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Improved Average-Case Lower Bounds for DeMorgan Formula Size
Matching Worst-Case Lower Bound

llan Komargodski* Ran Raz* Avishay Tal*

Abstract

We give a function h : {0,1}" — {0, 1} such that every deMorgan formula of size n3~°() /r?
agrees with h on at most a fraction of % + 272" of the inputs. This improves the previous
average-case lower bound of Komargodski and Raz (STOC, 2013).

Our technical contributions include a theorem that shows that the “expected shrinkage”
result of Hastad (STAM J. Comput., 1998) actually holds with very high probability (where
the restrictions are chosen from a certain distribution that takes into account the structure of
the formula), combining ideas of both Impagliazzo, Meka and Zuckerman (FOCS, 2012) and
Komargodski and Raz. In addition, using a bit-fixing extractor in the construction of h allows
us to simplify a major part of the analysis of Komargodski and RaZE|

1 Introduction

Proving lower bounds on the complexity of classical computational models for Boolean functions
is a holy grail in theoretical computer science. One of the simplest and most natural non-uniform
computational models that is of great interest is the model of Boolean deMorgan formulas. It is well
known that the deMorgan formula size of almost all functions on n variables is at least (2" /logn).
Nevertheless, no explicit function (constructible deterministically in polynomial time) with super-
polynomial lower bounds on the deMorgan formula size has been found yet. Providing such a
function would separate P from NC!.

A deMorgan formula is a Boolean formula over the basis By = {V, A, =} with fan in at most 2.
A deMorgan formula is represented by a tree such that every leaf is labeled by an input variable and
every internal node is labeled by an operation from Bs. A formula is said to compute a function
f:{0,1}™ — {0,1} if on all inputs = € {0,1}" it outputs f(z). The computation is done in the
natural way from the leaves to the root. The size of a formula F', denoted by L(F), is defined as
the number of leaves it contains. The deMorgan formula size of a function f : {0,1}" — {0,1} is
the size of the minimal deMorgan formula that computes f.

Previous works considered the following two types of lower bounds on deMorgan formula size:
worst-case lower bounds and average-case lower bound.
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Worst-case lower bounds are lower bounds on the size of the minimal deMorgan formula that
computes an explicit function f : {0,1}" — {0,1}. The first lower bound was achieved by Sub-
botovskaya [Sub61] that proved an €(n!?®) lower bound on the size of deMorgan formulas that
compute the parity function on n variables. Subbotovskaya also introduced the concept of random
restrictions that has had many applications since. In fact, Subbotovskaya showed a lower bound
of Q(n") where T is referred to as the shrinkage exponent of deMorgan formulas under random
restrictions and showed that I' > 1.5. In [Khr71] Khrapchenko was able to improve the lower
bound of [Sub61] and to prove, using a completely different method, that the parity function on
n variables requires a deMorgan formula of size 2(n?) (which is tight, up to constant factors). In
[And87] Andreev was able to cleverly combine some previous techniques (including the method
of [Sub61]) and to prove an Q(n!*F'=°M) lower bound on the size of the minimal deMorgan for-
mula that computes an explicit function, later referred to as the Andreev function. Subsequent
improvements on the constant I' led to improved lower bounds on the deMorgan formula size of the
Andreev function. Impagliazzo and Nisan [IN93] proved that I" > 1.55, Peterson and Zwick [PZ93]
proved that I' > 1.63 and finally Hastad [Has98| proved that I' > 2 — o(1) giving the lower bound
of Q(n?=°M) on the size of deMorgan formulas that compute the Andreev function. Since I' < 2,
Hastad’s result is tight up to the o(1) term.

Average-case lower bounds (a.k.a., correlation bounds) are lower bounds on the size of the
minimal deMorgan formula that only approximates an explicit function f : {0,1}" — {0, 1}.
An approximation of f is a computation that agrees with f on some fraction larger than 1/2 of
the inputs (rather than on all inputs). The first explicit average-case lower bound for deMorgan
formulas appears in the work of Santhanam [San10]. There, it is shown that any family of linear-size
deMorgan formulas has correlation of at most %—FZ_Q(”) with the parity function, and moreover, his
technique could be extended to show a correlation of at most % + 277" between any deMorgan
formula of size O(n'%) and the parity function. In addition, as pointed out in [KRI2], works
regarding the degree of approximating polynomials also imply correlation bounds for deMorgan
formulas. Specifically, from the works of [BBCT01, [Reill] it follows that any formula of size

0 ((n /log(1/ s))2> has correlation of at most 3+ with the parity function on n variables. Recently,

Komargodski and Raz [KR12] constructed an explicit function f : {0,1}" — {0, 1} such that any
deMorgan formula of size at most O(n?49%) o
of the inputs.

In this work, combining techniques from [IMZ12] and [KR12] together with some new ideas, we
improve the result of Komargodski and Raz [KR12] and construct an explicit function h : {0,1}" —
{0,1} such that any deMorgan formula of size at most O(n?%%9) computes h correctly on a fraction
of at most %—G— 27" of the inputs. More generally, our main theorem gives the following trade-off
between the size of the formula and the quality of approximation:

computes f correctly on a fraction of at most %+2_”

Theorem 1.1. There is an explicit (computable in polynomial time) Boolean function h : {0,1}%" —

{0,1} and a constant ¢ > 8 such that for any parameter r such that clog(n) < r < n'/3, any formula
n3—o(1)

of size "—— computes h correctly on a fraction of at most 1/2 + 27" of the inputs.

1.1 Techniques

We start by informally defining restrictions and shrinkage (more formal definitions can be found
in Section [2). Given a function f : {0,1}" — {0,1}, a vector p € {0,1,*}" defines a restriction of



f, denoted by f|,, in the following way: if p; € {0,1} then the i-th input variable of f is fixed (or
assigned) to 0 or 1, respectively, and otherwise it is still a variable. We say that deMorgan formulas
have s-shrinkage with probability v over a distribution D of restrictions that leave k variables
unassigned if any deMorgan formula shrinks by a factor of at least ¢ - (k/n)® with probability -
over D for some universal constant c.

Our technical contributions are twofold. First, we prove that 1.999-shrinkage occurs with prob-
ability exponentially close to 1 over a certain distribution (that satisfies some additional properties;
see the discussion in Section and Remark , improving a theorem from [KR12|. Second,
we simplify a major part of the proof of [KR12] by giving a different construction for the function
for which we prove the lower bound. We believe that the insights in this simplification might be of
independent interest.

In order to explain our techniques, we first begin by describing the worst-case lower bound of
Andreev [And87] and then the average-case lower bound of Komargodski and Raz [KR12].

1.1.1 Andreev’s Worst-Case Lower Bound

Andreev’s function A : {0,1}" x {0,1}" — {0,1} is defined as follows. A views the second input
as a logn by n/logn matrix and computes the XOR of the input bits in every row. A uses the
resulting logn bits to address an index in the first input (logn bits are enough to represent a cell
in a vector of length n) and return that bit. The analysis of [And87, IN93| [PZ93| [Has9§| relies on
the following 4 facts:

1. There exists an n bit vector h that represents a Boolean function which is hard to compute
by formulas of size O(n)/loglogn.

