𝑍, 𝐼ಫ + 𝕀 [𝐴, 𝐵; 𝐼 ල 𝑍]
≤ ℙ ಪ𝐴, 𝐵 ∈ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ 𝕀 ಪ𝐴, 𝐵; Π֫ ල 𝑍ಫ + ℙ ಪ𝐴 ∉ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ 𝕀 [𝐴, 𝐵; 𝐴 ල 𝑍]

+ ℙ ಪ𝐴 ∈ 𝑆, 𝐵 ∉ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ 𝕀 [𝐴, 𝐵; 𝐵 ල 𝑍] + 𝕀 [𝐴, 𝐵; 𝐼 ල 𝑍]
≤ ℙ ಪ𝐴, 𝐵 ∈ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ 𝕀 ಪ𝐴, 𝐵; Π֫ ල 𝑍ಫ + ℙ ಪ𝐴 ∉ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ ℍ [𝐴 ල 𝑍]

+ ℙ ಪ𝐵 ∉ 𝑆 ල 𝑍̏ԩ̏ϳӅಫ ℍ [𝐵 | 𝑍] + log 3

Taking the infimum over Π֫, the result follows.

We will now show that when the adversary is restricted as to only remove up to an 𝛼-fraction
per each potential size of subsets, then the resulting matrix has still high nonnegative rank.

Corollary 5.7 (Homogeneous, adversarial removal of rows and columns). Let 0 ≤ 𝛼, 𝛽 < 1. Let
𝑆 be any submatrix of UDISJ 𝑀 obtained as follows. For every 0 ≤ 𝑘 ≤ 𝑛, we select the rows and
columns indexed by subsets of size 𝑘, and delete at most an 𝛼-fraction of these rows and a 𝛽-fraction of
these columns. Then

rank+ 𝑆 ≥ 2೦ Ѡ
ࠁ͆ ೧֙−ϕЋͷ(ܐ+܄)− ӗ

Proof. We use the variables 𝐶, 𝐷 from Theorem 4.1. Note that because of symmetry, the marginal
distributions of 𝐴 and 𝐵 are uniform even given 𝐷 = 0 when the size of the sets are fixed, hence
by assumption

ℙ ಪ𝐴 ∉ 𝑆 ල 𝐷 = 0, ල𝐴ලಫ ≤ 𝛼,
ℙ [𝐵 ∉ 𝑆 ල 𝐷 = 0, |𝐵|] ≤ 𝛽.

Taking expectation it follows

ℙ [𝐴 ∉ 𝑆 ල 𝐷 = 0] ≤ 𝛼,
ℙ [𝐵 ∉ 𝑆 ල 𝐷 = 0] ≤ 𝛽.

Applying Theorem 5.6 and Theorem 4.1:

ℂ [𝑆 ල 𝐷 = 0, 𝐶] ≥ ℙ [𝐴, 𝐵 ∈ 𝑆 ල 𝐷 = 0] ℂ [𝑆 ල 𝐷 = 0, 𝐶]
≥ ℂ [𝑀 ල 𝐷 = 0, 𝐶] − 𝛼ℍ [𝐴 ල 𝐷 = 0, 𝐶] − 𝛽ℍ [𝐵 ල 𝐷 = 0, 𝐶] − log 3

= ℂ [𝑀 ල 𝐷 = 0, 𝐶] − (𝛼 + 𝛽)𝑛 ≥ ഒ 1
8𝜌 − (𝛼 + 𝛽)ഓ 𝑛 − log 3.

Now the estimation on the nonnegative rank is immediate.

The following lemma establishes that even restricting to subsets of fixed size close to 𝑛/4, the
common information of UDISJ does not decrease significantly. This construction significantly
improves over the simple trick of splitting [𝑛] into 3 disjoint sets, arguing on the first set via the
unrestricted argument, and use the other two for padding to ensure a fixed size.

Lemma 5.8 (Restriction to fixed size subsets). For the UDISJ matrix 𝑀, let 𝑀֍ be the submatrix for
sets of size 𝑘. Then for 0 < 𝜀 ≤ 1

ℂ ೀ𝑀֍ හ 𝐴 ∩ 𝐵 = ∅ು ≥ 𝑛
8𝜌 − 𝑂(𝑛џ−ܴ) for 𝑘 = 𝑛/4 + 𝑂(𝑛џ−ܴ).
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Proof. The proof is similar to the one in Theorem 4.1, however now we have to account for loss
of common information due to dependence of the pairs 𝐴օ, 𝐵օ.

First we replace the condition 𝐴∩𝐵 = ∅ with 𝐷 = 0, 𝐶 with 𝐶, 𝐷 from Theorem 4.1. Any seed
Π for 𝐴, 𝐵 given 𝐴∩𝐵 = ∅ can be introduced to be independent of 𝐶 given 𝐴, 𝐵. Therefore it will
also be a seed given 𝐷 = 0, 𝐶. By symmetry, given either 𝐷 = 0 or 𝐴 ∩ 𝐵 = ∅, the distribution
of 𝐴, 𝐵 will be uniform. In particular, as these conditions are independent of Π given 𝐴, 𝐵, the
variables 𝐴, 𝐵, Π have the same joint distribution given either 𝐷 = 0 or 𝐴∩𝐵 = ∅. Hence (recall
that 𝐶 is part of the probability space)

𝕀 ೀ𝐴, 𝐵; Π හ 𝐴 ∩ 𝐵 = ∅ು = 𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0] ≥ 𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] ,
where the inequality follows from the independence of 𝐶 and Π given 𝐴, 𝐵.

To estimate the loss due to dependence of the 𝐴օ, 𝐵օ observe that

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π] ≤ ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ .

Combining it with ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π] = ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] − 𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] we obtain

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] ≥ ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] − ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ . (15)

It therefore suffices to estimate both terms separately. First, we estimate ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶].
Note that 𝐴, 𝐵, 𝐶 is uniformly distributed given 𝐷 = 0, with 𝑛! /𝑘!ӝ (𝑛 − 2𝑘)! possible ways of
choosing 𝐴, 𝐵 (two disjoint subsets of size 𝑘), and for each 𝐴, 𝐵 there are 2֙−ӝ֍ choices for 𝐶.

