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Abstract

We show that circuit lower bound proofs based on the method of random restrictions yield
non-trivial compression algorithms for “easy” Boolean functions from the corresponding circuit
classes. The compression problem is defined as follows: given the truth table of an n-variate
Boolean function f computable by some unknown small circuit from a known class of circuits,
find in deterministic time poly(2n) a circuit C (no restriction on the type of C) computing f
so that the size of C is less than the trivial circuit size 2n/n. We get non-trivial compression
for functions computable by AC0 circuits, (de Morgan) formulas, and (read-once) branching
programs of the size for which the lower bounds for the corresponding circuit class are known.

These compression algorithms rely on the structural characterizations of “easy” functions,
which are useful both for proving circuit lower bounds and for designing “meta-algorithms”
(such as Circuit-SAT). For (de Morgan) formulas, such structural characterization is provided
by the “shrinkage under random restrictions” results [Sub61, H̊as98], strengthened to the “high-
probability” version by [San10, IMZ12, KR12]. We give a new, simple proof of the “high-
probability” version of the shrinkage result for (de Morgan) formulas, with improved parameters.
We use this shrinkage result to get both compression and #SAT algorithms for (de Morgan)
formulas of size about n2. We also use this shrinkage result to get an alternative proof of the
recent result by Komargodski and Raz [KR12] of the average-case lower bound against small
(de Morgan) formulas.

Finally, we show that the existence of any non-trivial compression algorithm for a circuit
class C ⊆ P/poly would imply the circuit lower bound NEXP 6⊆ C. This complements Williams’s
result [Wil10] that any non-trivial Circuit-SAT algorithm for a circuit class C would imply a
superpolynomial lower bound against C for a language in NEXP.
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1 Introduction

Circuit lower bounds (proved or assumed) have a number of algorithmic applications. The most
notable examples are in cryptography, where a computationally hard problem is used to con-
struct a secure cryptographic primitive [BM84, Yao82], and in derandomization of probabilistic
polynomial-time algorithms, where a hard problem is used to construct a source of pseudoran-
dom bits that can be used instead of truly random ones when simulating an efficient randomized
algorithm [NW94]. In both cases, we in fact have an equivalence between the existence of appro-
priately hard computational problem and the existence of a corresponding algorithmic procedure
(appropriate pseudorandom generator) [HILL99, NW94].

In both of the mentioned examples, a circuit lower bound is used in a “black-box” fashion: the
knowledge that a lower bound holds is sufficient to derive algorithmic consequences (e.g., if some
language in DTIME(2O(n)) requires circuit size 2Ω(n), then BPP = P [IW97]). One would hope that
looking inside the proofs (of the few circuit lower bounds that we actually have at present) may
yield new algorithms (for the same computational model where we have the lower bounds).

This is indeed the case as witnessed by number of examples: a learning algorithm for AC0-
computable Boolean functions [LMN93], a Circuit-SAT algorithm for AC0 circuits [IMP12, BIS12]
(using H̊astad’s Switching Lemma, a main tool used in AC0 lower bound proofs [H̊as86]), a sim-
ple pseudorandom generator for AC0 circuits [Bra10] (using [LMN93]), a Circuit-SAT algorithm
for linear-size (de Morgan) formulas [San10, ST12], and a pseudorandom generator for small (de
Morgan) formulas and branching programs [IMZ12] (using a generalization of the “shrinkage under
random restrictions” result of [Sub61, H̊as98]), to mention just a few.

Trying to understand the limitations of current circuit lower bound techniques, Razborov and
Rudich [RR97] came up with the notion of a natural property that can be extracted from every lower
bound proof known at the time. Loosely speaking, a natural property is a deterministic polynomial-
time algorithm that can distinguish the truth table of an easy Boolean function (computable by
a small circuit from a given circuit class C) from the truth table of a random Boolean function,
when given the truth table of a function as input. They also argued that such an algorithm can
be used to break strong pseudorandom generators computable in the circuit class C; hence, if we
assume sufficiently secure cryptography for a circuit class C, then we must conclude that there is
no natural property for the class C. The latter is known as the “natural-proof barrier” to proving
new circuit lower bounds.

Compression of Boolean functions. In this paper, we focus on the “positive” part of the
natural-property argument: known circuit lower bounds yield a natural property. One way to
obtain such a natural property is to argue the existence of an efficient compression algorithm for
easy functions from a given circuit class C. Namely, given the truth table of n-variate Boolean
function f from C, we want to find some Boolean circuit (not necessarily of the type C) computing
f such that the size of the found circuit is less than 2n/n (which is the trivial size achievable for any
n-variate Boolean function)1. There are two natural parameters to minimize: the size of the found
circuit and the running time of the compression algorithm. Since the algorithm is given the full
truth table as input, we consider it efficient if it runs in time 2O(n) (polynomial in its input size).
Ideally, we would like to find a circuit as small as the promised size of the concise representation

1This is different than C-circuit minimization considered by [AHM+08] where the task is to construct a small circuit
of the type C. Our setting is closer to that of computational learning theory (non-proper exact learning [Ang87]).
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of a given function f . However, any non-trivial savings over the generic 2n/n circuit size [Lup58]
are interesting.2

Does every C-circuit lower bound known today yield a compression algorithm for C? The
positive answer would strengthen the argument of [RR97] to show that every known lower bound
proof yields a particular kind of natural property, efficient compressibility.

We hypothesize that the answer is ‘Yes,’ and make the first step in this direction by extracting
a compression algorithm from the lower-bound proofs based on the method of random restrictions.
These include the lower bounds for AC0 circuits [FSS84, Yao85, H̊as86], for de Morgan formu-
las [Sub61, And87, H̊as98], for branching programs [Nec66], and for read-once branching programs
(see, e.g., [ABCR99]).

Compression Theorem: (1) Boolean n-variate functions computed by AC0 circuits of size s and

depth d are compressible in time poly(2n) to circuits of size at most 2n−n/O(log s)d−1
. (2) Boolean

n-variate functions computed by de Morgan formulas of size at most n2.49, by formulas over the
complete basis of size at most n1.99, or by branching programs of size at most n1.99 are compressible
in time poly(2n) to circuits of size at most 2n−n

ε
, for some ε > 0 (dependent on the size of the

formula/branching program). (3) Boolean n-variate functions computed by read-once branching
programs of size at most 20.48·n are compressible in time poly(2n) to circuits of size at most 20.99·n.

Finding a succinct representation of a given object is an important natural problem studied in
various settings under various names: e.g., data compression, circuit minimization, and computa-
tional learning. Designing efficient compression algorithms for “data” produced by small Boolean
circuits of restricted type is an interesting task in its own right. In addition, such algorithmic focus
helps us sharpen our understanding of the structural properties of easy Boolean functions, which
may be exploited in both designing new meta-algorithms, algorithms that take Boolean functions
as inputs (e.g., the full truth table as in the case of compression algorithms, or a small Boolean
circuit computing the function, as in the case of Circuit-SAT algorithms), and proving stronger
circuit lower bounds.

In this vein, we also have the following additional results.

1.1 Our results

In addition to the Compression Theorem mentioned above, we have results on shrinkage of (de Mor-
gan) formulas, #SAT-algorithms and average-case lower bounds for small (de Morgan) formulas,
and circuit lower bounds implied by compression algorithms. These are detailed next.

Shrinkage of formulas. The classical result of Subbotovskaya [Sub61] shows that if one ran-
domly chooses n − k variables of a given n-variate de Morgan formula, and sets each to 0 or 1
uniformly at random, then the expected size of the resulting formula is about (k/n)Γ · |F |, where
Γ (called the shrinkage exponent) is 3/2; this Γ was subsequently improved to the optimal value 2
by H̊astad [H̊as98].

2The compression task as defined above can be viewed as lossless compression: we want the compressed image
(circuit) to compute the given function exactly. One can also consider the notion of lossy compression where the task
is to find a circuit that only approximates the given function. This is related to the concept of PAC learning [Val84].
The focus of the present paper, however, will be on lossless compression algorithms.
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This “shrinkage in expectation” result is sufficient for proving worst-case de Morgan formula
lower bounds [And87]. However, for designing SAT-algorithms and pseudorandom generators, as
well as for proving strong average-case hardness results for small de Morgan formulas, it is important
to have a “high-probability” version of such a shrinkage result, saying that “most” restrictions (of
the appropriate kind) shrink the size of the original formula. Such a version of shrinkage for de
Morgan formulas is implicit in [San10] (for linear-size formulas); Impagliazzo et al. [IMZ12] prove
a version of shrinkage with respect to pseudo-random restrictions (for de Morgan formulas of size
almost n3); Komargodski and Raz [KR12] prove the shrinkage result for certain random restrictions
(for de Morgan formulas of size about n2.5).

We sharpen a structural characterization of small (de Morgan) formulas by proving a stronger
version of the “shrinkage under random restrictions” result of [San10, KR12], with a cleaner and
simpler argument.

Shrinkage Lemma: Let F be a (de Morgan) formula or general branching program size s on n
variables. Consider the following greedy randomized process:

For n−k steps (where 0 6 k 6 n), do the following: (1) choose the most frequent variable
in the current formula; (2) assign it uniformly at random to 0 or 1; (3) simplify the
resulting new formula.

Then, with probability at least 1− 2−k, this process produces a formula of size at most 2 · s · (k/n)Γ,
where Γ = 1.5 for de Morgan formulas, and Γ = 1 for general formulas and branching programs.

Formula-#SAT. The fact that SAT is NP-complete [Coo71, Lev73], and so probably not solv-
able in polynomial time, does not deter researchers interested in “better-than-brute-force” SAT-
algorithms. In particular, the case of CNF-SAT has been actively studied for a number of years
(see [DH09] for a recent survey), while the study of Circuit-SAT algorithms for more general classes
of circuits is more recent: see [CIP09, IMP12, BIS12] for AC0-SAT, [San10, ST12] for Formula-SAT,
and [Wil11] for ACC0-SAT. Usually such algorithms exploit the same structural properties of the
corresponding circuit class that are used in the circuit lower bounds for that class. In fact, the
observation that circuit lower bound proofs and meta-algorithms are intimately related was first
formulated in Zane’s PhD thesis [Zan98] precisely in the context of depth-3 circuit lower bounds
and improved CNF-SAT algorithms.

As a consequence of the Shrinkage Lemma above, we get a new “better-than-brute-force” deter-
ministic algorithm for #SAT for (de Morgan) formulas and general branching programs of about
quadratic size, as well as give a simplified analysis of the #SAT algorithms for linear-size (de
Morgan) formulas from [San10, ST12].

#SAT algorithms: Counting the number of satisfying assignments for n-variate de Morgan for-
mulas of size n2.49, formulas over the complete basis of size n1.99, or branching programs of size
n1.99 can be done by a deterministic algorithm in time 2n−n

ε
, for some ε > 0 (dependent on the

size of the formula/branching program).

Average-case formula lower bounds. Showing that explicit functions are average-case hard
to compute by small circuits is an important problem in complexity theory, both for understanding
“efficient computation”, and for algorithmic applications (e.g., in cryptography and derandomiza-
tion). Here, again, useful algorithmic ideas often contribute to proving lower bounds for the related
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model of computation. For example, strong average-case hardness results for linear-size (de Mor-
gan) formulas are proved in [San10, ST12], using the same ideas that also gave SAT-algorithms for
the corresponding formula classes.

We use our shrinkage lemma to give an alternative proof of a recent average-case lower bound
against (de Morgan) formulas due to [KR12]: There is a Boolean function f : {0, 1}n → {0, 1}
computable in P such that every de Morgan formula of size n2.49 (any general formula of size
n1.99) computes f(x) correctly on at most 1/2 + 2−n

σ
fraction of all n-bit inputs, for some constant

0 < σ < 1.

Circuit lower bounds from compression algorithms. There are a number of results showing
that the existence of a meta-algorithm for a certain circuit class C implies superpolynomial lower
bounds against that class for some function in (nondeterministic) exponential time [Kan82, HS82,
NW94, IKW02, KI04, Agr05, FK06, Wil10]. In particular, the result by Williams [Wil10] essentially
says that deciding the satisfiability of circuits from a class C in time slightly less than that of the
trivial brute-force SAT-algorithm implies superpolynomial circuit lower bounds against C for a
language in NEXP. Here we complement this result, by showing the following.