2. It holds that L(A) > L(Ajp) where Ay, is the function A when the first input is fixed to the
hard function h from Ttem [

3. I'-shrinkage occurs with probability at least 3/4 (over completely random restrictions). That
is, for a function f : {0,1}" — {0,1} and for a random restriction p that leaves k variables
unassigned it holds that L(f|,) < c- (%)F L(f) with probability at least 3/4 for some universal
constant ¢ > 0.

This fact, that was first proved by [Sub61] (for I" = 1.5), was gradually improved throughout
IN93, [PZ93), [Hs98).

4. After applying a completely random restriction that leaves k = © (logn - loglogn) variables
unrestricted, with probability at least 3/4 every row in the matrix (represented by the second
input to A) has at least one variable that is not restricted.

Andreev derived the lower bound as follows. Since Item [3| and Item [4] occur with probability at
least 3/4, there exists a restriction p such that both items hold simultaneously. Hence,

7,Ll"+1fo(1)

Item Ttem 3] 1 T Items [1 and [
L) = A = - (3) L) 2

where Ay |, denotes the function Ay, after applying the restriction p.



1.1.2 Komargodski and Raz’s Average-Case Lower Bound

Komargodski and Raz’s [KR12] function KR : {0,1}" x {0,1}" — {0,1} is similar to Andreev’s
function. KR views the second input as an n° by n!~¢ matrix and computes the XOR of the input
bits in every row. KR encodes the first n input bits, using an error correcting code, into 2" bits.
Finally, KR uses the resulting n° bits of the XORs to address an index in the encoded first input
and returns that bit. The analysis of [KRI12] relies on the following 4 facts (stated informally):

1. Most strings of length n after being encoded, using an error correcting code with large relative
distance, into strings of length 2" represent functions (from n? bits into 1) that are hard to
approximate.

2. If a formula F' approximates well KR, then there exists a string h € {0,1}" such that its
encoding is hard to approximate (see Item [l|) and F}, approximates KR, where KRy, (resp.
F}) is the function KR (resp. F') where the first input is fixed to h.

3. 1.499-shrinkage occurs with probability exponentially close to 1 (over a distribution of random
restrictions that takes into account the structure of the formula).

4. After applying this restriction (from the same distribution as in Item [3)) most rows in the
matrix represented by the second input to KR have at least one variable that is not restricted
with probability exponentially close to 1.

Deriving the lower bound of [KR12] is conceptually similar to Andreev’s lower bound, but
technically it is a bit more complicated so we refer to [KR12|] for additional details.

1.1.3 Our Techniques

In this work we improve the result of [KR12] by improving Item [3|in the proof scheme above. We
prove that 1.999-shrinkage occurs with probability exponentially close to 1.

Our second contribution is mainly conceptual. We provide a more intuitive construction of the
hard function and greatly simplify Item 4] in the proof of [KR12].

Improvement of Item Komargodski and Raz [KR12] prove a theorem that shows that for
deMorgan formulas 1.499-shrinkage occurs with probability exponentially close to 1 over a certain
distribution of random restrictions that takes into account the structure of the formula.

Impagliazzo, Meka and Zuckerman [IMZ12] prove a theorem (among other interesting results)
that shows that (2 — o(1))-shrinkage occurs with probability that is polynomially close to 1. In
[IMZ12] the theorem is proved for certain pseudorandom distributions and is used to construct
pseudorandom generators with seed of length O(s) for deMorgan formulas of size s37°(1) as well as
for several other models.

We combine the techniques of [KR12] and of [IMZ12] and prove that 1.999-shrinkage occurs
with probability exponentially close to 1. That is, we use the proof technique of [IMZ12] applied
to a distribution of random restrictions similar to that of [KR12] that takes the structure of the
formula into account.

In order to show that shrinkage occurs with high probability, [IMZ12] show that formulas with
no “heavy” variables (variable that appear a lot more than an average variable) can be split into



many “medium size” sub-formulas (subtrees). Thus, if one shows that the total size of all sub-
formulas after applying a random restriction is small with high probability we are done. The
crucial point is that (conditioning on that there are no “heavy” variables) these subtrees can be
gathered into large sets, such that in each set the sub-formulas are defined over disjoint variables.
Thus, in each such set, the sizes of the subformulas after restriction is independent of one another
and one can apply Chernoff-Hoeffding inequalities.

The main problem with this argument is the assumption that there are no “heavy” variables.
[IMZ12] treat the “heavy” variables separately, showing overall that shrinkage occurs with prob-
ability 1 — 1/poly(n). Their analysis can even be pushed to show that shrinkage over uniformly
random restrictions holds with probability at least 1 — 1/ 20006*n) Lyt not further.

In this work, we use the formula structure to derive our restriction. We first restrict all heavy
variables one by one, in each step ensuring that shrinkage occurs with probability 1. When no heavy
variables are left we apply a random restriction and analyze similarly to [IMZ12]. This technique
ensures shrinkage with very high probability (> 1 — 2_”9(1)).

Remark 1.2. As we have stated, we prove that 1.999-shrinkage occurs with probability exponentially
close to 1 over a certain distribution of random restrictions that takes into account the structure of
the formula (see Theorem |4.1). We note that without additional requirements on the distribution,
achieving this goal is pretty easy since it follows directly from [Has98)].

However, in order to use “shrinkage with high probability” to prove an average-case lower bound
in the framework of [KR12], one needs to prove that shrinkage occurs with very high probability over
a distribution with additional properties. More specifically, the following property is sufficient: the
distribution is defined by some process such that at each step a variable is chosen (possibly depending
on the structure of the formula) and then the value of the chosen variable is randomly fized to 0 or 1.
We refer to such a distribution as a distribution of random valued restrictions.

In Section |4] we define a distribution that has this property, and prove that 1.999-shrinkage
occurs with probability exponentially close to 1 over this distribution. Moreover, for possible future
applications, we note that the process that defines our distribution can be efficiently implemented.

Simplification of Item As our restriction depends on the structure of the formula, it is not a
uniformly random restriction, and one needs to work harder in order to show Item [ in the proof
scheme above. [KR12] overcame this problem by a series of reductions to balls and bins games,
heavily relying on the specific distribution of restrictions defined in Item[3] In this work, we view the
restrictions distribution as a black-box, only ensuring that the number of variables left unrestricted
is k = 100n® with high probability (where n® is the input length to the hard function). Instead of
generating the index to the hard function by simply XORing bits of the n bits of the second input,
we apply a more complicated function on those variables, which is a bit-fixing extractor.

Bit-fixing extractors were introduced in [CGH™85] and then later constructed in [KZ07, [GRS06,
Rao09] with better and better parameters. Intuitively, a bit-fixing extractor is a function which
takes n bits of input, outputs n° bits and ensures that if k of the input variables are truly random
and the rest are fixed to some constants, then the output is very close to the uniform distribution
over n° bits. This allows us to argue that a hard function defined on n® bits, is hard on the output
of the bit-fixing extractor as well.