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] = ℍ [𝐴, 𝐵, 𝐶 ල 𝐷 = 0] − ℍ [𝐶 ල 𝐷 = 0] ≥ log 𝑛!
𝑘!ӝ (𝑛 − 2𝑘)!2

֙−ӝ֍ − 𝑛

= log 𝑛!
𝑘!ӝ (𝑛 − 2𝑘)! − 2𝑘 = 𝑛ℍ ಪ2𝑘/𝑛ಫ + 𝑂(log 𝑛) = 𝑛 + 𝑂(log 𝑛).

Second, we estimate ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ. Given 𝐷։ = 0 for all 𝑗 ≠ 𝑖, which we denote by
𝒟։ in the following, the distribution of 𝐴օ, 𝐵օ is the following with a normalizing constant 𝐾:

ℙ ೖ𝐴օ = 𝑥, 𝐵օ = 𝑦  𝒟։

= 𝐾 (𝑛 − 1)!
(𝑘 − 𝑥)! (𝑘 − 𝑦)! (𝑛 − 1 − 2𝑘 + 𝑥 + 𝑦)!

1
2ӝ֍−ׁ−ׅ

⎧ഥ
⎨ഥ⎩

𝜌 − 1 if (𝑥, 𝑦) ≠ (1, 1),
𝜌 if (𝑥, 𝑦) = (1, 1),

where (֙−џ)͝
(֍−ׁ)͝(֍−ׅ)͝(֙−џ−ӝ֍+ׁ+ׅ)͝ is the number of values of 𝐴 and 𝐵 with 𝐴օ = 𝑥 and 𝐵օ = 𝑦, and

џ
ӝӞ֎−ׂ−׆ is the probability of 𝐷։ = 0 for all 𝑗 ≠ 𝑖 given such an 𝐴, 𝐵.

Separating common factors for a better overview:

ℙ ೖ𝐴օ = 𝑥, 𝐵օ = 𝑦  𝒟։

= 𝐾(𝑛 − 1)!
𝑘!ӝ (𝑛 − 1 − 2𝑘)! 2ӝ֍

⎧ഥഥ
⎨ഥഥ⎩

𝜌, if (𝑥, 𝑦) = (0, 0),
𝜌 ӝ֍

֙−ӝ֍ , if (𝑥, 𝑦) = (1, 0) or (𝑥, 𝑦) = (0, 1),

(𝜌 − 1) (ӝ֍)Ӟ

(֙−ӝ֍)(֙−ӝ֍+џ) , if (𝑥, 𝑦) = (1, 1).

The assumption 𝑘 = 𝑛/4+𝑂(𝑛џ−ܴ) provides 2𝑘/(𝑛−2𝑘) = 1+𝑂(𝑛−ܴ) and (2𝑘)ӝ/(𝑛−2𝑘)(𝑛−
2𝑘 + 1) = 1 + 𝑂(𝑛−ܴ). Thus the probabilities are (with �̃� a common factor)

𝛼 = ℙ ೖ𝐴օ = 0, 𝐵օ = 0 𝒟։ = �̃�𝜌,
𝛽 = ℙ ೖ𝐴օ = 1, 𝐵օ = 0 𝒟։ = �̃�𝜌(1 − 𝑂(𝑛−ܴ)),
𝛾 = ℙ ೖ𝐴օ = 0, 𝐵օ = 0 𝒟։ = �̃�𝜌(1 − 𝑂(𝑛−ܴ)),
𝛿 = ℙ ೖ𝐴օ = 1, 𝐵օ = 1 𝒟։ = �̃�(𝜌 − 1)(1 − 𝑂(𝑛−ܴ)).
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Lemma 5.1 applies to the conditional distribution 𝐷։ = 0 for all 𝑗 ≠ 𝑖 with Π replaced by
(Π, 𝐶։ ∶ 𝑗 ≠ 𝑖), and adding a subscript 𝑖 to the other variables 𝐴, 𝐵, 𝐶, 𝐷 in the lemma:

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ ≤
3ཇ𝛼 max(𝛽, 𝛾) + 𝛼ཇ𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾

=
3𝜌(1 − 𝑂(𝑛−ܴ)) + 𝜌(1 − 𝑂(𝑛−ܴ))ན ((ܵ−֙)֛−џ)(џ−ࠀ)

((ܵ−֙)֛−џ)ࠀ
4𝜌(1 − 𝑂(𝑛−ܴ))

≤
3𝜌(1 − 𝑂(𝑛−ܴ)) + 𝜌(1 − 𝑂(𝑛−ܴ))೦1 − џ+֛(֙ࠀ−ܵ)

ӝࠀ(џ−֛(֙−ܵ))೧
4𝜌(1 − 𝑂(𝑛−ܴ))

= 1 − 1
8𝜌 + 𝑂(𝑛−ܴ)

(16)

with the constant factor in the error term independent of 𝑖.
Finally, combining the estimates we obtain

𝕀 ೀ𝐴, 𝐵; Π හ 𝐴 ∩ 𝐵 = ∅ು ≥ ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] − ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ

≥ 𝑛 + 𝑂(log 𝑛) − 𝑛 ഒ1 − 1
8𝜌 + 𝑂(𝑛−ܴ)ഓ = 𝑛

8𝜌 − 𝑂(𝑛џ−ܴ).

We will now briefly show that the estimation in (15) is really the same as in Theorem 4.1,
however accounting for the loss of independence.
Remark 5.9 (Estimating entropy instead of mutual information). In order to establish the link to
the estimation in Theorem 4.1, observe that

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, 𝑀, Π] ≤ ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, 𝑀, Πಫ

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, 𝑀] − 𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶, 𝑀] ≤
ྌ

օ∈[֙]
ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, 𝑀ಫ − 𝕀 ಪ𝐴օ, 𝐵օ; Π ල 𝐷 = 0, 𝐶, 𝑀ಫ

and hence

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶, 𝑀] ≥ ྌ
օ∈[֙]

𝕀 ಪ𝐴օ, 𝐵օ; Π ල 𝐷 = 0, 𝐶, 𝑀ಫ

+ ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, 𝑀] − ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, 𝑀ಫ .

