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Abstract

A graph property P is said to be testable if one can check whether a graph is close or far from

satisfying P using few random local inspections. Property P is said to be non-deterministically

testable if one can supply a “certificate” to the fact that a graph satisfies P so that once the

certificate is given its correctness can be tested. The notion of non-deterministic testing of graph

properties was recently introduced by Lovász and Vesztergombi [5], who proved that (somewhat

surprisingly) a graph property is testable if and only if it is non-deterministically testable. Their

proof used graph limits, and so it did not supply any explicit bounds. They thus asked if one

can obtain a proof of their result which will supply such bounds. We answer their question

positively by proving their result using Szemerédi’s regularity lemma.

An interesting aspect of our proof is that it highlights the fact that the regularity lemma

can be interpreted as saying that all graphs can be approximated by finitely many “template”

graphs.

1 Introduction

We consider properties of finite graph, where a property of graphs is simply a family of graphs closed

under isomorphism. The main focus of our paper is the following notion of efficiently checking if

a graph satisfies property P or is ε-far from satisfying it, where a graph G is said to be ε-far from

satisfying P if one should add/delete at least εn2 edges to turn G into a graph satisfying P.

Definition 1.1. (Testable property) A graph property P is called testable if there is an algorithm

TP , called a tester, that does the following: given ε > 0 and a graph G, the tester TP samples a set

S of qP(ε) vertices from G, checks for every i, j ∈ S whether (i, j) ∈ E(G) and then accepts/rejects

deterministically based on the subgraph of G spanned by S. The success probability of TP should be

at least 2
3 . In other words, if the input G satisfies P then TP accepts it with probability at least 2

3 ,

and if G is ε-far from satisfying P then TP rejects G with probability at least 2
3 . The function qP(ε)

is called the query complexity of TP , and does not depend on the size of the input graph.
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The usual definition of a property P being testable, as introduced in [9], allows for the algorithm

to be adaptive, but as proved in [1, 10] one can transform any tester into a tester of the form stated

in Definition 1.1 with a very minor loss in the query complexity. Therefore we do not lose generality

by restricting ourselves to Definition 1.1. The important point to observe about Definition 1.1 is

that the algorithm makes its decision solely on the basis of the random inspections it makes into

the input graph G. In other words, the decision of the algorithm is uniquely determined by the

distribution of induced subgraphs of size qP(ε) in the input graph G.

Starting with [9], the problem of characterizing the testable graph properties received a lot

of attention and by now there are several general results of this type, see [2, 6] and the recent

surveys [8, 11] for more results and references on graph property testing. A drawback of these

characterizations is that they are hard to state (and use). An alternative clean characterization

was recently obtained by Lovász and Vesztergombi [5]. To state this characterization we need a bit

of notation.

A k-colored graph on n vertices is a coloring of the edges of Kn (the complete graph on n

vertices) using k colors. Thus, a graph can be thought of as a 2-colored graph. A property of

k-colored graphs is again just a family of k-colored graphs closed under isomorphism, and it is

said to be testable1 if it is testable in the sense of Definition 1.1. A (k,m)-coloring of a graph

G is a coloring of the edges and non-edges of G with the colors {1, . . . , k} , so that edges are

colored by {1, ...,m} and non-edges are colored by {m + 1, ..., k}. The following is the notion of

non-deterministic testing introduced in [5].

Definition 1.2. (Non-deterministically testable property) A graph property P is called non-

deterministically testable if there are integers k,m and a property Q of k-colored graphs so that:

1. A graph G satisfies P if and only if there is a (k,m)-coloring of G which satisfies Q.

2. Q is testable.

We are now ready to state the characterization of the testable graph properties that was obtained

by Lovász and Vesztergombi [5].

Theorem 1. ([5]) A property P is testable if and only if it is non-deterministically testable.

Clearly any testable property is also non-deterministically testable, thus the interesting part of

the above theorem is that given the fact that a property is non-deterministically testable, one can

construct a standard tester for the property. Quoting [5], “one could say that this theorem shows

that “P=NP” for property testing in dense graphs”. We refer the reader to [5] for several nice

illustrations showing how to apply Theorem 1.