Compression implies circuit lower bounds: Compressing Boolean functions from any subclass
C of polynomial-size circuits to any circuit size less than 2n/n implies superpolynomial lower bounds
against the class C for a language in NEXP.

Thus, both non-trivial SAT algorithms and non-trivial compression algorithms for a circuit class
C ⊆ P/poly imply superpolynomial lower bounds against that class. This suggests trying to get
an alternative proof of Williams’s lower bound NEXP 6⊆ ACC0 [Wil11] via designing a compression
algorithm for ACC0 functions. Apart from getting an alternative proof, the hope is that such a
compression algorithm would give us more insight into the structure of ACC0 functions, which could
lead to ACC0 circuit lower bounds against a much more explicit Boolean function, say the one in
NP or in P.

1.2 Our proof techniques

The circuit lower bounds proved by a method of random restrictions yield a nice structural char-
acterization of the class of n-variate Boolean functions f computable by small circuits. Roughly,
we get that the universe {0, 1}n can be partitioned into “not too many” disjoint regions, such that
the restriction of the original function f to “almost every” region is a “simple” function, where
“simple” means of description size O(n). This is reminiscent of the Set Cover problem: we want
to cover all the 1s of the given function f using as few as possible subsets that correspond to the
truth tables of “simple functions” of small descritpion size. We show how to find such a collection
of few simple functions, using a variant of the greedy heuristic for Set Cover.

For our compression algorithms, we use the “simplicity” of functions in the disjunction to argue
that they have linear-size descriptions (as required in order to achieve poly(2n) running time). For
our #SAT algorithms, we use the “simplicity” of the functions to argue that there will be few
distinct functions associated with the regions of the partition of {0, 1}n. Once we solve #SAT
(using a brute-force algorithm) for all distinct subfunctions and store the results, we can solve
#SAT for almost all regions by the table look-up, achieving a noticeable speed-up overall.
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Our proof of the high-probability version of the shrinkage lemma for formulas follows the su-
permartingale approach of [KR12]: For a de Morgan formula F on n variables, we consider the
sequence of random variables Xi, 1 6 i 6 n, where Xi corresponds to the size of the restricted and
simplified subformula of F after i variables are set randomly. By [Sub61], setting a single variable
at random is expected to shrink the formula size (with the shrinkage exponent 3/2). Thus, the
sequence {Xi} is a supermartingale. However, to apply standard concentration bounds (Azuma’s
inequality), one needs to show that the absolute value of |Xi−Xi−1| is bounded. In our case, we have
only one side of this bound, i.e., that Xi−Xi−1 is small. We show a variant of Azuma’s inequality
that holds in this case (for one-sided bounded random variables that take two possible values with
equal probability), and apply this bound to complete the shrinkage analysis. This yields a simpler
proof of the shrinkage result of [KR12] with the following differences: (1) our restrictions always
choose deterministically which variable to restrict (as opposed to restrictions of [KR12] that define
“heavy” and “light” variables, and either choose deterministically a heavy variable, if it exists, or
randomly choose a light variable otherwise), (2) after setting n − k variables, we get that all but

at most 2−k restricted formulas have shrunk in size (as opposed to 2−k
1−o(1)

in [KR12]). The fact
that our restrictions are deterministic when choosing a variable to restrict leads to a deterministic
#SAT algorithm for small (de Morgan) formulas. The fact that our error parameter is 2−k leads
to simplified analysis of Santhanam’s #SAT algorithm for linear-size de Morgan formulas [San10].

Our proof of [KR12]’s average-case hardness result is more modular and simpler. In particular,
we adapt Andreev’s original lower bound argument [And87] to the case of not necessarily truly
random restrictions (by using randomness extractors), and use the information-theoretic framework
of Kolmogorov complexity to avoid unnecessary technicalities.

Other related work. Perhaps the earliest example of a compression algorithm for a general class
of Boolean functions is due to Yablonski [Yab59], who observed that n-variate Boolean functions
that “don’t have too many distinct subfunctions” can be computed by a circuit of size σ · 2n/n, for
some σ < 1 (related to the number of distinct subfunctions). The complexity of circuit minimization
was studied in [Mas79, KC00, AHM+08, Fel09]. In particular, [AHM+08, Fel09] show that finding
an approximately minimal -size DNF for a given truth table of an n-variate Boolean function is
NP-hard, for the approximation factor nγ for some constant 0 < γ < 1.

Concurrent independent work. As we were completing this manuscript, we have found out
from Ran Raz [private communication, March 2013] about his new paper with Komargodski and
Tal [KRT13] that improves the average-case de Morgan formula lower bounds of [KR12] to handle
formulas of size about n3. In that paper, the authors prove a version of the high-probability shrink-
age result for de Morgan formulas with H̊astad’s shrinkage exponent 2 (rather than Subbotovskaya’s
shrinkage exponent 1.5 used in [KR12]). Similarly to our paper but independently of our work,
Komargodski et al. [KRT13] also adapt Andreev’s method to the case of arbitrary (not necessarily
completely random) restrictions by using appropriate randomness extractors.

The remainder of the paper. We give basic definitions in Section 2. We prove our compression
theorem in Section 3, and the shrinkage result in Section 4. We give our #SAT algorithms in
Section 5. Average-case formula lower bounds are proved in Section 6. We prove that compression
implies circuit lower bounds in Section 7. We conclude with open questions in Section 8. The
appendix contains some technical details omitted from the main body of the paper.
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2 Preliminaries

2.1 Circuits

Here we recall some basic definitions of circuit classes considered in our paper; for more background
on circuit complexity, consult any of the following [Weg87, BS90, Juk12].

A literal is either a variable, or the negation of a variable; the sign of the variable is said to
be positive in the first case, and negative otherwise. A DNF is a disjunction of terms, where each
term is a conjunction of literals. The following is a basic fact: For any subset S ⊆ {0, 1}n of size t,
there is a DNF D(x1, . . . , xn) on t terms that evaluates to 1 on each a ∈ S, and is 0 outside of S.

A Boolean circuit on n inputs is a directed acyclic graph with a single node of out-degree 0
(the output gate), and n in-degree 0 nodes (input gates), where each input gate is labeled by one
of the variables x1, . . . , xn, and each non-input gate by a logical function on at most 2 inputs (e.g.,
AND, OR, and NOT). The size of the circuit is the total number of gates; the depth is the length
of a longest path in the circuit from an input gate to the output gate. The class AC0 is a class of
constant-depth circuits with NOT, AND and OR gates, where AND and OR gates have unbounded
fan-in. For a circuit class C and a size function s(n), we denote by C[s(n)] the class of s(n)-size
n-input circuits of the type C. When no s(n) is explicitly mentioned, it is assumed to be some
poly(n).

A Boolean formula F on n input variables x1, . . . , xn is a tree whose root node is the output
gate, and whose leaves are labeled by literals over the variables x1, . . . , xn; all non-input gates are
labeled by logical functions over 2 inputs. The size of the formula F , denoted by L(F ), is the total
number of leaves. A de Morgan formula is a formula where the only logical functions used are AND
and OR.

A branching program F on n input variables x1, . . . , xn is a directed acyclic graph with one
source and two sinks (labeled 0 and 1), where each non-sink node is of out-degree 2 and is labeled
by an input variable xi, 1 6 i 6 n. The two outgoing edges of each non-terminal node are labeled
by 0 and 1. The branching program computes by starting at the source node, and following the
path in the graph using the edges corresponding to the values of the variables queried in the nodes.
The program accepts if it reaches the sink labeled 1, and rejects otherwise. The size of a branching
program F , denoted by L(F ), is the number of nodes in the underlying graph. A branching program
is (syntactic) read-once if on every path no variable occurs more than once.

A decision tree is a branching program whose underlying graph is a tree; the size of a decision
tree is the number of leaves.

A restriction ρ of the variables x1, . . . , xn is a an assignment of Boolean values to some subset
of the variables; the assigned variables are called set, while the remaining variables are called free.
For a circuit (formula or branching program) F on input variables x1, . . . , xn and a restriction ρ,
we define the restriction F |ρ as the circuit on the free variables of ρ, obtained from F after the set
variables are “hard-wired” and the circuit is simplified.

A de Morgan formula can be simplified using the following simplification rules, which have been
used in [H̊as98, San10]. We denote by ψ an arbitrary subformula, and y a literal. The rules are:
(1) If 0 ∧ ψ or 1 ∨ ψ appears, then replace it by 0 or 1, respectively. (2) If 0 ∨ ψ or 1 ∧ ψ appears,
then replace it by ψ. (3) If y ∨ψ appears, then replace all occurrences of y in ψ by 0 and y by 1; if
y ∧ψ appears, then replace all occurrences of y in ψ by 1 and y by 0. We say a de Morgan formula
is simplified if none of the above rules are applicable. Note that in a simplified formula, by the rule
3, if a leaf is labeled with x or x, then its sibling subtree does not contain the variable x.

6



Given a (bounded fan-in) circuit of size s, we can describe it using O(s log s) bits (by specifying
the gate type and at most two incoming gates for each of the s gates). The same bound is true
also for formulas and branching programs of size s.

2.2 Extractors and codes

LetX be a distribution over {0, 1}n. The min-entropy ofX is defined asH∞(X) = minx log(1/Pr[X =
x]). We say two distributions X and Y over {0, 1}n are ε-close if for any subset A ⊆ {0, 1}n, it
holds that |Pr[X ∈ A]−Pr[Y ∈ A]| 6 ε.

An oblivious (n, k)-bit-fixing source is a distribution X over {0, 1}n, where there is a subset
S ⊆ [n] of size k such that X[n]\S is fixed, while XS is uniformly distributed over {0, 1}|S|. A
seedless zero-error disperser is a function D : {0, 1}n → {0, 1}m such that for any distribution X
over {0, 1}n with min-entropy at least k, the support of D(X) is {0, 1}m. A seedless (k, ε)-extractor
is a function E : {0, 1}n → {0, 1}m such that for any distribution X over {0, 1}n with min-entropy
at least k, E(X) is ε-close to the uniform distribution over {0, 1}m.

A binary (n, k, d)-code is a function C : {0, 1}k → {0, 1}n (mapping k-bit messages to n-bit
codewords) such that any two codewords are at least the Hamming distance d apart; the relative
minimum distance of C is d/n. For 0 6 ρ 6 1 and L > 1, we say a code C is (ρ, L)-list-decodable if
for any y ∈ {0, 1}n, there are at most L codewords in C within the Hamming distance at most ρn
from y. The Johnson bound (see, e.g., [AB09]) says that, for any δ >

√
ε, an (n, k, (1/2− ε)n)-code

is (1/2− δ, 1/(2δ2))-list-decodable.

2.3 Kolmogorov complexity

The Kolmogorov complexity of a given n-bit string x, denoted by K(x), is the length of a shortest
string 〈M〉w, where 〈M〉 is a description of a Turing machine M , and w is a binary string such
that M on input w produces x as an output. A simple counting argument shows that, for every n,
there exists an n-bit string x with K(x) > n, and, more generally, for any 0 < α < 1, we have that
K(x) > αn for all but at most 2−(1−α)n fraction of n-bit strings x.

3 Compression from restriction-based circuit lower bounds

Here we prove the Compression Theorem stated in the Introduction.

3.1 Compression of DNFs, using the greedy Set Cover heuristic

As a warm-up, consider the case of DNFs. It is well-known that DNFs of almost minimum size can
be computed from the truth table of f : {0, 1}n → {0, 1} using a greedy Set Cover heuristic [Joh74,
Lov75, Chv79]. We recall this heuristic next.

Let U be a universe, and let S1, . . . , St ⊆ U be subsets. Suppose U can be covered by ` of the
subsets. Then the following algorithm will find an approximately minimal set cover.

Repeat the following, until all of U is covered: find a subset Si that covers at least 1/`
fraction of points in U which were not covered before, and add Si to the set cover.
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For the analysis, observe that since ` subsets cover U , they also cover every subset of U . Hence,
in each iteration of the algorithm, there exists a subset that covers at least 1/` fraction of the not-
yet-covered points. After each iteration, the size of the set of points that are not covered reduces
by the factor (1 − 1/`). Thus, after t iterations, the number of points not yet covered is at most
|U | · (1− 1/`)t 6 |U | · e−t/`, which is less than 1 for t = O(` · ln |U |). Hence, this algorithm finds a
set cover that is at most the factor O(ln |U |) larger than the minimal set cover.