Finally, we combine adversarial removal and fixed size subsets:

Corollary 5.10. For the UDISJ matrix 𝑀, let 𝑀֍ be the submatrix for sets of size 𝑘. Let 𝑆 be any
submatrix of 𝑀֍ obtained by deleting at most an 𝛼-fraction of rows and at most a 𝛽-fraction of columns
for some 0 ≤ 𝛼, 𝛽 < 1. Then for 0 < 𝜀 ≤ 1

rank+ 𝑆 ≥ 2(џ/ͅ(ܐ+܄)−ࠀℍ[џ/ͳ])֙−֛(֙Ѡ−ܵ) for 𝑘 = 𝑛/4 + 𝑂(𝑛џ−ܴ).

Proof. Note that because of symmetry, the marginal distributions of 𝐴 and 𝐵 are uniform given
𝐴 ∩ 𝐵 = ∅, hence

ℙ ೀ𝐴 ∉ 𝑆 හ 𝐴 ∩ 𝐵 = ∅ು = 𝛼,
ℙ ೀ𝐵 ∉ 𝑆 හ 𝐴 ∩ 𝐵 = ∅ು = 𝛽.
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Applying Theorem 5.6 and Lemma 5.8:

ℂ ೀ𝑆 හ 𝐴 ∩ 𝐵 = ∅ು ≥ ℙ ೀ𝐴, 𝐵 ∈ 𝑆 හ 𝐴 ∩ 𝐵 = ∅ು ℂ ೀ𝑆 හ 𝐴 ∩ 𝐵 = ∅ು − log 3
≥ ℂ ೀ𝑀 හ 𝐴 ∩ 𝐵 = ∅ು − 𝛼ℍ ೀ𝐴 හ 𝐴 ∩ 𝐵 = ∅ು − 𝛽ℍ ೀ𝐵 හ 𝐴 ∩ 𝐵 = ∅ು − log 3

= ℂ ೀ𝑀 හ 𝐴 ∩ 𝐵 = ∅ು − (𝛼 + 𝛽) log ೦𝑛
𝑘೧ ≥ 𝑛

8𝜌 − (𝛼 + 𝛽)𝑛ℍ [1/4] − 𝑂(𝑛џ−ܴ).

5.2 Adversarial and random flipping of bits
We will now analyze the behavior of the nonnegative rank of the UDISJ pattern provided we
allow for changing a large fraction of entries. Using Lemma 5.1 we can establish the following
lower bounds:

Theorem 5.11 (Random flipping of bits). Let 0 ≤ 𝜏 < 1/2 and 𝜌 ≥ 1 be parameters. Let 𝑀 ∈
ℝӝ֚×ӝ֚

+ be the following random matrix

𝑀(𝑎, 𝑏) ≔
⎧ഥഥ
⎨ഥഥ⎩

𝜌 − 𝑢եթ if 𝑎 ∩ 𝑏 = ∅,
𝜌 − 1 + 𝑢եթ if ල𝑎 ∩ 𝑏ල = 1
≥ 0 otherwise

with 𝑢եթ ∈ {0, 1} mutually independent random variables with ℙ ಪ𝑢եթ = 1ಫ = 𝜏 for all 𝑎, 𝑏. Then

rank+(𝑀) ≥ ഒ1 − 𝑜 ഒ √𝜏
𝜌 − 𝜏 ഓഓ 𝜌 − 𝜏

𝜌 2֙(џ−ӝ࠰)/ͅ(࠰−ࠀ)

with high probability.

Proof. The proof is similar to Lemma 5.8, but now we have to account for the noise in the matrix,
too. We fix 𝑀, implicitly conditioning on it, and start with (15), which can be proved similarly:

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] ≥ ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] − ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ .

We again estimate both terms separately. We start with ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶].
Let 𝐷(𝑎, 𝑏, 𝑐) be the value of 𝐷 when 𝐴 = 𝑎, 𝐵 = 𝑏 and 𝐶 = 𝑐. For a given 𝐶 let 𝑘 be the

number of pairs (𝑎, 𝑏) with 𝐷(𝑎, 𝑏, 𝐶) = 0 and 𝑢եթ = 1 (i.e., 𝑀(𝑎, 𝑏) = 𝜌 − 1). This appears in
probabilities involving 𝐷 = 0:

ℙ [𝐷 = 0 ල 𝐶] = 2֙𝜌 − 𝑘
∑ׁ˷ׅ 𝑀(𝑥, 𝑦) ,

ℙ [𝐷 = 0] = 𝔼 ⎡⎢
⎣

2֙𝜌 − 𝑘
∑ׁ˷ׅ 𝑀(𝑥, 𝑦)

⎤⎥
⎦

= 2֙𝜌 − 𝔼 ಪ𝑘ಫ
∑ׁ˷ׅ 𝑀(𝑥, 𝑦) ,

ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐 ල 𝐷 = 0ಫ = 𝜌 − 𝑢եթ
2֙(2֙𝜌 − 𝔼 ಪ𝑘ಫ) , provided 𝐷(𝑎, 𝑏, 𝑐) = 0.

Estimating the entropy via the largest probability in the distribution:

ℍ [𝐴, 𝐵, 𝐶 ල 𝐷 = 0] ≥ log 2֙(2֙𝜌 − 𝔼 ಪ𝑘ಫ)
𝜌 .

Therefore

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] = ℍ [𝐴, 𝐵, 𝐶 ල 𝐷 = 0] − ℍ [𝐶 ල 𝐷 = 0]െേേൈേേ
≤֙

≥ log 2֙𝜌 − 𝔼 ಪ𝑘ಫ
𝜌 . (17)
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Now we establish the concentration of 𝔼 ಪ𝑘ಫ with high probability depending on 𝑀. Observe
that 𝑘 is the sum of the 𝑢ե˷թ for all disjoint pairs of subsets 𝑎, 𝑏 of [𝑛], and for a pair (𝑎, 𝑏) there
are 2ල[֙]∖(ե∪թ)ල ways of choosing 𝐶 to have 𝐷 = 0, hence

𝔼 ಪ𝑘ಫ = ྌ
ե˷թ⊆[֙]
ե∩թ=∅

2ල[֙]∖(ե∪թ)ල

2֙ 𝑢եթ =
֙

ྌ
ℓ=ա

2−ℓ𝑋ℓ, where 𝑋ℓ ≔ ྌ
|ե|+ලթල=ℓ
ե∩թ=∅

𝑢եթ. (18)

By Chernoff’s bound,

ℙ ೖල𝑋ℓ − 𝜏𝑁ℓල > √𝜏𝑁ӗ/ͳ
ℓ  ≤ 2 exp −𝑁џ/ӝ

ℓ  ,

where 𝑁ℓ ≔ (֙
ℓ)2ℓ is the number of disjoint pairs 𝑎, 𝑏 with |𝑎| + ල𝑏ල = ℓ.