We use the fact that we can also use an advice (seed) for the bit-fixing extractor as part of
the input and give a construction of a bit-fixing extractor with better parameters than bit-fixing
extractors that do not assume access to an advice [KZ07, (GRS06, Rao09].



We think that the idea to use a bit fixing extractor can be helpful in other works. In general,
instead of arguing that formulas (or other models) shrink under random restrictions to derive lower
bounds, using a bit-fixing extractor one only needs to argue that there exists some restriction leaving
k variables unrestricted under which the formula shrinks well. In other words, when proving worst-
case lower bound, one can consider best-case restrictions instead of random restrictions. When
proving average-case lower bounds, one can consider any distribution of random valued restrictions
(as in Remark for which the formula shrinks well with high probability.

1.2 Related Work

Recently, Chen et al. [CKK+13JE| addressed the following problem (a.k.a, compression for “easy”
Boolean functions): given the truth table of a Boolean function f : {0,1}™ — {0,1} that can be
computed by a small unknown circuit from a given class C, construct an explicit Boolean circuit
(not necessarily in C) that computes f and is of size o(2"/n).

Their resultsﬂ that rely on “shrinkage with high probability”, are the following: (1) any Boolean
n-variate function computable by a deMorgan formula of size at most n>4° is compressible in time
poly(2") to a circuit of size at most 2", for some ¢ > 0 and (2) there exists a deterministic
#SAT-algorithm for n-variate deMorgan formulas of size at most n2%? that runs in time 27",
for some ¢ > 0. Our shrinkage result (see Section {4 improves both of these results to hold for
deMorgan formulas of size at most n?>??. However, the resulting #SAT algorithm is zero-error
randomized rather than deterministic.

Moreover, independent of our work, Chen et al. |[CKK™13| simplify the average-case lower
bound of [KR12] using a bit-fixing extractor. This is quite similar to some of our techniques.

1.3 Paper Organization

The rest of the paper is organized as follows. In Section [2| we give some general notations that
are used throughout the paper and some preliminary material and definitions. In Section (3| we
give the construction of the hard function. In Section [ we prove our “shrinkage with very high
probability” theorem. In Section 5| we provide a construction of a bit-fixing extractor that uses an
advice. In Section [6] we prove that composing an error correction code with a bit-fixing extractor
almost always represents a function that is hard to approximate under any restriction. Finally, in
Section m we prove the main theorem of this paper (Theorem .

2 Preliminaries

We start with some general notations. Throughout the paper we will only consider deMorgan
formulas and not always explicitly mention it. We denote by [n] the set of numbers {1,2,... ,n}.
For ¢ € [n] and for x € {0,1}", denote by x; the i-th bit of x. We denote by e; € {0,1}" the
vector with one on the i-th coordinate and zero elsewhere. We will use logarithms to base two by
default. We denote by Uy, the uniform distribution over {0,1}*. For a distribution D we denote
by & ~ D a random element sampled according to D. For two functions f : {0,1}* — {0,1}™

*Private communication with the authors. A preliminary version can be found in [KK13].
3|[CKK™'13] give results for several computational models such as branching programs, formulas over any complete
basis and more. We only focus on their results regarding deMorgan formulas.



and g : {0,1}" — {0,1}*, we denote by fog:{0,1}" — {0,1}"™ the composition of f and g, i.e.,
fog(x) = flg(x)).
Boolean Formulas

Definition 2.1. A deMorgan formula is a Boolean formula with AND, OR and NOT gates with
fan in at most 2.

Definition 2.2. The size of a formula F' is the number of leaves in it and is denoted by L(F'). For
a function f:{0,1}"™ — {0,1}, we will denote by L(f) the size of the smallest formula computing
the function f.

Definition 2.3 (Restriction). Let f : {0,1}" — {0,1} be a Boolean function. A restriction p is a
vector of length n of elements from {0,1,x}. We denote by f|, the function f restricted according
to p in the following sense: if p; = % then the i-th input bit of f is unassigned and otherwise the
i-th input bit of [ is assigned to be p;.

We denote by Ry the set of restrictions that leave k variables unassigned.

Definition 2.4 (p-Random Restriction). A p-random restriction is a restriction as in Deﬁm’tion
that is sampled in the following way. For every i € [n], independently with probability p set p; =
and with probability l%p set p; to be 0 and 1, respectively. We denote this distribution of restrictions
by Rp.

Definition 2.5 (Average-Case Hardness). A function f :{0,1}" — {0,1} is said to be (s,e)-hard
if for any deMorgan formula F of size at most s

1
= < — .
ze{}()),rl}" F(z) = f(z)] < 5Te

Probability

We state a well known variant of Chernoff/Hoeffding inequality.

Proposition 2.6 (Chernoff/Hoeffding Inequalities). Let X = > " | X; be a sum of independent
random variables X1, . .., X, such that for every i € [n] there exists a;, b; € R such that a; < X; < b;.
It holds that for t > 0,

Pr[X — E[X] > t] <exp <_2t2) .
- Sy (b — ai)?

If we assume further that X1, ..., X, € {0,1} are identically distributed then for § € (0,1),
Pr[X < (1—8)E[X]] < exp (—6? - E[X]/2)

and
Pr[X > (1+6) E[X]] <exp (—6*-E[X]/3).

We will use this simple lemma.



Lemma 2.7. Let X be a random variable taking values in the range [0,1] and let B be an event
such that Pr[B] > 0, then E[X|B] > E[X]| — Pr[-B]. In particular if X is an indicator of an event
A, then Pr[A|B] > Pr[A] — Pr[-B]

Proof. 1f Pr[B] = 1 this is obvious so we can assume Pr[B] € (0,1) and get
E[X] = E[X|B] - Pr[B] + E[X|-B] - Pr[-B] < E[X|B] + Pr[-B]
as needed. O
We will use the notion of statistical distance.

Definition 2.8 (Statistical Distance). Let ) be some finite set. Let P and Q be two distributions
on ). The statistical distance between P and Q) is defined as

P— =
P — Q| max

P]’Dr(A) - %r(A)‘

If |P — Q| < e we say that P is e-close to Q.
We define k-wise independent distributions.

Definition 2.9 (k-wise independent distribution). A distribution D over {0,1}" is k-wise inde-
pendent if and only if for all ay,...,a; € {0,1}

1
xE%[xil:al/\"‘/\$ik:ak]:27'

Bit-Fixing and Affine Extractors

Two ingredients of our construction are a bit-fixing extractor and an affine extractor, which we
define next.

Definition 2.10 (Bit-Fixing Source). A distribution X over F§ is an (n, k)-bit-fizing source if there
exist k distinct indices i1, ... ,i such that the distribution (X;,,...,X;,) is uniformly distributed
over {0,1}* and for i ¢ {i1,...,ir}, X; is a fived constant. We refer to k as the entropy of the
source.

