
Improved Average-Case Lower Bounds for De Morgan Formula Size∗

Matching Worst-Case Lower Bound

Ilan Komargodski† Ran Raz† Avishay Tal†

Abstract

We give an explicit function h : {0, 1}n → {0, 1} such that every De Morgan formula of size
n3−o(1)/r2 agrees with h on at most a fraction of 1

2 + 2−Ω(r) of the inputs.
Our technical contributions include a theorem that shows that the “expected shrinkage”

result of H̊astad (SIAM J. Comput., 1998) actually holds with very high probability (where the
restrictions are chosen from a certain distribution that takes into account the structure of the
formula), using ideas of Impagliazzo, Meka and Zuckerman (FOCS, 2012).

1 Introduction

Proving lower bounds on the complexity of classical computational models for Boolean functions is
the holy grail in theoretical computer science. One of the simplest and most natural non-uniform
computational models that is of great interest is the model of Boolean De Morgan formulas. It
is well known that the De Morgan formula size of almost all functions on n variables is at least
Ω (2n/ log n). Nevertheless, no explicit function (constructible deterministically in polynomial time)
with super-polynomial lower bounds on the De Morgan formula size has been found yet. Providing
such a function would separate P from NC1.

A De Morgan formula is represented by a binary tree such that every leaf is labeled by an input
variable or its negation, and every internal node is labeled by an operation from {∨,∧}. A formula
is said to compute a function f : {0, 1}n → {0, 1} if on all inputs x ∈ {0, 1}n it outputs f(x). The
computation is done in the natural way from the leaves to the root. The size of a formula F ,
denoted by L(F), is defined as the number of leaves it contains. The De Morgan formula size of a
function f : {0, 1}n → {0, 1} is the size of the minimal De Morgan formula that computes f .

Previous works considered two types of lower bounds on De Morgan formula size: worst-case
lower bounds and average-case lower bounds.

Worst-case lower bounds are lower bounds on the size of the minimal De Morgan formula
that computes an explicit function f : {0, 1}n → {0, 1}. The first non-trivial lower bound in this
model was achieved by Subbotovskaya [Sub61] that proved an Ω(n1.5) lower bound on the size of
any De Morgan formula that computes the parity function on n variables. Subbotovskaya also
introduced the concept of random restrictions that has had many applications since. In fact,

∗This is a final draft of [KRT17]. A preliminary version of this work appeared in the 45th ACM Symposium on
Theory of Computing (STOC 2013), pp. 171–180 [KR13] and in the 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2013), pp. 588–597 [KRT13].
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Is-

rael. Email: {ilan.komargodski,ran.raz,avishay.tal}@weizmann.ac.il. Research supported by an Israel Science
Foundation grant and by the I-CORE Program of the Planning and Budgeting Committee and the Israel Science
Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 58 (2013)

Subbotovskaya showed a lower bound of Ω(nΓ) where Γ is referred to as the shrinkage exponent of
De Morgan formulas under random restrictions and showed that Γ ≥ 1.5. In [Khr71] Khrapchenko
was able to improve the lower bound of [Sub61] and to prove, using a completely different method,
that the parity function on n variables requires a De Morgan formula of size at least n2 (which is
tight, up to constant factors). In [And87], Andreev was able to cleverly combine some previous
techniques (including the method of [Sub61]) in order to prove an Ω(n1+Γ−o(1)) lower bound on
the size of the minimal De Morgan formula that computes an explicit function, later referred to
as Andreev’s function. Subsequent improvements on the constant Γ led to improved lower bounds
on the De Morgan formula size of Andreev’s function. Impagliazzo and Nisan [IN93] proved that
Γ ≥ 1.55, Paterson and Zwick [PZ93] proved that Γ ≥ 1.63, H̊astad [H̊as98] proved that Γ ≥ 2−o(1)
and Tal [Tal14] removed logarithmic factors from H̊astad’s work to achieve the tight result Γ = 2.
This, in turn, yields a lower bound of Ω(n3−o(1)) on the size of De Morgan formulas that compute
Andreev’s function.

Average-case lower bounds (a.k.a., correlation bounds) are lower bounds on the size of the
minimal De Morgan formula that only approximates an explicit function f : {0, 1}n → {0, 1}. An
approximation of f is a computation that agrees with f on some fraction larger than 1/2 of the
inputs (rather than on all inputs). The first explicit average-case lower bound for De Morgan
formulas appears in the work of Santhanam [San10]. There, it is shown that any family of linear-
size De Morgan formulas has correlation of at most 1

2 + 2−Ω(n) with the parity function, and

moreover, his technique could be extended to show a correlation of at most 1
2 + 2−n

Ω(1)
between

any De Morgan formula of size O(n1.5) and the parity function. In addition works regarding
the degree of approximating polynomials also imply correlation bounds for De Morgan formulas.

Specifically, from the works of [BBC+01, Rei11] it follows that any formula of size o
(

(n/ log(1/ε))2
)

has correlation of at most 1
2 + ε with the parity function on n variables.

In this work, we construct an explicit function h : {0, 1}n → {0, 1} such that any De Morgan

formula of size at most O(n2.99) computes h correctly on a fraction of at most 1
2 + 2−n

Ω(1)
of the

inputs. More generally, our main theorem gives the following trade-off between the size of the
formula and the quality of approximation:

Theorem 1.1. There exists a constant c ≥ 8 such that for any large enough integer n and any
c · log(n) ≤ r ≤ n1/3 the following holds. There is an explicit (computable in polynomial time)

Boolean function h : {0, 1}6n → {0, 1} such that any formula of size n3

r2·polylog(n)
computes h correctly

on a fraction of at most 1/2 + 2−Ω(r) of the inputs.

1.1 Techniques

We start by informally defining restrictions and shrinkage (more formal definitions can be found
in Section 2). Given a function f : {0, 1}n → {0, 1}, a vector ρ ∈ {0, 1, ∗}n defines a restriction of
f , denoted by f |ρ, in the following way: if ρi ∈ {0, 1} then the i-th input variable of f is fixed
(or assigned) to 0 or 1, respectively, and otherwise it is still a variable. Let D be a distribution of
restrictions that leave k variables unassigned; we say that De Morgan formulas have s-shrinkage
with probability γ over D if any De Morgan formula shrinks by a factor of at least c · (k/n)s with
probability γ over D, for some universal constant c.

Next, we present a framework for proving average-case lower bounds. In order to explain it, we
first begin by describing the worst-case lower bound of Andreev [And87].

2

1.1.1 Andreev’s Worst-Case Lower Bound

Andreev’s function A : {0, 1}n × {0, 1}n → {0, 1} is defined as follows. A views the second input
as a log n by n/ log n matrix and computes the XOR of the input bits in every row. A uses the
resulting log n bits to address an index in the first input (log n bits are enough to represent a cell
in a vector of length n) and returns that bit. The analysis of[And87, IN93, PZ93, H̊as98, Tal14]
relies on the following 4 facts:

1. There exists an n bit vector h that represents a Boolean function on log n bits which requires
formulas of size Ω(n/ log logn).

2. It holds that L(A) ≥ L(Ah), where Ah is the function A such that the first input is fixed to
the hard function h from Item 1.

3. Γ-shrinkage occurs with probability at least 3/4 (over completely random restrictions). That
is, for a function f : {0, 1}n → {0, 1} and for a random restriction ρ that leaves k variables

unassigned it holds that L(f |ρ) ≤ c·
(
k
n

)Γ ·L(f) with probability at least 3/4 for some universal
constant c > 0.

This fact, that was first proved by [Sub61] (for Γ = 1.5), was gradually improved throughout
[IN93, PZ93, H̊as98, Tal14].

4. After applying a completely random restriction that leaves k = Θ (log n · log log n) variables
unrestricted, with probability at least 3/4 every row in the matrix (represented by the second
input to A) has at least one variable that is not restricted.

Andreev derived the lower bound as follows. Since Item 3 and Item 4 occur with probability at
least 3/4, there exists a restriction ρ such that both items hold simultaneously. Hence,

L(A)
Item 2
≥ L(Ah)

Item 3
≥ 1

c
·
(n
k

)Γ
· L(Ah|ρ)

Items 1 and 4
≥ nΓ+1−o(1) ,

where Ah|ρ denotes the function Ah after applying the restriction ρ.

1.1.2 A Scheme for Average-Case Lower Bounds

Define a function B : {0, 1}n×{0, 1}n → {0, 1} that views its second input as an nε by n1−ε matrix
and computes the XOR of the input bits in every row. B encodes the first n input bits, using an
error correcting code, into a string of 2n

ε
bits (or alternatively, to a function from nε bits into 1).