Restricting to ල𝑛/2 − ℓල ≤ 𝑛ӗ/ͳ, clearly 𝑁ℓ ≥ 2֙/ӝ−֙Ә/ʹ , and

ℙ ೖ∃ℓ ∶ ල𝑛/2 − ℓල ≤ 𝑛ӗ/ͳ, ල𝑋ℓ − 𝜏𝑁ℓල ≤ √𝜏𝑁ӗ/ͳ
ℓ  ≤ 4𝑛ӗ/ͳ exp(−2֙/ͳ−֙Ә/ʹ/ӝ).

Outside the range ල𝑛/2 − ℓල ≤ 𝑛ӗ/ͳ we have, again by Chernoff’s bound

ྌ
ℓ∶ල֙/ӝ−ℓල>֙Ә/ʹ

2−ℓ𝑋ℓ ≤ ྌ
ℓ∶ල֙/ӝ−ℓල>֙Ә/ʹ

2−ℓ𝑁ℓ = ྌ
ℓ∶ල֙/ӝ−ℓල>֙Ә/ʹ

೦𝑛
ℓ೧ ≤ 2֙+џ exp(−𝑛џ/ӝ).

Hence with probability 1 − exp(−Ω(𝑛))

֙/ӝ+֙Ә/ʹ

ྌ
ℓ=֙/ӝ−֙Ә/ʹ

2−ℓ𝑋ℓ =
֙/ӝ+֙Ә/ʹ

ྌ
ℓ=֙/ӝ−֙Ә/ʹ

2−ℓ 𝜏𝑁ℓ + √𝜏𝑂(𝑁ӗ/ͳ
ℓ )

=
֙/ӝ+֙Ә/ʹ

ྌ
ℓ=֙/ӝ−֙Ә/ʹ

೦𝑛
ℓ೧ 𝜏 + √𝜏𝑂(2−џ/ͳℓ)

= 2֙(1 − 𝑂(exp(−𝑛џ/ӝ)))𝜏 + √𝜏𝑂((1 + 2−џ/ͳ)֙).

Therefore

𝔼 ಪ𝑘ಫ =
֙/ӝ+֙Ә/ʹ

ྌ
ℓ=֙/ӝ−֙Ә/ʹ

2−ℓ𝑋ℓ + 𝑂(2֙ exp(−𝑛џ/ӝ)) = 2֙(𝜏 − 𝑜(√𝜏)). (19)

We can now estimate the entropy of 𝐴, 𝐵:

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] ≥ log 2֙𝜌 − 2֙(𝜏 − 𝑜(√𝜏))
𝜌 = 𝑛 + log 𝜌 − 𝜏

𝜌 − 𝑜 ഒ√𝜏
𝜌 ഓ . (20)

Finally we estimate ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ. Given 𝐷։ = 0 for all 𝑗 ≠ 𝑖, the distribution of
𝐴օ, 𝐵օ can be written, with a normalizing 𝐾, as:

ℙ ೖ𝐴օ = 𝑥, 𝐵օ = 𝑦  ∀𝑗 ≠ 𝑖 ∶ 𝐷։ = 0 =
⎧ഥ
⎨ഥ⎩

(𝜌 − 𝑋(օ)
ׁׅ/2֙−џ)/𝐾, if (𝑥, 𝑦) ≠ (1, 1)

(𝜌 − 1 + 𝑋(օ)
ׁׅ/2֙−џ)/𝐾, if (𝑥, 𝑦) = (1, 1),

(21)

where
𝑋(օ)

ׁׅ ≔ ྌ
ե˷թ⊆[֙]∶եֆ=ׁ˷թֆ=ׅ˷

ե∩թ∖{օ}=∅

2−|ե∖{օ}|−ලթ∖{օ}ල𝑢եթ.

This expression is 𝔼 ಪ𝑘ಫ for the submatrix defined by 𝑎օ = 𝑥 and 𝑏օ = 𝑦, which is a version of 𝑀
for an 𝑛 − 1-element set. Hence similar to (19), with probability 1 − exp(−Ω(𝑛))

𝑋(օ)
ׁׅ = 2֙−џ(𝜏 − 𝑜(√𝜏)). (22)
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Under these circumstances we now apply Lemma 5.1 to the conditional distribution 𝐷։ = 0
for all 𝑗 ≠ 𝑖 with Π replaced by (Π, 𝐶։ ∶ 𝑗 ≠ 𝑖), and adding a subscript 𝑖 to the other variables
𝐴, 𝐵, 𝐶, 𝐷 in the lemma:

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ ≤
3ཇ𝛼 max(𝛽, 𝛾) + 𝛼ཇ𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾

=
3(𝜌 − 𝜏 − 𝑜(√𝜏)) + (𝜌 − 𝜏 − 𝑜(√𝜏))ཟࠀ−џ+(࠰√)֝+࠰

(࠰√)֝−࠰−ࠀ

4(𝜌 − 𝜏 − 𝑜(√𝜏))

≤
3(𝜌 − 𝜏 − 𝑜(√𝜏)) + (𝜌 − 𝜏 − 𝑜(√𝜏))೦1 − џ−ӝ(࠰√)֝+࠰

ӝ((࠰√)֝−࠰−ࠀ)೧
4(𝜌 − 𝜏 − 𝑜(√𝜏))

= 1 − 1 − 2𝜏
8(𝜌 − 𝜏) + 𝑜 ഒ √𝜏

𝜌 − 𝜏 ഓ .