1We define a k-colored graph to be ε-far from satisfying a property Q of k-colored graphs if one should modify

the colors of at least εn2 edges in order to turn G into a k-colored graph satisfying P.
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The proof of Theorem 1 in [5] used the machinery of graph limits. Hence, the proof was not

explicit, that is, given the fact that a property P is non-deterministically testable (in the sense

of Definition 1.2), it proved the existence of a standard testing algorithm for P (in the sense of

Definition 1.1) but it did not supply any upper bound for the query complexity of the new tester

(i.e. the function qP(ε) in Definition 1.1). Lovász and Vesztergombi [5] thus asked if Theorem 1

can be proved using explicit arguments that will give an effective bound. Our main result in this

paper gives a positive answer to their question.

Our new proof of Theorem 1 uses several tools related to Szemerédi’s regularity lemma [12]. In

Section 2 we give the necessary background for applying this lemma, state some previous results as

well as some preliminary lemmas that will be used in our new proof of Theorem 1. As the proofs of

these technical lemmas are somewhat routine we differ them to Section 4. The proof of Theorem 1

appears in Section 3. As our proof applies the regularity lemma, although the bounds it supplies

for qP(ε) are explicit, they are rather weak ones, given by Tower-type function of ε. Therefore, we

will not keep track of the exact dependence of qP(ε) on ε. Finally, as we mentioned in the abstract,

we believe that our proof gives a nice illustration of the fact that the regularity lemma implies that

all graph can be “approximated” using only a finitely many template graphs. In fact, this intuition

is the main idea behind the proof.

2 Tools and Preliminary Lemmas

As mentioned earlier, our proof of Theorem 1 will apply various tools related to Szemerédi’s regu-

larity lemma [12]. We will start with the basic definitions, then state some previous results that we

will use (Theorem 2 and Lemmas 2.4 and 2.8) and then state some technical lemmas that we will

need for the proof (Lemmas 2.13, 2.14 and 2.16). The proofs of these technical lemmas appear in

Section 4. Here, and throughout the paper, when we write x = y±z we mean that y−z ≤ x ≤ y+z.

Given two disjoint vertex sets U, V we use E(U, V ) to denote the set of edges connecting U to

V and set d(U, V ) = |E(U, V )|/|U ||V | to be the density of the bipartite graph between U and V .

The basic notion of a regular pair is the following.

Definition 2.1. (Regular pair) Suppose U, V are disjoint vertex sets in a graph and let γ ∈ (0, 1).

The pair (U, V ) is said to be γ-regular if for every two subsets U ′ ⊆ U , V ′ ⊆ V satisfying |U ′| ≥ γ|U |,
|V ′| ≥ γ|V | the inequality |d(U, V )− d(U ′, V ′)| ≤ γ holds.

A γ-regular pair can/should be thought of as behaving almost like a random bipartite graph

of the same density. A partition V1, ..., Vr of the vertex set of a graph is called an equipartition if

||Vi| − |Vj || ≤ 1 for every 1 ≤ i < j ≤ r. The order of a partition V1, ..., Vr is the number of parts

in it (i.e. the integer r).

Definition 2.2. (Regular equipartition) An equipartition V1, ..., Vr of the vertices of a graph is

γ-regular if all but at most γ
(
r
2

)
of the pairs (Vi, Vj) are γ-regular.
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We now define a graph property of having a γ-regular equipartition with a predefined set of

densities.

Definition 2.3. (Regularity instance) A graph regularity instance R is given by a regularity

parameter γ, an integer r (the order of R), a set of densities ηi,j where 1 ≤ i < j ≤ r, and a set of

non-regular pairs R̄ of size at most γ
(
r
2

)
. A graph G is said to satisfy R if G has an equipartition

V1, ..., Vr such that for every (i, j) /∈ R̄ the pair (Vi, Vj) is γ-regular and satisfies d(Vi, Vj) = ηi,j.