It is easy to adapt the described algorithm to find approximately minimal DNFs. Let f :
{0, 1}n → {0, 1} be given by its truth table. Suppose that there exists a DNF computing f such
that the DNF consists of ` terms (conjunctions). With each term a on n variables, we associate
the set Sa = a−1(1) of points of {0, 1}n where it evaluates to 1. We enumerate over all possible
terms a on n variables, and keep only those sets Sa where Sa ⊆ f−1(1) (i.e., Sa does not cover any
zero of f); note that all ` terms of the minimal DNF for f will be kept. Next we run the greedy
set cover algorithm on the universe U = f−1(1) and the collection of sets Sa chosen above. By the
analysis above, we get O(` · log |U |) terms such that their disjunction computes f . That is, we find
a DNF for f of size at most O(n) factor larger than that of the minimal DNF for f .

The running time of the described algorithm is polynomial in 2n and the number of sets Sa.
The latter is the number of all possible terms on n variables, which is at most 22n (we can use an
n-bit string to describe the characteristic functions of a subset of n variables, and another n-bit
string to describe the signs of the chosen variables). Thus, the overall running time is poly(2n).

3.2 Compression of AC0 functions via DNFs

The known lower bounds for AC0 circuits are based on the fact that almost all random restrictions
simplify a small AC0 circuit to a function that depends on fewer than the remaining unrestricted
variables. Intuitively, this means that there is a partitioning of the Boolean cube {0, 1}n into not
too many disjoint regions such that the original AC0 circuit is constant over each region. This
intuition can be made precise using the Switching Lemma [H̊as86, Raz93, Bea94, IMP12], yielding
the following structural result saying that each small AC0 circuit has an equivalent representation
as a DNF with not too many terms.

Lemma 3.1 ([IMP12]). Every depth d Boolean circuit C with s gates on n inputs has an equivalent
DNF with at most poly(n) · s · 2n(1−µ) terms, where µ > 1/O(log(s/n) + d log d)d−1.

Using this structural characterization and the greedy algorithm for Set Cover considered earlier,
we immediately get the following.

Theorem 3.2. There is a deterministic poly(2n)-time algorithm A satisfying the following. Let
f : {0, 1}n → {0, 1} be any Boolean function computable by an AC0 circuit of depth d and size
s = s(n). Given the truth table of f as well as the parameters d and s, algorithm A produces a
DNF for f with at most poly(n) · s · 2n(1−µ) terms, where µ > 1/O(log s)d−1.

Note the described algorithm achieves nontrivial compression for depth-d AC0 circuits of size
up to 2n

1/(d−1)
, the size for which we know lower bounds against AC0 for explicit functions.

3.3 Formulas and branching programs

The known lower bounds for (de Morgan) formulas are also proved using the method of random
restrictions. One of the earliest results here is by Subbotovskaya [Sub61] who argued that the size
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of a de Morgan formula shrinks in expectation when hit by a random restriction; this result was
subsequently tightened by H̊astad [H̊as98]. However, these results are not strong enough to provide
a kind of structure of easy functions that would be useful for compression. By analogy with the case
of AC0, we would like to say something like “for every small de Morgan formula, there is a partition
of the Boolean cube into not too many regions such that the original formula is constant on each
region”. In particular, we need a “high probability” version of the classical shrinkage results of
[Sub61, H̊as98].

Recently, there have been several such shrinkage results proved for different purposes. San-
thanam [San10] implicitly proved such a result for linear-size de Morgan formulas and used it to
obtain a deterministic SAT algorithm for such formulas that runs in time better than that of the
“brute-force” algorithm. Impagliazzo et al. [IMZ12] proved a version of shrinkage result with respect
to certain pseudorandom restrictions, in order to construct a non-trivial pseudorandom generator
for small de Morgan formulas. Komargodski and Raz [KR12] proved a shrinkage result for certain
random restrictions (different from the ones in [San10]), and used it to get a strong average-case
lower bound against small de Morgan formulas.

We will give an improved and simplified proof of the shrinkage result due to [San10, KR12]. We
use the same notion of random restrictions as in [San10], which will allow us later to get a “better
than brute force” deterministic SAT algorithms for super-quadratic-size de Morgan formulas. We
get a smaller error probability than that of [KR12], which allows us to analyze Santhanam’s SAT
algorithm for linear-size de Morgan formulas as an easy corollary. Finally, we get a clean and simple
proof which avoids some of the ad hoc technicalities from [KR12].

3.3.1 Structure of functions computable by small formulas

First, we state our version of the shrinkage result. Let F be a de Morgan formula on n variables.
As in [San10], we consider adaptive restrictions that proceed in i rounds, for 0 6 i 6 n, and in each
round set uniformly at random the most frequent variable in the current formula, and simplify the
resulting new formula (using the standard simplification rules). Note that these restrictions are not
completely random: the next variable to be restricted is chosen completely deterministically (as
the most frequent one), but the value assigned to this variable is then chosen uniformly at random
to be either 0 or 1.

For a given de Morgan formula F , define F0 = F . For 1 6 i 6 n, we define Fi to be the random
formula obtained from Fi−1 by uniformly at random assigning the most frequent variable of Fi−1,
and simplifying the result. Note that Fi is a formula on n− i remaining (unrestricted) variables.

Lemma 3.3 (Shrinkage Lemma). Let F be any given (de Morgan) formula or a branching program
on n variables. For any k > 4, we have

Pr

[
L(Fn−k) > 2 · L(F ) ·

(
k

n

)Γ
]
< 2−k,

where Γ = 3/2 for the case of de Morgan formulas, and Γ = 1 for the case of formulas over the
complete basis and for the case of branching programs.

We postpone the proof of Shrinkage Lemma till Section 4. Now we apply this lemma to obtain
the following structural characterization of small formulas and branching programs, which will be
useful for compression.
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Corollary 3.4. Let F (x1, . . . , xn) be any formula (branching program) of size O(nd), where the
constant d is such that d < 2.5 for de Morgan formulas, and d < 2 for formulas over the complete
basis and for branching programs. There exist constants 0 < δ, γ < 1 (dependent on d) such that
for k = dnδe the following holds. The Boolean function computed by F is computable by a decision
tree of depth n− k whose leaves are labeled by the restrictions of F (determined by the path leading
to the leaf) such that all but 2−k fraction of the leaf labels are formulas (branching programs) on k
variables of size less than nγ .

Proof. We consider the case of de Morgan formulas only; the case of formulas over the complete
basis or branching programs can be argued analogously. Let d = 2.5− ν, for some constant ν > 0.
Set δ := ν/3, and γ := 1 − ν/2. By Lemma 3.3 applied to F , we get that for all but 2−k fraction
of the branches of the restriction decision tree of depth n − k, the restricted formula has size less
than O(nd/n1.5(1−δ)) = O(n1−ν/2).

3.3.2 Generalized greedy Set-Cover heuristic

The Shrinkage Lemma allows us to decompose the Boolean cube into not too many regions so that,
over almost all regions, the original formula simplifies to a formula of sublinear size. This falls
short of our original hope to get a constant function over most regions. In fact, the latter cannot
be achieved since a de Morgan formula of size O(n2) computes the parity of n bits, and the parity
function doesn’t simplify to a constant unless all of its variables are fixed.

Fortunately, we can still use a version of the greedy Set Cover heuristic to compress de Morgan
formulas of size about n2.5. The reason is that a similar algorithm works also for a function
f : {0, 1}n → {0, 1} computed by a circuit of the form ∨`+1

i=1Ci, for ` 6 2n, where all but one circuit
are small, while the remaining circuit accepts few inputs. More precisely, we have the following.

Theorem 3.5. There is a deterministic poly(2n)-time algorithm A satisfying the following. Let
f : {0, 1}n → {0, 1} be any function computable by a circuit ∨`+1

i=1Ci, for 1 6 ` 6 2n, where the
circuits C1, . . . , C` have both circuit size and description size at most cn for a constant c > 0, while
the last circuit C`+1 evaluates to 1 on at most fraction α of points in {0, 1}n, for some 0 6 α < 1.

Given the truth table of f and the parameters `, c, and α, algorithm A finds a circuit for f of the
form ∨mi=1Di, where m = O(n · `), the circuits D1, . . . , Dm−1 are of size O(n) each, and the circuit
Dm is a DNF with O(α2n) terms. Hence the overall size of the found circuit is O(`n2 + αn2n).

Proof. Let U = f−1(1), and let β = |U |/2n. If β 6 2α, then our algorithm A outputs the circuit
which is a DNF with β2n terms, where each term evaluates to 1 on a single point in U , and is 0
everywhere else. Note that the size of this circuit is O(αn2n), as required.

If β > 2α, then algorithm A does the following.

Enumerate3 all linear-size circuits C of description size at most cn, keeping only those
C where C−1(1) ⊆ f−1(1). Call the kept circuits legal. Let S = ∅.

Repeat the following until the number of not-yet-covered points of U becomes at most
2α2n: find a legal circuit C such that the set C−1(1) covers at least 1/(2`) fraction of
not-yet-covered points in U , and add C to the set S.

Once the number of non-covered points in U becomes at most 2α2n, construct a DNF
D that evaluates to 1 on each non-covered point, and is 0 everywhere else. Output the
disjunction of D and the circuits in S.

3Here we assume the correspondence between circuits and their descriptions is efficiently computable and is known.
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For the analysis, let W = C−1
`+1(1), and let let V = U \W . We claim that at each iteration

of the algorithm before the last iteration, the set of not-yet-covered points in V is at least as big
as the set of not-yet-covered points in W . Indeed, otherwise the total number of not-yet-covered
points at that iteration is at most 2 · |W | 6 2α2n, making this the last iteration of the algorithm.

Next observe that at each iteration before the last one, the set of not-yet-covered points in V
is non-empty, and is covered by ` legal circuits. Hence, there is a legal circuit that covers at least
1/` fraction of non-covered points in V , which, by the earlier remark, constitutes at least 1/(2`)
fraction of all non-covered points of U . Thus our algorithm will always find a required legal circuit
C. It follows that after each iteration, the size of not-yet-covered points in U decreases by the
factor (1− 1/(2`)), and hence the total number of iterations is t = O(` · log |U |) = O(` · n).

Thus, after at most t iterations, at most 2α2n points of U are still not covered. We denote the
t found circuits D1, . . . , Dt, and let Dt+1 be the DNF with at most 2α2n terms which evaluates to
1 on the non-covered points of U , and is 0 everywhere else. Note that the circuit size of Dt+1 is
O(αn2n), while all Di’s, for 1 6 i 6 t, are of circuit size O(n) by construction. Also note that the
overall running time of the described algorithm is poly(2n, t) = poly(2n). The theorem follows.

Using this generalized algorithm, we get the following.

Theorem 3.6. There is an efficient compression algorithm that, given the truth table of a formula
(branching program) F on n variables of size L(F ) 6 nd, the algorithm produces an equivalent
Boolean circuit of size at most 2n−n

ε
, for some constant 0 < ε < 1 (dependent on d), where the

constant d is such that

• d < 2.5 for de Morgan formulas, and

• d < 2 for formulas over the complete basis and for branching programs.

Proof. Let F be a de Morgan formula, a complete-basis formula, or a branching program of the
size stated in the theorem. By Corollary 3.4, this F can be computed by a decision tree of depth
m := n − nδ such that all but at most α := 2−n

δ
fraction of the leaves correspond to restricted

subformulas of F of size nγ on k := nδ variables, for some constants 0 < δ, γ < 1 dependent on d.
Each leaf of the decision tree corresponds to a restriction of some subset of m input variables.