Then, B uses the resulting nε bits of the XORs to address an index in the encoded first input and
returns that bit.

In order to prove an average-case lower bound one has to prove the following four facts (stated
informally):

1. Most strings of length n are encoded, using an error correcting code with large relative
distance, into strings of length 2n

ε
that represent functions (from nε bits into 1) that cannot

be approximated by formulas of size at most n/ log n.

2. If a formula F approximates B well, then there exists a string h ∈ {0, 1}n such that its
encoding is hard to approximate (see Item 1) and Fh approximates Bh well, where Bh (resp.
Fh) is the function B (resp. F) such that the first input is fixed to h.

3

3. Γ-shrinkage occurs with probability exponentially close to 1, over a distribution of random
restrictions that takes into account the structure of the formula.

4. After applying this restriction (from the same distribution as in Item 3) most rows in the
matrix represented by the second input to B have at least one variable that is not restricted,
with probability exponentially close to 1.

Deriving a lower bound given the above facts is conceptually similar to Andreev’s lower bound,
but may sometimes be more difficult. Items 1 and 2 are not very hard to prove. Specifically, Item 1
follows by an application of the Johnson bound and Item 2 is a standard averaging argument.
Items 3 and 4 are usually more challenging. For example, the distribution over restrictions in
Item 3 may depend on the structure of the formula (i.e., it is not a uniformly random restriction),
making Item 4 in the scheme above non-trivial to prove.

In this work, our technical contributions are twofold. First, we prove that 1.99-shrinkage occurs
with probability exponentially close to 1 over a certain distribution (that satisfies some additional
properties; see the discussion in Section 1.1.3 and Remark 1.2). Second, we decouple the dependence
between Items 3 and 4 by giving a slightly different construction for the function B for which we
prove the lower bound. Namely, instead of XORing the rows in the aforementioned matrix to
derive the nε index bits, we derive the index bits by applying a bit-fixing extractor to the second
input (see more details below).1 We believe that the insights in the latter contribution might be of
independent interest.

1.1.3 Our Techniques

We first describe how we prove that 1.99-shrinkage occurs with high probability and then explain
our modification to the function B which helps us simplify the analysis of Item 4.

Shrinkage with high probability. We borrow ideas from the work of Impagliazzo, Meka and
Zuckerman [IMZ12]. Impagliazzo et al. prove a theorem (among other interesting results) showing
that (2 − o(1))-shrinkage occurs with probability that is polynomially close to 1. In [IMZ12], the
theorem is proved for certain pseudorandom distributions and is used to construct pseudorandom
generators with seed of length O(s) that fool De Morgan formulas of size s3−o(1).

We use the proof technique of [IMZ12] applied to a distribution of random restrictions that
takes the structure of the formula into account. In order to show that shrinkage occurs with high
probability, [IMZ12] show that formulas with no “heavy” variables (variables that appear a lot more
than an average variable) can be split into many “medium size” sub-formulas (subtrees). Thus, it
suffices to show that the total size of all sub-formulas after applying a random restriction is small
with high probability. The crucial point is that (assuming that there are no “heavy” variables)
these subtrees can be gathered into large sets, such that in each set the sub-formulas are defined
over disjoint variables. Thus, in each such set of sub-formulas, the sizes of the sub-formulas after
restriction are independent random variables, and one can apply Chernoff-Hoeffding inequalities.

The main problem with this argument is the assumption that no “heavy” variables exist.
[IMZ12] treat the “heavy” variables separately, showing overall that shrinkage occurs with probabil-
ity at least 1−1/poly(n). Their analysis can even be pushed to show that shrinkage over uniformly

random restrictions holds with probability at least 1− 1/2o(log2 n) but not further.2

1We have learnt that the same idea in this context was suggested independently in [CKK+14] (private communi-
cation with the authors).

2The limitation comes from the following example. Take a random function on a junta of O(logn) variables; such

4

In this work, we use the formula structure to derive our restriction. We first restrict all heavy
variables one by one, in each step ensuring that shrinkage occurs with probability 1. When no
heavy variables are left, we apply a random restriction and analyze similarly to [IMZ12]. This

technique ensures shrinkage with very high probability (≥ 1− 2−n
Ω(1)

).

Remark 1.2. As we have stated, we prove that 1.99-shrinkage occurs with probability exponentially
close to 1 over a certain distribution of random restrictions that takes into account the structure of
the formula (see Theorem 4.2). We note that without additional requirements on the distribution,
achieving this goal is pretty easy since it follows directly from [H̊as98].

However, in order to use “shrinkage with high probability” to prove an average-case lower bound
in the scheme from Section 1.1.2, one needs to prove that shrinkage occurs with very high probability
over a distribution with additional properties. More specifically, the following property is sufficient:
the distribution is defined by some process that at each step chooses a variable (possibly depending
on the structure of the formula) and then fixes the value of the chosen variable uniformly at random
to either 0 or 1. We refer to such a distribution as a distribution of random valued restrictions. In
the proof, we use the fact that the restrictions are random valued to derive correlation bounds for the
original function from correlation bounds for the restricted function, using an averaging argument
(see Section 7).

In Section 4, we define a distribution of random valued restrictions, and prove that 1.99-
shrinkage occurs with probability exponentially close to 1 over this distribution.

Simplification of Item 4. As our restriction depends on the structure of the formula, it is not
a uniformly random restriction, and one needs to work hard in order to show Item 4 in the proof
scheme of Section 1.1.2. In this work, we generalize Andreev’s scheme (see Section 1.1.1) to work
with any distribution over restrictions, as long as it keeps k = 100nε variables unrestricted (where
nε is the input length to the hard function). Instead of generating the index to the hard function
by simply XORing bits of the n bits of the second input, we apply a more complicated function on
those variables, i.e., we apply a bit-fixing extractor.

Bit-fixing extractors were introduced in [CGH+85] and then later constructed in [KZ07, GRS06,
Rao09] with better and better parameters. Intuitively, a bit-fixing extractor is a function which
takes n bits of input, outputs nε bits and ensures that if k of the input variables are truly random
and the rest are fixed to some constants, then the output is very close to the uniform distribution
over nε bits. This allows us to argue that a hard function defined on nε bits, is hard on the output
of the bit-fixing extractor as well.

We use the fact that we can also use an advice (seed) for the bit-fixing extractor as part
of the input and give a construction of a bit-fixing extractor with better parameters (smaller
error and lower min-entropy) than bit-fixing extractors that do not assume access to an advice
[KZ07, GRS06, Rao09].3

We hope that the idea to use a bit-fixing extractor can be helpful in other works. In general,
instead of arguing that formulas (or other models) shrink under random restrictions to derive lower

a function has, with high probability, formula size poly(n). Applying a random restriction leaving each variable alive

with probability 1/n, independently, leaves the formula with the same size with probability 1/nO(logn) = 1/2O(log2 n).
This example shows the difference between taking totally random restriction and random restrictions that take into
account the formula structure.

3This allows us to get that our function cannot be computed on 1/2+2−r fraction of the inputs by formulas of size
at most n3/(r2polylogn). Using the explicit bit-fixing extractors instead would result in a function that cannot be

computed on 1/2 + 2−r
d

fraction of the inputs by formulas of size at most n3/(r2poly logn), for a small (unspecified)
constant d.

5

bounds, using a bit-fixing extractor one only needs to argue that there exists some restriction leaving
k variables unrestricted under which the formula shrinks well. In other words, when proving worst-
case lower bound, one can consider best-case restrictions instead of random restrictions. When
proving average-case lower bounds, one can consider any distribution of random valued restrictions
(as in Remark 1.2) for which the formula shrinks well with high probability.

The techniques of [KR13]. The construction and proof of [KR13] follow the blueprint given in
Section 1.1.2. There, for Item 3 it is shown that 1.5-shrinkage occurs with very high probability over
some distribution that takes into account the structure of the formula. Technically, the proof uses
the Azuma inequality and it is very different from the proof in this version. Furthermore, unlike
in the current version, the proof of Item 4 depends heavily on the structure of the distribution and
requires a series of reductions to bins and balls adversary games. Even though this work simplifies
both steps, we believe that these techniques may still be interesting in their own right. See [KR13]
for more information.

1.2 Related Work

Independent of our work, Chen et al. [CKK+14] simplified the average-case lower bound of [KR13]
using a bit-fixing extractor. This is quite similar to our simplification of Item 4 from Section 1.1.2.
We emphasize that [CKK+14] obtain an average-case lower bound of n2.49 (as [KR13]), whereas we
obtain an average-case lower bound of n2.99 using our improved shrinkage result. The quantitive
difference between our result and theirs is due to the fact that they prove that 1.49-shrinkage occurs
with high probability, whereas we prove that 1.99-shrinkage occurs with high probability.