A key element in the proof of Theorem 1 is the following result, which follows from the main

results of [2, 3]. It allows us to test how close a graph is to satisfying a given regularity instance.

Theorem 2. ([2, 3]) Let R be a graph regularity instance, let ε2 > ε1 > 0 and let p < 1
2 . Then

there is a tester T = T2(R, ε1, ε2, p) that distinguishes graphs that are ε1-close to satisfying R from

graphs that are ε2-far from satisfying R, with success probability at least 1− p.

Furthermore, the query-complexity of T depends only on R, ε1, ε2 and p (and not on the input

graph) and can be expressed as an explicit function of these parameters.

We note that the arguments used in [2, 3] to prove the above result all relied heavily on the

regularity lemma. Therefore, the bounds they give have a very poor (yet explicit) Tower-type

dependence on the input parameters.

The second result we will need is Corollary 3.8 from [2].

Lemma 2.4. ([2]) Let R be a graph regularity instance of order r, regularity parameter γ, densities

ηi,j and a set of non-regular pairs R̄ . Suppose that a graph G has an equipartition V1, ..., Vr such

that for every (i, j) /∈ R̄ the pair (Vi, Vj) is γ-regular2 and satisfies d(Vi, Vj) = ηi,j ± γ2ε
50 . Then G

is ε-close to satisfying R.

We now turn to consider k-colored graphs. We first generalize the definitions of a regular

pair, regular equipartition and regularity instance, to the more general setting of k-colored graphs.

We start with the following notation: Suppose U, V are two disjoint vertex sets in a k-colored

graph. We use3 d`(U, V ) to denote the density of edges of color ` between U and V , that is

d`(U, V )| = E`(U, V )|/|A||B|, where E`(U, V ) is the set of edges with color ` that connect U to V .

In case there is more than one graph, we use d`G(U, V ) to denote the density of edges colored by `

between U, V in the k-colored graph G.

Definition 2.5. (Regular pair in a k-colored graph) Suppose U, V are disjoint vertex sets in

a k-colored graph. The pair (U, V ) is γ-regular if for every two subsets U ′ ⊆ U , V ′ ⊆ V satisfying

|U ′| ≥ γ|U |, |V ′| ≥ γ|V |, and for every 1 ≤ ` ≤ k, the inequality
∣∣d`(U, V )− d`(U ′, V ′)

∣∣ ≤ γ holds.

2Actually, Corollary 3.8 in [2] only needs to assume that (Vi, Vj) is
(
γ + γ2ε

50

)
-regular.

3Here, and throughout the paper, we always use ` as a superscript and never as an exponent. So x` should read

“x superscript `” not “x to the power `”.
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Definition 2.6. (Regular equipartition in a k-colored graph) An equipartition V1, ..., Vr of

the vertices of a k-colored graph is γ-regular if all but at most γ
(
r
2

)
of the pairs (Vi, Vj) are γ-regular.

Definition 2.7. (k-colored regularity instance) A k-colored regularity instance R is given by

a regularity parameter γ, an integer r (the order of R), a set of densities η`i,j where 1 ≤ i < j ≤ r

and 1 ≤ ` ≤ k, and a set of non-regular pairs R̄ of size at most γ
(
r
2

)
. A k-colored graph G is said

to satisfy R if G has an equipartition V1, ..., Vr such that for every (i, j) /∈ R̄ the pair (Vi, Vj) is

γ-regular and satisfies d`(Vi, Vj) = η`i,j for every 1 ≤ ` ≤ k.

The Regularity Lemma for k-colored graphs states that every k-colored graph has a γ-regular

equipartition whose order can be bounded by a function of γ and k. It can be formulated in terms

of regularity instances in the following way.

Lemma 2.8. (Regularity lemma for k-colored graphs) For every γ > 0 and integers t and

k, there exists T = T2.8(γ, t, k) so that every k-colored graph satisfies some k-colored regularity

instance of order at least t and at most T , and regularity parameter γ.