(23)

All in all, with probability 1 − exp(−Ω(𝑛)) both (20) and (23) hold, and the latter for all 𝑖.
Actually, the arguments above show the error term 𝑜(√𝜏/(𝜌 − 𝜏)) in (23) is exponentially small
in 𝑛 independent of 𝑖, which we will use in the final statement. Putting everything together, we
obtain

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] ≥ ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] − ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ

≥ 𝑛 + log 𝜌 − 𝜏
𝜌 − 𝑜 ഒ √𝜏

𝜌 − 𝜏 ഓ − 𝑛 ഒ1 − 1 − 2𝜏
8(𝜌 − 𝜏) + 𝑜 ഒ √𝜏

𝜌 − 𝜏 ഓഓ

= 𝑛(1 − 2𝜏)
8(𝜌 − 𝜏) + log 𝜌 − 𝜏

𝜌 − 𝑜 ഒ √𝜏
𝜌 − 𝜏 ഓ

Remark 5.12 (Limits of Theorem 5.11). Observe that the matrix in Theorem 5.11 contains a 2֙/ӝ ×
2֙/ӝ-submatrix of disjoint strings (supporting the rows on [𝑛/2] and the columns on [𝑛]∖[𝑛/2]).
If the noise is large enough then these entries are very close to be chosen fully at random, so
that in this case the rank is roughly 2֙/ӝ with high probability; hence so is the nonnegative rank
then. Therefore the bound in Theorem 5.11 is only meaningful for smaller levels of noise.

In view of Remark 5.12 we now turn to the case of adversarial flips of entries. Using a similar
technique as in Theorem 5.11 we establish:

Theorem 5.13 (Adversarial flipping of bits). Let 0 ≤ 𝜏 ≤ 1/10 and 𝜌 ≥ 1. Furthermore, let
𝑀 ∈ ℝӝ֚×ӝ֚

+ be a matrix

𝑀(𝑎, 𝑏) ≔
⎧ഥഥ
⎨ഥഥ⎩

𝜌 − 𝑢եթ if 𝑎 ∩ 𝑏 = ∅,
𝜌 − 1 + 𝑢եթ if ල𝑎 ∩ 𝑏ල = 1
≥ 0 otherwise

with 𝑢եթ ∈ {0, 1} for all 𝑎, 𝑏 so that at most a 𝜏-fraction of the 𝑢ե˷թ are 1 for the families

ಾ𝑎, 𝑏 හ |𝑎| + ල𝑏ල = ℓ, 𝑎 ∩ 𝑏 = ∅, 𝑎օ = 𝑥, 𝑏օ = 𝑦ಿ ,
ನ𝑎, 𝑏 ල |𝑎| + ල𝑏ල = ℓ, 𝑎 ∩ 𝑏 = {𝑖} ,

for all 0 ≤ ℓ ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑛 and 𝑥, 𝑦 ∈ {0, 1}. Then rank+(𝑀) ≥ ࠰−ࠀ
ࠀ Ӟ(࠰−ࠀ)ͅ/(࠰џ−џա)ࠀ2֙ .
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Proof. The proof is similar to Theorem 5.11, hence we include only the differences here. First,
in (18) we have 𝑋ℓ ≤ 𝜏𝑁ℓ, hence

𝔼 ಪ𝑘ಫ ≤
֙

ྌ
ℓ=ա

𝜏𝑁ℓ = 𝜏2֙. (24)

Therefore via (17),

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] ≥ log 2֙𝜌 − 𝔼 ಪ𝑘ಫ
𝜌 ≥ 𝑛 + log 𝜌 − 𝜏

𝜌 .

Formula (21) still provides the distribution of 𝐴օ, 𝐵օ given 𝐷։ = 0 for all 𝑗 ≠ 𝑖. Similarly to
(24), 𝑋(օ)

ׁׅ ≤ 𝜏2֙−џ follows from the assumptions. Instead of (23), we obtain

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ ≤
3ཇ𝛼 max(𝛽, 𝛾) + 𝛼ཇ𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾

≤ 3𝜌 + 𝜌༻(𝜌 − 1 + 𝜏)/(𝜌 − 𝜏)
4(𝜌 − 𝜏)

≤
3𝜌 + 𝜌1 − џ−ӝ࠰

࠰−ࠀ 
4(𝜌 − 𝜏)

= 𝜌
𝜌 − 𝜏 ഒ1 − 1 − 2𝜏

8(𝜌 − 𝜏)ഓ .

(25)

All in all, we obtain

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] ≥ ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] − ྌ
օ∈[֙]

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ

≥ 𝑛 + log 𝜌 − 𝜏
𝜌 − 𝑛 𝜌

𝜌 − 𝜏 ഒ1 − 1 − 2𝜏
8(𝜌 − 𝜏)ഓ

= 𝑛𝜌(1 − 10𝜏) + 8𝜏ӝ

8(𝜌 − 𝜏)ӝ + log 𝜌 − 𝜏
𝜌 .

5.3 Application to (approximate) extended formulations
We will now prove that the approximate extension complexity of the pair 𝑃, 𝑄 from Subsec-
tion 4.1 remains high even if vertices of 𝑃 and facets of 𝑄 are removed. Recall that the vertices
of 𝑃 are considered as possible cliques, and the facets of 𝑄 as stable sets.

Let 𝑃֍ be the convex hull of vertices of 𝑃 corresponding to subsets of size 𝑘. Similarly, let 𝑄֍
be the polyhedra defined by facets of 𝑄 corresponding to subsets of size 𝑘. Restricting to fixed
size cliques and subgraphs, Lemma 5.8 readily provides

Corollary 5.14. Let 0 < 𝜀 ≤ 1. Then

log xc(𝑃֍, 𝜌𝑄֍) ≥ 𝑛
8𝜌 − 𝑂(𝑛џ−ܴ) for 𝑘 = 𝑛/4 + 𝑂(𝑛џ−ܴ).