1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2 we give some general notations that are
used throughout the paper and some preliminary material and definitions. In Section 3 we give the
construction of the hard function. In Section 4 we prove our “shrinkage with very high probability”
theorem. In Section 5 we provide a simple construction of a bit-fixing extractor that uses an advice.
In Section 6 we prove that composing an error correction code with a bit-fixing extractor almost
always yields a function that is hard to approximate under any restriction. Finally, in Section 7 we
prove the main theorem of this paper (Theorem 1.1).

2 Preliminaries

We start with some general notations. Throughout the paper we only consider De Morgan formulas
and not always explicitly mention it.

We denote by [n] the set of numbers {1, 2, . . . , n}. For i ∈ [n] and for x ∈ {0, 1}n, denote
by xi the i-th bit of x. We denote by ei ∈ {0, 1}n the vector with one on the i-th coordinate
and zero elsewhere. We use logarithms to base two by default. We denote by Uk the uniform
distribution over {0, 1}k. For a distribution D we denote by x ∼ D a random element sampled
according to D. For a set X we denote by x ∼ X a random element sampled according to the
uniform distribution from X. For two functions f : {0, 1}s → {0, 1}m and g : {0, 1}n → {0, 1}s, we
denote by f ◦ g : {0, 1}n → {0, 1}m the composition of f and g, i.e., f ◦ g(x) = f(g(x)).

6

Boolean Formulas

Definition 2.1. A De Morgan formula is a binary tree with OR and AND gates with fan-in 2 on
the internal nodes, and variables or their negations on the leaves.

Definition 2.2. The size of a De Morgan formula F is the number of leaves in it and is denoted
by L(F). For a function f : {0, 1}n → {0, 1}, we denote by L(f) the size of the smallest De Morgan
formula computing the function f .

Definition 2.3 (Restriction). Let f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ is a
vector of length n of elements from {0, 1, ∗}. We denote by f |ρ the function f restricted according
to ρ in the following sense: if ρi = ∗, then the i-th input bit of f is unassigned, and otherwise the
i-th input bit of f is assigned to be ρi.

We denote by Rk the set of restrictions that leave k variables unassigned.

Definition 2.4 (p-Random Restriction). A p-random restriction is a restriction as in Definition 2.3
that is sampled in the following way. For every i ∈ [n], independently with probability p set ρi = ∗
and with probability 1−p

2 set ρi to be 0 and 1, respectively. We denote this distribution of restrictions
by Rp.

We extend the definition of a restriction (Definition 2.3) to De Morgan formulas as well. For a
given formula F over n variables computing a Boolean function f , and a restriction ρ ∈ {0, 1, ∗}n,
we denote by F |ρ the formula of minimal size that computes f |ρ. In other words, we assign values
to the variables fixed by the restriction and then simplify the formula to the minimal size formula
that is equivalent to it.4

Definition 2.5 (Average-Case Hardness). A function f : {0, 1}n → {0, 1} is said to be (s, ε)-hard
if for any De Morgan formula F of size at most s

Pr
x∼{0,1}n

[F (x) = f(x)] ≤ 1

2
+ ε .

Probability

We state three variants of the well-known Chernoff/Hoeffding inequality.

Proposition 2.6 (Chernoff/Hoeffding Inequalities, [Che52, Hoe63, MR95]). Let X =
∑n

i=1Xi be
a sum of independent random variables X1, . . . , Xn. If for every i ∈ [n] there exists ai, bi ∈ R such
that ai ≤ Xi ≤ bi, then for t > 0,

Pr[X −E[X] ≥ t] ≤ exp

(
−2t2∑n

i=1 (bi − ai)2

)
. (2.1)

If we further assume that for every i ∈ [n] we have 0 ≤ Xi ≤ b, and E[Xi] ≤ E, then

Pr[X ≥ (1 + δ) · n · E] ≤

{
exp(−δ2 · n · E/3b) 0 ≤ δ < 1

exp(−δ2 · n · E/((2 + δ)b)) 1 ≤ δ .
(2.2)

If for all i ∈ [n] we have 0 ≤ Xi ≤ b, then for δ ∈ (0, 1),

Pr[X ≤ (1− δ) ·E[X]] ≤ exp(−δ2 ·E[X]/2b) . (2.3)

4We remark in the literature it is common to define the restricted formula by plugging constants to the tree and
then applying a set of simplification rules on the resulting formula to reduce its size (see e.g., the simplification rules
of H̊astad [H̊as98]). This approach is more algorithmic in nature (and has its advantages – see the comment before
Theorem 4.3), but is not required for our results, as we are using restrictions only in the analysis.

7

We will use the following simple lemma.

Lemma 2.7. Let X be a random variable taking values in the range [0, 1] and let B be an event
such that Pr[B] > 0. Then, E[X|B] ≥ E[X] − Pr[¬B]. In particular, if X is an indicator of an
event A, then Pr[A|B] ≥ Pr[A]−Pr[¬B].

Proof. If Pr[B] = 1 this is obvious so we can assume Pr[B] ∈ (0, 1) and get

E[X] = E[X|B] ·Pr[B] + E[X|¬B] ·Pr[¬B] ≤ E[X|B] + Pr[¬B] ,

as needed.

We will use the notion of statistical distance.

Definition 2.8 (Statistical Distance). Let Ω be some finite set. Let P and Q be two distributions
on Ω. The statistical distance between P and Q is defined as

|P −Q| = max
A⊆Ω

∣∣∣∣Pr
P

(A)−Pr
Q

(A)

∣∣∣∣ .
If |P −Q| ≤ ε we say that P is ε-close to Q.

We define k-wise independent distributions.

Definition 2.9 (k-wise Independent Distribution). A distribution D over {0, 1}n is k-wise inde-
pendent if and only if for all distinct i1, . . . , ik ∈ [n] and all a1, . . . , ak ∈ {0, 1}

Pr
x∼D

[xi1 = a1 ∧ · · · ∧ xik = ak] =
1

2k
.

Bit-Fixing and Affine Extractors

Two ingredients of our construction are a bit-fixing extractor and an affine extractor, which we
define next.

Definition 2.10 (Bit-Fixing Source). A distribution X over Fn2 is an (n, k)-bit-fixing source if there
exist k distinct indices i1, . . . , ik such that the k-tuple (Xi1 , . . . , Xik) is uniformly distributed over
{0, 1}k, and for i /∈ {i1, . . . , ik}, Xi is a fixed constant. We refer to k as the entropy of the source.

An affine source, that we define next, is a generalization of a bit-fixing source.

Definition 2.11 (Affine Source). A distribution X over Fn2 is an (n, k)-affine source if there exist
k linearly independent vectors v1, . . . , vk ∈ Fn2 and another vector v0 ∈ Fn2 such that X is uniformly
distributed over v0 + span{v1, . . . , vk}. We refer to k as the dimension or entropy of the source.

Definition 2.12 (Bit-Fixing Extractor, Affine Extractor). An (n, k)-bit-fixing extractor (affine ex-
tractor, resp.) with error ε and output length r is a function Ext : {0, 1}n → {0, 1}r such that for
every (n, k)-bit-fixing source ((n, k)-affine source, resp.) X the distribution of Ext(X) is ε-close to
the uniform distribution in statistical distance, i.e.,

|Ext(X)−Ur| ≤ ε .

We will later denote bit-fixing extractors by BFExt and affine extractors by AExt.

8

Coding Theory

We recall basic terminology and results from coding theory.

Definition 2.13. Let Σ be an alphabet (i.e., a finite set) of size q. An (n, k, d)q code C is a subset
of Σn, where k = log(|C|)/ log(q) is called the dimension of the code, and d is the minimal (Hamming)
distance between any two different strings in C. A code C can be thought of as a mapping from
Σk to Σn such that every two outputs of the mapping differ in at least d locations. The mapping
procedure sometimes referred to as the encoding function of C. The relative distance of C is δ = d/n.
We say that a code is an [n, k, d]q linear code if Σ = Fq is a finite field and the mapping is linear
over Fq.

We state some well known codes and recall the definition of code concatenation. A Reed-Solomon
code is a [n, k, n−k+1]q, where q ≥ n (the size of the alphabet symbols) is a power of a prime. Given
a finite field F on size q, and n ≤ q distinct elements a1, . . . , an ∈ F, the Reed-Solomon code encodes
(x0, . . . , xk−1) ∈ Fk into the vector (p(a1), p(a2), . . . , p(an)) where p(a) =

∑k−1
j=0 xj · aj . In other

words, the message is interpreted as the set of coefficients of a polynomial p(·) with deg(p) ≤ k− 1,
and encoded by taking the values of this polynomial on a1, . . . , an.