Note that the usual regularity lemma is the special case of the k-colored regularity lemma with

k = 2. The proof of the k-colored version requires a minor adaptation of the proof of the standard

regularity lemma. See [4] for the details.

Having described the known results that will be used in the proof of Theorem 1, we now turn

to state the additional technical lemmas we shall rely on. We start with a lemma that allows one

to approximate the number of copies of small k-colored graphs in a k-colored graph which satisfies

a given regularity instance.

Definition 2.9. (IC(B,W, σ)) Suppose B is a k-colored graph on vertices [q] in which (i, j) is

colored by c(i, j). Suppose W = {η`i,j : 1 ≤ i < j ≤ q, 1 ≤ ` ≤ k} are densities and σ : [q] → [q] is

a permutation. Define:

IC(B,W, σ) =
∏
i<j

η
c(σ(i),σ(j))
i,j

Definition 2.10. (IC(B,W )) Suppose B and W are as in the previous definition. Define:

IC(B,W ) =
1

Aut(B)

∑
σ

IC(B,W, σ)

where Aut(B) is the number of automorphisms of B, that is, the number of injections φ : V (B) 7→
V (B) that preserve the color of the edges.

Definition 2.11. (IC(B,R)) Let R be a k-colored regularity instance of order r and densities

{η`i,j : 1 ≤ i < j ≤ r, 1 ≤ ` ≤ k}. Let B be a k-colored graph on the vertex set [q]. For every A ⊆ [r]

of size q put W (A) = {η`i,j : i, j ∈ A, 1 ≤ ` ≤ k}. Define:

IC(B,R) =
1(
r
q

) ∑
A⊆[r],|A|=q

IC(B,W (A))
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Remark 2.12. It is easy to see that IC(B,W, σ), IC(B,W ) and IC(B,R) are quantities in [0, 1].

To understand Definition 2.9, consider a random k-colored graph whose vertices are V1∪ ...∪Vq.
Suppose that the probability that the color of (vi, vj) is ` is η`i,j (vi ∈ Vi, vj ∈ Vj). Suppose

also that |V1| = ...|Vq| = n. Let B be a fixed k-colored graph on the vertices [q] and let σ be a

permutation of [q]. What is the expected number of q-tuples v1 ∈ V1, ..., vq ∈ Vq which span a

copy of B such that vi plays the role of σ(i)? It is easy to see that this number is IC(B,W, σ)nq

where we set W = {η`i,j : 1 ≤ i < j ≤ q, 1 ≤ ` ≤ k}. We show (in Lemma 4.2) that for every δ, if

all pairs (Vi, Vj) are γ-regular for some small enough γ, then the number of such q-tuples v1, ..., vq

is (IC(B,W, σ)± δ)nq. This fact demonstrates the almost random behavior of regular partitions.

The expression IC(B,W ) (in Definition 2.10) is used to approximate the total number of q-tuples

v1 ∈ V1, ..., vq ∈ Vq which span a copy of B. The expression IC(B,R) (in Definition 2.11) is used

to approximate the number of copies of B in a graph that satisfies the regularity instance R. The

most general result of this sort is the following lemma.

Lemma 2.13. For any δ > 0 and integers k and q there are γ = γ2.13(δ, q, k) and t = t2.13(δ, q, k)

with the following property: For any k-colored regularity instance R of order at least t and regularity

parameter at most γ, and for any family B of k-colored graphs on q vertices, the number of copies

of k-colored graphs B ∈ B in any k-colored graph on n vertices satisfying R is(∑
B∈B

IC(B,R)± δ

)(
n

q

)

The proof of Lemma 2.13 appears in Subsection 4.1. The second lemma we will need is the

following.