Let us associate with each leaf i, 1 6 i 6 2m, of the decision tree, the conjunction ci of m literals
that defines the corresponding restriction. Also let Fi, for 1 6 i 6 2m, denote the restriction of the
original F corresponding to the restriction given by ci. We get that F ≡ ∨2m

i=1(ci ∧ Fi).
We know that all but b := α·2m of formulas Fi are sublinear-size nγ . Let us assume, without loss

of generality, that all the first ` := 2m− b formulas Fi are small. Define the circuits Ci := (ci ∧Fi),
for 1 6 i 6 `, and C`+1 := ∨2m

i=`+1(ci ∧ Fi).
Observe that the circuit C`+1 can evaluate to 1 on at most b · 2k = α · 2n inputs from {0, 1}n

(since the decision tree of depth m partitions the set {0, 1}n into 2m disjoint subsets of size 2k

each, and C`+1 corresponds to b such subsets). Each circuit Ci, for 1 6 i 6 `, is of size at most
O(m+nγ) 6 O(n). We also claim that each such circuit can be described by a string of O(n) bits.
Indeed, we can specify the conjunction ci using 2n bits (n bits to describe the subset of variables
in the conjunction, and another n bits to specify the signs of the variables), and we can specify the
formula (branching program) Fi of size nγ by at most O(nγ log n) 6 O(n) bits in the standard way.

Thus we get that F ≡ ∨`+1
i=1Ci satisfies the assumption of Theorem 3.5. Running the greedy

algorithm of Theorem 3.5, we get a circuit for F of total size at most O(`n2 + αn2n) 6 poly(n) ·
2n−n

δ
.
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3.4 Read-once branching programs

Read-once branching programs are quite well-understood, with strongly exponential lower bounds
known. A property that makes a function f hard for read-once branching programs is that of being
m-mixed: for every set S of variables such that |S| = m every two distinct assignments a and b to
variables in S give rise to different functions fa 6≡ fb. Any read-once branching program computing
an m-mixed Boolean function must have at least 2m − 1 nodes [SZ96].

On the other hand, a function that has a small read-once branching program cannot be m-mixed
for large m. Intuitively, such a function can be represented by a decision tree of depth m, whose
leaves are labeled by subfunctions g (in the remaining n−m variables) so that many of the leaves
share the same subfunction. If a program has size s, then the number of distinct such subfunctions
is at most s. Thus, f can be computed as an OR of at most s subformulas, where each subformula
encodes the conjunction of a particular subfunction g and the DNF describing all branches leading
to this subfunction g. The fact that f can be represented as an OR of few simple formulas allows
us to use the greedy SetCover heuristic to compress such f . We provide the details next.

It is convenient for us to use the following canonical form of a read-once branching program.
We call a program full if, for every node v of the program, all paths leading from the start node to
v query the same set of variables (not necessarily in the same order).

Lemma 3.7. Every read-once branching program F of size s on n inputs has an equivalent full
read-once branching program F ′ of size s′ 6 3n · s.

Proof. Given F , construct F ′ inductively as follows. Consider nodes of F in the topological order
from the start node. The start node obviously satisfies the fullness property. For every node v of
F with distinct predecessor nodes u1, . . . , ut, for t > 2, let Xi denote the set of variables queried
by the paths from start to ui; note that, by the inductive hypothesis, all paths leading to ui query
the same set Xi of variables. Let X = ∪ti=1Xi. For every i ∈ {1, . . . , t}, let ∆i = X \Xi be the set
of “missing” variables. If ∆i 6= ∅, replace the edge (ui, v) by a multi-path ui, w1, w2, . . . , wr, v, for
r = |∆i|, where wj ’s are new nodes labeled by the “missing” variables from ∆i (in any fixed order),
with the edge (ui, w1) labeled as the edge (ui, v), and each wj has two edges to its successor node
on the path, labeled by 0 and by 1, respectively.

Since our original program is read-once, no variable from the set X for a node v can occur
after v. Thus, adding the queries to the “missing” variables for every predecessor of v preserves
the property of being read-once, and preserves the functionality of the branching program. It also
makes the node v and all of its predecessors satisfy the fullness property. Hence, after considering
all nodes v, we obtain a required full read-once branching program F ′ equivalent to F . The size of
F ′ is at most s+ 2sn since we add at most n dummy nodes for each of at most 2s edges of F .

Theorem 3.8. There is a deterministic poly(2n)-time algorithm A satisfying the following. Let
f : {0, 1}n → {0, 1} be any Boolean function computable by a read-once branching program of size
s. Given the truth table of f , algorithm A produces a formula for f of size at most O(sn3 · 2n/2).

Proof. By Lemma 3.7, f is computable by a full read-once branching program F of size s′ = 3sn.
For 0 6 k 6 n to be chosen later, consider the set B of all nodes at distance n − k from the
start node. Clearly, there are at most s′ such nodes. For every such node v, let Xv be the set of
n − k variables queried on every path from the start to v. Let Yv be the remaining k variables.
Associate with v the function hv in the variables Xv computed by the branching subprogram with v
as the new accepting terminal node (and the same start node), and the function gv in the variables
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Yv computed by the branching subprogram with v as the new start node (and the same terminal
nodes). We may assume that the functions gv are distinct for distinct nodes in B; otherwise, we
merge all nodes with the same gv (on the same subset of k variables) into a single node. We have

f ≡ ∨v∈B(hv ∧ gv). (1)

Consider any v ∈ B. Let ρ be a restriction of the variables Xv corresponding to some path from
the start to v. We have gv = f |ρ, and hv is the disjunction of all restrictions ρ′ of the variables
Xv such that f |ρ′ = gv = f |ρ. Thus, to describe any disjunct in the representation of f given
by Eq. (1), it suffices to specify a restriction of some subset of n − k variables of f ; this can be
described using O(n) bits.

We now run the greedy Set-Cover heuristic to find at most O(s′n) functions, each describable
by a restriction of some n − k variables as explained above, whose disjunction equals f . For each
restriction ρ specifying one of these functions, the corresponding function can be computed as
an AND of a DNF of size 2k (for the function f |ρ on k variables) and a DNF of size 2n−k (for
all restrictions ρ′ on n − k variables that yield f |ρ′ = f |ρ). The overall circuit size of each of
these O(s′n) functions is then O(n(2k + 2n−k)), and the overall size of the circuit computing f is
O(s′n2(2k + 2n−k)), which is at most O(sn3 · 2n/2), if we set k = n/2. The running time of the
compression algorithm is poly(2n) since we only need to enumerate all O(n)-size descriptions.

4 Shrinkage of de Morgan Formulas

Here we prove the Shrinkage Lemma. We use the adaptive restrictions of [San10] (each time ran-
domly restricting the most frequent variable in the formula). Following [KR12], our idea is to
analyze how the size of a formula is changed after a single (most frequent) variable is randomly
assigned. The new formula size is a random variable, which is expected to get smaller than the
previous formula size. We would like to treat the sequence of these random variables as a super-
martingale, and use the standard concentration results (Azuma’s inequalities) to show that the
final formula is very likely to have a small size.

One technical problem with this approach is that in one step the formula size may drop by an
arbitrary amount, and we don’t seem to get the boundedness condition (that a random variable
changes by at most some fixed amount after each step) that is a condition for the standard version of
Azuma’s inequality. In [KR12], this technicality was circumvented by introducing some “dummy”
variables into the formula to artificially keep the one-step change in the formula size bounded, and
then apply the standard version of Azuma’s inequality. However, it seems unnecessary to do that,
since if the formula size drops by a lot in a single step, this should be even better for us!

Instead, we show a version of Azuma’s inequality holds in the special case of random variables
which take two values with equal probability and where the boundedness condition is one-sided :
we just require that the next random value be smaller than the current value by at least some
known amount, meanwhile allowing it to be arbitrarily small. This turns out to be precisely the
setting in our case, and so we can bound the probability of producing a large formula by a direct
application of Azuma’s inequality. Apart from making the overall argument simpler, this also gives
a quantitatively better bound. We give the details next.
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4.1 A variant of Azuma’s Inequality

Lemma 4.1. Let Y be a random variable taking two values with equal probability. If E[Y ] 6 0 and
there exists c > 0 such that Y 6 c, then for any t > 0, we have E[etY ] 6 et

2c2/2.

Proof. Suppose Y takes two values a and b where a 6 b 6 c, and Pr[Y = a] = Pr[Y = b] = 1
2 .

Consider the following two cases. If b 6 0, then etY 6 et·0 = 1 6 et
2c2/2. If b > 0, since E[Y ] =

1
2(a + b) 6 0, we have a 6 −b and E[etY ] = 1

2(eta + etb) 6 1
2(e−tb + etb) 6 et

2b2/2 6 et
2c2/2, where

we used the inequality 1
2(e−x + ex) 6 ex

2/2.

Recall that a sequence of random variables X0, X1, X2, . . . , Xn is a supermartingale with respect
to a sequence of random variables R1, R2, . . . , Rn if E[Xi | Ri−1, . . . , R1] 6 Xi−1, for 1 6 i 6 n.

Lemma 4.2. Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1. Let Yi = Xi −Xi−1. If,
for every 1 6 i 6 n, the random variable Yi (conditioned on Ri−1, . . . , R1) assumes two values with
equal probability, and there exists a constant ci > 0 such that Yi 6 ci, then, for any λ, we have

Pr[Xn −X0 > λ] 6 exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

Proof. The following is an adaptation of the standard proof of Azuma’s inequality to our case of
“one-sided bounded” variables. Let t > 0 be arbitrary. Since Xn −X0 =

∑n
i=1 Yi, we have

Pr[Xn −X0 > λ] = Pr

[
n∑
i=1

Yi > λ

]
= Pr

[
et

∑n
i=1 Yi > eλt

]
6 e−λtE

[
et

∑n
i=1 Yi

]
,

where the last inequality is by Markov’s inequality. We get

E
[
et

∑n
i=1 Yi

]
= E

[
et

∑n−1
i=1 Yi ·E

[
etYn | Rn−1, . . . , R1

]]
6 E

[
et

∑n−1
i=1 Yi

]
· et2c2n/2,

where the last inequality is by Lemma 4.1. By induction, we get E
[
et

∑n
i=1 Yi

]
6 et

2
∑n
i=1 c

2
i /2. Thus,

Pr[Xn −X0 > λ] 6 e−λt+t
2
∑n
i=1 c

2
i /2. Choosing t = λ/

∑n
i=1 c

2
i yields the required bound.

4.2 Shrinkage lemma

Recall our definition of a restriction. For a given de Morgan formula F on n variables, define
F0 = F . For 1 6 i 6 n, we define Fi to be the subformula obtained from Fi−1 by uniformly at
random assigning the most frequent variable of Fi−1.

We re-state the Shrinkage Lemma for the case of de Morgan formulas; the case of general
formulas and branching programs is similar with the shrinkage exponent Γ = 1 used throughout
instead of Γ = 3/2.

Lemma 4.3 (Shrinkage Lemma). Let F be any given de Morgan formula on n variables. For any
k > 4, we have

Pr

[
L(Fn−k) > 2 · L(F ) ·

(
k

n

)3/2
]
< 2−k.

For the proof, we will need the following auxiliary lemmas.
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Lemma 4.4. Let F be a de Morgan formula on n variables, and let F ′ = F1 (obtained from F
in one step of adaptive restriction defined above). Then L(F ′) 6 L(F ) ·

(
1− 1

n

)
, and E[L(F ′)] 6

L(F ) ·
(
1− 1

n

)3/2
.

Proof. Let x be the most frequent variable in F . Then x appears at least L(F )/n times (as a leaf
label x or x). Furthermore, since F is simplified, for each leaf labeled with x or x, its sibling subtree
does not contain x. By the simplification rules 1 and 2, after assigning x to be 0 or 1, we can remove
at least one leaf for each appearance of x. That is, L(F ′) 6 L(F )− L(F )/n = L(F ) · (1− 1/n) .

Moreover, for each appearance of x, we expect to remove its sibling with probability 1/2. Since
the sibling has size at least 1 and does not contain x, we have

E[L(F ′)] 6 L(F )− L(F )

n
− 1

2
· L(F )

n
= L(F ) ·

(
1− 3

2n

)
6 L(F ) ·

(
1− 1

n

)3/2

,

where the last inequality is by 1−ax 6 (1−x)a true for 0 6 x 6 1 and a > 1 (see the Appendix).

Let Ri be the random value assigned to the restricted variable in step i. Set Li := L(Fi), and
li := logLi. Define a sequence of random variables {Zi} as follows:

Zi = li − li−1 −
3

2
log

(
1− 1

n− i+ 1

)
.

Note that, given R1, . . . , Ri−1, the random variable Zi assumes two values with equal probability.

Lemma 4.5. Let X0 = 0 and Xi =
∑i

j=1 Zj. Then the sequence {Xi} is a supermartingale with

respect to {Ri}, and, for each Zi, we have Zi 6 ci := −1
2 log

(
1− 1

n−i+1

)
.