A Hadamard code is a [2k, k, 2k−1]2 code that is defined as follows. A message (x1, . . . , xk) ∈ Fk2
is encoded by a vector of length 2k whose entries are indexed by vectors y ∈ Fk2; The y’s entry of
the encoded message equals 〈x, y〉 :=

∑
i xiyi.

Let Cin be an [n, k, d]q-code and let Cout be an [N,K,D]qk -code. Then, the concatenation of Cout

with Cin is an [nN, kK,≥ dD]q-code which is defined as follows. A message x ∈
(
Fqk
)K ∼= (Fq)kK

is encoded using the outer code into Cout(x) ∈
(
Fqk
)N

. Then, each of the N symbols in Cout(x) is

encoded using the inner code, resulting in a vector in (Fqn)N ∼= (Fq)nN . It is well known that the
distance of the concatenation of two codes is at least dD.

Definition 2.14. Let 0 ≤ ρ ≤ 1 and L ≥ 1. A code C ⊂ {0, 1}n is (ρ, L)-list decodable if for every
y ∈ {0, 1}n,

|{c ∈ C : ∆(y, c) ≤ ρn}| ≤ L ,

where ∆ denotes the Hamming distance.

We state the well known Johnson bound for codes with binary alphabet. This version of the
bound was taken from [Rud07] for the case of binary alphabet.

Proposition 2.15 (Johnson Bound). Let C ⊆ {0, 1}n be an (n, k, d)2 code with relative distance
δ = d/n ≤ 1/2. It holds that C is (ρ, 2dn)-list decodable for any

ρ <
1

2
·
(

1−
√

1− 2δ
)
.

3 Construction of the Function

Our construction is parameterized by n and r, and can be thought of as a family of functions as
it is defined for infinitely many possibilities for these parameters. Let c ≥ 8 be a large enough
constant. We assume that c · log(n) ≤ r ≤ n1/3 and that n is large enough.

We define a function h : {0, 1}4n×{0, 1}n×{0, 1}n → {0, 1} that takes three inputs: x ∈ {0, 1}4n,
y ∈ {0, 1}n and s ∈ {0, 1}n. We use two ingredients in our construction: an error correcting code
and a bit-fixing extractor.

9

Let C be a [2r, 4n, d]2 error correcting code with d ≥ 2r
(

1
2 −

1
2r/4

)
. C encodes x ∈ {0, 1}4n to

EncCx ∈ {0, 1}2
r

and has relative distance δ = d/2r ≥ 1/2 − 2−r/4. One may view each codeword
also as a Boolean function EncCx : {0, 1}r → {0, 1}. The construction of the code C is described
in Section 3.1.

Our bit-fixing extractor is a function BFExts : {0, 1}n → {0, 1}r parameterized by the input
s, which is of length n. The exact definition of this function and its properties are described
in Section 5.

The function h is defined as

h(x, y, s) = EncCx(BFExts(y)) .

We remark that both computations z = BFExts(y) and EncCx(z) can be done in polynomial time
given the inputs (s, y) and (x, z), respectively (see Sections 3.1 and 5).

3.1 The Error Correcting Code

As part of the construction we need a code C with the following parameters. C should be a [2r, 4n, d]2

code with d ≥ 2r
(

1
2 −

1
2r/4

)
where 8 log n ≤ r ≤ n1/3.

The code C can be obtained in the following way. Consider a concatenation of a Reed Solomon[
2r/2, 8n/r, 2r/2 − 8n/r + 1

]
2r/2

code R and a Hadamard
[
2r/2, r/2, 2r/2−1

]
2

code H. Concatenating
R and H we get a [2r, 4n, d]2 code C where

d ≥ 2r/2−1
(

2r/2 − 8n/r
)

= 2r
(

1

2
− 4n

r2r/2

)
≥ 2r

(
1

2
− 1

2r/4

)
for large enough r and n, where 8 log n ≤ r ≤ n1/3.

We note that for any given x ∈ (F2)4n and i ∈ [2r], computing the encoding of x at coordinate
i (according to C) can be done in poly(n, r) time by computing a symbol of a Reed-Solomon code
and then computing a symbol of the Hadamard encoding of that symbol.

4 Shrinkage with Very High Probability

In this section we prove that the shrinkage property of De Morgan formulas holds with very high
probability. We begin by stating the main theorem of this section.

Definition 4.1 (Random Valued Restrictions). A distribution of random restrictions (as in Defi-
nition 2.3) is called random valued if it can be defined by an iterative process such that at each step
a variable is chosen (possibly depending on the structure of the formula and previous choices) and
then the value of the chosen variable is randomly fixed to 0 or 1.

Usually, we will associate a parameter k with a random valued restriction which states that the
restriction leaves k variables unassigned (i.e., it is in Rk).

Theorem 4.2. Let c > 0 be any constant and let F be a formula over n variables of size at most
nc. Then, for large enough n, there exists a constant c′′ > 0 (where c′′ depends only on c) such that
for any k in the range c′′ · log(n) ≤ k ≤ n there is a distribution Tk of random valued restrictions,
each restriction leaving exactly k variables alive, such that

Pr
ρ∼Tk

[
L(F |ρ) ≤ poly log(n) ·

(
k

n

)2

· L(F)

]
≥ 1− εshr ,

where εshr = 2−Ω(k).

10

Our proof is based on the results of H̊astad [H̊as98] and Tal [Tal14] that state that shrinkage
of De Morgan formulas occurs in expectation. In Theorem 4.3, we use the theorem of [Tal14]
which gives a quantitatively slightly better result than [H̊as98]. Eventually, this yields a better

lower bound in Theorem 4.2 and consequently in our main theorem (improving a 2O(log2 logn) term
into a polylog(n) term). However, the result of [H̊as98] is algorithmic (i.e., the simplification rules
can be efficiently implemented) and can be used to get #SAT algorithms for small formulas (see
[CKK+14]).

Theorem 4.3 ([H̊as98], [Tal14]). Let f be a Boolean function. For every p > 0,

E
ρ∼Rp

[L(f |ρ)] ≤ O
(
p2 · L(f) + p

√
L(f)

)
.

We define a restriction process for a formula F as follows. If F contains a heavy variable (i.e.,
a variable that appears in the formula many times), then we just restrict it (assign to it 0 or 1
at random). Otherwise, we treat all variables as equal and use a truly random restriction on the
remaining variables. In the analysis, a removal of a “heavy” variable is pretty easy to handle since
we are guaranteed that the formula shrinks well, and the second step is harder. In the analysis of
the second step, we split the formula (which is just a binary tree) into parts (sub-formulas) that are
almost independent, in the sense that every variable does not appear in too many parts. We show
that this small dependence does not affect much, and thus we can apply Hoeffding’s inequality to
get the result.

Formally, for a given formula F on n variables and a parameter r, we present a randomized
algorithm that samples a restriction keeping exactly r variables alive. The algorithm takes the
structure of F into account, and defines a distribution of random valued restrictions that we denote
by T ′r . The final distribution Tk (as in Theorem 4.2) is obtained by iteratively sampling restrictions
from T ′r with varying values of r (more details below and in Remark 4.8).

1: F0 ← F .
2: i← 0.
3: while n− i > r AND there is a variable xj in Fi that appears more than 2L(Fi)

n−i times do
4: Assign xj at random and let Fi+1 be the formula Fi restricted by xj
5: i← i+ 1,
6: end while
7: Sample a random ρ′ ∼ Rr on the remaining variables.

Algorithm 1: T ′r distribution on restrictions.

First, we argue that shrinkage occurs with very high probability for formulas that do not contain
any “heavy” variable. Actually, we claim that such shrinkage holds under random restrictions
sampled from Rp, keeping each variable alive independently with probability p (where p ≈ r/n).
In Lemma 4.6, we show that a similar bound holds for restrictions sampled from Rr (i.e, when the
number of alive variables is exactly r), as required by the last step in T ′r .

Lemma 4.4. There exists a universal constant c > 0 such that the following holds. Let F be a
De Morgan formula over n variables such that any variable appears in F in at most 2L(F)/n leaves.
Then, for any 0 < p ≤ 1,

Pr
ρ∼Rp

[
L (F |ρ) ≥ c · p2 · L(F)

]
≤ L(F) · e−n·p6

.