Lemma 2.14. For every δ and integers q and k there is λ = λ2.14(δ, q, k) such that the following

holds: Let R and M be k-colored regularity instances of order r, and densities

{η`i,j : 1 ≤ i < j ≤ r, 1 ≤ ` ≤ k}

and

{µ`i,j : 1 ≤ i < j ≤ r, 1 ≤ ` ≤ k}

respectively. Let B be a family of k-colored graphs of order q. Suppose that µ`i,j = η`i,j ± λ. Then∣∣∣∣∣∑
B∈B

IC(B,R)−
∑
B∈B

IC(B,M)

∣∣∣∣∣ ≤ δ . (1)

The proof of Lemma 2.14 appears in Subsection 4.2. The last ingredient we will need is the

following lemma whose proof appears in Subsection 4.3.
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Definition 2.15. (Chopping) Let R be a graph regularity instance of order r, regularity parameter

γ, densities µi,j and a set R̄ of non-regular pairs. A (k,m)-chopping of R is any k-colored

regularity instance R′ of order r, regularity parameter 2γ , non-regular set R̄′ = R̄ and densities

η`i,j that satisfy
m∑
`=1

η`i,j = µi,j and

k∑
`=m+1

η`i,j = 1− µi,j

Lemma 2.16. For every γ > 0 and integers t and k, there is n2.16(γ, t, k) such that the following

holds: Suppose R is a graph regularity instance of order at most t and regularity parameter γ, that

R′ is a (k,m)-chopping of R and that G is a graph satisfying R with at least n2.16(γ, t, k) vertices.

Then G has a (k,m)-coloring that satisfies R′.

3 The New Proof of Theorem 1

Consider any ε > 0. Let property Q and integers k and m be those from Definition 1.2, that is,

so that Q is a property of k-colored graphs and so that a graph satisfies P if and only if it has

a (k,m)-coloring satisfying Q. Suppose Q can be tested by a tester TQ as in Definition 1.1. Let

q = qQ( ε2) be the query-complexity of TQ, i.e. the number of vertices that TQ samples when testing

if a k-colored graph satisfies Q or is ε
2 -far from satisfying it. Let B be the set of all k-colored graphs

B on q vertices, such that when TQ samples a k-colored graph isomorphic to B, it accepts the

input. Put

t = t2.13(1/12, q, k), γ = γ2.13(1/12, q, k), T = T2.8(γ/2k, t, k)

and

η = min

{
λ2.14(1/12, q, k),

ε
(γ
2

)2
200m

}
.

Let I be the set of all k-colored regularity instances of order at least t and at most T , regularity

parameter γ and densities from the set {0, η, 2η, 3η, ..., 1}. Observe that all the above constants, as

well as |I|, depend only on ε, k and the properties P and Q. We now arrive at the critical definition

of the proof:

Definition 3.1. (Good regularity instance) A graph regularity instance R with regularity mea-

sure γ/2 is considered good if it has a (k,m)-chopping R′ that satisfies:

1. R′ ∈ I.

2.
∑

B∈B IC(B,R′) ≥ 1
2 .

We say that R′ is a witness to the fact that R is good. We set GOOD to be the family of good

regularity instances.
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Suppose first that the input graph has less than n2.16(
γ
2 , T, k) vertices. In this case the algorithm

can just ask about all edges of G and then check if G satisfies property P. Since γ, T and k are all

functions of ε, P and Q, we get that so is the query complexity in this case. Hence from this point

on we will assume that n ≥ n2.16(γ2 , T, k).

The following are the key observations we will need for the proof.

Claim 3.2. If G satisfies P, then G is ε
4 -close to satisfying some R ∈ GOOD.

Claim 3.3. If G is ε-far from satisfying P, then G is ε
2 -far from satisfying any R ∈ GOOD.

Let us first complete the proof based on these claims. We describe a randomized algorithm that

distinguishes between graphs satisfying P and graphs that are ε-far from satisfying P, with success

probability at least 2
3 , and by making a number of queries that can be bounded by a function of

ε. Put p = 1
3|GOOD| . Let G be a graph on at least n2.16(

γ
2 , T, k) vertices. In order to test G for

property P we do the following: For every R ∈ GOOD use T13(R, ε4 ,
ε
2 , p) (recall Theorem 2) to

test whether G is ε
4 -close to satisfying R or ε

2 -far from satisfying it. If one of these tests accepts,

then accept the input G, otherwise reject it. If G satisfies P then by Claim 3.2 it is ε
4 -close to

some R ∈ GOOD, and our tester accepts it with probability at least 1− p ≥ 2
3 . If G is ε-far from

satisfying P then by Claim 3.3 it is ε
2 -far from satisfying any R ∈ GOOD. Our tester accepts G

with probability at most |GOOD| · p = 1
3 and so it rejects with probability at least 2

3 , as required.