Proof. Using Lemma 4.4, we get li 6 li−1 + log
(

1− 1
n−i+1

)
; this implies Zi 6 ci. By Jensen’s

inequality, E[li | Ri−1, . . . , R1] 6 logE[Li | Ri−1, . . . , R1], which, by Lemma 4.4, is at most

log

(
Li−1 ·

(
1− 1

n−i+1

)3/2
)

= li−1 + 3
2 log

(
1− 1

n−i+1

)
; this implies E[Zi | Ri−1, . . . , R1] 6 0,

and so {Xi} is indeed a supermartingale.

Now we can complete the proof of the Shrinkage Lemma.

Proof of Lemma 4.3. Let λ be arbitrary, and let ci’s be as defined in Lemma 4.5. By Lemma 4.5
and Lemma 4.2, we get

Pr

 i∑
j=1

Zj > λ

 6 exp

(
− λ2

2
∑i

j=1 c
2
j

)
.

For the left-hand side, we get by the definition of Zj ’s that
∑i

j=1 Zj = li − l0 − 3
2 log n−i

n . Hence,

Pr

 i∑
j=1

Zj > λ

 = Pr

[
li − l0 −

3

2
log

(
n− i
n

)
> λ

]
= Pr

[
Li > eλL0

(
n− i
n

)3/2
]
.
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For each 1 6 j 6 i, we have cj 6 1
2 ·

1
n−j , using the inequality log(1 + x) 6 x. Thus,

∑i
j=1 c

2
j is at

most

1

4

i∑
j=1

(
1

n− j

)2

6
1

4

i∑
j=1

(
1

n− j − 1
− 1

n− j

)
=

1

4
·
(

1

n− i− 1
− 1

n− 1

)
6

1

4
· 1

n− i− 1
.

Taking i = n− k, we get

Pr

[
Ln−k > eλL0

(
k

n

)3/2
]
6 exp

(
− λ2

2
∑n−k

j=1 c
2
j

)
6 e−2λ2(k−1).

Choosing λ = ln 2 concludes the proof.

5 #SAT algorithms for formulas

5.1 n2.49-size de Morgan formulas and n1.99-size general formulas

Here we show the existence of “better than brute-force” #SAT algorithms for formulas of about
quadratic size.

Theorem 5.1. There is a deterministic algorithm for counting the number of satisfying assignments
in a given formula on n variables of size at most nd which runs in time t(n) 6 2n−n

δ
, for some

constant 0 < δ < 1 (dependent on d), where the constant d is such that

• d < 2.5 for de Morgan formulas, and

• d < 2 for formulas over the complete basis and for branching programs.

Proof. We consider the case of de Morgan formulas only; the case of general formulas and branching
programs is similar (using the shrinkage exponent Γ = 1 rather than Γ = 1.5). Suppose we have
a formula F on n variables of size n2.5−ε for a small constant ε > 0. Let k = nα and α < 2

3ε. We
build a restriction decision tree with 2n−k branches as follows:

Starting with F at the root, find the most frequent variable in the current formula, set
the variable first to 0 then to 1, and simplify the resulting two subformulas. Make these
subformulas the children of the current node. Continue until get a full binary tree of
depth exactly n− k.

Note that constructing this decision tree takes time 2n−kpoly(n). By the Shrinkage Lemma
(Lemma 4.3), for all but at most 2−k fraction of the leaves have the formula size L(Fn−k) <

2 · L(F )
(
k
n

)3/2
= 2 · n2.5−ε · n1.5(α−1) = 2n1−ε+1.5α.

To solve #SAT for all “big” formulas (those that haven’t shrunk), we use brute-force enu-
meration over all possible assignments to the k variables left. The running time is bounded by
2n−k · 2−k · 2k · poly(n) 6 2n−k · poly(n).

For “small” formulas (those that shrunk to the size less than 2nγ for some γ = 1− ε+ 1.5α), we
use memoization. First, we enumerate all formulas of such size, and compute and store the number
of satisfying assignments for each of them. Then, as we go over the leaves of the decision tree that
correspond to small formulas, we simply look up the stored answers for these formulas.
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There are at most 2O(nγ logn) such formulas, and counting the satisfying assignments for each
one (with k inputs) takes time 2kpoly(nγ) = 2n

α · poly(n). Including pre-processing, computing
#SAT for all small formulas takes time at most 2n−k · poly(n) + 2O(nγ logn) 6 2n−n

α · poly(n).

Thus, the overall running time is bounded by 2n−n
δ

for some δ > 0.

5.2 Linear-size formulas

First, we give a simplified analysis of Santhanam’s 2n−δn-time satisfiability algorithm [San10] for
cn-size de Morgan formulas on n variables, getting an explicit bound on the savings δ along the
way (in [San10], the savings δ was some unspecified inverse polynomial in c).

Theorem 5.2 ([San10]). There is a deterministic algorithm for counting the number of satisfying
assignments of a given cn-size de Morgan formula on n variables that runs in time 2n−δn, for
δ > 1/(32 · c2).

Proof. Let F be a de Morgan formula of linear size cn for some constant c. Let p =
(

1
4c

)2
and

k = pn. We construct a decision tree of n − k levels in exactly the same way as in the proof
of Theorem 5.1. By the Shrinkage Lemma (Lemma 4.3), all but 2−k fraction of leaves have the

formula size L(Fn−k) 6 2 · L(F )
(
k
n

)3/2
= 2 · cn · p3/2 = 2cp1/2 · pn = 1

2pn = k
2 .

To compute #SAT for all “big” formulas, we use brute-force enumerations over all possible
assignments to the k variables which are left. The running time in total is bounded by 2n−k · 2−k ·
2k · poly(n) = 2n−k · poly(n).

For “small” formulas (with size less than k/2), there are at most k/2 variables left. To compute
#SAT for all such formulas, the total running time is bounded by 2n−k · 2k/2 · poly(n) = 2n−k/2 ·
poly(n).

The overall running time of counting the number of satisfying assignments of a de Morgan
formula of size cn is bounded by 2n−δnpoly(n) where δ = 1

32c2
.

Remark 5.3. Santhanam’s SAT algorithm relies on the fact that, under most restrictions, a given
linear-size de Morgan formula will simplify to a formula that doesn’t depend on all of the remaining
variables. The same is not true for de Morgan formulas of size at least n2, as such formulas can
compute the parity function on n bits. It is an interesting question whether one can devise a
non-trivial SAT algorithm for super-quadratic-size de Morgan formulas that uses, say, polynomial
space.

We can also use the “supermartingale approach” to provide a different analysis of the #SAT
algorithm for linear-size general formulas of [ST12]. At a high level, the argument of [ST12] is as
follows. One runs a greedy branching process (picking variables to restrict, and restricting them to
both 0 and 1) on a given general formula. Either at some point in this process, we get a subformula
that is easy to check for satisfiability (using, e.g., linear algebra), or else the formula will keep
shrinking (similarly to the case of de Morgan formulas). That is, assuming that we don’t get a
formula amenable to linear-algebraic methods, we can show that the formulas will behave similarly
to de Morgan formulas and so keep shrinking with some shrinkage exponent slightly bigger than 1.

More precisely, Seto and Tamaki [ST12] show that if we don’t get a simple enough formula
to solve using linear algebra, then in each step of the branching process there will be a constant
number of variables to restrict so that all the restrictions of these variables are guaranteed to make
the formula “slightly” smaller (by a certain known value), and moreover, for at least half of such
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restrictions, the new formula gets “significantly” smaller. The latter is similar to what happens in
the case of de Morgan formulas after one restricts one variable (albeit with much worse shrinkage
parameters). The main difference is that for general formulas (of linear size), we need to restrict
more than one but still at most some constant number of variables.

This suggests defining a supermartingale sequence for the sizes of the restricted formula after a
certain constant number of variables are set, and applying Lemma 4.2 to that sequence. Indeed, this
approach yields the running-time analysis of [ST12]’s SAT algorithm for cn-size general formulas on
n variables, with the running time 2n−δn, for δ about c−c

3
. We provide the details in the Appendix.

Finally, we observe that the proof of Theorem 5.2 immediately yields an average-case lower
bound for linear-size de Morgan formulas [San10]. Indeed, by the proof of Theorem 5.2, every
cn-size de Morgan formula F on n variables can be computed by a decision tree of height n − k,
for k = n/(16c2), where all but 2−k branches of the tree correspond to subformulas on at most k/2
of the remaining k variables. Any such subformula has zero correlation with the parity function.
Hence, F can correctly compute parity with probability at most 1/2 + 2−k = 1/2 + 2−n/(16c2).

Note that this average-case hardness is nontrivial for c <
√
n, i.e., for de Morgan formulas of

size at most n1.5. In the following section, we show how to get an average-case lower bound against
de Morgan formulas of size about n2.5.

6 Average-case hardness for de Morgan formulas of size n2.49

Here we use our shrinkage result for adaptive restrictions to re-prove a recent result by Komargodski
and Raz [KR12] on average-case hardness for de Morgan formulas. Our proof is more modular
than the original argument of [KR12], and is arguably simpler. The main differences are: (i) we
use restrictions that choose which variable to restrict in a completely deterministic way (rather
than randomly), and (ii) we use an extractor for oblivious bit-fixing sources (instead of Andreev’s
extractor for block-structured sources).

6.1 Andreev’s original argument

We sketch the original idea of Andreev first. Andreev [And87] defined a function A : {0, 1}n ×
{0, 1}n → {0, 1} as follows: Given inputs x, y ∈ {0, 1}n, partition y into log n blocks y1, . . . , ylogn of
size n/ log n each. Let bi be the parity of block yi, and output the bit of x in the position b1 . . . blogn

(where we interpret the log n-bit string b1 . . . blogn as an integer between 0 and n − 1). Note that
the de Morgan formula complexity of A(x, y) is at least that of A(x0, y) for any fixed string x0.
Andreev argued that if x0 is a truth table of a function of maximal formula complexity, then the
resulting function A′(y) = A(x0, y) will be hard for de Morgan formulas of certain size (dependent
on the best available shrinkage exponent Γ).

The proof is by contradiction. Suppose we have a small de Morgan formula computing A′(y).
The argument relies on two observations. First, under a random restriction (with appropriate
parameters), the restricted subformula of A′(y) will have size considerably less than n. Secondly, a
random restriction is likely to leave at least one variable free (unrestricted) in each of the blocks.
When both these events happen, we get a small-size de Morgan formula that can be used to compute
the bits of x0, which contradicts the assumed hardness of x0.

Looking at Andreev’s argument more closely, we observe that he uses the second string y to
extract log n bits that are used as a position in the truth table x0. He needs y to have the property
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that every log n-bit string can be obtained from y even after y is hit by a random restriction, leaving
few variables free. Intuitively, each unrestricted variable in y is a source of a truly random bit, and
so the restricted string y is a weak source of randomness containing k truly random bits, where k
is the number of unrestricted variables left in y. In fact, this is an oblivious bit-fixing source with
k bits of min-entropy.

Andreev uses a very simple extractor for y (extracting one bit of randomness from each block
in y), but this extractor works only for “sources of randomness” which have a “block structure”,
namely, every block contains at least one truly random bit. This dictates that the argument be
constrained to use restrictions which in addition to leaving k unrestricted bits, also respect this
“block structure” (at least with high probability). This is not an issue in Andreev’s argument
which uses random restrictions (that indeed respect the “block structure” with high probability).
However, this creates difficulties if one wants to use other choices of restrictions as is the case in
both [KR12] and the argument of this paper.

6.2 Adapting Andreev’s argument to arbitrary restrictions, using extractors

We will show that Andreev’s argument can be adapted to work with any choice of restrictions (in
particular, our adaptive restrictions that choose deterministically which variables to restrict). To
this end, we shall use explicit extractors for oblivious bit-fixing sources; in fact, a disperser suffices
in this context of worst-case hardness, but an extractor is needed for the case of average-case
hardness that we consider later.