Let 𝑃܄ be the polytope obtained from 𝑃 by removing at most an 𝛼-fraction of the vertices
corresponding to cliques of size 𝑘 for every 0 ≤ 𝑘 ≤ 𝑛. Similarly, let 𝑄ܐ be the polyhedron
obtained from 𝑄 by removing at most a 𝛽-fraction of the facets corresponding to subgraphs of
size 𝑘 for every 𝑘. For adversarial removal, we apply Corollary 5.7.

Corollary 5.15. Let 0 < 𝛼, 𝛽 < 1. Then

log xc(𝑃܄, 𝜌𝑄ܐ) ≥ ഒ 1
8𝜌 − (𝛼 + 𝛽)ഓ 𝑛 − log 3.
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Let 𝑃܄
֍ be the polytope obtained from 𝑃֍ by removing at most an 𝛼-fraction of the vertices.

Similarly, let 𝑄ܐ
֍ be the polyhedron obtained from 𝑄֍ by removing at most a 𝛽-fraction of the

facets. Once more, we combine adversarial removal with fixed size objects as in Corollary 5.10.
Corollary 5.16. Let 0 < 𝛼, 𝛽 < 1 and 0 < 𝜀 ≤ 1. Then

log xc(𝑃܄
֍ , 𝜌𝑄ܐ

֍ ) ≥ ഒ 1
8𝜌 − (𝛼 + 𝛽)ℍ [1/4]ഓ 𝑛 − 𝑂(𝑛џ−ܴ) for 𝑘 = 𝑛/4 + 𝑂(𝑛џ−ܴ).

6 Approximate fooling sets
If 𝑀 is a nonnegative matrix, a fooling set ℱ for 𝑀 is a set of row-column indices so that 𝑀(𝑎, 𝑏) ≠
0 for all (𝑎, 𝑏) ∈ ℱ and for distinct (𝑎џ, 𝑏џ), (𝑎ӝ, 𝑏ӝ) ∈ ℱ either 𝑀(𝑎џ, 𝑏ӝ) = 0 or 𝑀(𝑎ӝ, 𝑏џ) =
0. Using Lemmas 3.4 and 3.5 we obtain a strengthened version of the fooling set method by
relaxing the above condition.
Corollary 6.1 (Information theoretic fooling set method). Let 𝑀 be a nonnegative matrix and let
ℱ = ನ(𝑎օ, 𝑏օ) ∣ 𝑖 ∈ [ℓ] be a set such that 𝑀(𝑎, 𝑏) ≠ 0 for all (𝑎, 𝑏) ∈ ℱ . Then

log rank+(𝑀) ≥ 𝛾(ℱ, 𝑀) ≔ log හℱහ − 1
හℱහ ྌ

(եѠ˷թѠ)˷(եӞ˷թӞ)∈ℱ
(եѠ˷թѠ)≠(եӞ˷թӞ)

ཫ𝑀(𝑎џ, 𝑏ӝ)𝑀(𝑎ӝ, 𝑏џ)
𝑀(𝑎џ, 𝑏џ)𝑀(𝑎ӝ, 𝑏ӝ) ,

where 𝛾(ℱ, 𝑀) is the information bound of 𝑀 from ℱ . The function 𝛾(ℱ, ⋅) is continuous in 𝑀.

Proof. The continuity of 𝛾(ℱ, ⋅) is clear, so we only prove the lower bound.
Let 𝐴, 𝐵 be the random row-column pair in the induced distribution of 𝑀. Let 𝑍 be a uniform

random variable taking values in ℱ , and Πա a seed with range size of the nonnegative rank
of 𝑀, which exists by Lemma 3.4. We define a random variable Π by setting its conditional
distribution given 𝑍, namely, (Π|𝑍 = (𝑎, 𝑏)) ≔ (Πա|𝐴 = 𝑎, 𝐵 = 𝑏). Thus Π may differ from Πա,
nevertheless Π inherits (7) of Lemma 3.5 from Πա. Together with Lemma 2.5 applied to 𝑍 and
Π:

log rank+(𝑀) ≥ 𝕀 [𝑍; Π] ≥ log හℱහ − 1
හℱහ ྌ

(ׇ)Ӟ∈ҕɵϳͷ̏˷Ѡ
Ӟ≠Ѡ

1 − ℎӝ(Π|𝑍 = 𝑧џ; Π|𝑍 = 𝑧ӝ)

≥ log හℱහ − 1
හℱහ ྌ

(եѠ˷թѠ)˷(եӞ˷թӞ)∈ℱ
(եѠ˷թѠ)≠(եӞ˷թӞ)

ཫ𝑀(𝑎џ, 𝑏ӝ)𝑀(𝑎ӝ, 𝑏џ)
𝑀(𝑎џ, 𝑏џ)𝑀(𝑎ӝ, 𝑏ӝ) .

Remark 6.2. Observe that ན֓(եѠ˷թӞ)֓(եӞ˷թѠ)
֓(եѠ˷թѠ)֓(եӞ˷թӞ) measures the deviation of being rank-1 for the 2×2

submatrix formed by 𝑎џ, 𝑎ӝ, 𝑏џ, 𝑏ӝ. In particular, it is 1 if and only if the submatrix is rank-1.
A lower bound similar to Corollary 6.1 can also be obtained with a trace-based method

Gillis et al. [2013].
6.1 Application to (approximate) extended formulations
We can immediately strengthen known fooling set results in terms of inapproximability. We
can typically do better than the following corollary by taking the actual values in a slack matrix.
Corollary 6.3 (Weak inapproximability from fooling sets). Let 𝑀 be a nonnegative matrix and
let ℱ = ನ(𝑎օ, 𝑏օ) ∣ 𝑖 ∈ [ℓ] be a fooling set for 𝑀. We define 𝛿− ≔ min(ե˷թ)∈ℱ 𝑀(𝑎, 𝑏) and 𝛿+ ≔
max(եѠ˷թѠ)˷(եӞ˷թӞ)∈ℱ 𝑀(𝑎џ, 𝑏ӝ). Let us assume 𝛿− ≤ 2𝛿+. Then for any (𝜌 − 1)-shift �̃� of 𝑀 with

𝜌 − 1 ≤ 𝛿ӝ
−

𝛿+
⋅ ⎛⎜
⎝

log හℱහ /𝛼
හℱහ − 1

⎞⎟
⎠

ӝ

and 0 < 𝛼 < හℱහ we have rank+(�̃�) ≥ 𝛼.

