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Abstract
We provide an information-theoretic framework for establishing strong lower bounds

on the nonnegative rank of matrices by means of common information, a notion previously
introduced in Wyner [1975]. The framework is a generalization of the one in Braverman
and Moitra [2013] for the shifted UDISJ (uniqe disjointness) matrix to arbitrary nonnega-
tive matrices. Common information is a natural lower bound for the nonnegative rank of
a matrix and by combining it with Hellinger distance estimations we compute the (almost)
exact common information of UDISJ (unique disjointness) partial matrix. The bounds are
obtained very naturally. We also establish robustness of this estimation under random or
adversarial removal of rows and columns of the UDISJ partial matrix. This robustness trans-
lates, via a variant of Yannakakis’s Factorization Theorem, to lower bounds on the average
case and adversarial approximate extension complexity of removals. We present the first
family of polytopes, the hard pair introduced in Braun et al. [2015] related to the CLIQUE
problem, with high average case and adversarial approximate extension complexity of re-
movals. The framework relies on a strengthened version of the link between information
theory and Hellinger distance from Bar-Yossef et al. [2004]. We also provide an information
theoretic variant of the fooling set method that allows us to extend fooling set lower bounds
from extension complexity to approximate extension complexity.

1 Introduction
Nonnegative matrix factorization plays a crucial role in many disciplines of theoretical com-
puter science and mathematics, such as machine learning, data mining and data analysis, quan-
tum mechanics, probability theory, communication complexity, convex geometry, polyhedral
combinatorics, and many more. Nonnegative factorizations have also been studied very early
on in information theory, however reinterpreting them as probability distributions, and the no-
tion of common information introduced in Wyner [1975] provides a very natural information
theoretic lower bound on the nonnegative rank. Despite its many applications in different dis-
ciplines, our analysis is conducted with approximate extended formulations in mind. In fact
due to Yannakakis’s factorization theorem (see Yannakakis [1988, 1991]) and the equivalence to
a communication model given in Faenza et al. [2012] and Zhang [2012], it turns out that many
open problems regarding the size of an optimal (exact or approximate) linear representation of
a combinatorial optimization problem are equivalent to questions about the nonnegative rank of
certain matrices and the related communication problems. Only recently, two major open prob-
lems in the theory of extended formulations were solved. In Rothvoß [2014] it was proven that
every linear programming formulation of the matching polytope has exponential size. Later it
was also established in Braun and Pokutta [2015] that for all fixed 0 < 𝜀 < 1, even every linear
program approximating the matching polytope by a factor of (1 + 𝜀/𝑛) must have exponential
size, where 𝑛 is the number of nodes. In Chan et al. [2013] it was shown that MAXCUT cannot
be approximated better than 1/2 − 𝜀 via any linear program of polynomial size. Other impor-
tant problems include whether a generic polygon needs a linear number of inequalities in any
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linear representation in the worst case; for the latter for example the best-known lower bound
is Ω(√𝑛) by Fiorini et al. [2012b] and the best-known upper bound is 6

7𝑛 by Shitov [2014]. We
refer the interested reader to the excellent surveys Conforti et al. [2010] and Kaibel [2011] for
an introduction.

A typical approach to lower bound the nonnegative rank is via techniques from communi-
cation complexity, see e.g., Faenza et al. [2012] and Zhang [2012] interpreting nonnegative rank
as communication in expectation. Whereas in communication complexity only the support of
the matrix matters, for nonnegative rank the actual value of the entries matter too, especially
if the matrix has full support, i.e., all entries are positive. This requires improved arguments
for lower bounding the nonnegative rank, like the hyperplane separation bound used for max-
imum matching in Rothvoß [2014]. Here we use the analogue of information cost in communi-
cation complexity, inspired by the recent work of Braverman and Moitra [2013], where a 2𝑂(𝑛𝜀)

lower bound on the nonnegative rank of the unique disjointness (partial) matrix (UDISJ) was
obtained. Therefore with the elegance of a direct sum argument as in Bar-Yossef et al. [2004],
we establish strong lower bounds on large submatrices of UDISJ by means of information the-
ory and common information in a generalized framework, which has no direct connection to
communication. These bounds translate into lower bounds for the average case and the ad-
versarial approximate extension complexity of perturbations. Although this work does not
provide lower bounds for matrices significantly differing from the original UDISJ matrix, our
approach can be applied to other matrices (see e.g., Braun and Pokutta [2015] for the case of the
matching slack matrix).
Related work
While nonnegative factorizations have a huge variety of applications we will focus on the par-
ticular link between nonnegative matrix factorization, information theory and communica-
tion complexity, as well as extended formulations. Especially for the latter, nonnegative ma-
trix factorizations and lower bounds for those are the main (arguably even the only) strong
tools to establish lower bounds on the extension complexity. As mentioned above, the rela-
tion to extended formulations and nonnegative factorizations is established by the fundamen-
tal factorization theorem of Yannakakis (see Yannakakis [1988, 1991]). Given a polytope 𝑃 =
conv (𝑣1, … , 𝑣𝑛) = {𝑥 ∶ 𝐴𝑥 ≤ 𝑏}, a slack matrix of a polytope is given by the matrix 𝑆𝑖𝑗 = 𝑏𝑖−𝐴𝑖𝑣𝑗
for all 𝑖, 𝑗. Yannakakis’s theorem establishes that the extension complexity xc(𝑃) of a polytope
𝑃, that is the minimum number of linear inequalities needed in any linear programming for-
mulation so that its feasible region linearly projects to the given polytope 𝑃, is equal to the
nonnegative rank of any of the polytope’s slack matrices 𝑆, i.e., xc(𝑃) = rank+(𝑆). Using this
link, a super-polynomial lower bound have been established in Fiorini et al. [2012a] on the ex-
tension complexity of the correlation polytope, the cut polytope, the stable set polytope, and
the TSP polytope. A crucial part of the proof is a strong lower bound on the nondeterminis-
tic communication complexity of the unique disjointness (partial) matrix (UDISJ), which was
initially obtained by Wolf [2003] using Razborov [1992]. An existence proof of a polytope with
high extension complexity, or equivalently of a slack matrix with high nonnegative rank, was
given in Rothvoß [2013] via a beautiful counting argument. By means of a reduction mecha-
nism, lower bounds have been also obtained for various other polytopes (see Avis and Tiwary
[2015], Pokutta and Van Vyve [2013]) using the lower bound in Fiorini et al. [2012a].

The notion of extended formulations can be generalized to approximate extended formula-
tions, giving rise to the notion of the 𝜌-approximate extension complexity where 𝜌 is the per-
formance guarantee. Here one considers polyhedral extensions that approximately project to a
given polytope (e.g., relaxations as often used in approximation algorithms) and in Braun et al.
[2015] it was shown that (a natural linear encoding of) the CLIQUE problem cannot be approx-
imated within a factor better than 𝑛1/2−𝜀 with a linear program using a polynomial number
of inequalities. A similar inapproximability result was obtained for a certain spectrahedron
(of small size) showing that SDPs have indeed much more expressive power than LPs. Subse-
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quently, these bounds were improved to 𝑛1−𝜀 in Braverman and Moitra [2013], matching the
algorithmic inapproximability result of Håstad [1999] for CLIQUE. Recently, using our Corol-
lary 5.10, strong lower bounds on the average case polyhedral complexity of the stable set prob-
lem have been established in Braun et al. [2013a].

Algorithms for nonnegative matrix factorizations have been considered, e.g., in Arora et al.
[2012], Moitra [2013], Gillis [2012]. Regarding lower bounding techniques, works closely related
to ours are the original work of Razborov [1992] and its generalization in Braun et al. [2015], the
information theoretic approaches of Bar-Yossef et al. [2004] and Braverman and Moitra [2013],
as well as the notion of common information introduced in Wyner [1975], the notion of cor-
relation complexity from Zhang [2012], and the analysis of common information in terms of
distribution approximation in Jain et al. [2013]. We combine crucial insights from these works
linking them more closely together. As a follow-up to our work, in Braun et al. [2013b], it was
shown that the amortized log nonnegative rank of a matrix is equal to the common information
and sharp bounds on the convergence behavior have been established.
Contribution
Our main contributions can be separated into three parts. (A) We introduce a new framework
for lower bounding the rank of a matrix by means of common information and Hellinger dis-
tance. (B) In this framework we simplify and extend previous results for the lower bound on
the nonnegative rank of the UDISJ matrix and (C) we sketch applications and implications for
(approximate) extended formulations.

While the framework is geared towards lower bounding the nonnegative rank of a matrix,
it is conceivable that some insights translate to communication complexity.

(A) A generalized framework for lower bounding the nonnegative rank. We interpret a nonnegative matrix
factorization as compression of correlation, which leads to the well-known notion of common
information introduced in Wyner [1975]: We regard a nonnegative matrix 𝑀 ∈ ℝ𝑚×𝑛

+ (after
scaling) as a joint probability distribution over rows and columns. A nonnegative factorization
decomposes it to a sum of product distributions, i.e., making the row and column conditionally
independent. The ‘correlation complexity’ of the distribution induced by 𝑀 has to be captured
by the random variable Π choosing the summand in the factorization. This is a straightforward
generalization of the sampling procedure yielding a uniform distribution for the UDISJ matrix
in [Braverman and Moitra, 2013, Algorithm 1], with the new element that the target distribution
is now 𝑀.
The constructed probability space enables the use of information theoretic tools, as in Braver-
man and Moitra [2013], but here we explicitly use mutual information, (and hence common
information), together with the direct sum property as in Bar-Yossef et al. [2004]. We derive a
strengthened cut-and-paste property of the Hellinger distance, improving over the communica-
tion version given in Bar-Yossef et al. [2004], which is at the core of many proofs for establishing
lower bounds later.
Our main tools for the analysis are of an information theoretic nature, inspired by the recent
work Braverman et al. [2013a,b], and Hellinger distance from Bar-Yossef et al. [2004].

(B) (Almost) Optimal lower bounds for (large submatrices of) UDISJ. We use the new paradigm to repli-
cate and extend previous results for lower bounding the nonnegative rank of the UDISJ matrix
in a very concise and consistent way. The UDISJ matrix is a partial matrix 𝑀 ⊆ ℝ2[𝑛]×2[𝑛]

+ with
𝑀(𝑎, 𝑏) = 1 if 𝑎 ∩ 𝑏 = ∅ and 𝑀(𝑎, 𝑏) = 0 if ∣𝑎 ∩ 𝑏∣ = 1 with 𝑎, 𝑏 ⊆ [𝑛]. We first analyze (shifts of)
the UDISJ matrix as those are of particular importance in the study of (approximate) extended
formulations (see Braun et al. [2015] for details). To this end, we strengthen the core estimation
of Bar-Yossef et al. [2004] via the new cut-and-paste property in Theorem 4.1. The obtained
bounds for the common information of the UDISJ pattern (on 𝑛 bit strings) of 6−3 log 3

4 𝑛 when
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conditioning on disjoint strings and 2
3𝑛 in general are optimal for the case without shift and we

provide matching factorizations of (a completion of) UDISJ realizing these bounds. The lower
bounds on common information lead to lower bounds on the nonnegative rank optimal up to a
small linear factor. In the case with shifts, the bounds on the common information are optimal
up to a factor of 1/ ln 2. Using the same framework we analyze various large submatrices of
UDISJ which are crucial for analyzing the average case and adversarial approximate extension
complexity of a family of polytopes (see (C) below).
We obtain lower bounds as indicated in the table. In the following [𝑛] ≔ {1, … , 𝑛}. Shifts
refer to adding a constant to each entry of the UDISJ pattern (i.e., for pairs 𝑎, 𝑏 ⊆ [𝑛] with
∣𝑎 ∩ 𝑏∣ ∈ {0, 1}).

Perturbation log rank+ ≥ Remarks
(0) UDISJ 6−3 log 3

4 𝑛 Optimal estimation
(1) Shifts of UDISJ 1

8𝜌𝑛 (𝜌 − 1)-shift
(2) Sets of fixed size 𝑛

4 + 𝑂(𝑛1−𝜀) 𝑛
8𝜌 − 𝑂(𝑛1−𝜀)

Removing a fraction of rows and columns from UDISJ (remaining dimension indicated)
(3) Random 2(1−𝛼)𝑛 × 2(1−𝛽)𝑛 ( 1

8𝜌 − 𝛼 − 𝛽)𝑛 in expectation
(4) Adversarial (1 − 𝛼)2𝑛 × (1 − 𝛽)2𝑛 ( 1

8𝜌 − 𝛼 − 𝛽)𝑛 − log 3 removal of fractions per size

The precise statements for (1) and (2) are to be found in Section 4 in Theorem 4.1, Proposition 4.3,
and Theorem 4.4; (3) and (4) in Section 5.1 in Corollary 5.3, Corollary 5.7, and Corollary 5.10.
Cases (3) and (4) give rise to lower bounds on the average and adversarial extension complexity
of the hard pair in Braun et al. [2015]. In a polyhedral context these could be understood as
moving vertices (changing a whole column of the slack matrix) which is captured by this model.