One difficulty we need to overcome when using an arbitrary extractor/disperser instead of
Andreev’s original extractor is an apparent need of invertibility : Given a position z into the truth
table of x0, and a restriction, we need to find extractor’s pre-image y′ of z that is consistent with
the restriction. This task is very easy for Andreev’s extractor, but quite non-trivial in general. We
remark that [GS12] constructed dispersers for oblivious bit-fixing sources which are invertible in
expected polynomial time. Naively, we seem to require an inverting procedure that is computable
by a small de Morgan formula, in order to argue that we get a small de Morgan formula for the
assumed hard string x0. However, we will show that for Andreev’s argument, one can start with
any incompressible string x0, not just of high de Morgan formula complexity, but rather, say, of
high Kolmogorov complexity. This makes the whole argument of deriving a contradiction to the
assumed hardness of x0 much simpler: we just need to argue that the existence of a small de
Morgan formula for A(x0, y) implies the existence of a short description in the Kolmogorov sense
for the string x0. The reconstruction procedure for x0 may take arbitrary amount of time, and so
in particular, it is acceptable to use even brute-force inverting procedures for extractors/dispersers.

We provide the details on how to use dispersers in Andreev’s worst-case hardness argument
next. We define a modified version of Andreev’s function using the following zero-error disperser.

Theorem 6.1 ([GS12]). There exist c > 1 and 0 < η < 1 such that, for all sufficiently large n,
k > (log n)c, there is a poly(n)-time computable zero-error disperser D : {0, 1}n → {0, 1}k−o(k) for
oblivious (n, k)-bit-fixing sources.

The modified function B : {0, 1}4n × {0, 1}n → {0, 1} is defined by B(x, y) = xD(y), where D
is a disperser that extracts log(4n) = log n + 2 bits from oblivious bit-fixing sources containing
k = (log n)c random bits. That is, we use a more powerful disperser instead of Andreev’s naive
parity based disperser. In addition, we also increased the length of the first input x from n to 4n.
This is done for technical reasons related to the use of Kolmogorov complexity.
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Next, fix a string x0 of length 4n whose Kolmogorov complexity is K(x0) > 4n, and consider
the function B′(y) = B(x0, y). Suppose B′(y) has a de Morgan formula F . The shrinkage result
of Lemma 4.3 says that, after adaptively restricting n− k variables via a random restriction ρ, the
formula size will shrink with high probability. Denote by F ′ the formula after a restriction ρ, i.e.,
F ′ = F |ρ. Then,

Pr

[
L(F ′) 6 2L(F )

(
k

n

)3/2
]
> 1− 1

2k
.

Fix a good restriction ρ and consider the formula F ′ obtained from F using the restriction ρ.
We will use the descriptions of F ′ and ρ to reconstruct the string x0, using the following procedure:

Given a formula F ′(y′), a restriction ρ, and n in binary, go over all values 0 6 i 6 4n−1.
For each i, find a pre-image z = D−1(i) consistent with the restriction ρ (by trying all
possible values for the free variables y′ and evaluating D on the input described by the
restriction ρ plus the chosen values for y′), and output F ′(z′), where z′ is the part of z
corresponding to the unrestricted variables y′.

For the correctness analysis, for each position 0 6 i 6 4n− 1, there will be a required preimage
z to the disperser (since the disperser is zero-error). Since F correctly computes B′(y), we get that
F ′(z′) equals the bit of x0 in the position D(z) = i.

The input size that the above procedure for reconstructing x0 takes is at most L(F ′)·logL(F ′)+
2n + 2 log n + 2 bits to describe the restricted formula F ′, the restriction ρ, and the input size n.
Indeed, we can first describe n by repeating twice each bit of the log n-bit string n, followed by
the two-bit string 01, followed by 2n-bit string describing the restriction ρ (saying for each position
0 6 i 6 n− 1 of y whether it’s 0, 1, or ∗), followed by the description of F ′. We get

4n 6 K(x0) 6 L(F ′) · logL(F ′) + 2n+ 2 log n+ c,

for some constant c (which takes into account the constant-size description of the Turing ma-
chine performing the reconstruction of x0). Hence, L(F ′) > n/ log n. We conclude that L(F ) >
n2.5/poly log n, and hence also the function B(x, y) requires de Morgan formulas of at least that
size, up to a constant factor.

6.3 Average-case hardness

Here we generalize the argument from the previous subsection to prove average-case hardness. We
will use the following extractor by Rao [Rao09].

Theorem 6.2 ([Rao09]). There exist constants d < 1 and c > 1 such that for every k(n) >
logc n, there is a polynomial time computable extractor E : {0, 1}n → {0, 1}k−o(k) for (n, k)-bit-

fixing sources, with error 2−k
d
.

We also use the following binary code whose existence is a folklore result; for completeness, we
sketch a possible construction of such a code.

Theorem 6.3. Let r = nγ, for any given 0 < γ < 1. There exists a binary code C mapping (4n)-bit
message to a codeword of length 2r, such that C is (ρ, L)-list decodable for ρ = 1/2−O(2−r/4) and
L 6 O(2r/2). Furthermore, there is a polynomial-time algorithm for computing C(x) in position z,
for any given inputs x ∈ {0, 1}4n and z ∈ {0, 1}r.
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Proof sketch. For a parameter ε > 0, let S ⊆ {0, 1}4n be an explicit ε-biased sample space. Using a
powering construction from [AGHP92], we get such a set of size (4n/ε)2, where for each 1 6 i 6 |S|,
we can compute the ith string in S in time poly(n). For x ∈ {0, 1}4n and position 1 6 i 6 |S|, we
define the ith symbol of the codeword of x by C(x)i = 〈x, yi〉 mod 2, where yi is the ith string
in S. By construction, the code has relative minimum distance at least 1/2 − ε. Hence, by the
Johnson bound, the code is (1/2 − O(

√
ε), O(1/ε))-list-decodable. We choose ε so that |S| = 2r,

which yields ε = O(2−r/2).

Loosely speaking, as in [KR12], the code is used to perform “worst-case to average-case hardness
amplification” in the spirit of [STV01]: When applied on a truth table x0 of a function that is hard
in the worst case, C(x0) is the truth table of a function that is hard on average. Here “hardness”
refers to description size.

We extend the definition of the previous section and use the modified Andreev’s function af-
ter applying the error-correcting code. Namely, let f : {0, 1}4n × {0, 1}n → {0, 1} be defined by
f(x, y) = C(x)E(y), where C is the code from Theorem 6.3 and E is Rao’s extractor (from The-
orem 6.2) mapping n bits to m = r = nγ bits, for the min-entropy k > 2m. We will prove the
following.

Theorem 6.4. Let x0 be any fixed (4n)-bit string of Kolmogorov complexity K(x0) > 3n. Define
f ′(y) = f(x0, y). Then there exists a constant 0 < σ < 1 such that, for any de Morgan formula F
of size at most n2.49 on n inputs, we have

Pry∈{0,1}n [F (y) = f ′(y)] <
1

2
+

1

2nσ
.

Proof. We will use an argument similar to that from the previous section, where we argued worst-
case hardness. Towards a contradiction, suppose that there is a small de Morgan formula F
computing f ′(y) well on average:

Pry∈{0,1}n [F (y) = f ′(y)] >
1

2
+

1

2nσ
. (2)

For k = 2m = 2nγ , consider a restriction decision tree of depth n − k for the formula F . We
know by the Shrinkage Lemma (Lemma 4.3) that all but 2−k fraction of leaves of the decision tree
correspond to restricted subformulas of F of de Morgan formula size s < 2 · L(F )(k/n)3/2. For a
sufficiently small γ > 0, we can get that s < n0.99, and hence, the description size of each such
subformula is less than n0.991.

Note that the restriction decision tree of depth n−k partitions the universe {0, 1}n into disjoint
subsets of inputs of equal size 2k each. Furthermore, the distribution of choosing a restriction
by the specified process, and then uniformly selecting the unrestricted bits, induces a uniform n
bit string. Hence, the probability on the left-hand side of Eq. (2) is equal to the average over all
branches of this decision tree of the success probabilities of the restricted subformulas computing
the corresponding restrictions of f ′. Since there are at most 2−k fraction of “bad” restrictions
(which do not shrink the formula F ), we conclude that the average over “good” restrictions ρ
(those that shrink the formula F ) of the success probabilities Pry[F |ρ(y) = f ′|ρ(y)] is at most 2−k

smaller than the right hand-side of Eq. (2). By averaging, there exists a restriction ρ such that
F ′ = F |ρ agrees with f ′|ρ in at least 1/2 + 2−n

σ − 2−k fraction of the remaining 2k inputs, and at
the same time F ′ has the reduced size s < n0.99.
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Let y′ denote the k unrestricted variables left in y. For any given k-bit string a, we denote
by (ρ, a) the input to the function f ′(y) obtained using the restriction ρ and the values a for the
unrestricted variables y′. We have

Pry′∈{0,1}k [F ′(y′) = C(x0)E(ρ,y′)] >
1

2
+

1

2nσ
− 1

2k
. (3)

Note that the probability above is for a random experiment where we first choose a uniformly
random y′ ∈ {0, 1}k which determines z = E(ρ, y′). Equivalently, we can first choose z = E(ρ, y′′)
for a random y′′ ∈ {0, 1}k, and then set y′ to be a uniformly random k-bit string such that
E(ρ, y′) = z. Finally, consider a new experiment where we choose z uniformly at random from
{0, 1}r, and then choose y′ uniformly at random so that E(ρ, y′) = z. Since E is an extractor with

error at most 2−k
d

(by Theorem 6.2), the probability in Eq. (3) will reduce by at most 2−k
d
. Thus

we get the following randomized algorithm for computing C(x0) at a given position z:

Given n and the descriptions of F ′ and ρ, on input z ∈ {0, 1}r, pick a uniformly random
y′ ∈ {0, 1}k such that E(ρ, y′) = z, and output F ′(y′). (Output an arbitrary value if
there does not exist a y′ such that E(ρ, y′) = z).

By the discussion above, we have the described procedure computes C(x0) correctly with prob-

ability at least ε = 1/2+2−n
σ−2−k−2−k

d
, where the probability is over both the codeword position

z ∈ {0, 1}r and the internal randomness used to sample y′. By choosing σ sufficiently small as a

function of γ and d, we can ensure that ε > 1/2 + 2−n
γd/2

= 1/2 + 2−r
d/2

.
Equivalently, we could implement the above procedure as follows: given z, consider all k-bit

strings y′ such that E(ρ, y′) = z, calculate the fraction pz of those strings y′ from that set where
F ′(y′) = 1, and output 1 with probability pz, and 0 otherwise. This way, the internal randomness
we need is the randomness to pick a uniformly random point on the unit interval [0, 1]. This can
be done up to an error 2−t, using t uniformly random bits. By choosing t = r, we ensure that
this modified algorithm succeeds with about the same probability, and that it uses t uniformly
random bits for internal randomness that are independent of the string z. By averaging, there
is a particular string α0 ∈ {0, 1}t such that our algorithm correctly computes C(x0) on at least
1/2 + 2−r/4 fraction of positions z ∈ {0, 1}r, when using this α0 as advice.

Thus we get a deterministic algorithm (with advice) that outputs some 2r-bit string w that
agrees with C(x0) in at least 1/2 + 2−r/4 fraction of positions. The amount of nonuniform advice
needed by this algorithms is at most n0.991 + 2n+ r+O(log n) 6 (2.1)n to describe the subformula
F ′, restriction ρ, internal randomness α0, and the input length n.

The list-decodability of the code C (Theorem 6.3) implies there are at most O(2r/2) codewords
that have such high agreement with w. We can describe the required codeword C(x0) by specifying
its index of at most r bits in the collection of all such codewords (ordered lexicographically). This
would add extra r = nγ bits of advice to our algorithm above. The overall amount of advice will
be less than (2.5)n bits.

Once we know C(x0), we can also recover the message x0, using a uniform algorithm that does
brute-force decoding. We conclude that K(x0) < 3n, contradicting our choice of x0.

As a corollary, we get
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Theorem 6.5. There is a constant 0 < σ < 1 such that, for any de Morgan formula F of size at
most n2.49 on 5n inputs, we have

Prx∈{0,1}4n,y∈{0,1}n [F (x, y) = f(x, y)] <
1

2
+

1

2nσ
.

Proof. The proof is by a simple averaging argument applied to Theorem 6.4. Suppose there is a de
Morgan formula F that agrees with f(x, y) on at least 1/2 + ε fraction of pairs (x, y), for ε = 2−n

σ
.