An affine source, that we define next, is a generalization of a bit-fixing source.

Definition 2.11 (Affine Source). A distribution X over FY is a (n, k)-affine source if there exist k
linearly independent vectors vi, ..., v, € Yy, and another vector vg € F5 such that X s distributed
uniformly over vg + span{vi,...,vx}. We refer to k as the dimension or entropy of the source.

Definition 2.12 (Bit-Fixing Extractor, Affine Extractor). An (n, k)-bit-fizing extractor (affine
extractor) with error € and output length r is a function Ext : {0,1}" — {0,1}" such that for every
(n, k)-bit-fizing source ((n,k)-affine source) the distribution of Ext(X) is e-close to the uniform
distribution in statistical distance, i.e.,

[Ext(X) — U,| <.



Coding Theory

Definition 2.13. A code C over an alphabet X2 of size q that has block length n, dimension k and
minimal distance d is denoted as an (n,k,d), code. A code C can be thought of as a mapping from
YF to X" such that every two outputs of the mapping differ in at least d locations. The mapping
procedure is sometimes referred to as the encoding function of C. The relative distance of C' is
d=d/n.

Furthermore, we say that a code is an [n, k,d|, linear code if ¥ = Fy is a finite field and the
mapping is linear over IFy.

Definition 2.14. Let 0 < p <1 and L > 1. A code C C {0,1}" is (p, L)-list decodable if for every
y € {0,1}",

{ce ClA(y,c) <pn}| <L
where A denotes the Hamming distance.

Next, we state the well known Johnson bound for codes with binary alphabet. This version of
the bound was taken from [Rud07] for the case of binary alphabet.

Proposition 2.15 (Johnson Bound). Let C' C {0,1}" be an (n,k,d)2 code with relative distance
d=d/n <1/2. It holds that C is (p,2dn)-list decodable for any

p<%(1_m).

3 Construction of the Function

Our construction is parameterized by two parameters: n,r and can be thought of as a family of
functions as it is defined for infinitely many possibilities for these parameters. Let ¢ > 8 be a large
enough constant. We assume that clog(n) < r < nl/3 and that n is large enough.

We define a function h : {0, 1}4" x{0,1}"x{0,1}" — {0, 1} that takes three inputs: = € {0, 1}%",
y €{0,1}" and s € {0,1}".

We use two ingredients in our construction: an error correcting code and a bit-fixing extractor.

Let C be a [2",4n, d]5 error correcting code similar to the one in [KR12]. C encodes z € {0,1}*"
to Enc € {0,1}?" and has relative distance § = & > 1/2 — 27"/4. One may view each codeword
also as a Boolean function EncC : {0,1}" — {0,1}. The exact definition and construction of the
code C are described in Appendix

Our bit-fixing extractor is a function BFExt, : {0,1}" — {0,1}" parameterized by the input
s, which is of length n. The exact definition of this function and its properties are described
in Section [0l

The function h is defined as

h(zx,y,s) = EncS(BFExt,(y)).

We remark that both computations z = BFExt4(y) and EncS(z) can be done in polynomial
time given the inputs (s,y) and (z, z), respectively.



4 Shrinkage with Very High Probability

In this section we prove that the shrinkage property of deMorgan formulas holds with very high
probability. We begin by stating the main theorem of this section.

Theorem 4.1. Let ¢ > 0 be any constant and let F' be a formula over n variables of size < n€, for
any n large enough. Then there exists a constant ¢ > 0 (where ¢’ depends only on ¢) such that for
any k in the range ¢ -log(n) < k < n there is a distribution T of random valued restrictions (see
Remark; such that

L(F|,) < 20008 oz) <‘f

n

Pr
PETk

2
> - L(F) and pei}ik] >1—egpr

where gpr = 9—S(k) (recall that Ry, is the set of restrictions leaving k variables unassigned).

Our proof is based on the result of Hastad [Has98| that showed that shrinkage of deMorgan
formulas occurs in expectation.

Theorem 4.2 ([Has98|). Let F' be a deMorgan formula. For every p > 0 it holds that

E [L(F|,)] <O <p2 <1 + log®? min {; L(F)}) L(F) +p\/m> .

PERRp

We define a restriction process for a formula F' as follows. If F' contains a heavy variable (i.e.,
a variable that appears in the formula many times), then we just restrict it (assign to it 0 or 1
at random). Otherwise, we treat all variables as equal and use a truly random restriction on the
remaining variables. In the analysis, a removal of a “heavy” variable is pretty easy to handle since
we are guaranteed that the formula shrinks well, and the second step is harder. In the analysis of
the second step, we split the formula (which is just a binary tree) into parts (formulas) that are
almost independent, in the sense that every variable does not appear in too many parts. We show
that this small dependence does not affect much and thus we can apply Hoeffding’s inequality to
get the result.

Formally, for a given formula F’ on n variables, we define a “random” restriction algorithm with
parameter p that takes the structure of F' into accountE] This algorithm defines a distribution of
random valued restrictions that we denote by 7;.

Fy+ F.

1+ 0.

while n — i > pn AND there is a variable x; in F; that appears more than ¢; = % do
Assign x; at random and let F;; be the formula F; restricted by x;.
1+ 1.

end while

Sample a random p’ € R 2 and restrict the formula F; according to p/.

Algorithm 1: 7, distribution on restrictions.

4For simplicity, we assume throughout this section that p-n is an integer.
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First, we argue that shrinkage occurs with very high probability for formulas that do not contain
any “heavy” variable. The proof of the following lemma can be found in Appendix [A]
Lemma 4.3. There exists a universal constant ¢ > 0 such that for any formula F' over n variables
that does not contain any variable that appears more than 2L(F)/n times and for any 0 < p <1
8

Pr L(FI,) 2 ¢ plog®(n) - L(F)| < L(F)- "

A corollary of Lemma is that shrinkage also occurs under 7, as follows.
Corollary 4.4. Let ¢ be the constant from Lemma[{.5 Let F be formula over n variables. For
any 0 < p <1 it holds that
8

Pr [L(F|,) > ¢-p?log®? (n) - L(F)| < L(F)- """
PET,

Proof. Assume that we have h > 0 heavy variables that cause p € 7" enter the while loop in
Algorithm 1] l Let z1, zo,...,zn be the variables assigned in the while loop and denote by F' = F},
the formula F" after restrlcting 21,22, ...,2,. Bach z;, conditioned on the previous choices of values,

2
must reduce the size of the formula by a factor of at least (1 — ﬁ) < (1 - ﬁ) , hence

(-1
the size of F' is

L(F') < L(F) (1—i>2<1—ni1>2...(1—n_2+1>2 (4.1)
— L(F) <”;h>2.