(C) Applications to approximate extended formulations. We provide the first example of a family of
polytopes with high average case approximate extension complexity and adversarial approximate ex-
tension complexity. The considered family is the hard pair from Braun et al. [2015] and it is
closely related to the CLIQUE problem; a more formal definition of the pair as well as approx-
imate extension complexity is to be found in Section 2.2. The associated slack matrix has rows
indexed by cliques and columns indexed by graphs (where we confine ourselves to stable sets
only) and the entries denote the difference between the size of the clique and the largest clique
in the graph. For the subsets of graphs that corresponds to stable sets the resulting matrix
contains the UDISJ pattern as submatrix; we refer the interested reader to Braun et al. [2015]
for more details. The variants studied in (B) correspond now to the removal of cliques or sta-
ble sets and translate to lower bounds on the average case and adversarial approximate extension
complexity of the hard pair. More precisely, in Corollary 5.11 we show that when restricting
to cliques and stable sets of a given size 𝑘, then the extension complexity remains high even
for a 𝜌-approximate extended formulation. In Corollary 5.12 we show that even when an ad-
versary can remove an 𝛼-fraction of cliques for each size 𝑘 and a 𝛽-fraction of stable sets for
each size 𝑘, then the 𝜌-approximate extension complexity remains high. We then combine, in
Corollary 5.13, both results and show that even if we only consider cliques and stable sets of
a fixed size 𝑘 and an adversary can remove a large fraction of cliques and stable sets, then the
𝜌-approximate extension complexity remains high. These new bounds are at the core of the
uniform average case model in Braun et al. [2013a], showing that the maximum stable set prob-
lem has super-polynomial complexity for any random class of graphs, and hence the hardness
is spread out among the graphs and not concentrated to a small fraction.
Finally, we obtain a new information theoretic fooling set method, in Corollary 6.1, from our frame-
work that allows for obtaining lower bounds from ‘approximate’ fooling sets. In this context,
a fooling set for a matrix 𝑀 is a set of indices (𝑎, 𝑏) so that 𝑀(𝑎, 𝑏) ≠ 0 however for any two
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distinct pairs (𝑎1, 𝑏1), (𝑎2, 𝑏2), either 𝑀(𝑎1, 𝑏2) = 0 or 𝑀(𝑎2, 𝑏1) = 0 and the size of a fooling
set is a lower bound on the nonnegative rank due to the rectangle property. We can relax this
condition to only require that 𝑀(𝑎1, 𝑏2) and 𝑀(𝑎2, 𝑏1) need to be reasonably small. By doing
so, any lower bound for the extension complexity of a polytope from a fooling set immediately
gives rise to a lower bound for 𝜌-approximate extension complexity of that polytope where 𝜌
is some small approximation factor.

Outline
In Section 2 we recall notions from information theory, including Hellinger distance of dis-
tributions, and prove basic lower bounds used later. We also provide a brief overview of ap-
proximate extended formulations. We then present the general framework for nonnegative
factorizations in Section 3. In Section 4 we apply the framework to the UDISJ matrix where we
obtain a very compact proof for its high nonnegative rank and we provide (almost) matching
upper bounds. We then proceed with considering removal of rows and columns of the UDISJ
matrix, both in a random and adversarial fashion in Section 5. In Section 6 we introduce the
approximate fooling set method and we conclude with some final remarks in Section 7. At the
end of each section we provide implications for approximate extended formulations.

2 Preliminaries
2.1 Information theory and distance of distributions
We will now briefly recall basic notions from information theory. For a detailed introduction
see Cover and Thomas [2006]. In the following, capital letters will represent random vari-
ables; we will slightly abuse notation sometimes and also use capital letters for events. Fur-
ther, log(.) denotes the logarithm to base 2 and ln(.) is the natural logarithm. Let ℍ [𝐴] ≔
∑𝑎∈range(𝐴) ℙ [𝐴 = 𝑎] log(1/ ℙ [𝐴 = 𝑎]) denote the entropy of a discrete random variable 𝐴 and
for 0 ≤ 𝑝 ≤ 1 let ℍ [𝑝] = 𝑝 log 1/𝑝+(1−𝑝) log[1/(1−𝑝)] be the entropy of a coin with bias 𝑝. This
definition extends to conditional entropy ℍ [𝐴 ∣ 𝐵] by using the respective conditional distribu-
tion, but note that expectation is automatically taken: i.e., ℍ [𝐴 ∣ 𝐵] = ∑𝑏 ℙ [𝐵 = 𝑏] ℍ [𝐴 ∣ 𝐵 = 𝑏].

Fact 2.1 (Properties of entropy).

Obvious bounds 0 ≤ ℍ [𝐴] ≤ log ∣range(𝐴)∣;

Monotonicity ℍ [𝐴] ≥ ℍ [𝐴 ∣ 𝐵];

Chain rule ℍ [𝐴, 𝐵] = ℍ [𝐴] + ℍ [𝐵 ∣ 𝐴].
A central notion is the mutual information 𝕀 [𝐴; 𝐵] ≔ ℍ [𝐴] − ℍ [𝐴 ∣ 𝐵] of two random vari-

ables 𝐴 and 𝐵, which captures how much information about 𝐴 is leaked by considering 𝐵 in-
stead. Formally, 𝐴 and 𝐵 can also be a collection of variables considered as one variable: a
comma is used to separate the components of 𝐴 or 𝐵, and a semicolon to separate 𝐴 and 𝐵
themselves: e.g., 𝕀 [𝐴1, 𝐴2; 𝐵] = 𝕀 [(𝐴1, 𝐴2); 𝐵].

Mutual information is symmetric and extends to conditional mutual information 𝕀 [𝐴; 𝐵 ∣ 𝐶]
by using the respective conditional distributions where 𝐶 is a random variable. Expectation is
also automatically taken here. Note that entropy is a special case: ℍ [𝐴] = 𝕀 [𝐴; 𝐴].

We will condition on both events and random variables with the usual automatic expectation
convention, as explained above. However, conditioning on a random variable Π, the condi-
tional probability ℙ [𝐴 = 𝑎 ∣ Π] is a function ℙ [𝐴 = 𝑎 ∣ Π = 𝜋] in 𝜋, as customary.

Fact 2.2 (Properties of mutual information).

Obvious bounds If 𝐴 is a discrete variable, then 0 ≤ 𝕀 [𝐴; 𝐵 ∣ 𝐶] ≤ ℍ [𝐴] ≤ log ∣range(𝐴)∣.

Chain rule 𝕀 [𝐴1, 𝐴2; 𝐵] = 𝕀 [𝐴1; 𝐵] + 𝕀 [𝐴2; 𝐵 ∣ 𝐴1].
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Symmetry

1. 𝕀 [𝐴; 𝐵] = 𝕀 [𝐵; 𝐴].
2. 𝕀 [𝐴; 𝐵] − 𝕀 [𝐴; 𝐵 ∣ 𝐶] is symmetric in 𝐴, 𝐵, 𝐶.

Monotonicity 𝕀 [𝐴; 𝐵] ≥ 𝕀 [𝐴; 𝐵 ∣ 𝐶] if 𝕀 [𝐴; 𝐶 ∣ 𝐵] = 0 or 𝕀 [𝐵; 𝐶 ∣ 𝐴] = 0.

Independent variables

1. If 𝐴 and 𝐵 are independent, then 𝕀 [𝐴; 𝐵] = 0.
2. If 𝐴1, … , 𝐴𝑛 are mutually independent, then 𝕀 [𝐴1, … , 𝐴𝑛; 𝐶] ≥ ∑𝑖∈[𝑛] 𝕀 [𝐴𝑖; 𝐶].

In the proof of our main theorem we will rely on the (squared) Hellinger distance of two
distributions.

Definition 2.3 (Hellinger distance). Let 𝜇𝐴, 𝜇𝐵 be discrete distributions over the same space.
Then their squared Hellinger distance is

ℎ2(𝜇𝐴; 𝜇𝐵) ≔ 1 − ∑
𝜋

√𝜇𝐴(𝜋)𝜇𝐵(𝜋) = 1
2 ∥√𝜇𝐴 − √𝜇𝐵∥2

2 ≥ 0,

where 𝜇𝐴(𝜋) and 𝜇𝐵(𝜋) are the probabilities of the element 𝜋 under 𝜇𝐴 and 𝜇𝐵, respectively
and √𝜇𝑋 with 𝑋 ∈ {𝐴, 𝐵} is to be understood element-wise.

We will apply the following relation between Hellinger distance, entropy, and mutual in-
formation. The second part of Lemma 2.4 is well known and was already proven in [Bar-Yossef
et al., 2004, Lemma 6.2].

Lemma 2.4. Let 𝐴 be a (generalized) binary random variable with values 𝑎1, 𝑎2, and Π an arbitrary
random variable. Then

ℍ [𝐴 ∣ Π] ≤ 2√ℙ [𝐴 = 𝑎1] ⋅ ℙ [𝐴 = 𝑎2](1 − ℎ2(Π|𝐴 = 𝑎1; Π|𝐴 = 𝑎2)).

In particular, if 𝐴 is uniformly distributed then 𝕀 [𝐴; Π] ≥ ℎ2(Π|𝐴 = 𝑎1; Π|𝐴 = 𝑎2).

Proof. By [Lin, 1991, Theorem 8], when ℙ [Π = 𝜋] ≠ 0:

ℍ [𝐴 ∣ Π = 𝜋] ≤ 2√ℙ [𝐴 = 𝑎1 ∣ Π = 𝜋] ⋅ ℙ [𝐴 = 𝑎2 ∣ Π = 𝜋]

=
2√ℙ [𝐴 = 𝑎1] ⋅ ℙ [𝐴 = 𝑎2]

ℙ [Π = 𝜋] ⋅ √ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎1] ⋅ ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎2].

Taking expectation proves the first claim. The second claim obviously follows from the first
one.

We will now provide a generalization to uniform variables with more values.

Lemma 2.5. Let 𝑍 be a uniform random variable on 𝑛 values, and Π another random variable. Then

𝕀 [𝑍; Π] ≥ log 𝑛 − 1
𝑛 ∑

𝑧1,𝑧2∈range(𝑍)
𝑧1≠𝑧2

(1 − ℎ2(Π|𝑍 = 𝑧1; Π|𝑍 = 𝑧2)) . (1)
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Proof. First, we prove by induction on 𝑛 that for all probability distributions 𝑝1, … , 𝑝𝑛:

ℍ [𝑝1, … , 𝑝𝑛] ≤ 2 ∑
1≤𝑖<𝑗≤𝑛

√𝑝𝑖𝑝𝑗. (2)

The case 𝑛 = 1 is clear, and 𝑛 = 2 is [Lin, 1991, Theorem 8], see also [Bar-Yossef et al., 2004,
Lemma 6.2]. For 𝑛 > 2, let us choose an integer 1 < 𝑘 < 𝑛. Let 𝑋 be a random variable
with range [𝑛] and distribution ℙ [𝑋 = 𝑖] = 𝑝𝑖. Let 𝐼𝑋≤𝑘 be the indicator of the event 𝑋 ≤ 𝑘.
Applying the induction hypothesis:

ℍ [𝑝1, … , 𝑝𝑛] = ℍ [𝑋] = ℍ [𝑋, 𝐼𝑋≤𝑘] = ℍ [𝐼𝑋≤𝑘] + ℍ [𝑋 ∣ 𝐼𝑋≤𝑘]

≤ 2√(𝑝1 + … + 𝑝𝑘)(𝑝𝑘+1 + … + 𝑝𝑛) + (𝑝1 + … + 𝑝𝑘) ∑
1≤𝑖<𝑗≤𝑘

2√ 𝑝𝑖
𝑝1 + … + 𝑝𝑘

⋅
𝑝𝑗

𝑝1 + … + 𝑝𝑘

+ (𝑝𝑘+1 + … + 𝑝𝑛) ∑
𝑘+1≤𝑖<𝑗≤𝑛

2√ 𝑝𝑖
𝑝𝑘+1 + … + 𝑝𝑛

⋅
𝑝𝑗

𝑝𝑘+1 + … + 𝑝𝑛

≤ 2 ∑
1≤𝑖≤𝑘

√𝑝𝑖 ⋅ ∑
𝑘+1≤𝑗≤𝑛

√𝑝𝑗 + 2 ∑
1≤𝑖<𝑗≤𝑘

√𝑝𝑖𝑝𝑗 + 2 ∑
𝑘+1≤𝑖<𝑗≤𝑛

√𝑝𝑖𝑝𝑗 = 2 ∑
𝑖<𝑗

√𝑝𝑖𝑝𝑗.