11

The proof of Lemma 4.4 is based on ideas from [IMZ12] and [Tal14]. We use the following claim
from [Tal14], that is based on ideas from [IMZ12].

Claim 4.5 ([Tal14]). Let F be a De Morgan formula over the set of variables X = {x1, . . . , xn},
and let ` ∈ N be a parameter. Then, there exist m ≤ O(L(F)/`) formulas over X, denoted by
G1, . . . , Gm, each of size at most `, and there exists a read-once formula F ′ of size m such that
F ′(G1(x), . . . , Gm(x)) = F (x) for all x ∈ {0, 1}n.

We proceed with the proof of Lemma 4.4.

Proof of Lemma 4.4. The claim is vacuous for p < n−1/6 since it says that something occurs with
probability less than something that is greater than 1. So we may assume without loss of generality
that p ≥ n−1/6. We set ` := 1/p2.

Recall that the formula F does not contain “heavy” variables. Decompose the formula F into
F ′(G1, . . . , Gm) as in Claim 4.5. Form a graph whose vertices are the Gi’s, and put an edge between
Gi and Gj , for i 6= j, iff the formulas Gi and Gj share a variable. This graph has m = O(L(F)/`)
vertices (see Claim 4.5). Since F does not contain “heavy” variables, the degree of this graph is

at most d , ` ·
(

2L(F)
n − 1

)
. It is well-known that one can greedily color a graph of degree d with

d+ 1 colors, inducing a partition of the vertices into d+ 1 independent sets {I1, . . . , Id+1}.
Denote by f, g1, . . . , gm the functions computed by F,G1, . . . , Gm, respectively. Consider a

specific independent set Ii. Let ρ ∼ Rp be a random restriction. By our design, each of the
functions {gj}j∈Ii is defined on a distinct set of variables, thus we get that shrinkage in each one
of them occurs independently and we may apply Chernoff-Hoeffding’s inequality. Let Xj = L(gj |ρ)
for j ∈ [m]. Then, {Xj}j∈Ii are independent random variables bounded in [0, `] whose expectancy
is O(p2 · ` + 1) = O(1), by Theorem 4.3. Denote the constant hidden in the O(1)-notation by c2,
and assume without loss of generality that c2 ≥ 1. Denote by X(i) =

∑
j∈Ii Xj . If |Ii| < n/`2,

then we add dummy random variables Y|Ii|+1, . . . , Yn/`2 , that are always equal to 0, to the sum that

defines X(i). By doing so, we guarantee that X(i) is the sum of at least n/`2 independent random
variables. By the Chernoff-Hoeffding’s bound (see Equation (2.2) with δ = 2 and E = c2), we get
that

Pr
ρ∼Rp

[X(i) ≥ 3 ·max{n/`2, |Ii|} · c2] ≤ e−max{n/`2,|Ii|}·c2/` ≤ e−n/`3 .

Taking a union bound over all d + 1 independent sets, we get that with probability at least
1− (d+ 1) · e−n/`3 it holds that

X(i) < 3 ·max{n/`2, |Ii|} · c2

for all i ∈ [d+ 1]. In such a case,

L(f |ρ) ≤
d+1∑
i=1

X(i) ≤ 3 · c2 ·

(∑
i

|Ii|+ (d+ 1) · n
`2

)

≤ 3 · c2 ·
(
m+

2` · L(F)

n
· n
`2

)
= O

(
m+

L(F)

`

)
= O(L(F) · p2) .

Overall, there exists a constant c such that

Pr
ρ∼Rp

[
L (f |ρ) ≥ c · p2 · L(F)

]
≤ (d+ 1) · e−n/`3 ≤ L(F) · e−n·p6

.

Since L(f |ρ) = L(F |ρ), this completes the proof.

12

In the proof of Lemma 4.4, it was convenient to treat variables in the restriction as independent
random variables, which advocated the usage of Rp. For the rest of this section, and in particular
for Theorem 4.2, it is important to consider restrictions leaving exactly k variables alive (i.e., in Rk),
as we later argue that under such restrictions the bit-fixing extractor outputs a close to uniform
string. The next lemma derives a shrinkage result for Rr from the shrinkage result for R2r/n.

Lemma 4.6. There exists a universal constant c′ > 0 such that the following holds. Let F be
a De Morgan formula over n variables such that any variable appears in F in at most 2L(F)/n
leaves. Then, for any integer 1 ≤ r ≤ n,

Pr
ρ′∼Rr

[
L
(
F |ρ′

)
≥ c′ · (rn)2 · L(F)

]
≤ 2 · L(F) · e−r6/n5

.

Proof. Let c be the constant guaranteed by Lemma 4.4, and assume without loss of generality
that c ≥ 1. Take c′ = 4c ≥ 4. If r > n/2, then the claim surely holds as L(F |ρ′) ≤ L(F) <
L(F) ·c′ · (r/n)2. Hence, for the rest of the proof we assume without loss of generality that r ≤ n/2.

We let p = 2r/n, and couple the distributions Rp and Rr. To do so, we draw n real numbers
a1, . . . , an uniformly from [0, 1]. In addition, we draw n bits b1, . . . , bn ∈ {0, 1} uniformly at random.
To sample a restriction ρ from Rp simply assign ρ(i) = ∗ if ai < p, and ρ(i) = bi otherwise. Let
p′ be the minimum value such that exactly r out of {a1, . . . , an} are smaller than p′. To sample a
restriction ρ′ from Rr assign ρ′(i) = ∗ if ai < p′, and ρ(i) = bi otherwise.

Whenever p′ ≤ p we have that ρ′ is a refinement of ρ, i.e., any bit that is fixed to a constant in
ρ is fixed to the same constant ρ′, and possibly some variables that were unrestricted in ρ are fixed
in ρ′. In such a case L(F |ρ′) ≤ L(F |ρ), since we may first fix the variables that ρ fixes, and then
potentially fix additional variables that ρ′ fixes, which can only reduce the formula size. Thus, we
have

Pr
ρ′∼Rr

[L(F |ρ′) ≥ c′ · (rn)2 · L(F)] ≤ Pr
ρ∼Rp

[L(F |ρ) ≥ c′ · (rn)2 · L(F)] + Pr[p′ > p]. (4.1)

To bound the first term in the RHS of Eq. (4.1) we note that c′ · (rn)2 = c · p2 and apply
Lemma 4.4, which gives

Pr
ρ∼Rp

[L(F |ρ) ≥ c′ · (rn)2 · L(F)] = Pr
ρ∼Rp

[L(F |ρ) ≥ c · p2 · L(F)] ≤ L(F) · e−n·p6 ≤ L(F) · e−64r6/n5
.

To bound the second term in the RHS of Eq. (4.1), we analyze the probability that less than r
of the ai’s got value at most p. We expect p · n = 2r of the ai’s to get value smaller than p. Since
the ai’s are independent random variables, we may apply Chernoff’s bound (Eq. (2.3)) to get that
Pr[p′ > p] ≤ exp(−r/4).

Plugging the bounds on both terms in Eq. (4.1) and using the assumption that r ≤ n/2, gives

Pr
ρ′∼Rr

[L(F |ρ′) ≥ c′ · (rn)2 · L(F)] ≤ L(F) · e−64r6/n5
+ e−r/4 ≤ 2 · L(F) · e−r6/n5

.

Corollary 4.7. Let c′ be the constant from Lemma 4.6. Let F be a De Morgan formula over n
variables. For any 1 ≤ r ≤ n it holds that

Pr
ρ∼T ′r

[
L(F |ρ) ≥ c′ ·

(
r
n

)2 · L(F)
]
≤ 2 · L(F) · e−r6/n5

.

Proof. Assume that we have 0 ≤ h ≤ n− r heavy variables that cause ρ ∼ T ′r enter the while loop
in Algorithm 1. Let z1, z2, . . . , zh be the variables assigned in the while loop and denote by F ′ = Fh
the formula F after restricting z1, z2, . . . , zh. Each zi, conditioned on the previous choices of values,

13

must reduce the size of the formula by a factor of at least
(

1− 2
n−(i−1)

)
≤
(

1− 1
n−(i−1)

)2
, hence

the size of F ′ is

L
(
F ′
)
≤ L(F) ·

(
1− 1

n

)2

·
(

1− 1

n− 1

)2

· · ·
(

1− 1

n− h+ 1

)2

= L(F) ·
(
n− h
n

)2

. (4.2)

Apply Lemma 4.4 on the formula F ′ that contains n− h variables. Since

2 · L(F ′) · e−r6/(n−h)5 ≤ 2 · L(F ′) · e−r6/n5 ≤ 2 · L(F) · e−r6/n5

it follows that

Pr
ρ′∼Rr

[
L(F ′|ρ′) ≥ c′ ·

(
r

n−h

)2
· L(F ′)

]
≤ 2 · L(F) · e−r6/n5

.