Apply Lemma [4.3| on the formula F’ that contains n; = n — h variables with p’ = E*. Since

ny

8

L(F") . e @) = [(F) . e~P/m" < [(F). e nP"

it follows that
Pr [L(F'yp,) > c- () log®? (nl)L(F’)} < L(F) - e 7"
p/E'Rp/
Following our notations and Algorithm (1} every restriction p € 7;,’ and a formula F' corresponds to
a restriction p’ € Ry and a formula F”. So,
L(F)-e > Pr [L(F'\p/) > . (') - log®? (ny) L(F’)]

p/E'Rp/
A 2
> B [ 2 e 02 10 ) 1) ()] (cq. (ET))
p’GRp/ n
2
> Pr |L(F|,) >c- (p)? log¥? (n)) - L(F) (X F F
Ve%[( 0) = ¢ ()% - 1og™? (i) - L(F) (=) (L(F|) = L(F),))
> Pr [L(F\p) >c-p?-1log®? (n) - L(F)} (p' =pn/ny;,n; < n)
PETy
which concludes the proof of the corollary. O

11



Remark 4.5. Note that Corollarylﬂ' is useful only for p > n~Y8. This range of p’s is not enough
to derive the lower bound of Theorem so we need to be able to arque a similar statement for
much smaller values of p. This is what we achieve in Theorem [4.1]

Next, we prove the main theorem of this section (Theorem (4.1)).

Proof of Theorem [{.1. We apply Corollary t > 1 times where ¢t will be determined later. Let
Foy = F and for 1 < i < ¢ let F; be the formula after the i-th application of Corollary [£.4 If
after t iterations we are left with more than k variables unrestrictedﬂ we further randomly restrict
variables until we are left with exactly k variables. We denote the resulting formula by F’. Set
ng = n and for every 1 < i <t think of n; as a lower bound on the number of variables in F; with
high probability. For 0 < i <t — 1 denote by p; the value of p used in the (i + 1)-th application of
Corollary 1.4, We state the following claim that suggests the existence of good parameters n;, p;,
and defer its proof for later.

Claim 4.6. There are parameterst € N, pg,...,pi—1 € R, ng,...,nt € N such that
1. ng=n
2. ny =k
3. for0<i<t—1,p;-n; =2 -n;11
4. for0<i<t—1,pf n;=Qk)
5. for0<i<t—1,0<p; <1
6. t = O(loglogn)

Fori=1,...,tlet D; be the event that after iteration 4, the number of variables left unrestricted
is at least n;, and let & be the event that L(F;) < c-log®?(n)-p? | - L(F;_1). Using Ttem 3 of
Claim [4.6| and Chernoff’s bound (Proposition gives that for ¢ € [t]

Pr[D;|Dy,...,Di—1] > 1 —exp (—Q(nij—1 - pi—1)) = 1 —exp (—Q(ny)) .
Using Item 4 of Claim and Corollary gives
Pr(&|D1,...,Dis1] > 1 — L(F) -exp (—Q(ni—1 - pf_1)) = 1 — L(F) - exp (—Q(k))

Standard calculation shows that all events D;, & hold simultaneously with probability > 1 — 2 -
L(F) -t-exp(—Q(k)). By the assumption that L(F) < n€, there exists a constant ¢’ such that if
k> -lognthen1—2-L(F)-t-exp(—Q(k)) >1— 2"k,

In the case that all events D; and &; hold, we have

t—1 ¢
L(F') < L(F) < ¢+ (Hp?> (log?(m)) - L(Fv)
1=0

5We count variables which are unrestricted by our algorithm even if they do not appear in the restricted formula.
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2
Using Item 3 of Claim Hl;(l) p? = Hz;é 472% = 4. Z—Z Using Ttem 6 of Claim (t =
O(loglogn)) it follows that

2
L(F/) < 20(log2 logn) . kf

 L(F) .

Under the assumption that D; holds, the number of unrestricted variables by the process is exactly
k, which completes the proof. ]

Proof of Claim[{.6. Let {z;}ien and {g;}ien be infinite sequences of real numbers defined as zo = k,
qo=1/2,and fori > 1, ¢; = (qi_1)8/7 and x; = 2 - x;_1/q;. We have

ot =2-xi1-q =22 -¢ g =...=2" x5 = Qk) . (4.2)

Notice that the sequence {z;};cn is monotone increasing, and always greater or equal to k. The
sequence {¢; }ien is monotone decreasing and always in (0,1). For ¢ > 1 we have

I S YU (4.3)
qi q; q;
Let ¢ be the least such that x; > n/2 — 1. Using eq. (4.3)) gives t = O(loglogn).
We are ready to define our n;s and p;s. Set ng :=n and for i = 1,...,¢, set n; := [x;—;|. For

i=0,...,t—1,set p; :=2-n;41/n;.
Requirements 1-3 hold by our choice of p; and n;. pg < 1 since
2ny < 2 (x4-1+1) - 2-(n/2—-1+1)

Po=——"2= =1,
ngo n n

using the assumption that z;—1 <n/2—1. Fori=1,...,t -1,

pi=2-niy1/ni =2 [ 1]/[2e—i] = O(qi—) (4.4)
and one can verify that p; is smaller than 1, hence Requirement 5 holds. Requirement 4 holds since
E2)

pSon = Q¢ ) Q(k). Requirement 6 holds by the upper bound given on ¢, which
completes the proof. ]

5 Extractors for Bit-Fixing Sources

One of the ingredients in the construction of our hard function is an extractor for bit-fixing sources
(recall Definitions and . We wish to construct a bit-fixing extractor BFExt : {0,1}" —
{0,1}" such that for every (n,k)-bit-fixing source, X, the output BFExt(X) is very close to the
uniform distribution in statistical distance. Such an extractor was constructed by Rao.

Theorem 5.1 ([Rao09]). There exist constants ¢ and d such that for every k(n) > log‘n, there
exists a polynomial time computable function BFExt : {0,1}" — {0,1}" that is an (n, k)-bit-fizing
extractor with output length r = k — o(k) and error 9=k

We will show a construction with better parameters which uses O(k?-logn) bits of advice. Note
that this is not an explicit bit-fixing extractor. None the less, since we can have advice of size O(n)

without increasing the input size by more than a constant factor, we can use this advantage.
One ingredient of our construction is the following.

13



Definition 5.2 (Linear Condenser). An (n,m, ki, kout) linear condenser is a linear mapping T :
{0,1}™ — {0,1}™ such that for any S C [n] of size > ki we have

dim (7 (span{e; : i € S})) > kow

The output of an (n, m, kip, kout) linear condenser on an (n, k;y, )-bit-fixing source is distributed
uniformly over an affine subspace of Fy' of dimension at least koy, i.€., an (m, kot )-affine source.
Thus, we can compose this linear condenser with an (m, k) affine extractor and get altogether
an (n, ki, )-bit-fixing extractor. The affine extractor that we use was given by Bourgain.

Theorem 5.3 ([Bou07]). Let 6 € (0,1) be any constant. There exists a constant \s € (0,1) such
that for any m large enough there is an explicit polynomial time computable (m,dm) affine extractor
that extracts r = \s - m bits with error 277".

Next, we show that a random matrix is actually a good linear condenser.