24



Proof. As �̃� is a (𝜌 − 1)-shift, we have �̃�(𝑎, 𝑏) = 𝑀(𝑎, 𝑏) + (𝜌 − 1) for all 𝑎, 𝑏. We obtain with
Corollary 6.1,

log rank+(�̃�) ≥ log හℱහ − 1
හℱහ ྌ

(եѠ˷թѠ)˷(եӞ˷թӞ)∈ℱ
(եѠ˷թѠ)≠(եӞ˷թӞ)

ཷ�̃�(𝑎џ, 𝑏ӝ)�̃�(𝑎ӝ, 𝑏џ)
�̃�(𝑎џ, 𝑏џ)�̃�(𝑎ӝ, 𝑏ӝ)

= log හℱහ − 1
හℱහ ྌ

(եѠ˷թѠ)˷(եӞ˷թӞ)∈ℱ
(եѠ˷թѠ)≠(եӞ˷թӞ)

ཫ(𝑀(𝑎џ, 𝑏ӝ) + 𝜌 − 1)(𝑀(𝑎ӝ, 𝑏џ) + 𝜌 − 1)
(𝑀(𝑎џ, 𝑏џ) + 𝜌 − 1)(𝑀(𝑎ӝ, 𝑏ӝ) + 𝜌 − 1).

As ℱ is a fooling set for 𝑀, we obtain that the latter is bounded from below by

log හℱහ − 1
හℱහ ྌ

(եѠ˷թѠ)˷(եӞ˷թӞ)∈ℱ
(եѠ˷թѠ)≠(եӞ˷թӞ)

ཫ (𝜌 − 1)(𝜌 − 1 + 𝛿+)
(𝜌 − 1 + 𝛿−)(𝜌 − 1 + 𝛿−)

= log හℱහ − හℱහ − 1 ⋅
ཇ(𝜌 − 1)(𝜌 − 1 + 𝛿+)

𝜌 − 1 + 𝛿−
.

We now require

log හℱහ − හℱහ − 1 ⋅
ཇ(𝜌 − 1)(𝜌 − 1 + 𝛿+)

𝜌 − 1 + 𝛿−
≥ log 𝛼 (26)

and approximating the solution for 𝜌−1 we obtain the claim. For the convenience of the reader,
we present a short verification: let

𝐾 ≔ ⎛⎜
⎝

log හℱහ /𝛼
හℱහ − 1

⎞⎟
⎠

ӝ
.

It follows from the assumptions of the corollary:

ತ𝜌 − 1 + 𝛿−ಥӝ

(𝜌 − 1)(𝜌 − 1 + 𝛿+) = 1 + 𝛿ӝ−
(𝜌 − 1)𝛿+െേൈേ

≥џ/

− ತ𝛿+ − 𝛿−ಥӝ

𝛿+ ತ𝜌 − 1 + 𝛿+ಥെേേൈേേ
≤ ತܩ−+ܩ−ಥӞ

+Ӟܩ
≤џ

≥ 1
𝐾 ,

which is just a rearranging of (26).

Corollary 6.4 (Inapproximability of [0, 1]֙). Let 𝑃 be a combinatorial 𝑛-cube and let 𝑄 be a 𝜌-
approximate EF of 𝑃 with 𝜌 − 1 = (4𝑛)−ӝ. Then size(𝑄) ≥ ༻2 ⋅ 𝑛.

Proof. The fooling set ℱ for [0, 1]֙ provided in Fiorini et al. [2012a] has size 2𝑛 and 𝛿− = 𝛿+ = 1.
With 𝛼 ≔ ༻2𝑛 we obtain with Corollary 6.3 that for 𝜌 − 1 ≤ (2(2𝑛 − 1))−ӝ, the (𝜌 − 1)-shift of
the slack matrix has nonnegative rank at least ༻2 ⋅ 𝑛, proving the claim together with Braun
et al. [2012].

Remark 6.5. Compare the result in Corollary 6.4 with the approximation 𝑄 of [0, 1]֙ given by
the simplex defined by the nonnegativity constraints and the inequality 𝑒𝑥 ≤ 𝑛 ( hence with
𝑛 + 1 inequalities) where 𝑒 = (1, … , 1). Now consider max֟ 𝑥џ = 1, however max֣ 𝑥џ = 𝑛.

In a similar way we can generalize [Fiorini et al., 2012a, Proposition 5.10] and [Fiorini et al.,
2012a, Proposition 5.11]. In fact, with Corollary 6.3 every fooling set for a matrix can be turned
into a lower bound on the nonnegative rank of a shift of that matrix, leading to lower bounds
for the approximate extension complexity.
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Corollary 6.6 (Inapproximability of the bipartite matching polytope). Let 𝑛 ≥ 4 and 𝑃 be the
bipartite matching polytope and let 𝑄 be a 𝜌-approximate EF of 𝑃 with 𝜌 = 1 + ((2 − 𝜀)/(𝑛 + 𝜀)(𝑛ӝ +
2𝑛 − 1))ӝ. Then size(𝑄) ≥ 𝑛ӝ + 𝜀𝑛.

It is not too hard to see that the approximate fooling set method is stronger than the fooling
set method. However, it is also subject to limitations stemming from the continuity of 𝛾(ℱ, ⋅).

Example 6.7. Let 𝑃 ⊆ ℝ֙ be a regular 𝑛-gon. Then xc(𝑃) = Θ(log 𝑛). Now suppose that we
perturb 𝑃 to �̃� so that �̃� is a generic 𝑛-gon. Then xc(�̃�) = Ω(√𝑛) (see Ben-Tal and Nemirovski
[2001], Fiorini et al. [2011])

Let �̃� be a slack matrix for �̃�. Suppose we start from an approximate fooling set ℱ for �̃�.
By slightly perturbing �̃� to be a slack matrix for 𝑃 we obtain by continuity of 𝛾 that

|𝛾(ℱ, 𝑀) − 𝛾(ℱ, �̃�)| < 𝜀,

and we have that (֓˷ℱ)ݘ2 ≤ rank+(𝑃) = 𝑂(log 𝑛) by Lemma 6.1. Thus ˷ℱ)ݘ2 ̃֓ ) = 𝑂(log 𝑛)
and so we cannot obtain a strong lower bound for generic 𝑛-gons via the information theoretic
fooling set method.