Now we turn to the proof of the lemma. For simplicity, let us assume that the range of 𝑍 is
[𝑛] and we introduce the shorthand 𝑝𝑖(𝜋) = ℙ [𝑍 = 𝑖 | Π = 𝜋]. Applying (2) to the distribution
of 𝑍 conditioned on Π:

ℍ [𝑍 | Π = 𝜋] ≤ ∑
𝑖≠𝑗

√𝑝𝑖(𝜋)𝑝𝑗(𝜋).

We take now expectation of both sides. Because (if Π is non-discrete, the left-hand side below
should be the Radon–Nikodym derivative d(Π|𝑍 = 𝑖)/dΠ)

ℙ [Π = 𝜋 | 𝑍 = 𝑖]
ℙ [Π = 𝜋] = ℙ [𝑍 = 𝑖 | Π = 𝜋]

ℙ [𝑍 = 𝑖] = 𝑛𝑝𝑖(𝜋),

we obtain
ℍ [𝑍 | Π] ≤ 1

𝑛 ∑
𝑖≠𝑗

(1 − ℎ2(Π|𝑍 = 𝑖; Π|𝑍 = 𝑗)) .

As 𝕀 [𝑍; Π] = ℍ [𝑍] − ℍ [𝑍 | Π], the result follows.

2.2 Approximate extended formulations
We will now briefly introduce the necessary notions and results from (approximate) extended
formulations. For a more complete overview we refer the interested reader to the excellent
surveys Conforti et al. [2010] and Kaibel [2011] as well as Pashkovich [2012], Braun et al. [2015].

The approximate extended formulation model is based on a pair of polyhedra 𝑃 ⊆ 𝑄. The facets
of the outer polyhedron 𝑄 correspond to the (generators of) objective functions of interest, and
the vertices of the inner polytope 𝑃 correspond to feasible solutions. The extension complexity
xc(𝑃, 𝑄) of the pair 𝑃, 𝑄 is defined to be the minimum number of facets of a polyhedron 𝐾 having
an affine image sandwiched between 𝑃 and 𝑄, i.e., there is an affine map proj ∶ 𝐾 → 𝑄 with
𝑃 ⊆ proj 𝐾. We might want to think of (the projection of) 𝐾 as being a relaxation of 𝑃 which
we only require to be exact for the objective functions generated over 𝑄. The polyhedron 𝑄
is typically given by the inequalities of the form 𝑐𝑥 ≤ max𝑥∈𝑃 𝑐𝑥 where 𝑐 is a linear objective
function of interest. In order to study the size of such relaxations, we need the concept of a
slack matrix.

Definition 2.6 (Slack matrix of a pair of polyhedra). Given a polytope 𝑃 = conv (𝑣1, … , 𝑣𝑛)
and a polyhedron 𝑄 = {𝑥 ∶ 𝐴𝑥 ≤ 𝑏}, the slack matrix of the pair 𝑃, 𝑄 is given by the matrix 𝑆𝑖𝑗 =
𝑏𝑖 − 𝐴𝑖𝑣𝑗 for all 𝑖, 𝑗.
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It turns out that Yannakakis’s factorization theorem (see Yannakakis [1988, 1991]) extends
to this case. Recall that the nonnegative rank rank+ 𝑆 of a nonnegative matrix 𝑆 is the smallest
nonnegative integer 𝑟 such that 𝑆 = ∑𝑖∈[𝑟] 𝑆𝑖 is a sum of nonnegative matrices 𝑆𝑖 of rank 1.

Theorem 2.7 (Pashkovich [2012], Braun et al. [2015]). Let 𝑃, 𝑄 be a polyhedral pair and let 𝑆 be any
of its slack matrices. Then rank+ 𝑆 − 1 ≤ 𝑥𝑐(𝑃, 𝑄) ≤ rank+ 𝑆. (Equality holds if 𝑃, 𝑄 are polytopes)

We obtain the notion of the 𝜌-approximate extension complexity of the pair 𝑃, 𝑄

Definition 2.8 (𝜌-approximate extension complexity). Let 𝑃, 𝑄 be a polyhedral pair and let 𝜌 ≥
1. The 𝜌-approximate extension complexity of 𝑃, 𝑄 is defined as xc(𝑃, 𝜌𝑄), where 𝜌𝑄 is the 𝜌-dilate
of 𝑄 (and we assume 𝑃 ⊆ 𝜌𝑄).

This notion corresponds precisely to the minimum number of facets in any polyhedral re-
laxation of 𝑃 so that for any linear objective function generated from 𝑄 (as positive combination
of the facets) the maximum over the relaxation is within a factor of at most 𝜌 compared to the
maximum over 𝑃. This coincides with the standard notion of an approximation factor.

If 𝑆 is a slack matrix for the pair 𝑃 = conv (𝑣1, … , 𝑣𝑛) and 𝑄 = {𝑥 ∶ 𝐴𝑥 ≤ 𝑏}, then a slack
matrix ̃𝑆 for the pair 𝑃, 𝜌𝑄 is obtained simply as ̃𝑆𝑖𝑗 = 𝑆𝑖𝑗 + (𝜌 − 1)𝑏𝑖 with the above definition,
i.e., we shift the slack matrix by adding positive entries. We obtain

Corollary 2.9. Let 𝑃 = conv (𝑣1, … , 𝑣𝑛), 𝑄 = {𝑥 ∶ 𝐴𝑥 ≤ 𝑏} be a polyhedral pair and let 𝑆 be the
associated slack matrix. Then

rank+(𝑆 + (𝜌 − 1)𝐵) − 1 ≤ xc(𝑃, 𝜌𝑄) ≤ rank+(𝑆 + (𝜌 − 1)𝐵),

where 𝐵𝑖𝑗 = 𝑏𝑖 for all 𝑖, 𝑗. (Equality holds if 𝑃, 𝑄 are polytopes)

We are mainly interested in the pair 𝑃 = COR(𝑛) ≔ conv ({𝑏𝑏𝑇 ∶ 𝑏 ∈ {0, 1}𝑛}), 𝑄 = 𝑄(𝑛) =
{𝑥 ∈ ℝ𝑛×𝑛

+ ∶ ⟨2 diag(𝑎) − 𝑎𝑎𝑇 , 𝑥⟩ ≤ 1, 𝑎 ∈ {0, 1}𝑛} from Braun et al. [2015], where both the ver-
tices of 𝑃 and edges of 𝑄 are indexed by subsets of [𝑛], and the slack matrix 𝑀 of the pair is
𝑀(𝑎, 𝑏) = (1 − ∣𝑎 ∩ 𝑏∣)2 which is an extension of the unique disjointness matrix. The vertices of
𝑃 are considered as possible cliques, and the facets of 𝑄 are discrete subgraphs, i.e., stable sets.

3 Lower bounds via common information
Our approach is a combination of the sampling framework introduced in Braverman and Moitra
[2013], previous lower bounding techniques given in Bar-Yossef et al. [2004] relying on the
Hellinger distance, and common information approach of Wyner [1975]. We will use the fol-
lowing link between the nonnegative rank of a matrix and a latent random variable Π choosing
rank-1 matrices in the decomposition, which is equivalent to the framework in Wyner [1975].
Recall that random variables are denoted by capital letters.

Definition 3.1 (Common information). Let 𝐴, 𝐵 be random variables, and 𝑍 an event, a random
variable or a mixture of both. The common information of 𝐴, 𝐵 given 𝑍 is the quantity

ℂ [𝐴; 𝐵 ∣ 𝑍] ≔ inf
Π ∶ 𝐴⟂𝐵∣Π
Π⟂𝑍∣𝐴,𝐵

𝕀 [𝐴, 𝐵; Π ∣ 𝑍] , (3)

where the infimum is taken over all random variables Π in all extensions of the probability
space making

1. 𝐴 and 𝐵 conditionally independent given Π,

2. 𝑍 and Π conditionally independent given 𝐴 and 𝐵.

The Π satisfying the above conditions will be called seed.
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Remark 3.2. Common information was introduced in [Wyner, 1975, Eq (1.10)]. We extended this
definition in the obvious way to the conditional version, which will play a crucial role later. The
term seed for Π was adopted from Jain et al. [2013].

The conditional independence of 𝑍 and Π formulates the natural requirement to forbid Π
making use of the external condition 𝑍.

It is worthwhile to observe that the partitions in Razborov [1992] serve a similar purpose,
i.e., making two quantities conditionally independent.

Definition 3.3 (Induced distribution). Let 𝑀 be a nonnegative matrix. Its induced distribution
consists of a random row 𝐴 of 𝑀, and a random column 𝐵 of 𝑀 with probabilities

ℙ [𝐴 = 𝑎, 𝐵 = 𝑏] = 𝑀(𝑎, 𝑏)
∑𝑥,𝑦 𝑀(𝑥, 𝑦)

for every row 𝑎 and column 𝑏. We define the common information of 𝑀 conditioned on 𝑍 as

ℂ [𝑀 | 𝑍] ≔ ℂ [𝐴; 𝐵 ∣ 𝑍] . (4)

Common information is a continuous measure of information contained in a factorization
and it is easily seen that it lower bounds (the log of) the nonnegative rank as it bounds ℍ [Π]
from below. Note however that we consider the common information conditioned on 𝑍 to fine-tune
the distribution of 𝐴, 𝐵 for better bounds; we also need to condition as we will work with partial
matrices, i.e., only partially-defined distributions.

Lemma 3.4. Every nonnegative factorization of a nonnegative matrix 𝑀 induces a seed with range of
size of the number of summands in the factorization. In particular, log rank+ 𝑀 ≥ ℂ [𝑀 | 𝑍] for any
condition 𝑍.

Proof. Let a factorization of 𝑀 be given by

𝑀(𝑎, 𝑏) = ∑
𝜋

𝛼𝜋(𝑎)𝛽𝜋(𝑏).

We introduce a fresh random variable Π running through the index 𝜋 in the factorization,
therefore having the same number of values as the number of summands. Given 𝐴, 𝐵, the
value of Π is chosen with private probabilities (in particular independent of 𝑍 given 𝐴, 𝐵)

ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎, 𝐵 = 𝑏] = 𝛼𝜋(𝑎)𝛽𝜋(𝑏)
𝑀(𝑎, 𝑏) .

(When 𝑀(𝑎, 𝑏) = 0, i.e., ℙ [𝐴 = 𝑎, 𝐵 = 𝑏] = 0, then the distribution of Π can be chosen arbitrar-
ily.) It readily follows that

ℙ [Π = 𝜋] =
∑𝑥,𝑦 𝛼𝜋(𝑥)𝛽𝜋(𝑦)

∑𝑥,𝑦 𝑀(𝑥, 𝑦) ,

ℙ [𝐴 = 𝑎, 𝐵 = 𝑏 ∣ Π = 𝜋] = 𝛼𝜋(𝑎)𝛽𝜋(𝑏)
∑𝑥,𝑦 𝛼𝜋(𝑥)𝛽𝜋(𝑦) .

The right-hand side of the last formula is a product with every term depending only on either
𝑎, 𝜋 or 𝑏, 𝜋, verifying the conditional independence of 𝐴 and 𝐵 given Π.

Finally, by choosing a minimal factorization, the range of Π has size rank+ 𝑀:

log rank+ 𝑀 ≥ ∣range(Π)∣ ≥ ℍ [Π | 𝑍] ≥ 𝕀 [𝐴, 𝐵; Π ∣ 𝑍] ≥ ℂ [𝑀 | 𝑍] .
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The following lemma formulates the cut-and-paste property for correlation complexity,
which is stronger than the communication version. It will be useful to lower bound common
information.

Lemma 3.5 (Cut & paste). Let 𝐴, 𝐵 be discrete random variables conditionally independent given a
third variable Π. Let Π𝑎,𝑏 denote the distribution of Π conditioned on 𝐴 = 𝑎 and 𝐵 = 𝑏. Then

√ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏1]√ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏2] ⋅ (1 − ℎ2(Π𝑎1,𝑏1 ; Π𝑎2,𝑏2))
= √ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏2]√ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏1] ⋅ (1 − ℎ2(Π𝑎1,𝑏2 ; Π𝑎2,𝑏1)) (5)

for all values 𝑎1, 𝑎2 of 𝐴 and values 𝑏1, 𝑏2 of 𝐵. As a consequence, for nonzero ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏1] and
ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏2]:

ℎ2(Π𝑎1,𝑏1 ; Π𝑎2,𝑏2) ≥ 1 − √ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏2] ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏1]
ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏1] ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏2] . (6)

As a special case when 𝐴, 𝐵 are the random row and column of the induced distribution of a nonnegative
matrix 𝑀, and 𝑀(𝑎1, 𝑏1) and 𝑀(𝑎2, 𝑏2) are nonzero,

ℎ2(Π𝑎1,𝑏1 ; Π𝑎2,𝑏2) ≥ 1 − √𝑀(𝑎1, 𝑏2)𝑀(𝑎2, 𝑏1)
𝑀(𝑎1, 𝑏1)𝑀(𝑎2, 𝑏2) . (7)

Remark 3.6. If ℙ [𝐴 = 𝑎, 𝐵 = 𝑏] = 0 then Π𝑎,𝑏 is undetermined but for the statement above, it
can be chosen arbitrarily.