Finally, since all the parameters involved are given by explicit functions of ε and the properties P
and Q, we get via Theorem 2 that the number of queries made by the tester can be bounded by

an explicit function of ε.

We now complete the proof of Theorem 1 by proving Claims 3.2 and 3.3.

Proof (of Claim 3.2): Suppose G satisfies P. Then there exists some (k,m)-coloring of G that

satisfies Q. Denote this k-colored graph by H. By Lemma 2.8, H satisfies some k-colored regularity

instance R′1 of order t ≤ r ≤ T , regularity parameter γ
2k and densities

{η`i,j : 1 ≤ i < j ≤ r, 1 ≤ ` ≤ k}.

Since H satisfies Q, we infer that TQ must accept H with probability at least 2
3 . This means that

when sampling q vertices from H, the probability to get a k-colored graph isomorphic to one of the

elements of B is at least 2
3 . By the choice of γ and t via Lemma 2.13 we get that this probability

is
∑

B∈B IC(B,R′1)± 1
12 . Therefore ∑

B∈B
IC(B,R′1) ≥

7

12
. (2)

Let V1, ..., Vr be an equipartition of H which corresponds to R′1. We claim that V1, ..., Vr is

also a γ
2 -regular equipartition of G. To see this let (i, j) /∈ R̄′1. For every x ∈ Vi, y ∈ Vj , the

edge (x, y) is in G if and only if (x, y) is colored in H by a color ` ∈ {1, ...,m}. Therefore
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dG(Vi, Vj) =
∑m

`=1 d
`
H(Vi, Vj). Let U ′ ⊆ Vi, V

′ ⊆ Vj such that |U ′| ≥ γ
2 |Vi|, |V

′| ≥ γ
2 |Vj |. As we

assume that (Vi, Vj) is a γ
2k -regular pair in H, we have |d`H(U ′, V ′) − d`H(Vi, Vj)| ≤ γ

2k for every

1 ≤ ` ≤ k. By the triangle inequality, we have

|dG(U ′, V ′)− dG(Vi, Vj)| ≤
m∑
`=1

|d`H(U ′, V ′)− d`H(Vi, Vj)| ≤
mγ

2k
≤ γ

2
.

We thus infer that G satisfies a regularity instance R1 with order r, regularity parameter γ
2 , a set

of irregular pairs R̄′1 and densities {ηi,j : 1 ≤ i < j ≤ r} where ηi,j =
∑m

l=1 η
`
i,j .

Let R′2 be the k-colored regularity instance that is obtained from R′1 by replacing each of the

densities η`i,j with the closest integer multiples of η. Observe that we thus change each density by

at most η. As we chose η ≤ λ2.14( 1
12 , q, k), we get from Lemma 2.14 and (2) that∑

B∈B
IC(B,R′2) ≥

∑
B∈B

IC(B,R′1)−
1

12
≥ 1

2
. (3)

Denote the densities of R′2 by µ`i,j . Let R2 be the graph regularity instance of order r, regularity

parameter γ
2 , densities {µi,j : 1 ≤ i < j ≤ r}, where µi,j =

∑m
`=1 µ

`
i,j , and a set of irregular pairs

R̄′2. By Definition 2.15 R′2 is a (k,m)-chopping of R2. Furthermore R′2 ∈ I and we get from (3)

that
∑

B∈B IC(B,R′2) ≥ 1
2 . By Definition 3.1 R′2 is a witness to the fact that R2 is good. Finally,

recalling that η ≤ ε( γ2 )
2

200m , we get that for every i < j we have

|ηi,j − µi,j | =

∣∣∣∣∣
m∑
l=1

η`i,j −
m∑
l=1

µ`i,j

∣∣∣∣∣ ≤
m∑
l=1

∣∣∣η`i,j − µ`i,j∣∣∣ ≤ mη ≤ ε
(γ
2

)2
200

.