Another example is given by a matrix that is close to the slack matrix of the matching poly-
tope.

Example 6.8. Let 𝑀 ∈ ℝӝ֚×ӝ֚
+ be the partial matrix that is defined as

𝑀(𝑎, 𝑏) ≔
⎧ഥ
⎨ഥ⎩

ල𝑎 ∩ 𝑏ල − 𝜀 if 𝑎 ∩ 𝑏 ≠ ∅,
≥ 0 otherwise.

Then for 𝜀 > 0 we have ( ֙
֙/ӝ) ≤ rank(𝑀) ≤ rank+(𝑀) (which follows from a reduction to

disjointness; Razborov [2012]). On the other hand, for 𝜀 = 0 we have rank(𝑀) = 𝑛. With a
similar argument as in Example 6.7, we cannot find an information theoretic fooling set for 𝑀
with 𝜀 > 0 small, of size larger than 𝑛.

7 Concluding remarks
We introduced a new framework to lower bound the nonnegative rank of a matrix in terms of
common information which is in turn estimated via the Hellinger distance. We believe that this
framework is more widely applicable to lower bound the nonnegative rank of many other ma-
trices and hence can be used to lower bound the extension complexity of a variety of polytopes.
Our estimations on the common information are (almost) optimal for the UDISJ matrix and its
variants. Also, our approach immediately generalizes to higher dimensional tensors and the
estimations remain virtually the same.

We would like to conclude with several open questions.

Question 7.1. For which other explicit nonnegative matrices can we compute strong lower bounds on
the common information?

Question 7.2. Does the rectangle covering bound/rectangle corruption bound have an information the-
oretic analog?

These bounds subsume the fooling set bound and the bound of the logarithm of the number
of faces. The latter two are incomparable in general, e.g., the fooling set bound is better for
[0, 1]֙ (2𝑛 vs. 𝑛 log 3) and worse for the regular 𝑛-gon (Θ(log 𝑛) vs. 5) (see Fiorini et al. [2012a]).

Question 7.3. Is the approximate fooling set method limited in a way similar to the classical fooling set
method?

Question 7.4. Is ܴ
ͅ ϕϳ ӝ𝑛 the exact bound on common information in Theorem 4.1? Is there a better

condition providing larger common information?
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A Omitted proofs and remarks
A.1 Mutual information estimation of Proposition 4.3
Even though the mutual information can be computed directly, we present a short calculation
explaining the terms of the formula. Let 𝐼(𝐴 = 𝐵) denote the indicator of the event 𝐴 = 𝐵,
which is independent of Π. Also note that 𝐴, 𝐵 and Π are independent given 𝐴 = 𝐵. These
independences imply

𝕀 [𝐴, 𝐵; Π] = 𝕀 [𝐴, 𝐵; Π ල 𝐼(𝐴 = 𝐵)]
= ℙ [𝐴 = 𝐵] ⋅ 𝕀 [𝐴, 𝐵; Π ල 𝐴 = 𝐵]െേേേൈേേേ

ա
+ ℙ [𝐴 ≠ 𝐵] ⋅ 𝕀 [𝐴, 𝐵; Π ල 𝐴 ≠ 𝐵]

= ℙ [𝐴 ≠ 𝐵] (ℍ [𝐴, 𝐵 ල 𝐴 ≠ 𝐵] − ℍ [𝐴, 𝐵 ල 𝐴 ≠ 𝐵, Π])

= 2
4 − 𝜀 ഒ1 − ℍ ബ1 + √𝜀

2 ഭഓ = 𝜀
4 ln 2 + 𝑂(𝜀ӝ)

For the conditional mutual information, we follow a straightforward approach:

𝕀 [𝐵; Π ල 𝐴 = 0] = ℍ [𝐵 ල 𝐴 = 0] − ℍ [𝐵 ල 𝐴 = 0, Π] = 1 − 1
2ℍ ബ 1

2 + √𝜀ഭ − 1
2ℍ ബ 1

2 − √𝜀ഭ ,

and similarly with 𝐴, 𝐵 exchanged. Hence

𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] = 𝕀 [𝐴, 𝐵; Π ල 𝐴 = 0] + 𝕀 [𝐴, 𝐵; Π ල 𝐵 = 0]
2

= 1 − 1
2ℍ ബ 1

2 + √𝜀ഭ − 1
2ℍ ബ 1

2 − √𝜀ഭ = 𝜀
8 ln 2 + 𝑂(𝜀ӝ).

Finally, let Π be arbitrary making 𝐴, 𝐵 independent, and 𝜀 = 1. It follows

ℍ [𝐴, 𝐵 ල Π] = ℍ [𝐴 ල Π] + ℍ [𝐵 | Π]

= 2
3ℍ [𝐴 ල Π, 𝐵 = 0] + 2

3ℍ [𝐵 ල Π, 𝐴 = 0] = 4
3ℍ [𝐴, 𝐵 ල Π, 𝐷 = 0, 𝐶] .

Note that, e.g.,

ℍ [𝐴 ල Π] = ℍ [𝐴 ල Π, 𝐵] = ℙ ಪℍ [𝐴 ල Π, 𝐵 = 0] ල 𝐵 = 0ಫ + ℙ ಪℍ [𝐴 ල Π, 𝐵 = 1] ල 𝐵 = 1ಫ

= 2
3ℍ [𝐴 ල Π, 𝐵 = 0] ,

as ℍ [𝐴 ල Π, 𝐵 = 1] = 0.
We conclude that 𝕀 [𝐴, 𝐵; Π] = ͳ

ӗ𝕀 [𝐴, 𝐵; Π ල 𝐷 = 0, 𝐶] + ℍ [𝐴, 𝐵] − ͳ
ӗℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶], as

claimed. The entropies are easily calculated as

ℍ [𝐴, 𝐵] = log 3,
ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶] = 1.
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