Proof. By independence,

ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏1 ∣ Π] ⋅ ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏2 ∣ Π] = ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏2 ∣ Π] ⋅ ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏1 ∣ Π] .

This can be written (if Π is discrete) via multiplying with ℙ [Π = 𝜋]2 as

ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏1] ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎1, 𝐵 = 𝑏1] ⋅ ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏2] ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎2, 𝐵 = 𝑏2]
= ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏2] ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎1, 𝐵 = 𝑏2]⋅ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏1] ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎2, 𝐵 = 𝑏1] ,

𝜋 ∈ range(Π).

(In general, instead of ℙ [Π = 𝜋 ∣ 𝐴 = 𝑎, 𝐵 = 𝑏] one should write the Radon–Nikodym deriva-
tive dΠ𝑎,𝑏/dΠ above, and integrate instead of summing up below.) Taking square root and
summing up

√ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏1] ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏2] ⋅ (1 − ℎ2(Π𝑎1,𝑏1 ; Π𝑎2,𝑏2))
= √ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏2] ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏1] ⋅ (1 − ℎ2(Π𝑎1,𝑏2 ; Π𝑎2,𝑏1))
≤ √ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏2] ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏1].

Using the latter inequality, it also follows

ℎ2(Π𝑎1,𝑏1 ; Π𝑎2,𝑏2) ≥ 1 − √ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏2] ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏1]
ℙ [𝐴 = 𝑎1, 𝐵 = 𝑏1] ℙ [𝐴 = 𝑎2, 𝐵 = 𝑏2] .
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4 An almost tight lower bound for (shifts of) UDISJ
In this section we will estimate the common information of matrices containing (shifts of) the
UDISJ patterns. We prove the following main theorem.

Theorem 4.1. Let 𝑀 be a nonnegative matrix with rows and columns indexed by all subsets of [𝑛]
satisfying

𝑀(𝑎, 𝑏) =
⎧{
⎨{⎩

1 if 𝑎 ∩ 𝑏 = ∅
1 − 𝜀 if ∣𝑎 ∩ 𝑏∣ = 1 (8)

for all 𝑎, 𝑏 ⊆ [𝑛]. (The other entries can be arbitrary nonnegative numbers.) Let 𝐶 = (𝐶1, … , 𝐶𝑛) be
a collection of 𝑛 fair coins independent of the induced distribution of 𝑀. If 𝐶𝑖 is heads, then let 𝐷𝑖 be
the indicator of 𝑖 belonging to the subset 𝐴 indexing the random row of 𝑀. If 𝐶𝑖 is tails, let 𝐷𝑖 be the
indicator of 𝑖 belonging to the subset 𝐵 indexing the random column. Let 𝐷 = (𝐷1, 𝐷2, … , 𝐷𝑛) be the
collection of the 𝐷𝑖; as a shorthand let 𝐷 = 0 denote 𝐷1 = 0, … , 𝐷𝑛 = 0. Then

ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] ≥ 𝜀𝑛
8 . (9)

Proof. Let 𝐴𝑖 and 𝐵𝑖 be the indicator of 𝑖 ∈ 𝐴 and 𝑖 ∈ 𝐵, respectively. Let Π be a seed for
𝐴, 𝐵. We reduce the analysis to the case 𝑛 = 1. Observe that ℙ [𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐 ∣ 𝐷 = 0] =
ℙ [𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐] / ℙ [𝐷 = 0] = 1/4𝑛 provided the values 𝑎, 𝑏, 𝑐 imply 𝐷 = 0. In other
words, 𝐴, 𝐵, 𝐶 are jointly uniformly distributed conditioned on 𝐷 = 0, hence the pairs {(𝐴𝑗, 𝐵𝑗) ∶
𝑗 ∈ [𝑛]} are independent given 𝐷 = 0, 𝐶, so that

𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] ≥ ∑
𝑗∈[𝑛]

𝕀 [𝐴𝑗, 𝐵𝑗; Π ∣ 𝐷 = 0, 𝐶] .

Now observe that the distribution of 𝐴𝑗, 𝐵𝑗, Π, 𝐷𝑗, 𝐶𝑗 given 𝐷𝑖 = 0 and 𝐶𝑖 for all 𝑖 ≠ 𝑗 satisfies the
assumptions for the case 𝑛 = 1. This can be seen by computing the probabilities via summing
up the ones of 𝐴, 𝐵. Therefore the case 𝑛 = 1 provides 𝕀 [𝐴𝑗, 𝐵𝑗; Π ∣ 𝐷 = 0, 𝐶] ≥ 𝜀/8, which
concludes the proof as ∑𝑗∈[𝑛] 𝕀[𝐴𝑗, 𝐵𝑗; Π ∣ 𝐷 = 0, 𝐶] ≥ 𝜀𝑛

8 follows.
It remains to prove the case 𝑛 = 1. Suggestively, we write 𝒜 for heads and ℬ for tails, so

e.g., 𝐷1 = 𝐴1 if 𝐶1 = 𝒜 . In a first step we identify the terms that need to be estimated:

𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] = 𝕀 [𝐴1, 𝐵1; Π ∣ 𝐷1 = 0, 𝐶1]

= 𝕀 [𝐴1, 𝐵1; Π ∣ 𝐷1 = 0, 𝐶1 = 𝒜] + 𝕀 [𝐴1, 𝐵1; Π ∣ 𝐷1 = 0, 𝐶1 = ℬ]
2 .

Now the event 𝐷1 = 0, 𝐶1 = 𝒜 is the same as 𝐴1 = 0, 𝐶1 = 𝒜 . As 𝐶1 is independent of 𝐴1, 𝐵1, Π
(recall that Π is a seed), we obtain

𝕀 [𝐴1, 𝐵1; Π ∣ 𝐷1 = 0, 𝐶1 = 𝒜] = 𝕀 [𝐴1, 𝐵1; Π ∣ 𝐴1 = 0] .

Let Π𝑎𝑏 denote the distribution of Π given 𝐴1 = 𝑎 and 𝐵1 = 𝑏. As 𝐴1, 𝐵1 is a uniform binary
variable given 𝐴1 = 0 by Equation (8), Lemma 2.4 applies:

𝕀 [𝐴1, 𝐵1; Π ∣ 𝐴1 = 0] ≥ ℎ2(Π00; Π01).

All in all, we obtain

𝕀 [𝐴1, 𝐵1; Π ∣ 𝐷1 = 0, 𝐶1 = 𝒜] ≥ ℎ2(Π00; Π01).

Similarly,

𝕀 [𝐴1, 𝐵1; Π ∣ 𝐷1 = 0, 𝐶1 = ℬ] ≥ ℎ2(Π00; Π10).
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Thus

𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] ≥ ℎ2(Π00; Π01) + ℎ2(Π00; Π10)
2 ≥ (ℎ(Π00; Π01) + ℎ(Π00; Π10))2

4
≥ ℎ2(Π01; Π10)

4 ≥ 𝜀
8,

where the second inequality follows with Cauchy-Schwarz and the third one is the triangle
inequality. The last inequality follows from Lemma 3.5 by the independence of 𝐴1 and 𝐵1 given
Π:

ℎ2(Π01; Π10) ≥ 1 − √ℙ [𝐴1 = 0, 𝐵1 = 0] ⋅ ℙ [𝐴1 = 1, 𝐵1 = 1]
ℙ [𝐴1 = 0, 𝐵1 = 1] ⋅ ℙ [𝐴1 = 1, 𝐵1 = 0] = 1 − √1 − 𝜀 ≥ 𝜀

2. (10)

Remark 4.2. The proof of Theorem 4.1 is mostly identical to the one in Bar-Yossef et al. [2004], ex-
cept the better cut-and-paste relation. This is due to considering correlation compression instead
of a protocol manifesting in ℙ [Π ∣ 𝐴 = 𝑎, 𝐵 = 𝑏], and not ℙ [𝐴 = 𝑎, 𝐵 = 𝑏 ∣ Π], decomposing into
a product 𝛼𝜋(𝑎)𝛽𝜋(𝑏) (see Lemma 3.5).

We will now provide an upper bound on the common information of the matrices occurring
in Theorem 4.1, showing that our estimation is tight up to a factor of 1/ ln 2. The factor stems
from estimating mutual information by the squared Hellinger distance via Lemma 2.4. We will
also derive the exact common information for the case 𝜀 = 1.

Proposition 4.3 (Common Information of UDISJ). With 𝐶, 𝐷 as in Theorem 4.1:

1. The lower bound of Theorem 4.1 is optimal up to a factor of 1/ ln 2 for small 𝜀: There is an extension
𝑀 of UDISJ with

ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] ≤ ( 𝜀
8 ln 2 + 𝑂(𝜀2)) 𝑛.

2. For 𝜀 = 1, we have for all extensions 𝑀

log rank+(𝑀) ≥ ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] ≥ 6 − 3 log 3
4 ⋅ 𝑛 ≈ 0.3113 ⋅ 𝑛,

and there is an 𝑀 realizing this bound.

Proof. We establish the case 𝑛 = 1 and then generalize to all 𝑛 by a simple tensor argument. We
consider the explicit decomposition of

𝑀 = (1 1
1 1 − 𝜀) = ⎛⎜

⎝
1
2

1−√𝜀
21+√𝜀

2
1−𝜀

2
⎞⎟
⎠

+ ⎛⎜
⎝

1
2

1+√𝜀
21−√𝜀

2
1−𝜀

2
⎞⎟
⎠

into nonnegative rank-1 matrices.
Even though the mutual information with the induced seed Π can be computed directly, we

present a short calculation explaining the terms of the formula. Let 𝐼(𝐴 = 𝐵) denote the indica-
tor of the event 𝐴 = 𝐵, which is independent of Π. Also note that 𝐴, 𝐵 and Π are independent
given 𝐴 = 𝐵. These independences imply

𝕀 [𝐴, 𝐵; Π] = 𝕀 [𝐴, 𝐵; Π ∣ 𝐼(𝐴 = 𝐵)]
= ℙ [𝐴 = 𝐵] ⋅ 𝕀 [𝐴, 𝐵; Π ∣ 𝐴 = 𝐵]⏟⏟⏟⏟⏟⏟⏟⏟⏟

0
+ ℙ [𝐴 ≠ 𝐵] ⋅ 𝕀 [𝐴, 𝐵; Π ∣ 𝐴 ≠ 𝐵]

= ℙ [𝐴 ≠ 𝐵] (ℍ [𝐴, 𝐵 ∣ 𝐴 ≠ 𝐵] − ℍ [𝐴, 𝐵 ∣ 𝐴 ≠ 𝐵, Π])

= 2
4 − 𝜀 (1 − ℍ [1 + √𝜀

2 ]) = 𝜀
4 ln 2 + 𝑂(𝜀2).
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For the conditional mutual information, we follow a straightforward approach:

𝕀 [𝐵; Π ∣ 𝐴 = 0] = ℍ [𝐵 ∣ 𝐴 = 0] − ℍ [𝐵 ∣ 𝐴 = 0, Π] = 1 − 1
2ℍ [ 1

2 + √𝜀] − 1
2ℍ [ 1

2 − √𝜀] ,

and similarly with 𝐴, 𝐵 exchanged. Hence

𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] = 𝕀 [𝐴, 𝐵; Π ∣ 𝐴 = 0] + 𝕀 [𝐴, 𝐵; Π ∣ 𝐵 = 0]
2

= 1 − 1
2ℍ [ 1

2 + √𝜀] − 1
2ℍ [ 1

2 − √𝜀] = 𝜀
8 ln 2 + 𝑂(𝜀2).

For 𝜀 = 1 we can say more: The decomposition is optimal in both the conditional and uncon-
ditional case, and we can explicitly determine the common information. For the unconditional
case ℂ[𝑀] = 2

3 as proved in [Witsenhausen, 1976, Theorem 7].
The conditional case follows by a functional relationship between the conditional and un-

conditional mutual information for every seed Π:

ℍ [𝐴, 𝐵 ∣ Π] = ℍ [𝐴 ∣ Π] + ℍ [𝐵 | Π]

= 2
3ℍ [𝐴 ∣ Π, 𝐵 = 0] + 2

3ℍ [𝐵 ∣ Π, 𝐴 = 0] = 4
3ℍ [𝐴, 𝐵 ∣ Π, 𝐷 = 0, 𝐶] ,

where

ℍ [𝐴 ∣ Π] = ℍ [𝐴 ∣ Π, 𝐵] = ℙ [𝐵 = 0] ℍ [𝐴 ∣ Π, 𝐵 = 0] + ℙ [𝐵 = 1] ℍ [𝐴 ∣ Π, 𝐵 = 1]

= 2
3ℍ [𝐴 ∣ Π, 𝐵 = 0] ,

as ℍ [𝐴 ∣ Π, 𝐵 = 1] = 0.
We conclude that

𝕀 [𝐴, 𝐵; Π] = 4
3𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] + ℍ [𝐴, 𝐵] − 4

3ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶] .

The entropies are easily calculated as

ℍ [𝐴, 𝐵] = log 3,
ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶] = 1.

Finally, taking infimum leads to

ℂ [𝑀] = 4
3ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] + ℍ [𝐴, 𝐵] − 4

3ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶] . (11)

In particular, ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] = (6 − 3 log 3)/4 ≈ 0.3113. Thus, with the lower bound from
Theorem 4.1, the claims follow for 𝑛 = 1.

To generalize the above decomposition to all 𝑛, we take 𝑛 independent copies (𝐴𝑖, 𝐵𝑖, Π𝑖 ∶ 𝑖 ∈
[𝑛]) of the variables. This distribution is obviously induced by the matrix 𝑀(𝑎, 𝑏) = (1 − 𝜀)∣𝑎∩𝑏∣

extending UDISJ, given Π the variables 𝐴 and 𝐵 are independent, and 𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] =
∑𝑖∈[𝑛] 𝕀 [𝐴𝑖, 𝐵𝑖; Π𝑖 ∣ 𝐷𝑖 = 0, 𝐶𝑖]. Finally, the lower bound for the case 𝑛 = 1 and 𝜀 = 1 generalizes
by the same argument as in Theorem 4.1.

Equation (11) highlights the importance of conditioning: the strength of log rank+(𝑀) ≥
ℂ [𝑀 | 𝑍] depends on the choice of the condition 𝑍. Given the optimality of the estimation by
means of common information, further improvements on the lower bound will only be possible
by considering a different condition.
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Observe that Proposition 4.3 also establishes that in general it will not be possible to lower
bound the common information (or the entropy of Π for that matter) by means of the non-
negative rank from below. This rules out a tight characterization of the nonnegative rank of a
matrix 𝑀 in terms of the entropy of Π or the mutual information of Π and (𝐴, 𝐵) whose infi-
mum is the common information of 𝑀. At its core the gap between common information and
the nonnegative rank stems from the fact that the mutual information is a continuous measure
whereas the nonnegative rank is not. However, when relaxing the notion of nonnegative rank
to rank(𝛿)

+ (𝑀) ≔ min {rank+(𝑀′) ∣ ∥𝑀 − 𝑀′∥1 ≤ 𝛿} where ‖.‖1 is the total variance, then

log rank(𝛿)
+ (𝑀) ≤ 𝑂(ℂ [𝑀] + 1)/𝛿

as shown in [Jain et al., 2013, Corollary 1.1]. Moreover, it turns out that common information
is equal to the amortized log nonnegative rank; see Braun et al. [2013b] for the quantitative
statement including convergence rates and Wyner [1975] for the qualitative one.

A 𝜌-shift �̃� of a (partial) matrix 𝑀 is obtained by adding 𝜌 to each entry of the (partial)
matrix. Such shifts are at the core of the study of the complexity of approximate extended
formulations (see Braun et al. [2015]), for which it is more natural to write the shift in the form
𝜌 − 1 instead of 𝜌. We obtain the following theorem, slightly improving over Braverman and
Moitra [2013] in terms of the explicit constants:

Theorem 4.4 (Nonnegative rank of shifted UDISJ). Let 𝑀 ∈ ℝ2𝑛×2𝑛
+ be a (𝜌−1)-shift of the unique

disjointness matrix UDISJ, i.e.,

𝑀(𝑎, 𝑏) ≔
⎧{{
⎨{{⎩

𝜌 if 𝑎 ∩ 𝑏 = ∅,
𝜌 − 1 if ∣𝑎 ∩ 𝑏∣ = 1
≥ 0 otherwise

for some 𝜌 ≥ 1. Then rank+(𝑀) ≥ 2𝑛/8𝜌. If 𝜌 = 1, then rank+(𝑀) ≥ 2
6−3 log 3

4 ⋅𝑛 ≥ 20.3113⋅𝑛.

Proof. Applying Theorem 4.1 with 𝜀 = 1/𝜌, we obtain ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] = ℂ [𝑀/𝜌 ∣ 𝐷 = 0, 𝐶] ≥
𝑛/8𝜌. Note that multiplying the matrix by a positive scalar does not change its common infor-
mation. Hence by Lemma 3.4, we obtain rank+ 𝑀 ≥ 2𝑛/8𝜌. The second claim follows similarly
from Proposition 4.3.

4.1 Application to (approximate) extended formulations
We immediately obtain strengthened versions of [Braun et al., 2015, Theorems 7 and 8] as
proven in [Braverman and Moitra, 2013, Section 4] by plugging in the improved lower bound
on the nonnegative rank of 𝑀:

Theorem 4.5 (Inapproximability of CLIQUE). Let 𝜌 ⩾ 1, let 𝑛 be a positive integer and let 𝑃 =
COR(𝑛), 𝑄 = 𝑄(𝑛) be as in Braun et al. [2015]. Then xc(𝑃, 𝜌𝑄) = 2𝑛/8𝜌. In particular if 𝜌 = 𝑛1−𝜀

for some constant 𝜀 < 1, then xc(𝑃, 𝜌𝑄) = 2𝑛𝜀/8. Therefore for the linear encoding defined in Braun
et al. [2015], every 𝑛1−𝜀-approximate EF of CLIQUE has size 2𝑛𝜀/8, for all 0 < 𝜀 < 1.

The latter lower bound for CLIQUE matches the algorithmic inapproximability of Håstad
[1999].

5 Robustness of the UDISJ matrix
We will now show that the above lower bound on the nonnegative rank of UDISJ is robust
with respect to random and adversarial removal of rows and columns. To this end we will first
formulate the case 𝑛 = 1 of Theorem 4.1 for general distribution to incorporate noise.
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Lemma 5.1 (Information from noised-up submatrices). Let (𝐴, 𝐵) ∈ {0, 1}2 with distribution

𝐵 = 0 𝐵 = 1
𝐴 = 0 𝛼 𝛾
𝐴 = 1 𝛽 𝛿

with 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1. Then

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, Π] ≤
3√𝛼 max(𝛽, 𝛾) + 𝛼√𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 ,

where Π is a seed for 𝐴, 𝐵 with condition 𝐷 = 0, 𝐶, and 𝐷, 𝐶 are as in Theorem 4.1.

Proof. We estimate

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, Π]

= 𝛼 + 𝛾
2𝛼 + 𝛽 + 𝛾 ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶 = 𝒜, Π] + 𝛼 + 𝛽

2𝛼 + 𝛽 + 𝛾 ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶 = ℬ, Π] .

Now the event 𝐷 = 0, 𝐶 = 𝒜 is the same as 𝐴 = 0, 𝐶 = 𝒜 . As 𝐶 is independent of 𝐴, 𝐵, Π, we
obtain

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶 = 𝒜, Π] = ℍ [𝐴, 𝐵 ∣ 𝐴 = 0, Π] .
Let Π𝑎𝑏 denote the distribution of Π given 𝐴 = 𝑎 and 𝐵 = 𝑏. Lemma 2.4 applies:

ℍ [𝐴, 𝐵 ∣ 𝐴 = 0, Π] ≤ 2√𝛼𝛾
𝛼 + 𝛾 ⋅ (1 − ℎ2(Π00; Π01)).

All in all, we obtain

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶 = 𝒜, Π] ≤ 2√𝛼𝛾
𝛼 + 𝛾 ⋅ (1 − ℎ2(Π00; Π01)).

Similarly,

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶 = ℬ, Π] ≤
2√𝛼𝛽
𝛼 + 𝛽 ⋅ (1 − ℎ2(Π00; Π10)).

Thus

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, Π] ≤
2√𝛼 max(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 ⋅ (2 − ℎ2(Π00; Π01) − ℎ2(Π00; Π10)).

Finally we estimate the Hellinger distances:

ℎ2(Π00; Π01) + ℎ2(Π00; Π10) ≥ (ℎ(Π00; Π01) + ℎ(Π00; Π10))2

2

≥ ℎ2(Π01; Π10)
2 ≥

1 − √𝛼𝛿/(𝛽𝛾)
2 .

The last inequality follows from Lemma 3.5 by the independence of 𝐴 and 𝐵 given Π. Combin-
ing the estimates finishes the proof:

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, Π] ≤
2√𝛼 max(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 ⋅ ⎛⎜⎜⎜
⎝

2 −
1 − √𝛼𝛿/(𝛽𝛾)

2
⎞⎟⎟⎟
⎠

=
3√𝛼 max(𝛽, 𝛾) + 𝛼√𝛿 max(𝛽, 𝛾)/(𝛽𝛾)

2𝛼 + 𝛽 + 𝛾 =
3√𝛼 max(𝛽, 𝛾) + 𝛼√𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾 .
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5.1 Adversarial and random removal of rows and columns
In the random setting we choose a submatrix 𝑆 randomly, and we are bounding the expectation
of the nonnegative rank. The rough idea is summing over minimal factorizations for subma-
trices to obtain a factorization of the original UDISJ matrix. Even though this factorization
has a huge number of summands, these are expected to be very similar, and thus reveal little
information.

The distribution of the submatrix 𝑆 will not be uniform in general: the probability of a given
submatrix will be proportional to the sum of its entries.

We shall denote by 𝑥 ∈ 𝑆 the event that the row, column or entry 𝑥 is contained in 𝑆.

Theorem 5.2. Let 𝑀 be a nonnegative matrix, and 𝒮 be a family of submatrices of 𝑀 with every entry of
𝑀 contained in exactly a 𝛾-fraction of the members. Let 𝑆 ∈ 𝒮 be a random submatrix with distribution
ℙ [𝑆 = 𝑠] = ∑(𝑎,𝑏)∈𝑠 𝑀(𝑎, 𝑏)/𝛾 ∣𝒮∣ ∑𝑎,𝑏 𝑀(𝑎, 𝑏). Then

𝔼 [ℂ [𝑆 ∣ 𝑍]] ≥ ℂ [𝑀 | 𝑍] + log 𝛾. (12)

Proof. The key to the proof is to construct the right probability space for comparing ℂ [𝑆 ∣ 𝑍]
and ℂ [𝑀 | 𝑍].

Let 𝐴, 𝐵 be the random row-column pair of the induced distribution of 𝑀. Given 𝐴, 𝐵 let
𝑆 ∈ 𝒮 be chosen uniformly with the restriction 𝐴, 𝐵 ∈ 𝑆:

ℙ [𝑆 = 𝑠 ∣ 𝐴 = 𝑎, 𝐵 = 𝑏] = 1
𝛾 ∣𝒮∣ , (𝑎, 𝑏) ∈ 𝑠. (13)

This induces the same distribution on 𝑆 as given in the theorem:

ℙ [𝑆 = 𝑠] = ∑
(𝑎,𝑏)∈𝑠

ℙ [𝐴 = 𝑎, 𝐵 = 𝑏] ℙ [𝑆 = 𝑠 ∣ 𝐴 = 𝑎, 𝐵 = 𝑏]

= ∑
(𝑎,𝑏)∈𝑠

𝑀(𝑎, 𝑏)
∑𝑥,𝑦 𝑀(𝑥, 𝑦) ⋅ 1

𝛾 ∣𝒮∣ =
∑(𝑎,𝑏)∈𝑠 𝑀(𝑎, 𝑏)

∑𝑥,𝑦 𝑀(𝑥, 𝑦) ⋅ 𝛾 ∣𝒮∣ .

Note that given 𝑆, the distribution of 𝐴, 𝐵 is the one induced by 𝑆, i.e., for (𝑎, 𝑏) ∈ 𝑠:

ℙ [𝐴 = 𝑎, 𝐵 = 𝑏 ∣ 𝑆 = 𝑠] = ℙ [𝑆 = 𝑠 ∣ 𝐴 = 𝑎, 𝐵 = 𝑏] ℙ [𝐴 = 𝑎, 𝐵 = 𝑏]
ℙ [𝑆 = 𝑠] = 𝑀(𝑎, 𝑏)

∑(𝑥,𝑦)∈𝑠 𝑀(𝑥, 𝑦) .

This leads to the following interpretation of 𝔼 [ℂ [𝑆 ∣ 𝑍]]: For every 𝑠 ∈ 𝒮 consider the prob-
ability space conditioned on 𝑆 = 𝑠. Introduce seeds Π𝑠 for 𝐴 and 𝐵. For every such collection
{Π𝑠 ∶ 𝑠 ∈ 𝒮}, glue it together to a random variable Π, i.e., Π = Π𝑠 given 𝑆 = 𝑠. (Here the ranges
of Π𝑠 are considered pairwise disjoint without loss of generality. In particular, Π determines
𝑆.) Then

𝔼 [ℂ [𝑆 ∣ 𝑍]] = inf
(Π𝑠∶𝑠∈𝑆) seeds

𝕀 [𝐴, 𝐵; Π ∣ 𝑍, 𝑆] .