Following our notations and Algorithm 1, every restriction ρ ∼ T ′r and a formula F corresponds to
a restriction ρ′ ∼ Rr and a formula F ′. So,

2 · L(F) · e−r6/n5 ≥ Pr
ρ′∼Rr

[
L(F ′|ρ′) ≥ c′ ·

(
r

n−h

)2
· L(F ′)

]
≥ Pr

ρ′∼Rr

[
L(F ′|ρ′) ≥ c′ ·

(
r

n−h

)2
· L(F) ·

(
n−h
n

)2]
(Equation (4.2))

≥ Pr
ρ∼T ′r

[
L(F |ρ) ≥ c′ ·

(
r
n

)2 · L(F)
]
, (L(F ′|ρ′) = L(F |ρ))

which concludes the proof of the corollary.

Remark 4.8. Note that Corollary 4.7 is useful only for r > n5/6. This range of r’s is not enough
to derive the lower bound of Theorem 1.1, so we need to be able to argue a similar statement for
much smaller values of r. This is what we achieve in Theorem 4.2.

Next, we prove the main theorem of this section (Theorem 4.2).

Proof of Theorem 4.2. We apply Corollary 4.7 t ≥ 1 times where t will be determined later. Let
F0 = F and n0 = n. We define a sequence of formulas F0, F1, . . . , Ft, where for i = 1, . . . , t, the
formula Fi is a restriction of Fi−1 and is defined on ni variables. We state the following claim that
suggests the existence of good parameters t and n0, n1, . . . , nt, and defer its proof for later.

Claim 4.9. There exist t ∈ N and a sequence of integers n = n0 ≥ n1 ≥ . . . ≥ nt = k such that

1. for 1 ≤ i ≤ t, (ni)
6

(ni−1)5 = Ω(k)

2. t = O(log log n)

For i = 1, . . . , t we apply a random restriction ρi ∼ T ′ni on the formula Fi−1 to get Fi := Fi−1|ρi .

Our final formula F ′ equals to Ft. Let Ei be the event that L(Fi) ≤ c′·
(

ni
ni−1

)2
·L(Fi−1). Corollary 4.7

and Claim 4.9 gives

Pr [Ei|E1, . . . , Ei−1] > 1− 2 · L(F) · exp
(
−(ni)

6

(ni−1)5

)
= 1− 2 · L(F) · exp (−Ω(k)) .

Standard calculation shows that all events E1, . . . , Et hold simultaneously with probability at least
1− 2t ·L(F) · exp (−Ω(k)). By the assumption that L(F) ≤ nc, there exists a constant c′′ such that
if k ≥ c′′ · log n, then 1− 2t · L(F) · exp (−Ω(k)) ≥ 1− 2−Ω(k).

14

In the case that all events Ei hold, we have

L(F ′) ≤ L(Ft) ≤ (c′)t ·

(
t∏
i=1

(
ni
ni−1

)2
)
· L(F0) = (c′)t ·

(
nt
n0

)2
· L(F0) = (c′)t · k

2

n2
· L(F0) .

Using Item 2 of Claim 4.9, t = O(log log n), it follows that

L(F ′) ≤ 2O(log logn) · k
2

n2
· L(F) = polylog(n) · k

2

n2
· L(F) .

We get that with probability at least 1−2Ω(k) the formula size of F ′ is at most polylog(n) · k2

n2 ·L(F).
Since we applied a sequence of t random valued restrictions, we got a random valued restriction
overall. In addition, we left exactly k variables alive, which completes the proof.

Proof of Claim 4.9. Let {xi}i∈N be the infinite sequence of real numbers defined by xi = k
2 · 2

(6/5)i .
We have that

x6
i

x5
i+1

= k
2 · 2

(6/5)i·6−(6/5)i+1·5 = k
2 . (4.3)

Let t be the least such that xt ≥ n. Using the definition of xi we get that t = O(log log n).
Next, we define the sequence n0, . . . , nt. Set n0 := n and for i = 1, . . . , t, set ni := dxt−ie.

Notice that n = n0 ≥ n1 ≥ n2 . . . ≥ nt = k, since the sequence {xi}ti=0 is monotone increasing and
x0 = k. For i = 1, . . . , t, we have

(ni)
6

(ni−1)5
≥ (xt−i)

6

(1 + xt−i+1)5
≥ (xt−i)

6

(2 · xt−i+1)5
= Ω(k) ,

which completes the proof.

5 Extractors for Bit-Fixing Sources

One of the ingredients in the construction of our hard function is an extractor for bit-fixing sources
(recall Definitions 2.10 and 2.12). We wish to construct a bit-fixing extractor BFExt : {0, 1}n →
{0, 1}r such that for every (n, k)-bit-fixing source X the output BFExt(X) is very close to the
uniform distribution in statistical distance. Such an extractor was constructed by Rao.

Theorem 5.1 ([Rao09]). There exist constants c and d such that for every k(n) > logc n, there
exists a polynomial time computable function BFExt : {0, 1}n → {0, 1}r that is an (n, k)-bit-fixing

extractor with output length r = k − o(k) and error 2−k
d
.

We give a construction with better parameters which uses O(k2 · log n) bits of advice. Note
that this is not an explicit bit-fixing extractor. Nevertheless, since we can have advice of size O(n)
without increasing the input size by more than a constant factor, we can use this advantage.

One ingredient of our construction is the following.

Definition 5.2 (Linear Condenser). An (n,m, kin, kout) linear condenser is a linear mapping T : {0, 1}n
→ {0, 1}m such that for any S ⊆ [n] of size ≥ kin we have

dim (T (span{ei : i ∈ S})) ≥ kout ,

where ei ∈ {0, 1}n is the i-th unit vector in which all entries are 0 except the i-th entry which is 1.

15

The output of an (n,m, kin, kout) linear condenser on an (n, kin)-bit-fixing source is distributed
uniformly over an affine subspace of Fm2 of dimension at least kout, i.e., it is an (m, kout)-affine
source. Thus, we can compose this linear condenser with an (m, kout) affine extractor and get
altogether an (n, kin)-bit-fixing extractor. The affine extractor that we use was given by Bourgain.5

Theorem 5.3 ([Bou07]). Let δ ∈ (0, 1) be any constant. There exists a constant λδ ∈ (0, 1) such
that for any m large enough there is an explicit polynomial time computable (m, δm) affine extractor
AExt : {0, 1}m → {0, 1}r, that extracts r = λδ ·m bits with error 2−r.

Next, we show that a random matrix is actually a good linear condenser.

Lemma 5.4. For k ≥ 2 log n, a random Boolean k×n matrix is an (n, k, k, k−
√
k · 2 log n) linear

condenser with probability ≥ 1− 2−k·logn.

Proof. We will first count the number of k × k matrices of rank ≤ d over F2. Any k × k matrix of
rank ≤ d can be described unambiguously by specifying a subset of d rows, choosing the vectors
for these rows, and then choosing the remaining k− d rows as linear combinations of those d rows.
This shows that there are at most(

k

d

)
· 2dk · 2(k−d)d =

(
k

d

)
· 22dk−d2

such matrices. Thus, the probability that a random k × k matrix over F2 has rank ≤ d is at most(
k
d

)
· 22dk−d2

/2k
2

=
(
k
d

)
· 2−(k−d)2

. By a union bound, the probability that any subset of k columns
in a random k × n matrix induces a matrix of rank ≤ d is at most(

n

k

)
·
(
k

d

)
· 2−(k−d)2 ≤ nk · 2−(k−d)2

= 2k·log(n)−(k−d)2
.

For d ≤ k −
√

2k · log n, this probability is at most 2−k·logn which finishes the proof.

The analysis above only relied on the fact that every k × k submatrix is uniformly random.
Hence, we can replace the requirement that the k × n matrix is completely random with the
requirement that the entries of the k×n matrix are sampled from a k2-wise independent distribution
(see Definition 2.9).

Corollary 5.5. For k ≥ 2 log n, a k × n matrix whose values are bits sampled from a k2-wise
distribution, is an (n, k, k, k −

√
k · 2 log n) linear condenser with probability ≥ 1− 2−k·logn.

To summarize things in this section we state the following theorem.