By averaging, there is a subset S containing at least ε/2 fraction of strings x, such that for each x′

from the subset we have F (x′, y) = f(x′, y) on at least 1/2 + ε/2 fraction of y’s.
On the other hand, the fraction of 4n-bit strings that have Kolmogorov complexity less than

3n is at most 23n/24n = 2−n, which is much less than ε/2. Hence, there is a (4n)-bit string x0

with K(x0) > 3n, such that F (x0, y) has non-trivial agreement with f(x0, y) over random y’s. The
latter contradicts Theorem 6.4.

Since the function f(x, y) is computable in P (using the fact that the code C and the extractor
E are efficiently computable), we get an explicit function in P that has exponential average-case
hardness with respect to de Morgan formulas of size n2.49.

Remark 6.6. The average-case lower bound for general formulas and branching programs of size
at most n1.99 can be argued in exactly the same way, using the corresponding shrinkage result.
In particular, we can prove the analogue of Theorem 6.4, by observing that a general formula
(branching program) of size n1.99 is also likey to shrink to size below n0.99 (for the same parameter
k), and then proceeding with the rest of the proof as before.

7 Circuit lower bounds from compression

Since incompressibility of Boolean functions is a special case of a natural property in the sense
of [RR97], the existence of compression algorithms for a circuit class C implies that there is no
strong PRG in C. Here we argue that such compression algorithms would also yield circuit lower
bounds against C for a language in NEXP.

7.1 Arbitrary subclass of polynomial-size circuits

It was shown in [IKW02] that the existence of a natural property for P/poly would imply that
NEXP 6⊆ P/poly. In particular, the same conclusion follows if we assume the existence of a com-
pression algorithm for P/poly-computable Boolean functions. Here we generalize this result by
proving that the same is true if we replace P/poly with any subclass C ⊆ P/poly.

Theorem 7.1. Let C ⊆ P/poly be any circuit class. Suppose that for every c ∈ N there is a
deterministic polynomial-time algorithm that compresses a given truth table of an n-variate Boolean
function f ∈ C[nc] to a circuit of size less than 2n/n. Then NEXP 6⊆ C.

Proof. Suppose, for the sake of contradiction, that NEXP ⊆ C ⊆ P/poly. The following is a
refinement of a result in [IKW02] who showed the result for the case C = P/poly. We show how to
strengthen it to any subclass C ⊆ P/poly.

Claim 7.2. If NEXP ⊆ C, then for every L ∈ NEXP there is a c ∈ N such that, for all sufficiently
large n, every n-bit string x ∈ L has a witness computable by a C-circuit of size nc.
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Proof. By [IKW02], the assumption NEXP ⊆ P/poly implies that, for every language L ∈ NEXP,
there exists a constant cL ∈ N such that every sufficiently large input x ∈ L has a NEXP-witness that
is the truth table of some Boolean function of circuit complexity ncL . For every L ∈ NTIME(2n

e
),

define a new language L′ ∈ EXP as follows: on inputs x, y, where |x| = n and |y| = ne, search
through the circuits of size ncL until find an NEXP-witness for x ∈ L. If no such witness is found,
then output 0. Otherwise, output the yth bit of the found witness (which is the truth table of a
ncL-size circuit). We get that for every x ∈ L, a string y is such that (x, y) ∈ L′ iff the yth bit of
the lex first witness for x (as found by the algorithm enumerating all ncL size circuits) is 1. Since
EXP ⊆ C, we get that L′ ∈ C. So, every x ∈ L has a witness that is the truth table of Boolean
function computable by a polynomial-size C-circuit.

Consider now a universal language L for NE, with L ∈ NTIME(2n
2
). For NTIME(2cn) for every

c ∈ N, the witness size for inputs of size n is bounded by 2cn 6 2n
2

for large enough n. We think of
witnesses for NE languages (on inputs of size n) as the truth tables of m-variate Boolean functions
for m = n2: such a string of length 2m is a witness iff its prefix of appropriate length is a witness.
By Claim 7.2 above, we get that there is a constant c0 ∈ N such that yes-instances x, |x| = n,
of every language in NE have witnesses that are truth tables of m = n2-variate Boolean functions
computable in C[mc0 ].

Suppose we have a deterministic poly(2n)-time compression algorithm for n-variate Boolean
functions in C[n2c0 ]. Consider the following NE algorithm:

On input x of size n, nondeterministically guess a binary string of length 2n. Run
the compression algorithm on the guessed string. Accept iff the compression algorithm
didn’t produce a circuit of size less than 2n/n for this string.

Observe that the described algorithm accepts every input x since there are incompressible strings
of every length 2n. Its running time is poly(2n) dependent on the running time of the assumed
compression algorithm. Note that every witness for an input x is a string that our compression
algorithm fails to compress, which means that the witness is the truth table of an n-variate Boolean
function that requires C-circuits of size greater than n2c0 . If we think of this 2n-bit witness as the
prefix of a 2n

2
-bit truth table of an m = n2-variate Boolean function, we conclude that the latter

m-variate Boolean function requires C circuits of size greater than mc0 . But this contradicts the
fact we established earlier that every NE language must have C[mc0 ] computable witnesses.

It is easy to get an analogue of Theorem 7.1 also for deterministic lossy compression algorithms.

Remark 7.3. If we could show that ACC0-computable functions are compressible, we would get
an alternative proof of Williams’s lower bound NEXP 6⊆ ACC0 [Wil11]. Interestingly, while such
a compression algorithm would yield a natural property for ACC0, the overall lower bound proof
would still use non-natural arguments and non-relativizing arguments that come from the use of
[IKW02] in the proof of Claim 7.2.

7.2 Other function classes that are hard to compress

Large AC0 circuits. Compressing functions computable by “large” AC0 circuits (of size 2n
ε

with
ε � 1/d, where d is the depth of the circuit) is difficult since every function computable by a
polynomial-size NC1 circuit has an equivalent AC0 circuit of size 2n

ε
(and some depth d dependent

on ε). The existence of a compression algorithm for such large AC0 circuits would imply a natural
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property in the sense of [RR97] useful against NC1. The latter implies that no strong enough PRG
can be computed by NC1 circuits [RR97, AHM+08]. Also, using Theorem 7.1, we get that such
compression would imply that NEXP 6⊂ NC1.

Theorem 7.4. For every ε > 0 there is a d ∈ N such that the following holds. If there is a
deterministic polynomial-time algorithm that compresses a given truth table of an n-variate Boolean
function f ∈ AC0

d[2
nε ] to a circuit of size less than 2n/n, then NEXP 6⊂ NC1.

Monotone functions. Every monotone Boolean function on n variables can be computed by a
(monotone) circuit of size O(2n/n1.5) [Pip77, Red79]. We argue that compressing polynomial-size
monotone functions is as hard as compressing arbitrary functions in P/poly.

Theorem 7.5. If there is an efficient algorithm that compresses a given truth table of an m-variate
monotone Boolean function of monotone circuit size poly(m) to a (not necessarily monotone) circuit
of size at most 2m/m1.51, then there is an efficient algorithm for compressing arbitrary n-variate
P/poly-computable Boolean functions to circuits of size less than 2n/n.

Proof sketch. The idea is to use the well-known connection between non-monotone functions and
monotone slice functions [Ber82]. We use an optimal embedding of an arbitrary n-variate Boolean
function f into the middle slice of a monotone slice function g on m variables for m = n+(log n)/2+
Θ(1) due to [KKM12]. Given a truth table of f , we can efficiently construct the truth table of this
monotone function g. The mapping between n-bit inputs of f and the corresponding m-bit inputs
of g (of Hamming weight m/2) is computable and invertible in time poly(m) = poly(n). Hence, a
circuit for g of size at most 2m/m1.51 yields a circuit for f of size at most O((2n/n1.01) + poly(n)),
which is less than 2n/n for large enough n. Appealing to Theorem 7.1 concludes the proof.

Thus, a compression algorithm for monotone functions of polynomial monotone-circuit com-
plexity would yield a natural property for the class P/poly, as well as a proof that NEXP 6⊆ P/poly.

8 Open questions

We have shown efficient compressibility of functions computable by small circuits from several
classes C where known lower bounds are proved using the method of random restrictions. Can we
extend this to other circuit classes with known lower bounds, e.g., constant-depth circuits with
prime-modular gates for which the polynomial-approximation method was used [Raz87, Smo87]?
Can we compress functions computable by ACC0 circuits? More generally, can we argue that all
known circuit lower bound proofs yield compression algorithms for the corresponding circuit classes?

The compressed circuit sizes for our compression algorithms are barely less than exponential.
Is it possible to achieve better compression for the circuit classes considered?

We have used the ideas of our compression algorithm for small formulas to get also a #SAT-
algorithm for small formulas. Is there a general connection between compression and SAT algo-
rithms?

Using the recent independent work by Komargodski et al. [KRT13] on the “high-probability
version of shrinkage” for de Morgan formulas, we can get compression and #SAT algorithms for de
Morgan formulas of size almost n3. However, unlike our #SAT-algorithm (for n2.5-size de Morgan
formulas), the #SAT-algorithm resulting from [KRT13] is only randomized (due to the notion of
random restrictions used in [KRT13]). It is an interesting open question to get a deterministic
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such algorithm for n3-size de Morgan formulas. (A similar problem is also open for AC0-SAT
algorithms, where there is a quantitative gap between the AC0 circuit size that can be handled by
the randomized algorithm of [IMP12] and the deterministic algorithm of [BIS12].)

Finally, the focus of the present paper has been on lossless compression. For small AC0 circuits
and small AC0 circuits with few threshold gates, one can get nontrivial lossy compression using the
Fourier transform [LMN93, GS10]. What about lossy compression for other circuit classes?

For example, for polynomial-size AC0 circuits with parity-gates, we know by the results of
Razborov and Smolensky [Raz87, Smo87] that every such function can be approximated by a
(poly log n)-degree polynomial over GF (2) to within error 1/n. This polynomial is a binary Reed-
Muller codeword of order poly log n that disagrees with our received word (the given truth table
of a function) in at most 1/n fraction of positions. The problem of lossy compression leads to the
following natural question on decoding: Given a received word x of size 2n such that there is a
Reed-Muller codeword (of order poly log n) within the Hamming ball of relative radius 1/n around
x, find in time poly(2n) some codeword that is at most 1/n away from x. Note that this is different
from the usual list-decoding question: here the number of codewords within this Hamming ball can
be huge, and so we don’t ask to find all of them, but rather any single one. (The only result in this
direction that we are aware of is [TW11] for the case of binary Reed-Muller codes of order 2.)

Acknowledgements We thank Ran Raz for answering our questions on [KR12] and for telling
us about [KRT13], and Dieter van Melkebeek for answering our questions on [KKM12]. We also
thank Avi Wigderson for helpful discussions.

References

[AB09] S. Arora and B. Barak. Complexity theory: a modern approach. Cambridge University
Press, New York, 2009.

[ABCR99] A.E. Andreev, J. L. Baskakov, A. E. F. Clementi, and J. D. P. Rolim. Small pseudo-
random sets yield hard functions: New tight explict lower bounds for branching pro-
grams. In ICALP, pages 179–189, 1999.

[AGHP92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k−wise
independent random variables. Random Structures and Algorithms, 3(3):289–304, 1992.

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings
of the Twenty-Fifth Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 92–105, 2005.

[AHM+08] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M.E. Saks. Minimizing dis-

junctive normal form formulas and AC0 circuits given a truth table. SIAM Journal on
Computing, 38(1):63–84, 2008.

[And87] A.E. Andreev. On a method of obtaining more than quadratic effective lower bounds for
the complexity of π-schemes. Vestnik Moskovskogo Universiteta. Matematika, 42(1):70–
73, 1987. English translation in Moscow University Mathematics Bulletin.

[Ang87] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.

26



[Bea94] P. Beame. A switching lemma primer. Technical report, Department of Computer
Science and Engineering, University of Washington, 1994.

[Ber82] S.J. Berkowitz. On some relationships between monotone and non-monotone circuit
complexity. Technical report, University of Toronto, 1982.

[BIS12] P. Beame, R. Impagliazzo, and S. Srinivasan. Approximating AC0 by small height deci-
sion trees and a deterministic algorithm for #AC0SAT. In Proceedings of the Twenty-
Seventh Annual IEEE Conference on Computational Complexity, pages 117–125, 2012.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13:850–864, 1984.