By construction, Π is a seed for 𝑀, therefore

𝕀 [𝐴, 𝐵; Π ∣ 𝑍] ≥ ℂ [𝑀 | 𝑍] .
Now by the chain rule

𝕀 [𝐴, 𝐵; Π ∣ 𝑍] − 𝕀 [𝐴, 𝐵; Π ∣ 𝑍, 𝑆] = 𝕀 [𝐴, 𝐵; 𝑆 ∣ 𝑍]
= ℍ [𝑆 ∣ 𝑍] − ℍ [𝑆 ∣ 𝑍, 𝐴, 𝐵] ≤ log ∣𝒮∣ − log 𝛾 ∣𝒮∣ = − log 𝛾,

as 𝑆 is uniform given 𝐴, 𝐵, 𝑍 (because 𝑆 is both uniform and independent of 𝑍 given 𝐴, 𝐵 by
construction). Rearranging provides

𝕀 [𝐴, 𝐵; Π ∣ 𝑍, 𝑆] ≥ 𝕀 [𝐴, 𝐵; Π ∣ 𝑍] + log 𝛾 ≥ ℂ [𝑀 | 𝑍] + log 𝛾,
and taking infimum over Π produces the result.
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We obtain the following corollary.

Corollary 5.3. Let 0 < 𝛼, 𝛽 < 1 and let 𝑆 be a random 2(1−𝛼)𝑛 × 2(1−𝛽)𝑛 submatrix of UDISJ with
distribution ℙ [𝑆 = 𝑠] = 𝑐 ∑(𝑎,𝑏)∈𝑠 𝑠(𝑎, 𝑏) for a suitable 𝑐 > 0. Then 𝔼 [rank+ 𝑆] ≥ 2(𝜀/8−𝛼−𝛽)𝑛.

Proof. By Jensen’s inequality and Theorems 4.1 and 5.2 with 𝑍 being 𝐶, 𝐷 = 0 the conditional
from Theorem 4.1

𝔼 [rank+ 𝑆] ≥ 𝔼 [2ℂ[𝑆 ∣ 𝑍]] ≥ 2𝔼[ℂ[𝑆 ∣ 𝑍]] ≥ 2(𝜀/8−𝛼−𝛽)𝑛.

Remark 5.4. It is worthwhile to compare the bounds from Corollary 5.3 to the special case of
forbidding 𝐴 and 𝐵 to contain certain elements 𝑖 ∈ [𝑛]. Say, 𝐴 must not contain the first 𝛼𝑛
elements, and 𝐵 must not contain the last 𝛽𝑛 elements. Provided 𝛼 + 𝛽 < 1, this means that
actually only the (1 − 𝛼 − 𝛽)𝑛 elements in the middle count, hence we obtain the significantly
larger lower bound rank+ 𝑆 ≥ 2𝜀/8⋅(1−𝛼−𝛽)𝑛. However, this is not unexpected: the removal of
rows and columns by forbidding elements is rather homogeneous, whereas a random removal
could potentially remove much more information.

We will now switch our attention to adversarial removal of rows and columns. The follow-
ing observation is useful to understand what type of bounds we can expect.
Observation 5.5 (Existence of a large subset with no disjoint pairs). With 𝛼 = 𝛽 = 1/2 the adver-
sary can choose

𝑆 = {𝐴 ∣ 𝐴 ⊆ [𝑛], 1 ∈ 𝐴} × {𝐵 ∣ 𝐵 ⊆ [𝑛], 1 ∈ 𝐵} .
Clearly, ∣𝑆∣ = 22(𝑛−1) and hence 1/4 of all pairs, however all pairs intersect, hence the partial
matrix 𝑆 is 0.

This is the largest submatrix with no disjoint pairs, as can be seen as follows. Let 𝑆𝐴 be the
set of rows, and 𝑆𝐵 be the set of columns of 𝑆. We identify rows and columns with the subsets
of [𝑛] indexing them. If 𝑆 has no disjoint pairs, then for all 𝑋 ⊆ [𝑛] it is impossible that 𝑋 ∈ 𝑆𝐴
and [𝑛] ∖ 𝑋 ∈ 𝑆𝐵. Thus

∣𝑆𝐴∣ + ∣𝑆𝐵∣ = ∑
𝑋⊆[𝑛]

(𝐼𝑋∈𝑆𝐴 + 𝐼[𝑛]∖𝑋∈𝑆𝐵) ≤ 2𝑛.

Comparing the geometric mean and the arithmetic mean, we obtain

∣𝑆𝐴∣ ⋅ ∣𝑆𝐵∣ ≤ (∣𝑆𝐴∣ + ∣𝑆𝐵∣
2 )

2
= 22𝑛/4 = 22(𝑛−1).

The main tool for the adversarial case is the following insight.

Theorem 5.6. Let 𝑀 be a nonnegative matrix, and 𝑆 be a submatrix of 𝑀. Let 𝑍 be a condition, which
is a mixture of an event 𝑍event and random variables. Furthermore, let 𝐴, 𝐵 be the random row-column
pair of the induced distribution of 𝑀, and 𝐼 be the three-valued indicator of whether 𝐴, 𝐵 ∈ 𝑆, 𝐴 ∉ 𝑆 or
𝐴 ∈ 𝑆 but 𝐵 ∉ 𝑆. Then

ℙ [𝐴, 𝐵 ∈ 𝑆 ∣ 𝑍event] ℂ [𝑆 ∣ 𝑍, 𝐼] ≥ ℂ [𝑀 | 𝑍] − ℙ [𝐴 ∉ 𝑆 ∣ 𝑍event] ℍ [𝐴 ∣ 𝑍]
− ℙ [𝐵 ∉ 𝑆 ∣ 𝑍event] ℍ [𝐵 | 𝑍] − log 3. (14)

Proof. Given 𝐴, 𝐵 ∈ 𝑆 and 𝑍, we choose an arbitrary seed Π𝑆 of 𝐴, 𝐵 for 𝑆. We define a seed
Π𝑀 for 𝑀 via

Π𝑀 ≔
⎧{{
⎨{{⎩

Π𝑆 if 𝐴, 𝐵 ∈ 𝑆,
𝐴 if 𝐴 ∉ 𝑆,
𝐵 if 𝐴 ∈ 𝑆 but 𝐵 ∉ 𝑆
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with the values of Π𝑀 being pairwise distinct in the three cases. It follows

ℂ [𝑀 | 𝑍] ≤ 𝕀 [𝐴, 𝐵; Π𝑀 ∣ 𝑍] = 𝕀 [𝐴, 𝐵; Π𝑀 ∣ 𝑍, 𝐼] + 𝕀 [𝐴, 𝐵; 𝐼 ∣ 𝑍]
≤ ℙ [𝐴, 𝐵 ∈ 𝑆 ∣ 𝑍event] 𝕀 [𝐴, 𝐵; Π𝑆 ∣ 𝑍] + ℙ [𝐴 ∉ 𝑆 ∣ 𝑍event] 𝕀 [𝐴, 𝐵; 𝐴 ∣ 𝑍]

+ ℙ [𝐴 ∈ 𝑆, 𝐵 ∉ 𝑆 ∣ 𝑍event] 𝕀 [𝐴, 𝐵; 𝐵 ∣ 𝑍] + 𝕀 [𝐴, 𝐵; 𝐼 ∣ 𝑍]
≤ ℙ [𝐴, 𝐵 ∈ 𝑆 ∣ 𝑍event] 𝕀 [𝐴, 𝐵; Π𝑆 ∣ 𝑍] + ℙ [𝐴 ∉ 𝑆 ∣ 𝑍event] ℍ [𝐴 ∣ 𝑍]

+ ℙ [𝐵 ∉ 𝑆 ∣ 𝑍event] ℍ [𝐵 | 𝑍] + log 3.

Taking the infimum over Π𝑆, the result follows.

We will now show that when the adversary is restricted as to only remove up to an 𝛼-fraction
per each potential size of subsets, then the resulting matrix has still high nonnegative rank.

Corollary 5.7 (Homogeneous, adversarial removal of rows and columns). Let 0 ≤ 𝛼, 𝛽 < 1. Let
𝑆 be any submatrix of UDISJ 𝑀 obtained as follows. For every 0 ≤ 𝑘 ≤ 𝑛, we select the rows and
columns indexed by subsets of size 𝑘, and delete at most an 𝛼-fraction of these rows and a 𝛽-fraction of
these columns. Then

rank+ 𝑆 ≥ 2( 1
8𝜌 −(𝛼+𝛽))𝑛−log 3.

Proof. We use the variables 𝐶, 𝐷 from Theorem 4.1. Note that because of symmetry, the marginal
distributions of 𝐴 and 𝐵 are uniform even given 𝐷 = 0 when the size of the sets are fixed, hence
by assumption

ℙ [𝐴 ∉ 𝑆 ∣ 𝐷 = 0, ∣𝐴∣] ≤ 𝛼,
ℙ [𝐵 ∉ 𝑆 ∣ 𝐷 = 0, |𝐵|] ≤ 𝛽.

Taking expectation it follows

ℙ [𝐴 ∉ 𝑆 ∣ 𝐷 = 0] ≤ 𝛼,
ℙ [𝐵 ∉ 𝑆 ∣ 𝐷 = 0] ≤ 𝛽.

Applying Theorem 5.6 and Theorem 4.1:

ℂ [𝑆 ∣ 𝐷 = 0, 𝐶] ≥ ℙ [𝐴, 𝐵 ∈ 𝑆 ∣ 𝐷 = 0] ℂ [𝑆 ∣ 𝐷 = 0, 𝐶]
≥ ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] − 𝛼ℍ [𝐴 ∣ 𝐷 = 0, 𝐶] − 𝛽ℍ [𝐵 ∣ 𝐷 = 0, 𝐶] − log 3

= ℂ [𝑀 ∣ 𝐷 = 0, 𝐶] − (𝛼 + 𝛽)𝑛 ≥ ( 1
8𝜌 − (𝛼 + 𝛽)) 𝑛 − log 3.

Now the estimation on the nonnegative rank is immediate.

The following lemma establishes that even restricting to subsets of fixed size close to 𝑛/4, the
common information of UDISJ does not decrease significantly. This construction significantly
improves over the simple trick of splitting [𝑛] into 3 disjoint sets, arguing on the first set via the
unrestricted argument, and use the other two for padding to ensure a fixed size.

Lemma 5.8 (Restriction to fixed size subsets). For the UDISJ matrix 𝑀, let 𝑀𝑘 be the submatrix for
sets of size 𝑘. Then for 0 < 𝜀 ≤ 1

ℂ [𝑀𝑘 ∣ 𝐴 ∩ 𝐵 = ∅] ≥ 𝑛
8𝜌 − 𝑂(𝑛1−𝜀) for 𝑘 = 𝑛/4 + 𝑂(𝑛1−𝜀).
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Proof. The proof is similar to the one in Theorem 4.1, however now we have to account for loss
of common information due to dependence of the pairs 𝐴𝑖, 𝐵𝑖.

First we replace the condition 𝐴∩𝐵 = ∅ with 𝐷 = 0, 𝐶 with 𝐶, 𝐷 from Theorem 4.1. Any seed
Π for 𝐴, 𝐵 given 𝐴∩𝐵 = ∅ can be introduced to be independent of 𝐶 given 𝐴, 𝐵. Therefore it will
also be a seed given 𝐷 = 0, 𝐶. By symmetry, given either 𝐷 = 0 or 𝐴 ∩ 𝐵 = ∅, the distribution
of 𝐴, 𝐵 will be uniform. In particular, as these conditions are independent of Π given 𝐴, 𝐵, the
variables 𝐴, 𝐵, Π have the same joint distribution given either 𝐷 = 0 or 𝐴∩𝐵 = ∅. Hence (recall
that 𝐶 is part of the probability space)

𝕀 [𝐴, 𝐵; Π ∣ 𝐴 ∩ 𝐵 = ∅] = 𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0] ≥ 𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] ,
where the inequality follows from the independence of 𝐶 and Π given 𝐴, 𝐵.

To estimate the loss due to dependence of the 𝐴𝑖, 𝐵𝑖 observe that

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, Π] ≤ ∑
𝑖∈[𝑛]

ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, Π] .

Combining it with ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, Π] = ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶] − 𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] we obtain

𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶] ≥ ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶] − ∑
𝑖∈[𝑛]

ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, Π] . (15)

It therefore suffices to estimate both terms separately. First, we estimate ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶].
Note that 𝐴, 𝐵, 𝐶 is uniformly distributed given 𝐷 = 0, with 𝑛! /𝑘!2 (𝑛 − 2𝑘)! possible ways of
choosing 𝐴, 𝐵 (two disjoint subsets of size 𝑘), and for each 𝐴, 𝐵 there are 2𝑛−2𝑘 choices for 𝐶.