Lemma 5.4. For k > 2logn, a random Boolean k x n matriz is an (n,k, k, k—/k - 2logn) linear
condenser with probability > 1 — 27*1ogn,

Proof. We will first count the number of k x k matrices of rank < d over Fy. Any k X k matrix
of rank < d can be described unambiguously by specifying a subset of d rows, choosing vectors for
these rows, and then choosing the remaining k — d rows as linear combinations of those d rows.
This shows that there are at most

d

such matrices. Thus, the probability that a random k x k& matrix has rank < d is at most
ok+2dk—d?—k* — gk—(k—d)? By a union bound, the probability that any subset of k£ columns in
a random k X n matrix induces a matrix of rank < d is at most

<n> . ok—(k—d)? (ﬂ)k . ok—(k=d)? _ gk-log(2en/k)—(k—d)?

<k> . 9dk  o(k—d)d - ok+2dk—d?

k k

For k > 2e and d < k — +/2k - logn, this probability is at most gklogn—(k—d)* < g—klogn which
finishes the proof. O

The analysis above only relied on the fact that every k x k submatrix is uniformly random.
Hence, we can replace the requirement that the k x m matrix is completely random with the
requirement that the values of the k x n matrix are sampled from a k?-wise independent distribution
(Definition . Formally, we get the following immediate corollary.

Corollary 5.5. For k > 2logn, a k x n matriz whose values are bits sampled from a k*-wise
distribution, is an (n,k,k,k — /k - 2logn) linear condenser with probability > 1 — 27 *1ogn,

To summarize things in this section we state the following theorem.
Theorem 5.6. Let n be a large enough integer and v,k be integers such that 8 -logn < r < n'/3
and k =1/X1 /5 (where ;5 was given by Theorem .

There exists a family of efficiently computable functions {BFExts : {0,1}" — {0,1}" }ocq0,13n
such that all but 2771°8™ fraction of the seeds s € {0,1}" are good where s is a good seed if and
only if s is in the set

S £ {5 €{0,1}" : BFExt; is an (n, k) bit-fizing extractor with error 27"} .
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Proof. We will use the most standard k%-wise independent sample space that outputs n-k bits. The
sample space is generated by polynomials of degree k? — 1 over Fom where m is the least such that
2™ > n - k% This construction requires seeds of length k2 - m = O(n?/3 - logn) and this is smaller
than n for n large enough. By Corollary at least 1 — 27%1°8™ (and this is at least 1 — 27 71°8"
since k > r) fraction of the choices of s gives an (n,k,k,k — /k -2 -logn) linear condenser. We
will show that these seeds are good.

For a specific choice of s which defines an (n, k, k, k—+/k - 2 -logn) linear condenser, the output
of the linear condenser is an affine source of dimension at least

k—k-2 logn>k—/k-k/d=1k/2,

using the assumption k£ > r > 8 - logn. By this guarantee on the dimension of the condenser
output, the composition of the condenser with the affine extractor stated in Theorem yields an
(n, k)-bit-fixing extractor that outputs r = Ay /5 - k bits with error 277. O

6 Most Functions are Hard to Approximate on any Restriction

In this section we prove two lemmas that are analogous to Theorems 5.1 and 5.2 in [KR12]. Since
those theorems in [KR12] were tailored to their construction of the hard function, we can not apply
them.

Throughout this section we state and prove theorems on the function h defined in Section
The first lemma states that if we restrict our attention only to good seeds s, then for almost all
inputs = € {0,1}*" it holds that EncC o (BFExts|,) is hard to approximate for any restriction p
leaving k inputs unassigned.

Lemma 6.1. Let {BFExts : {0, 1}" — {0, 1}"}eq0,13n be the family of functions as in Theorem.
Recall that S = {s € {0,1}" : BFExt; is an (n, k) bit-fizing extractor with error 27"}.
Let n' =n/logn, eqpp = 277/10 " For any seed s € S denote by

Hy = {z € {0,1}" : Enc o (BFExts|,) is (0, capp)-hard for all p € Ry}
Then |Hs| > 24n — 231,
The second lemma is a simple averaging argument.
Lemma 6.2. Let € > 0 and let F(z,y,s) be a formula such that

Pr [F(x,y,s) = h(x,y,s)] > 1/2+¢

x7y78

then there exist so € S and xg € Hs, such that

Pr [F(xg,y,s0) = h(xo,y,50)] >1/24+ec—¢
yE{O,l}”[ (%0, 9, 50) = h(zo,y, 50)] > 1/ avg

where €qpg = g—rlogn 4 9—n,

5We can ignore extra bits, if needed.
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Proof. Notice that

Pr [F(z,y,8) = h(z,y,s)|s € S,z € Hs]

x?y7s

> Pr [F(z,y,s) = h(z,y,s)] —Pr[s ¢ SV ¢ H, (Using Lemma [2.7)
K 78

>1/24¢&— (27"losn L 970, (Using Theorem and Lemma [6.1])

Using an averaging argument, there exist so € § and xzg € Hs, such that

PI‘[F(.I}(], Y, 30) = h(l‘o, Y, 50)] 2 1/2 +te-— (2—7"10g’n + 2—71)
Yy

as needed. ]
The rest of the section is devoted for the proof of Lemma We begin with a definition.

Definition 6.3. For a set of functions F C {f : {0,1}' — {0,1}} the code defined by this set
Cr C {0,1}2" is just the set of truth-tables of these functions. Alternatively, any code C C {0,1}2"
defines a set of functions C {f :{0,1}* — {0,1}}.

Next, we prove a useful lemma that states that the composition of a code with large relative
distance with a function whose output is close to being uniformly distributed, results in a code
with a large relative distance.

Lemma 6.4. Let g : {0,1}¥ — {0,1}" be a function such that |U, — g(U)| < e. Let F C {f :
{0,1}" — {0,1}} such that Cr has relative distance 6. Let

G={feyglfeF},
then Cg C {0,1}2" is a code with relative distance > § — ¢

Proof. Let c1,co be two codewords in Cg. Then there exist fi, fo : {0,1}" — {0,1} such that
¢; = tt(f; 0 g) for i = 1,2 where tt(f; o g) € {0,1}2" is the truth tabl of the function f; o g. Let
A={y€{0,1}": fi(y) # fa(y)}, then |A| > 2" - § by the assumption on the relative distance of
Cr. By the definition of statistical distance (Definition

P €cAl> P €Al—e>0—=¢.
xe{O,rl}’“[g(:E) ]—ye{oﬂ}r[y |]—e>d—c¢

Thus, the number of inputs for which fjog and fy0g disagree is at least (§ —¢)-2¥ which completes
the proof. 0

We are now ready to prove Lemma [6.1

Proof of Lemma[6.1. Let s € S be some fixed seed. For any fixed p € Ry we will upper bound the
size of the following set

EASY, 2 {z € {0,1}" : EncC o (BFExt,|,) is not (n,27"/1%)-hard}

"More fomrally, for a function f : {0,1}" — {0,1} we denote by tt(f) € {0,1}*" the string which represent the
truth-table of f, i.e., tt(f) = f(zo)f(z1)... f(z2n) where z; € {0,1}" is the i-th string in lexicographical order of
length n.
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We will then use a union bound over all p € Ry,

M, ={0,1}""\ | J EASY,. (6.1)

PERy,

By definition of S, BFExt;|, is a function {0,1}* — {0,1}" such that the statistical distance
between U, and BFExt,|,(Uy) is at most ¢ = 27". In addition, by the definition of our construction,
for any two different xq,z2 € {0,1}*", the encodings Emcg1 and Encg{z2 have relative distance
§ >1/2 —27"/% Using Lemma m the relative distance between Enc¢ o (BFExt,|,) and Enc§, o
(BFExts|,) is at least § —e > 1/2 —277/4 — 27

Thus, for s and p as above, the set {EncC o BFExts|y}zeq0,134n defines a code with parameters
[N, K, D]y, where N = 2¥ and D > N-(1/2—27"/4—27"). Using Johnson Bound (Proposition,
any ball of relative radius 1/2 — 27"/ has at most 2N D = poly(2¥) codewords.