[Bra10] M. Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the Asso-
ciation for Computing Machinery, 57:28:1–28:10, 2010.

[BS90] R. B. Boppana and M. Sipser. The complexity of finite functions. In J. van Leeuwen,
editor, Handbook of theoretical computer science (vol. A), pages 757–804. MIT Press,
Cambridge, MA, USA, 1990.
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A Proof of (1− ax) 6 (1− x)a

Lemma A.1. For 0 6 x 6 1 and a > 1, it holds that (1− ax) 6 (1− x)a.

Proof. For 1 6 a < 2, by Taylor’ series,

(1− x)a

= 1− ax+
a(a− 1)

2!
x2

(
1− a− 2

3
x

)
+
a(a− 1)(a− 2)(a− 3)

4!
x4

(
1− a− 5

5
x

)
+ · · ·

> 1− ax
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For 2 6 a < 3, we have (1− x)a > (1− x) (1− (a− 1)x) > 1− ax. By induction, we can prove
the inequality for all intervals i 6 a < i+ 1, for integers i > 1.

B #SAT algorithm for linear-size general formulas

Seto and Tamaki [ST12] give a satisfiability algorithm for linear-size general formulas (Boolean
formulas over the complete basis), generalizing Santhanam’s algorithm [San10] for de Morgan for-
mulas. Here we give a simplified analysis with the “supermartingale approach”.

Theorem B.1 ([ST12]). There is a deterministic algorithm for counting the number of satisfying
assignments of a cn-size Boolean formula over the complete basis that runs in time 2n−δn for
δ = 2−O(c3 log c).

The algorithm is based on a specific property of linear-size general formulas. Below we first
state the property and the algorithm, and then analyze the running time of the algorithm.

Without loss of generality, we assume a Boolean formula over the complete basis is a tree in
which each leaf is labeled by a literal (x or x) and each internal node is labeled by a gate from
{∧,∨,⊕}. Any Boolean formula over the complete basis can be efficiently transformed into this
form by de Morgan’s law and the fact that x⊕ y = x⊕ y.

Given a formula tree, we call a node linear if (1) it is a leaf, or (2) it is labeled by ⊕ and both
of its child nodes are linear. We say a linear node is maximal if its parent node is not linear. For a
node v in a formula F , we denote by Fv the subformula rooted at v. Note that for a linear node v,
the subformula Fv computes the parity of all its leaves. We say two maximal linear nodes u and v
are mergable if they are connected by a path in which every node is labeled by ⊕. We can merge
u and v in the following way. Suppose we have Fs = Fu ⊕ Fu′ , and Ft = Fv ⊕ Fv′ , that is, s and t
are the parent nodes of u and v respectively, and u′ and v′ are the siblings of u and v. Then we
can replace Fu by Fu ⊕ Fv and Ft by Fv′ .

We have the following simplification rules, in addition to the rules for de Morgan formulas: (1)
If 0⊕ ψ or 1⊕ ψ appears, then replace it by ψ or ψ, respectively. (2) If a variable x appears more
than once (as x or x) in a linear node, then eliminate redundancy by the commutativity of ⊕ and
the facts that x⊕ x = 0 and x⊕ x = 1. (3) Merge any mergable maximal linear nodes.

Based on these simplification rules, Seto and Tamaki [ST12] identify the following structural
property of linear-size general formulas.

Lemma B.2 ([ST12]). Let F be a formula on n variables of size cn for some constant c. Then
one of the following cases must be true:

1. The formula size is small: c 6 3/4.

2. The total number of maximal linear nodes is less than 3n/4.

3. There exists a variable appearing at least c+ 1
8c times.

4. There exists a maximal linear node v with L(Fv) 6 8c such that the parent node of v is either
∧ or ∨, and every variable in Fv appears at least c times in F .

The satisfiability algorithm follows directly from this property. For case 1, a brute-force search
is sufficient. For case 2, we again use a brute-force search, but this time to enumerate all possible

31



assignments to maximal linear nodes, and, for each assignment, solve a system of linear equations
using Gaussian elimination. In both cases the running time is 23n/4poly(n). For cases 3 and 4, the
algorithm is based on a step-by-step restriction. At each step, we are able to restrict a constant
number of variables such that the shrinkage of the formula size is non-trivial.

In particular, for case 3, we randomly restrict the first variable which appears at least c+ 1/8c
times; that eliminates at least c+ 1/8c leaves.

For case 4, let u be the sibling of the maximal linear node v. Consider the following two sub-
cases: (a) there exists a variable appearing in Fu but not in Fv; (b) all variables in Fu appear in
Fv.

For case 4(a), we randomly restrict all variables in the subformula Fv. Suppose there are totally
b 6 8c variables in Fv. Since each of them appears at least c times, we can eliminate at least bc
leaves. Furthermore, since Fv takes value 0 or 1 with equal probability, and the parent node of v is
labeled by either ∧ or ∨, the sibling node of v can be eliminated with probability 1/2. Since there
is an extra variable in the sibling, we eliminate at least bc+ 1 leaves with probability 1/2.

For case 4(b), suppose x is one common variable in both Fv and Fu, and there are totally
b + 1 6 8c variables in Fv. We randomly restrict all variables in Fv except x. This eliminates at
least bc+ 1 leaves, since each variable appears at least c times, and at least one appearance of x in
Fv and Fu can be eliminated.

To unify the cases 3, 4(a) and 4(b), in each case, we can deterministically find 1 6 b 6 8c
variables such that by randomly restricting them, we eliminate at least bc leaves, and moreover, with
probability 1/2, eliminate at least bc(1 + 1/8c2) leaves. Denote by l(F ) := logL(F ) and let F ′ be
the new formula after the restriction and simplification. Then we have l(F ′) 6 l(F )+ log (1− b/n);
and with probability 1/2, l(F ′) 6 l(F ) +

(
1 + 1/8c2

)
log (1− b/n).

Now we consider a process of adaptive restrictions; this can be viewed as constructing a decision
tree. At each step, we assume that only cases 3, 4(a) or 4(b) happens (otherwise, we directly run
the brute-force search). As analyzed above, we deterministically find 1 6 b 6 8c variables and
branch on assigning each variable to be 0 or 1. The process continues until at most k variables are
free (k will be fixed later). We will argue that the formula size shrinks non-trivially on most of the
branches.

We consider the decision tree virtually divided into layers of height 16c, which means that
at each layer, there are exactly 16c variables being restricted. For simplicity we assume n − k is
divisible by 16c. Consider a node at the top of one layer; let G be the formula labeling the node, and
suppose G is over n variables with size cn. Let G′ be the new formula after adaptively restricting
16c variables (at the bottom of the layer). Then we have the following bounds on the size of G′.

Lemma B.3. It holds that

l(G′) 6 l(G) + log

(
1− 16c

n

)
.

Moreover, with probability at least 1/2,

l(G′) 6 l(G) + log

(
1− 16c

n

)
+

1

8c2
log

(
1− 1

n

)
.

Proof. Since each variable being restricted appears at least c times, the first inequality holds.
Consider any path in the decision tree starting from G. There must be one descendant node at

distance 0 6 h < 8c from G such that case 3, 4(a) or 4(b) happens and in consequence there are
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1 6 b 6 8c variables restricted. Over all descendants of this particular node at the bottom of the
layer, it holds with probability at least 1/2 that

l(G′) 6 l(G) + log

(
1− h

n

)
+

(
1 +

1

8c2

)
log

(
1− b

n− h

)
+ log

(
1− 16c− h− b

n− h− b

)
6 l(G) + log

(
1− 16c

n

)
+

1

8c2
log

(
1− 1

n

)
.

Note that this inequality does not depend on the particular path in consideration. Thus it holds
for all descendants of G at distance exactly 16c. This ends the proof.

Now we are ready to prove the shrinkage result for linear-size general formulas.

Lemma B.4. Denote by Fn−k the formula after restricting n− k variables. For k > 160c,

Pr

[
L(Fn−k) > 2 · L(F )

(
k

n

)1+ 1
256c3

]
< 2−k.

Proof. Consider the nodes in the decision tree at depth 16c · i, for i = 0, 1, . . . , (n − k)/16c. We
define a sequence of random variables

Zi = l(F16ci)− l(F16c(i−1))− log

(
1− 16c

n− 16c(i− 1)

)
− 1

16c2
log

(
1− 1

n− 16c(i− 1)

)
.

By Lemma B.3, we have Zi 6 ci := − 1
16c2

log
(

1− 1
n−16c(i−1)

)
. Let R1, R2, . . . , R16c(i−1) be the

random bits (the values of the assignments) used at each step. Conditioning on these random bits,
it holds with probability 1/2 that Zi 6 −ci. Therefore, conditioning on R1, . . . , R16c(i−1), Zi is
upper bounded by a variable taking −ci and ci with equal probability. By Lemma 4.2, we have for
any λ > 0,

Pr

 i∑
j=1

Zj > λ

 6 exp

(
− λ2

2
∑i

j=1 c
2
j

)
.

Let i = (n− k)/16c. We first have that

i∑
j=1

Zj = l(F16ci)− l(F0)−
i−1∑
j=0

log

(
1− 16c

n− 16cj

)
−

i−1∑
j=0

1

16c2
log

(
1− 1

n− 16cj

)

> l(Fn−k)− l(F0)− log

(
k

n

)
− 1

256c3
log

(
k + 16c− 1

n+ 16c− 1

)
> l(Fn−k)− l(F0)−

(
1 +

1

256c3

)
log

(
k + 16c− 1

n+ 16c− 1

)
.

Here we use the inequality that

i−1∑
j=0

log

(
1− 1

n− bj

)
=

1

b

i−1∑
j=0

log

(
1− 1

n− bj

)b

6
1

b

i−1∑
j=0

log

((
1− 1

n− bj + b− 1

)
· · ·
(

1− 1

n− bj

))

=
1

b
log

(
n− bi+ b− 1

n+ b− 1

)
.
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Hence,

Pr

 i∑
j=1

Zj > λ

 > Pr

[
L(Fn−k) > eλL(F0)

(
k + 16c− 1

n+ 16c− 1

)1+ 1
256c3

]
.

Then since cj 6 1
16c2
· 1
n−16c(j−1)−1 , we have that

i∑
j=1

c2
j 6

(
1

16c2

)2 i∑
j=1

(
1

n− 16c(j − 1)− 1

)2

6

(
1

16c2

)2 i∑
j=1

(
1

n− 16cj − 1
− 1

n− 16c(j − 1)− 1

)
· 1

16c

6
1

163c5
· 1

n− 16ci− 1
=

1

163c5
· 1

k − 1
.

Therefore,

Pr

[
L(Fn−k) > eλL(F )

(
k + 16c− 1

n+ 16c− 1

)1+ 1
256c3

]
6 exp

(
− λ2

2 · 1
163c5

· 1
k−1

)
= e−2048λ2c5(k−1).

In particular, for λ = ln(2/1.2) and k > 160c,

Pr

[
L(Fn−k) > 2 · L(F )

(
k

n

)1+ 1
256c3

]
< 2−k.

Now we are ready to analyze the running time of the algorithm.

Proof of Theorem B.1. Let F be a cn-size general formula on n variables. We build a decision
tree based on adaptively restricting variables according to the cases in Lemma B.2. Whenever the
formula is in case 1 or 2, we run the brute-force search; otherwise we adaptively restrict a constant
number of variables, and continue the process until there are at most k variables left.

Let p = (4c)−256c3 and k = pn. In the worst case, we build a decision tree of n− k levels with
2n−k branches. By Lemma B.4, at most 2−k fraction of the branches end with formula size

L(Fn−k) > 2 · L(F )

(
k

n

)1+ 1
256c3

= 2 · cn · p1+ 1
256c3 = 2cp

1
256c3 · pn =

1

2
pn =

k

2
.

To compute #SAT for all such “big” formulas (of size at least k/2), we use brute-force enumer-
ations over all possible assignments to the k free variables. The running time in total is bounded
by (2n−k · 2−k) · 2k · poly(n) = 2n−k · poly(n).

For the other branches which end with “small” formulas (of size less than k/2), there are at
most k/2 variables left. To compute #SAT for all such formulas, the total running time is bounded
by 2n−k · 2k/2 · poly(n) = 2n−k/2 · poly(n).

The overall running time is bounded by 2n−δnpoly(n) where δ = 2−O(c3 log c).
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