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶] = ℍ [𝐴, 𝐵, 𝐶 ∣ 𝐷 = 0] − ℍ [𝐶 ∣ 𝐷 = 0] ≥ log 𝑛!
𝑘!2 (𝑛 − 2𝑘)!2

𝑛−2𝑘 − 𝑛

= log 𝑛!
𝑘!2 (𝑛 − 2𝑘)! − 2𝑘 = 𝑛ℍ [2𝑘/𝑛] + 𝑂(log 𝑛) = 𝑛 + 𝑂(log 𝑛).

Second, we estimate ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, Π]. Given 𝐷𝑗 = 0 for all 𝑗 ≠ 𝑖, which we denote by
𝒟𝑗 in the following, the distribution of 𝐴𝑖, 𝐵𝑖 is the following with a normalizing constant 𝐾:

ℙ [𝐴𝑖 = 𝑥, 𝐵𝑖 = 𝑦 ∣ 𝒟𝑗]

= 𝐾 (𝑛 − 1)!
(𝑘 − 𝑥)! (𝑘 − 𝑦)! (𝑛 − 1 − 2𝑘 + 𝑥 + 𝑦)!

1
22𝑘−𝑥−𝑦 ⋅

⎧{
⎨{⎩

𝜌 − 1 if (𝑥, 𝑦) ≠ (1, 1),
𝜌 if (𝑥, 𝑦) = (1, 1),

where (𝑛−1)!
(𝑘−𝑥)!(𝑘−𝑦)!(𝑛−1−2𝑘+𝑥+𝑦)! is the number of values of 𝐴 and 𝐵 with 𝐴𝑖 = 𝑥 and 𝐵𝑖 = 𝑦, and

1
22𝑘−𝑥−𝑦 is the probability of 𝐷𝑗 = 0 for all 𝑗 ≠ 𝑖 given such an 𝐴, 𝐵.

Separating common factors for a better overview:

ℙ [𝐴𝑖 = 𝑥, 𝐵𝑖 = 𝑦 ∣ 𝒟𝑗]

= 𝐾(𝑛 − 1)!
𝑘!2 (𝑛 − 1 − 2𝑘)! 22𝑘 ⋅

⎧{{
⎨{{⎩

𝜌, if (𝑥, 𝑦) = (0, 0),
𝜌 2𝑘

𝑛−2𝑘 , if (𝑥, 𝑦) = (1, 0) or (𝑥, 𝑦) = (0, 1),

(𝜌 − 1) (2𝑘)2

(𝑛−2𝑘)(𝑛−2𝑘+1) , if (𝑥, 𝑦) = (1, 1).

The assumption 𝑘 = 𝑛/4+𝑂(𝑛1−𝜀) provides 2𝑘/(𝑛−2𝑘) = 1+𝑂(𝑛−𝜀) and (2𝑘)2/(𝑛−2𝑘)(𝑛−
2𝑘 + 1) = 1 + 𝑂(𝑛−𝜀). Thus the probabilities are (with �̃� a common factor)

𝛼 = ℙ [𝐴𝑖 = 0, 𝐵𝑖 = 0∣ 𝒟𝑗] = �̃�𝜌,
𝛽 = ℙ [𝐴𝑖 = 1, 𝐵𝑖 = 0∣ 𝒟𝑗] = �̃�𝜌(1 − 𝑂(𝑛−𝜀)),
𝛾 = ℙ [𝐴𝑖 = 0, 𝐵𝑖 = 0∣ 𝒟𝑗] = �̃�𝜌(1 − 𝑂(𝑛−𝜀)),
𝛿 = ℙ [𝐴𝑖 = 1, 𝐵𝑖 = 1∣ 𝒟𝑗] = �̃�(𝜌 − 1)(1 − 𝑂(𝑛−𝜀)).
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Lemma 5.1 applies to the conditional distribution 𝐷𝑗 = 0 for all 𝑗 ≠ 𝑖 with Π replaced by
(Π, 𝐶𝑗 ∶ 𝑗 ≠ 𝑖), and adding a subscript 𝑖 to the other variables 𝐴, 𝐵, 𝐶, 𝐷 in the lemma:

ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, Π] ≤
3√𝛼 max(𝛽, 𝛾) + 𝛼√𝛿/ min(𝛽, 𝛾)

2𝛼 + 𝛽 + 𝛾

=
3𝜌(1 − 𝑂(𝑛−𝜀)) + 𝜌(1 − 𝑂(𝑛−𝜀))√ (𝜌−1)(1−𝑂(𝑛−𝜀))

𝜌(1−𝑂(𝑛−𝜀))
4𝜌(1 − 𝑂(𝑛−𝜀))

≤
3𝜌(1 − 𝑂(𝑛−𝜀)) + 𝜌(1 − 𝑂(𝑛−𝜀))(1 − 1+𝑂(𝜌𝑛−𝜀)

2𝜌(1−𝑂(𝑛−𝜀)))
4𝜌(1 − 𝑂(𝑛−𝜀))

= 1 − 1
8𝜌 + 𝑂(𝑛−𝜀)

(16)

with the constant factor in the error term independent of 𝑖.
Finally, combining the estimates we obtain

𝕀 [𝐴, 𝐵; Π ∣ 𝐴 ∩ 𝐵 = ∅] ≥ ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶] − ∑
𝑖∈[𝑛]

ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, Π]

≥ 𝑛 + 𝑂(log 𝑛) − 𝑛 (1 − 1
8𝜌 + 𝑂(𝑛−𝜀)) = 𝑛

8𝜌 − 𝑂(𝑛1−𝜀).

We will now briefly show that the estimation in (15) is really the same as in Theorem 4.1,
however accounting for the loss of independence.
Remark 5.9 (Estimating entropy instead of mutual information). In order to establish the link to
the estimation in Theorem 4.1, observe that

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, 𝑀, Π] ≤ ∑
𝑖∈[𝑛]

ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, 𝑀, Π]

ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, 𝑀] − 𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶, 𝑀] ≤ ∑
𝑖∈[𝑛]

ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, 𝑀]

− 𝕀 [𝐴𝑖, 𝐵𝑖; Π ∣ 𝐷 = 0, 𝐶, 𝑀]

and hence

𝕀 [𝐴, 𝐵; Π ∣ 𝐷 = 0, 𝐶, 𝑀] ≥ ∑
𝑖∈[𝑛]

𝕀 [𝐴𝑖, 𝐵𝑖; Π ∣ 𝐷 = 0, 𝐶, 𝑀]

+ ℍ [𝐴, 𝐵 ∣ 𝐷 = 0, 𝐶, 𝑀] − ∑
𝑖∈[𝑛]

ℍ [𝐴𝑖, 𝐵𝑖 ∣ 𝐷 = 0, 𝐶, 𝑀] .

Finally, we combine adversarial removal and fixed size subsets:

Corollary 5.10. For the UDISJ matrix 𝑀, let 𝑀𝑘 be the submatrix for sets of size 𝑘. Let 𝑆 be any
submatrix of 𝑀𝑘 obtained by deleting at most an 𝛼-fraction of rows and at most a 𝛽-fraction of columns
for some 0 ≤ 𝛼, 𝛽 < 1. Then for 0 < 𝜀 ≤ 1

rank+ 𝑆 ≥ 2(1/8𝜌−(𝛼+𝛽)ℍ[1/4])𝑛−𝑂(𝑛1−𝜀) for 𝑘 = 𝑛/4 + 𝑂(𝑛1−𝜀).

Proof. Note that because of symmetry, the marginal distributions of 𝐴 and 𝐵 are uniform given
𝐴 ∩ 𝐵 = ∅, hence

ℙ [𝐴 ∉ 𝑆 ∣ 𝐴 ∩ 𝐵 = ∅] = 𝛼,
ℙ [𝐵 ∉ 𝑆 ∣ 𝐴 ∩ 𝐵 = ∅] = 𝛽.
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Applying Theorem 5.6 and Lemma 5.8:

ℂ [𝑆 ∣ 𝐴 ∩ 𝐵 = ∅] ≥ ℙ [𝐴, 𝐵 ∈ 𝑆 ∣ 𝐴 ∩ 𝐵 = ∅] ℂ [𝑆 ∣ 𝐴 ∩ 𝐵 = ∅]
≥ ℂ [𝑀 ∣ 𝐴 ∩ 𝐵 = ∅] − 𝛼ℍ [𝐴 ∣ 𝐴 ∩ 𝐵 = ∅] − 𝛽ℍ [𝐵 ∣ 𝐴 ∩ 𝐵 = ∅] − log 3
= ℂ [𝑀 ∣ 𝐴 ∩ 𝐵 = ∅] − (𝛼 + 𝛽) log (𝑛

𝑘) ≥ 𝑛
8𝜌 − (𝛼 + 𝛽)𝑛ℍ [1/4] − 𝑂(𝑛1−𝜀).

5.2 Application to (approximate) extended formulations
We will now prove that the approximate extension complexity of the pair 𝑃, 𝑄 from Subsec-
tion 4.1 remains high even if vertices of 𝑃 and facets of 𝑄 are removed. Recall that the vertices
of 𝑃 are considered as possible cliques, and the facets of 𝑄 as stable sets.

Let 𝑃𝑘 be the convex hull of vertices of 𝑃 corresponding to subsets of size 𝑘. Similarly, let 𝑄𝑘
be the polyhedra defined by facets of 𝑄 corresponding to subsets of size 𝑘. Restricting to fixed
size cliques and subgraphs, Lemma 5.8 readily provides

Corollary 5.11. Let 0 < 𝜀 ≤ 1. Then

log xc(𝑃𝑘, 𝜌𝑄𝑘) ≥ 𝑛
8𝜌 − 𝑂(𝑛1−𝜀) for 𝑘 = 𝑛/4 + 𝑂(𝑛1−𝜀).

Let 𝑃𝛼 be the polytope obtained from 𝑃 by removing at most an 𝛼-fraction of the vertices
corresponding to cliques of size 𝑘 for every 0 ≤ 𝑘 ≤ 𝑛. Similarly, let 𝑄𝛽 be the polyhedron
obtained from 𝑄 by removing at most a 𝛽-fraction of the facets corresponding to subgraphs of
size 𝑘 for every 𝑘. For adversarial removal, we apply Corollary 5.7.

Corollary 5.12. Let 0 < 𝛼, 𝛽 < 1. Then

log xc(𝑃𝛼, 𝜌𝑄𝛽) ≥ ( 1
8𝜌 − (𝛼 + 𝛽)) 𝑛 − log 3.

Let 𝑃𝛼
𝑘 be the polytope obtained from 𝑃𝑘 by removing at most an 𝛼-fraction of the vertices.

Similarly, let 𝑄𝛽
𝑘 be the polyhedron obtained from 𝑄𝑘 by removing at most a 𝛽-fraction of the

facets. Once more, we combine adversarial removal with fixed size objects as in Corollary 5.10.

Corollary 5.13. Let 0 < 𝛼, 𝛽 < 1 and 0 < 𝜀 ≤ 1. Then

log xc(𝑃𝛼
𝑘 , 𝜌𝑄𝛽

𝑘 ) ≥ ( 1
8𝜌 − (𝛼 + 𝛽)ℍ [1/4]) 𝑛 − 𝑂(𝑛1−𝜀) for 𝑘 = 𝑛/4 + 𝑂(𝑛1−𝜀).

6 Approximate fooling sets
If 𝑀 is a nonnegative matrix, a fooling set ℱ for 𝑀 is a set of row-column indices so that 𝑀(𝑎, 𝑏) ≠
0 for all (𝑎, 𝑏) ∈ ℱ and for distinct (𝑎1, 𝑏1), (𝑎2, 𝑏2) ∈ ℱ either 𝑀(𝑎1, 𝑏2) = 0 or 𝑀(𝑎2, 𝑏1) =
0. Using Lemmas 3.4 and 3.5 we obtain a strengthened version of the fooling set method by
relaxing the above condition.