We will now upper bound the size of EASY,. Any x € EASY, induces a function Encg o
BFExts|, : {0,1}* — {0, 1} whose relative distance is < 1/2 —27"/10 from a function which can be
computed using a formula of size n’. Let N,y j be the number of formulas of size n’ on k variables.
This number is at most (9%)" (see [Juk12, Theorem 1.23]). Overall

‘EASYp’ < Nn’,k . poly(2k) < (9/€>nl ) 2O(k) < 9”/ ) 2n’ logk . 2O(k) < 2n+o(n)
Applying a union bound over all p € Ry, and using the fact that |Ry| < 3" gives
|J BASY,| < 3m.2nteln) < 93
PERE

Plugging this into eq. (6.1)) gives |Hs| > 24" — 237, as needed. O

7 Proof of Main Theorem

In this section we prove the main theorem of this paper (Theorem .

Theorem 7.1 (Restating Theorem [1.1). There is an explicit (computable in polynomial time)
Boolean function h : {0,1}%" — {0,1} and a constant ¢ > 8 such that for any parameter r such

that clog(n) < r < n/3, any formula of size "3;5(1) computes h correctly on a fraction of at most
1/2 + 27 of the inputs.

Proof. Consider the function h constructed in Section 3] Recall that k, the entropy of our bit-fixing
extractor, is equal to 1/)\; 2 -7 where A /5 is some universal constant (see Theorem [5.6)). Let

€ := max(Equvg, Eshr, Eapp) = Max (2™ " + g rlogn 2_Q(k), 2_’”/10) — 99,

Assume that F is a formula that approximates h with probability > 1/2 + 3. According
to Lemma there exists so € S and xg € Hs, such that

Pr  [F(zo,y,50) = h(x0,y,50)] > 1/2+ 3 — €qvg > 1/2 + 2¢.
y€{0,1}"
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Denote by Fy s, (y) = F(20,y, s0) and by hy, s, (y) = h(zo,y, s0). Let p be a random restriction to
F,, s, which is distributed according to 7 from Theorem and denote by S, the set of variables
unassigned by p. Since once a variable is chosen to be restricted its value is determined randomly:

E Pr [Fx0780|p(2) = hxo,30|p(z)] >1/2+ 2e.
pET 2€{0,1}5,

Let A be the set of restrictions in 7; that leave exactly k variables unrestricted and that make
F,, s, shrink by a factor of 20(log? logn) . (%)2 Theorem H gives Pr[p € A] > 1 — 4. Since
X, £Pr,q 1350 [F0,50|p(2) = hag,s0|p(2)] is a random variable whose range is [0, 1], we can apply
Lemma

Pr [F$0750’p(2) = hxo,So‘p(Z)]

peA
pETk | 2€{0,1}°¢

>1/242 —egpr >1/2+¢.

By averaging there must exist p € A such that

Pr s [Fmo,so‘p(z) - hzo,soyp(z” > 1/2 +te.
z€{0,1}°,

Recall the definition of S, Hs,,n’, €qpp in Lemma The fact that so € S, ¢ € Hs, and € > eq4pp
gives

L(Fyy,501p) > n' = n/log(n) . (7.1)
By the definition of A
k 2
L(F:voﬁo‘ﬂ) < <7’L> ’ no(l) ' L(Fmoyso) (7'2)
Thus,
"2) /ny2 Y 1) p3—o0) n3—o()
L(F) > L(Frgs) = (7) 070 LFauly) = g = "
which completes the proof. ]

8 Summary and Open Questions

In this paper we presented a tailor made construction that gives average-case hardness in the spirit
of Andreev’s function. Specifically, we presented an explicit function f : {0,1}" — {0, 1} such that
any deMorgan formula of size at most n3_0(1)/ 2 agrees with f on at most 1 4+ 277 fraction of the
inputs. In particular, for a suitable choice of r, any formula of size O(n?%) agrees with f on at
most % + 277" fraction of the inputs.

A natural question is whether this trade-off between the size of the formula and the approxima-
tion quality is necessary. More specifically, is there an explicit function f': {0,1}" — {0,1} such
that any deMorgan formula of size n3~°(1) agrees with f’ on at most %—1—2_”9(1) (or even %—{—2_9("))
fraction of the inputs?
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In addition, it is interesting whether there is a black box reduction from worst-case hardness or
even mild hardness (a function which is hard to calculate on 0.9 fraction of the inputs) to average-
case hardness with similar guarantees as given here. We note that using the standard analysis of the
XOR lemma suffers a great loss in the parameters, and only allows to show hardness of computing
a function on % + m fraction of the inputs.

Finally, improving Hastad’s worst-case lower bound [Has9§| is a long standing open problem
and any step towards it would be extremely interesting.
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A  Proof of Lemma 4.3

In this section we prove Lemma We note that the proof is highly based on ideas from [IMZ12].
We begin by restating the lemma.

Lemma A.1 (Restating Lemma [4.3). There exists a universal constant ¢ > 0 such that for any
formula F over n variables that does not contain any variable that appears more than 2L(F)/n
times and for any 0 <p <1

Pr |L(F|) > c-p*log(n) - L(F)| < L(F)- ™",
PERp

Recall Theorem 4.2] For ease of notation, we let

1
w(p, X) = p? <1+log3/2min{p,X}> X +pVX.

We begin the proof with some technical claims that are needed to prove Lemma The first
theorem states that every graph with bounded degree can be partitioned into large independents
sets. It was conjectured by Erdés, and proved by Hajnal and Szemerédi in [HS70].
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Theorem A.2 (Equitable Coloring). The vertices of every graph G = (V, E) with mazximum degree
d can be partitioned into d + 1 independent sets, such that the size of each independent set is at

V]
least LTHJ .
The next lemma states that a small set of variables cannot affect (increase or decrease) the size
of the formula too much.