Theorem 5.6. Let n be a large enough integer and r, k be integers such that 8 · log n ≤ r ≤ n1/3

and k = r/λ1/2 (where λ1/2 was given by Theorem 5.3).
Then, there exists a family of efficiently computable functions {BFExts : {0, 1}n → {0, 1}r}s∈{0,1}n

such that all but 2−r·logn fraction of the seeds s ∈ {0, 1}n are good where s is a good seed if and
only if s is in the set

S , {s ∈ {0, 1}n : BFExts is an (n, k) bit-fixing extractor with error 2−r} .
5We could have also used the inner product construction over large fields (see [Rao07]) of affine extractors. This

requires kout to be bigger than m/2, or even say 3m/4, which can be arranged by adjusting the constants we choose
later.

16

Proof. We use the most standard k2-wise independent sample space that outputs n · k bits. The
sample space is generated by polynomials of degree k2 − 1 over F2m , where m is the least integer
such that 2m ≥ n · k.6 This construction requires seeds of length k2 · m = O(n2/3 · log n) and
this is smaller than n, for a large enough n. By Corollary 5.5, at least 1− 2−k·logn (and this is at
least 1− 2−r·logn since k ≥ r) fraction of the choices of s yields an (n, k, k, k −

√
k · 2 · log n) linear

condenser. Next, we show that these seeds are good.
For a specific choice of s which defines an (n, k, k, k−

√
k · 2 · log n) linear condenser, the output

of the linear condenser is an affine source of dimension at least

k −
√
k · 2 · log n ≥ k −

√
k · k/4 = k/2 ,

using the assumption k ≥ r ≥ 8 · log n. By this guarantee on the dimension of the condenser output,
the composition of the condenser with the affine extractor AExt stated in Theorem 5.3 yields an
(n, k)-bit-fixing extractor that outputs r = λ1/2 · k bits with error 2−r.

6 Most Functions are Hard to Approximate on any Restriction

Throughout this section we state and prove theorems on the function h defined in Section 3. The
first lemma states that if we restrict our attention only to good seeds s, then for almost all inputs
x ∈ {0, 1}4n, it holds that EncCx ◦ (BFExts|ρ) is hard to approximate for any restriction ρ leaving k
inputs unassigned.

Lemma 6.1. Let {BFExts : {0, 1}n → {0, 1}r}s∈{0,1}n be the family of functions as in Theorem 5.6.
Recall that S = {s ∈ {0, 1}n : BFExts is an (n, k) bit-fixing extractor with error 2−r}. Let C be the[
2r, 4n, 2r

(
1
2 −

1
2r/4

)]
2

code from Section 3.1. Let n′ = n/ log n, εapp = 2−r/10. For s ∈ S, let

Hs = {x ∈ {0, 1}4n : EncCx ◦ (BFExts|ρ) is (n′, εapp)-hard, for all ρ ∈ Rk} .

Then, |Hs| ≥ 24n − 23n.

(In other words, for any s ∈ S, there exists a set Hs ⊆ {0, 1}4n of size at least 24n − 23n such
that for all x ∈ Hs and all ρ ∈ Rk, the function EncCx ◦ (BFExts|ρ) cannot be computed correctly
by any formula of size at most n′ on a fraction larger than 1/2 + εapp of the inputs.)

The second lemma is a simple averaging argument.

Lemma 6.2. Let ε > 0 and let F (x, y, s) be a formula such that

Pr
x,y,s

[F (x, y, s) = h(x, y, s)] ≥ 1/2 + ε .

Then, there exist s0 ∈ S and x0 ∈ Hs0 such that

Pr
y∼{0,1}n

[F (x0, y, s0) = h(x0, y, s0)] ≥ 1/2 + ε− εavg ,

where εavg = 2−r·logn + 2−n.

We begin with the simple proof of Lemma 6.2.

6We can ignore extra bits if needed.

17

Proof of Lemma 6.2. Notice that

Pr
x,y,s

[F (x, y, s) = h(x, y, s) | s ∈ S, x ∈ Hs]

≥ Pr
x,y,s

[F (x, y, s) = h(x, y, s)]−Pr[s /∈ S ∨ x /∈ Hs] (Using Lemma 2.7)

≥ 1/2 + ε− (2−r·logn + 2−n) . (Using Theorem 5.6 and Lemma 6.1)

Using an averaging argument, there exist s0 ∈ S and x0 ∈ Hs0 such that

Pr
y

[F (x0, y, s0) = h(x0, y, s0)] ≥ 1/2 + ε− (2−r·logn + 2−n) ,

as needed.

The rest of the section is devoted for the proof of Lemma 6.1. We begin with a definition.

Definition 6.3. For a set of functions F ⊆ {f : {0, 1}t → {0, 1}} the code defined by this set
CF ⊆ {0, 1}2

t
is the set of truth-tables of these functions. Alternatively, any code C ⊆ {0, 1}2t

defines a set of functions ⊆ {f : {0, 1}t → {0, 1}}.

Next, we prove a useful lemma that states that the composition of a code with large relative
distance with a function whose output is close to being uniformly distributed, results in a code
with a large relative distance.

Lemma 6.4. Let g : {0, 1}k → {0, 1}r be a function such that |Ur − g(Uk)| < ε. Let F ⊆
{f : {0, 1}r → {0, 1}} such that CF has relative distance δ. Let

G = {f ◦ g | f ∈ F} .

Then, CG ⊆ {0, 1}2
k

is a code with relative distance ≥ δ − ε.

Proof. Let c1, c2 be two codewords in CG . Then, there exist f1, f2 : {0, 1}r → {0, 1} such that

ci = tt(fi ◦ g) for i = 1, 2 where tt(fi ◦ g) ∈ {0, 1}2k is the truth table7 of the function fi ◦ g. Let
A = {y ∈ {0, 1}r : f1(y) 6= f2(y)}. Then, |A| ≥ 2r · δ by the assumption on the relative distance of
CF . By the definition of statistical distance (see Definition 2.8)

Pr
x∼{0,1}k

[g(x) ∈ A] ≥ Pr
y∼{0,1}r

[y ∈ A]− ε ≥ δ − ε .

Thus, the number of inputs for which f1◦g and f2◦g disagree is at least (δ−ε) ·2k, which completes
the proof.

We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1. Let s ∈ S be some fixed seed. For any fixed ρ ∈ Rk we upper bound the size
of the set

EASYρ , {x ∈ {0, 1}4n : EncCx ◦ (BFExts|ρ) is not (n′, 2−r/10)-hard} .

7More formally, for a function f : {0, 1}n → {0, 1} we denote by tt(f) ∈ {0, 1}2n

the string which represent the
truth-table of f , i.e., tt(f) = f(x1) . . . f(x2n) where xi ∈ {0, 1}n is the i-th string in lexicographic order of length n.

18

Then, we apply a union bound over all ρ ∈ Rk and the identity

Hs = {0, 1}4n \
⋃
ρ∈Rk

EASYρ (6.1)

to conclude that |Hs| ≥ 24n − 23n.
By definition of S, BFExts|ρ is a function {0, 1}k → {0, 1}r such that the statistical distance

between Ur and BFExts|ρ(Uk) is at most ε = 2−r. In addition, by the definition of our construction,
for any two different x1, x2 ∈ {0, 1}4n, the encodings EncCx1

and EncCx2
have relative distance

δ ≥ 1/2 − 2−r/4. Using Lemma 6.4, the relative distance between EncCx1
◦ (BFExts|ρ) and EncCx2

◦
(BFExts|ρ) is at least δ − ε ≥ 1/2− 2−r/4 − 2−r.

Thus, for s and ρ as above, the set {EncCx ◦ BFExts|ρ}x∈{0,1}4n defines a code with parameters

[N,K,D]2, where N = 2k, K = 4n and D ≥ N · (1/2 − 2−r/4 − 2−r). Using Johnson bound (see
Proposition 2.15), any ball of relative radius 1/2− 2−r/10 has at most 2ND = poly(2k) codewords.

We will now upper bound the size of EASYρ. Any x ∈ EASYρ corresponds to a function
EncCx ◦BFExts|ρ : {0, 1}k → {0, 1} whose relative distance is ≤ 1/2−2−r/10 from some function that
can be computed using a formula of size n′. Let Nn′,k be the number of formulas of size n′ on k
variables. Then, Nn′,k is at most (9k)n

′
(see [Juk12, Theorem 1.23]). Overall

|EASYρ| ≤ Nn′,k · poly(2k) ≤ (9k)n
′ · 2O(k) ≤ 9n

′ · 2n′ log k · 2O(k) ≤ 2n+o(n) .

Applying a union bound over all ρ ∈ Rk and using the fact that |Rk| ≤ 3n gives∣∣∣∣∣∣
⋃
ρ∈Rk

EASYρ

∣∣∣∣∣∣ ≤ 3n · 2n+o(n) ≤ 23n .