Corollary 6.1 (Information theoretic fooling set method). Let 𝑀 be a nonnegative matrix and let
ℱ = {(𝑎𝑖, 𝑏𝑖) ∣ 𝑖 ∈ [ℓ]} be a set such that 𝑀(𝑎, 𝑏) ≠ 0 for all (𝑎, 𝑏) ∈ ℱ . Then

log rank+(𝑀) ≥ 𝛾(ℱ, 𝑀) ≔ log ∣ℱ∣ − 1
∣ℱ∣ ∑

(𝑎1,𝑏1),(𝑎2,𝑏2)∈ℱ
(𝑎1,𝑏1)≠(𝑎2,𝑏2)

√𝑀(𝑎1, 𝑏2)𝑀(𝑎2, 𝑏1)
𝑀(𝑎1, 𝑏1)𝑀(𝑎2, 𝑏2) ,

where 𝛾(ℱ, 𝑀) is the information bound of 𝑀 from ℱ . The function 𝛾(ℱ, ⋅) is continuous in 𝑀.
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Proof. The continuity of 𝛾(ℱ, ⋅) is clear, so we only prove the lower bound.
Let 𝐴, 𝐵 be the random row-column pair in the induced distribution of 𝑀. Let 𝑍 be a uniform

random variable taking values in ℱ , and Π0 a seed with range size of the nonnegative rank
of 𝑀, which exists by Lemma 3.4. We define a random variable Π by setting its conditional
distribution given 𝑍, namely, (Π|𝑍 = (𝑎, 𝑏)) ≔ (Π0|𝐴 = 𝑎, 𝐵 = 𝑏). Thus Π may differ from Π0,
nevertheless Π inherits (7) of Lemma 3.5 from Π0. Together with Lemma 2.5 applied to 𝑍 and
Π:

log rank+(𝑀) ≥ 𝕀 [𝑍; Π] ≥ log ∣ℱ∣ − 1
∣ℱ∣ ∑

𝑧1,𝑧2∈range(𝑍)
𝑧1≠𝑧2

(1 − ℎ2(Π|𝑍 = 𝑧1; Π|𝑍 = 𝑧2))

≥ log ∣ℱ∣ − 1
∣ℱ∣ ∑

(𝑎1,𝑏1),(𝑎2,𝑏2)∈ℱ
(𝑎1,𝑏1)≠(𝑎2,𝑏2)

√𝑀(𝑎1, 𝑏2)𝑀(𝑎2, 𝑏1)
𝑀(𝑎1, 𝑏1)𝑀(𝑎2, 𝑏2) .

Remark 6.2. Observe that √𝑀(𝑎1,𝑏2)𝑀(𝑎2,𝑏1)
𝑀(𝑎1,𝑏1)𝑀(𝑎2,𝑏2) measures the deviation of being rank-1 for the 2×2

submatrix formed by 𝑎1, 𝑎2, 𝑏1, 𝑏2. In particular, it is 1 if and only if the submatrix is rank-1.
A lower bound similar to Corollary 6.1 can also be obtained with a trace-based method

Gillis et al. [2013].
6.1 Application to (approximate) extended formulations
We can immediately strengthen known fooling set results in terms of inapproximability. We
can typically do better than the following corollary by taking the actual values in a slack matrix.

Corollary 6.3 (Weak inapproximability from fooling sets). Let 𝑀 be a nonnegative matrix and
let ℱ = {(𝑎𝑖, 𝑏𝑖) ∣ 𝑖 ∈ [ℓ]} be a fooling set for 𝑀. We define 𝛿− ≔ min(𝑎,𝑏)∈ℱ 𝑀(𝑎, 𝑏) and 𝛿+ ≔
max(𝑎1,𝑏1),(𝑎2,𝑏2)∈ℱ 𝑀(𝑎1, 𝑏2). Let us assume 𝛿− ≤ 2𝛿+. Then for any (𝜌 − 1)-shift �̃� of 𝑀 with

𝜌 − 1 ≤ 𝛿2
−

𝛿+
⋅ ⎛⎜
⎝

log (∣ℱ∣ /𝛼)
∣ℱ∣ − 1

⎞⎟
⎠

2

and 0 < 𝛼 < ∣ℱ∣ we have rank+(�̃�) ≥ 𝛼.

Proof. As �̃� is a (𝜌 − 1)-shift, we have �̃�(𝑎, 𝑏) = 𝑀(𝑎, 𝑏) + (𝜌 − 1) for all 𝑎, 𝑏. We obtain with
Corollary 6.1,

log rank+(�̃�) ≥ log ∣ℱ∣ − 1
∣ℱ∣ ∑

(𝑎1,𝑏1),(𝑎2,𝑏2)∈ℱ
(𝑎1,𝑏1)≠(𝑎2,𝑏2)

√�̃�(𝑎1, 𝑏2)�̃�(𝑎2, 𝑏1)
�̃�(𝑎1, 𝑏1)�̃�(𝑎2, 𝑏2)

= log ∣ℱ∣ − 1
∣ℱ∣ ∑

(𝑎1,𝑏1),(𝑎2,𝑏2)∈ℱ
(𝑎1,𝑏1)≠(𝑎2,𝑏2)

√(𝑀(𝑎1, 𝑏2) + 𝜌 − 1)(𝑀(𝑎2, 𝑏1) + 𝜌 − 1)
(𝑀(𝑎1, 𝑏1) + 𝜌 − 1)(𝑀(𝑎2, 𝑏2) + 𝜌 − 1).

As ℱ is a fooling set for 𝑀, we obtain that the latter is bounded from below by

log ∣ℱ∣ − 1
∣ℱ∣ ∑

(𝑎1,𝑏1),(𝑎2,𝑏2)∈ℱ
(𝑎1,𝑏1)≠(𝑎2,𝑏2)

√ (𝜌 − 1)(𝜌 − 1 + 𝛿+)
(𝜌 − 1 + 𝛿−)(𝜌 − 1 + 𝛿−)

= log ∣ℱ∣ − (∣ℱ∣ − 1) ⋅
√(𝜌 − 1)(𝜌 − 1 + 𝛿+)

𝜌 − 1 + 𝛿−
.
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We now require

log ∣ℱ∣ − (∣ℱ∣ − 1) ⋅
√(𝜌 − 1)(𝜌 − 1 + 𝛿+)

𝜌 − 1 + 𝛿−
≥ log 𝛼 (17)

and approximating the solution for 𝜌−1 we obtain the claim. For the convenience of the reader,
we present a short verification: let

𝐾 ≔ ⎛⎜
⎝

log (∣ℱ∣ /𝛼)
∣ℱ∣ − 1

⎞⎟
⎠

2
.

It follows from the assumptions of the corollary:

(𝜌 − 1 + 𝛿−)2

(𝜌 − 1)(𝜌 − 1 + 𝛿+) = 1 + 𝛿2−
(𝜌 − 1)𝛿+⏟⏟⏟⏟⏟

≥1/𝐾

− (𝛿+ − 𝛿−)2

𝛿+ (𝜌 − 1 + 𝛿+)⏟⏟⏟⏟⏟⏟⏟
≤ (𝛿+−𝛿−)2

𝛿2+
≤1

≥ 1
𝐾 ,

which is just a rearranging of (17).

Corollary 6.4 (Inapproximability of [0, 1]𝑛). Let 𝑃 be a combinatorial 𝑛-cube and let 𝑄 be a 𝜌-
approximate EF of 𝑃 with 𝜌 − 1 = (4𝑛)−2. Then size(𝑄) ≥ √2 ⋅ 𝑛.

Proof. The fooling set ℱ for [0, 1]𝑛 provided in Fiorini et al. [2013] has size 2𝑛 and 𝛿− = 𝛿+ = 1.
With 𝛼 ≔ √2𝑛 we obtain with Corollary 6.3 that for 𝜌 − 1 ≤ (2(2𝑛 − 1))−2, the (𝜌 − 1)-shift
of the slack matrix has nonnegative rank at least √2 ⋅ 𝑛, proving the claim together with Braun
et al. [2015].

Remark 6.5. Compare the result in Corollary 6.4 with the approximation 𝑄 of [0, 1]𝑛 given by
the simplex defined by the nonnegativity constraints 𝑥 ≥ 0 and the inequality 𝑒𝑥 ≤ 𝑛 (altogether
𝑛 + 1 inequalities) where 𝑒 = (1, … , 1). Now max𝑃 𝑥1 = 1, however max𝑄 𝑥1 = 𝑛.

In a similar way we can generalize [Fiorini et al., 2013, Proposition 5.10] and [Fiorini et al.,
2013, Proposition 5.11]. In fact, with Corollary 6.3 every fooling set for a matrix can be turned
into a lower bound on the nonnegative rank of a shift of that matrix, leading to lower bounds
for the approximate extension complexity.

Corollary 6.6 (Inapproximability of the bipartite matching polytope). Let 𝑛 ≥ 4 and 𝑃 be the
bipartite matching polytope and let 𝑄 be a 𝜌-approximate EF of 𝑃 with 𝜌 = 1 + ((2 − 𝜀)/(𝑛 + 𝜀)(𝑛2 +
2𝑛 − 1))2. Then size(𝑄) ≥ 𝑛2 + 𝜀𝑛.

It is not too hard to see that the approximate fooling set method is stronger than the fooling
set method. However, it is also subject to limitations stemming from the continuity of 𝛾(ℱ, ⋅).

Example 6.7. Let 𝑃 ⊆ ℝ𝑛 be a regular 𝑛-gon. Then xc(𝑃) = Θ(log 𝑛). Now suppose that we
perturb 𝑃 to �̃� so that �̃� is a generic 𝑛-gon. Then xc(�̃�) = Ω(√𝑛) (see Ben-Tal and Nemirovski
[2001], Fiorini et al. [2012b])

Let �̃� be a slack matrix for �̃�. Suppose we start from an approximate fooling set ℱ for �̃�.
By slightly perturbing �̃� to be a slack matrix for 𝑃 we obtain by continuity of 𝛾 that

|𝛾(ℱ, 𝑀) − 𝛾(ℱ, �̃�)| < 𝜀,

and we have that 2𝛾(ℱ,𝑀) ≤ rank+(𝑃) = 𝑂(log 𝑛) by Lemma 6.1. Thus 2𝛾(ℱ,�̃�) = 𝑂(log 𝑛)
and so we cannot obtain a strong lower bound for generic 𝑛-gons via the information theoretic
fooling set method.
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Another example is given by a matrix that is close to the slack matrix of the matching poly-
tope.

Example 6.8. Let 𝑀 ∈ ℝ2𝑛×2𝑛
+ be the partial matrix that is defined as

𝑀(𝑎, 𝑏) ≔
⎧{
⎨{⎩

∣𝑎 ∩ 𝑏∣ − 𝜀 if 𝑎 ∩ 𝑏 ≠ ∅,
≥ 0 otherwise.

Then for 𝜀 > 0 we have 2𝑛 −(𝑛+1) ≤ rank(𝑀) ≤ rank+(𝑀), (which follows from a reduction to
disjointness by Razborov [2012], see below). On the other hand, for 𝜀 = 0 we have rank(𝑀) = 𝑛.
With a similar argument as in Example 6.7, we cannot find an information theoretic fooling set
for 𝑀 with 𝜀 > 0 small, of size larger than 𝑛.

The following proof of rank(𝑀) ≥ 2𝑛 −(𝑛 + 1), has been suggested by one of the reviewers,
improving our previous lower bound of ( 𝑛

𝑛/2). Let 𝑁(𝑎, 𝑏) ≔ ∣𝑎 ∩ 𝑏∣ − 𝜀, then 𝑁 has rank 𝑛 + 1.
We claim that 𝑀 − 𝑁 has full rank 2𝑛, which immediately implies rank(𝑀) ≥ 2𝑛 − (𝑛 + 1).

Let 𝑇(𝑎, 𝑏) ≔ (𝑀 − 𝑁)(𝑎, [𝑛] ∖ 𝑏), i.e., 𝑇 is obtained from 𝑀 − 𝑁 by permuting columns, in
particular 𝑇 has the same rank as 𝑀−𝑁. By definition, 𝑇(𝑎, 𝑏) = 0 for 𝑎 ⊈ 𝑏, and 𝑇(𝑎, 𝑏) ≥ 𝜀 > 0
if 𝑎 ⊆ 𝑏. Hence using a total ordering on the subsets of [𝑛] extending the inclusion relation ⊆,
the matrix 𝑇 becomes upper diagonal with positive diagonal entries, and therefore 𝑇 is full-
dimensional.

7 Concluding remarks
We introduced a new framework to lower bound the nonnegative rank of a matrix in terms
of common information, which is in turn estimated via the Hellinger distance. We believe
that this framework is more widely applicable to lower bound the nonnegative rank of many
other matrices and hence can be used to lower bound the extension complexity of a variety
of polytopes. Our estimations on the common information are (almost) optimal for the UDISJ
matrix and its variants. Also, our approach immediately generalizes to higher dimensional
tensors and the estimations remain virtually the same.

We would like to conclude with several open questions.

Question 7.1. For which other explicit nonnegative matrices can we compute strong lower bounds on
the common information?

Question 7.2. Does the rectangle covering bound/rectangle corruption bound have an information the-
oretic analog?

These bounds subsume the fooling set bound and the bound of the logarithm of the number
of faces. The latter two are incomparable in general, e.g., the fooling set bound is better for
[0, 1]𝑛 (2𝑛 vs. 𝑛 log 3) and worse for the regular 𝑛-gon (Θ(log 𝑛) vs. 5) (see Fiorini et al. [2013]).

Question 7.3. Is the approximate fooling set method limited in a way similar to the classical fooling set
method?

Question 7.4. Is 𝜀
8 ln 2𝑛 the exact bound on common information in Theorem 4.1? Is there a better

condition providing larger common information?
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