Lemma A.3 ([IMZ12]). Let F be a deMorgan formula on a set of n variables. Denote by R C [n]
a subset of coordinates of input variables. For r € {0,1}£, denote by p, the restriction formed by
setting variables in R to r, leaving all other variables unassigned. Then,

L(F) < Z (L(F]pr)+\R!)§2|R< max L(F|pr)+\R]>.
re(O1}R re{0,1} 1

The next lemma states that every formula can be decomposed into smaller formulas with some
overhead.

Lemma A.4 ([IMZ12]). Let F' be a deMorgan formula on a set of variables X such that L(F) >

£ > 10. There exist m deMorgan formulas Gy, ...,Gy, where @ <m< %SF) such that

e For1<1i<m it holds that L(G;) < {.

o For 1 < i < m it holds that G; may depend on at most 2 “special” variables outside of X
(that is, variables that F does not depend on).

e For any restriction p € {0,1,%}*, L(F|,) < 31", L(Gil|y) where p'(z) = p(z) for z € X
and p'(x) = x otherwise.

The proofs of Lemmas and can be found in [IMZ12].
The last lemma that we give before the proof of Lemma [4.3| states that for any formula F' that
has a few special variables that are not allowed to be restricted, shrinkage in expectation still holds.

Lemma A.5. Let F be a deMorgan formula that depends on n wvariables. Let S be a constant
size subset of variables that are “special” in the semse that they are not allowed to be restricted.
Denote by Rg a distribution of restrictions such that sampling p' € Rg s done as follows: for every
x € 8 set p'(x) = *, while for every x ¢ S, independently with probability p set p'(x) = * and with
probability 1%1’ set p'(z) to be 0 and 1, respectively. It holds that for 0 <p <1

E__[L(Fly)] <O (ulp, L(F)) +1).
p'E€ERRE

Proof. Recall that |S| is constant. Let p/ € R5. For r € {0,1}* let p, be the restriction induced
by the vector r (as in Lemma [A.3). Notice that L((F|y)|,.) = L((F|,,)|,) since p, and p’ restrict
disjoint sets of input variables . Applying Lemma on L(F|,y) we get

LFlp) < Y LE) +00) = > L((Flp)ly) +0()

ref{0,1}5 ref{0,1}5
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now taking expectation over both sides of the inequality we get that

E [L(F‘p’)] < E Z L((ﬂm)’p’) +0(1)

/ S / S
PIERR PIERTE | pef0,1)s

= E Z L((F’pr)‘p)+0(1)

€ErR
PERTCP re{0,1}5

where the last equality holds since F'|,. has no special variables. Using linearity of expectation and
applying Theorem with the formula F|,, the lemma follows. O

At this point, we are ready to prove Lemma [.3]

Proof of Lemma[{.3 The claim is vacuous for p < n~1/8 since it says that something occurs with
probability less than something that is greater than 1. So we may assume without loss of generality
that p > n=1/8, Set £ := 1/p2.

Recall that the formula F' does not contain “heavy” variables. Decompose the formula F into
G1,...,Gp as in Lemma @ Let p € R, be a random restriction. Form a graph whose vertices
are the G;’s and there is an edge between G; and G for ¢ # j if the formulas share a variable that
is not special (that is, there is some zj that appears in both). This graph has m vertices where

#f) <m< %SF) (see Lemma D and since F' does not contain “heavy” variables, the degree of
this graph is at most d £ ¢ - (%F) — 1>. Using Theorem [A.2] it follows that this graph can be

divided into z independent sets {I1,..., 1.}, each of size at least {%J > 3

Denote by S the set of all “special” variables in G, ..., Gy,. Denote by RS the distribution R,
with the requirement that variables from S are always not restricted (as in Lemma . Let p
be a restriction such that p/(z) = p(z) for ¢ S and p'(z) = % for & € S. Hence, p' is distributed
according to Rg. Let {X; € N}jcn be a set of random variables such that X; = L(Gily).
Intuitively, partitioning the formula into independent components, enables us to apply Hoeffding’s
inequalities (Proposition to show that shrinkage occurs with high probability for the formula
induced by the vertices inside every such independent set.

Recall that every formula G; contains at most 2 special variables that are not allowed to be
restricted. From Lemma we get that shrinkage in expectation also holds for every such Gj,
suffering from an additional constant factor inside the O. Formally, following the notation of
Lemma for every i € [m] it holds that there exists a constant ¢’ such that

E [L (Gz‘p’)] < C” ' (:u (va(Gi)) + 1)
pERY

< (ulp )+ 1) (A.1)

where the last inequality follows since u is monotone increasing with respect to the second argument.
Since ¢ = 1/p? we have that 1 < u(p, ), so u(p,£) +1 < 2u(p,£). Plugging this into eq. (A.1) we
get that there exists a constant ¢’ > 2 such that

ELGZ‘/ SC/~ 76,
E LGS 1.0
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Using Hoeffding’s inequality (Proposition [2.6)), we get that for every independent set I;

ST, 2245 - pulp, )

pERS JjEl;
< Pr oY X, —E ) Xj| =|Ll-¢ - pp.f) (BIX;] < ¢ - p(p.0)
P ER J€l; JEI;
(L] - ¢ - 2
< exp ( { Z’uj.ég(p’ £) ) (Prop. 0< X, < 0)
—2¢% - u(p,0)? - n
< oxp (2R (111 = n/36)
<exp (—n/tY) (n(p,0) > 1,27 > 3)
< exp (—n . p8) (L= 1/1’2)

Next we apply a union bound on the different independent sets. Using the crude upper bound
that the number of independent sets is < L(F'), we get that

Pr SN X 22 0) S| < L(E) (A.2)

/ S
PIERY |52 jer, i=1

The choice of ¢ and the assumption p > n~=1/8 gives pu(p,£) = O(log®?(n)). Hence,

2-cp(p, ¢ E:III—2 - u(p,£) -m

~0 (log3/2(n) - L(F) /£>
=0 (p2 -log®?(n) - L(F)) . (A.3)
From Lemma [A4] it follows that
SOSX = L(F) (A.4)
i=1 jeI;

Finally, plugging eq. (A.3) and eq. (A.4) into eq. (A.2)), there exists a constant ¢ such that

Pr [L(Flp) > e g dog¥2(n) - L(F)] < L(F) - e

as needed. O

B The Error Correcting Code

As part of the construction in Section [3], we need a code C with the following parameters. C should
be a [2",4n, d]s code with d = 2" (f - 1/3,

23/4) where 8logn <r <n
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The code C can be obtained in the following way. Consider a concatenation of a Reed Solomon
[2’”/2, 8n/r, 2% — 8n/r + 1] or/2 code R and a Hadamard [2’”/2, r/2, 27"/2_1] , code H. Concatenating
R and H we get a [2",4n,d'], code C where

1 dn 11
S r/2—1 r/2 —_or [ - _ >or (-~ ) =
d > 227 (22— gnfr) =2 <2 7~2r/2> > 9 (2 2r/4> d

for large enough r and n, where 8logn < r < n!/3.
We note that for any given x € {0,1}*" and i € [2"], computing the encoding of x at coordinate

i (according to C) can be done in poly(n) time.
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