Plugging this into Equation (6.1) gives |Hs| ≥ 24n − 23n, as needed.

7 Proof of Main Theorem

In this section we prove the main theorem of this paper (Theorem 1.1).

Theorem 7.1 (Restating Theorem 1.1). There exists a constant c ≥ 8 such that for any large
enough integer n and any c · log(n) ≤ r ≤ n1/3 the following holds. There is an explicit (computable

in polynomial time) Boolean function h : {0, 1}6n → {0, 1} such that any formula of size n3

r2·polylog(n)

computes h correctly on a fraction of at most 1/2 + 2−Ω(r) of the inputs.

Proof. Consider the function h constructed in Section 3. Recall that k, the entropy of our bit-fixing
extractor, is equal to r/λ1/2, where λ1/2 is some universal constant (see Theorem 5.6). Let

ε := max{εavg, εshr, εapp} = max{2−n + 2−r·logn, 2−Ω(k), 2−r/10} = 2−Ω(r) .

Assume that F is a formula that approximates h with probability ≥ 1/2 + 3ε. According to
Lemma 6.2, there exists s0 ∈ S and x0 ∈ Hs0 such that

Pr
y∼{0,1}n

[F (x0, y, s0) = h(x0, y, s0)] ≥ 1/2 + 3ε− εavg ≥ 1/2 + 2ε .

Denote by Fx0,s0(y) = F (x0, y, s0) and by hx0,s0(y) = h(x0, y, s0). Let ρ be a random restriction to
Fx0,s0 that is distributed according to Tk from Theorem 4.2, and denote by Sρ the set of variables

19

unassigned by ρ. Since once a variable is chosen to be restricted, its value is determined randomly,
we get that

E
ρ∼Tk

Pr
z∼{0,1}Sρ

[Fx0,s0 |ρ(z) = hx0,s0 |ρ(z)] ≥ 1/2 + 2ε .

Let A be the set of restrictions in Tk that leave exactly k variables unrestricted and that

shrinks Fx0,s0 by a factor of polylog(n) ·
(
k
n

)2
. Theorem 4.2 gives Pr[ρ ∈ A] ≥ 1 − εshr. Since

Xρ , Prz∼{0,1}Sρ [Fx0,s0 |ρ(z) = hx0,s0 |ρ(z)] is a random variable whose range is [0, 1], we can apply
Lemma 2.7 and get that

E
ρ∼Tk

[
Pr

z∼{0,1}Sρ
[Fx0,s0 |ρ(z) = hx0,s0 |ρ(z)]

∣∣∣∣∣ ρ ∈ A
]
≥ 1/2 + 2ε− εshr ≥ 1/2 + ε .

By averaging there must exist ρ ∈ A such that

Pr
z∼{0,1}Sρ

[Fx0,s0 |ρ(z) = hx0,s0 |ρ(z)] ≥ 1/2 + ε .

Recall the definition of S, Hs0 , n′ and εapp in Lemma 6.1. The fact that s0 ∈ S, x0 ∈ Hs0 , ρ ∈ Rk

and ε ≥ εapp gives

L(Fx0,s0 |ρ) ≥ n′ = n/ log(n) . (7.1)

By the definition of the set A,

L(Fx0,s0 |ρ) ≤
(
k

n

)2

· polylog(n) · L(Fx0,s0) . (7.2)

Thus,

L(F) ≥ L(Fx0,s0)
(7.2)

≥
(n
k

)2
· 1

polylog(n)
· L(Fx0,s0 |ρ)

(7.1)

≥ n3

k2 · polylog(n)
=

n3

r2 · polylog(n)
,

which completes the proof.

8 Summary and Open Questions

In this paper we presented a tailor made construction that gives average-case hardness in the spirit
of Andreev’s function. Specifically, we presented an explicit function f : {0, 1}n → {0, 1} such that
any De Morgan formula of size at most n3−o(1)/r2 agrees with f on at most 1

2 + 2−r fraction of the
inputs. In particular, for a suitable choice of r, any formula of size O(n2.99) agrees with f on at

most 1
2 + 2−n

Ω(1)
fraction of the inputs.

A natural question is whether this trade-off between the size of the formula and the approx-
imation quality is necessary. More specifically, is there an explicit function f ′ : {0, 1}n → {0, 1}
such that any De Morgan formula of size n3−o(1) agrees with f ′ on at most 1

2 + 2−n
Ω(1)

(or even
1
2 + 2−Ω(n)) fraction of the inputs?

In addition, it is interesting whether there is a black-box reduction from worst-case hardness or
even mild hardness (a function which is hard to calculate on 0.9 fraction of the inputs) to average-
case hardness with similar guarantees as given here. We note that the standard analysis of the
XOR lemma suffers a great loss in the parameters, and only allows to show hardness of computing
a function on 1

2 + 1
poly(n) fraction of the inputs.

Finally, improving H̊astad’s worst-case lower bound [H̊as98] is a long standing open problem
and any step towards it would be extremely interesting.

20

Acknowledgements

We thank Gil Cohen, Raghu Meka, Moni Naor and Eylon Yogev for helpful discussions. We thank
the anonymous referees of SICOMP for helpful comments. In particular, we appreciate the referees’
suggestion to use Rk instead of Rp in Section 4, which simplifies the presentation.

References

[And87] A. E. Andreev. On a method for obtaining more than quadratic effective lower bounds
for the complexity of π-schemes. Moscow Univ. Math. Bull., 42:63–66, 1987. In Russian.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials. J. ACM, 48(4):778–797, 2001.

[Bou07] J. Bourgain. On the construction of affine extractors. GAFA Geometric And Functional
Analysis, 17(1):33–57, 2007.

[CGH+85] B. Chor, O. Goldreich, J. H̊astad, J. Friedman, S. Rudich, and R. Smolensky. The
bit extraction problem of t-resilient functions (preliminary version). In FOCS, pages
396–407, 1985.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.

[CKK+14] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining circuit
lower bound proofs for meta-algorithms. In CCC, pages 262–273, 2014.

[GRS06] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-fixing sources by
obtaining an independent seed. SIAM J. Comput., 36(4):1072–1094, 2006.

[H̊as98] J. H̊astad. The shrinkage exponent of De Morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American statistical association, 58(301):13–30, 1963.

[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage. In
FOCS, pages 111–119, 2012.

[IN93] R. Impagliazzo and N. Nisan. The effect of random restrictions on formula size. Random
Struct. Algorithms, 4(2):121–134, 1993.

[Juk12] S. Jukna. Boolean function complexity: advances and frontiers, volume 27. Springerver-
lag Berlin Heidelberg, 2012.

[Khr71] V. M. Khrapchenko. A method of determining lower bounds for the complexity of π
schemes. Matematischi Zametki, 10:83–92, 1971. In Russian.

[KR13] I. Komargodski and R. Raz. Average-case lower bounds for formula size. In STOC,
pages 171–180, 2013.

[KRT13] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for De Morgan
formula size. In FOCS, pages 588–597. IEEE Computer Society, 2013.

21

[KRT17] Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds
for de morgan formula size: Matching worst-case lower bound. SIAM J. Comput.,
46(1):37–57, 2017.

[KZ07] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM J. Comput., 36(5):1231–1247, 2007.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[PZ93] M. Paterson and U. Zwick. Shrinkage of De Morgan formulae under restriction. Random
Struct. Algorithms, 4(2):135–150, 1993.

[Rao07] A. Rao. An exposition of bourgain’s 2-source extractor. Electronic Colloquium on
Computational Complexity (ECCC), 14(034), 2007.

[Rao09] A. Rao. Extractors for low-weight affine sources. In IEEE Conference on Computational
Complexity, pages 95–101, 2009.

[Rei11] B. Reichardt. Reflections for quantum query algorithms. In SODA, pages 560–569,
2011.

[Rud07] A. Rudra. Lecture notes on coding theory, 2007. http://www.cse.buffalo.edu/

~atri/courses/coding-theory/lectures/lect19.pdf.

[San10] R. Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In FOCS, pages 183–192, 2010.

[Sub61] B. A. Subbotovskaya. Realizations of linear function by formulas using +, ·,−. Doklady
Akademii Nauk SSSR, 136:3:553–555, 1961. In Russian.

[Tal14] A. Tal. Shrinkage of de Morgan formulae from quantum query complexity. In FOCS,
pages 551–560, 2014.

22
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://www.cse.buffalo.edu/~atri/courses/coding-theory/lectures/lect19.pdf
http://www.cse.buffalo.edu/~atri/courses/coding-theory/lectures/lect19.pdf