In other words, the densities of R1 and R2 differ by at most
ε( γ2 )

2

200 . We now get via Lemma 2.4

that G is ε
4 -close to satisfying R2. �

Proof (of Claim 3.3): We will prove that if G is ε
2 -close to satisfying some R ∈ GOOD

then G is ε-close to satisfying P. Suppose that G is ε
2 -close to a graph G′ that satisfies some

R ∈ GOOD. By Definition 3.1 R has a (k,m)-chopping R′ such that
∑

B∈B IC(B,R′) ≥ 1
2 . By

Lemma 2.16 G′ has a (k,m)-coloring satisfying R′. Call this k-colored graph H ′. By Lemma 2.13

the probability to get a k-colored graph isomorphic to an element of B when sampling q vertices

from H ′ is
∑

B∈B IC(B,R′) ± 1
12 . Therefore this probability is at least 5

12 . If H ′ was ε
2 -far from

satisfying Q this probability would have to be at most 1
3 , because TQ would have to reject H ′ with

probability at least 2
3 . So we infer that H ′ is ε

2 -close to satisfying Q. This means that H ′ can be

turned into a k-colored graph H ′′ that satisfies Q by changing the colors of at most ε
2n

2 edges.

Construct a graph G′′ by doing the following: For every x, y ∈ V (H ′′), put an edge between

x and y if (x, y) is colored by a color ` ∈ {1, ...,m} in H ′′. First, G′′ satisfies P because H ′′ is a

(k,m)-coloring of G′′ which satisfies Q. Furthermore, we claim that G′′ is ε
2 -close to G′. Indeed,

observe that the number of edge modifications we performed is exactly the number of pairs (x, y)
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so that in one of the graphs H ′, H ′′ the color of (x, y) belonged to the set {1, . . . ,m} while in the

other it belonged to {m+ 1, . . . , k}. This number is clearly bounded from above by the number of

modifications made when turning H ′ to H ′′. Since H ′′ and H ′ differ in at most ε
2n

2 edges the same

thus holds for G′′ and G′, implying that G′ is ε
2 -close to G′′. Since G is assumed to be ε

2 -close to

G′, we infer that G is ε-close to G′′. Since G′′ satisfies P the proof is complete. �

4 Proofs of Auxiliary Lemmas

4.1 Proof of Lemma 2.13

We will need the following folklore result stating the a q-tuple of vertex sets that are pairwise

regular have the correct number of copies of Kq (the complete graph on q vertices). A detailed

proof can be found in [7].

Lemma 4.1. For every δ > 0 and q there exists γ′ = γ′4.1(δ, q) such that the following holds:

Suppose V1, ..., Vq are disjoint vertex sets in a graph, |V1| = ... = |Vq| = n, and all pairs (Vi, Vj) are

γ′-regular. Put IC(Kq;V1, ..., Vq) =
∏
i<j

d(Vi, Vj). Then the number of q-tuples v1 ∈ V1, ..., vq ∈ Vq

that span a copy of Kq is

(IC(Kq;V1, ..., Vq)± δ)nq

As a first step towards proving Lemma 2.13 we prove a variant of Lemma 4.1 for k-colored

graphs with respect to IC(B,W, σ). We will then obtain similar lemmas with respect to IC(B,W )

and IC(B,R) (recall Definitions 2.9, 2.10 and 2.11) and then derive from them the proof of Lemma

2.13.

Lemma 4.2. For every δ > 0 and q there exists γ = γ4.2(δ, q) such that the following holds: Suppose

V1, ..., Vq are disjoint vertex sets in a k-colored graph, |V1| = ... = |Vq| = n, and all pairs (Vi, Vj)

are γ-regular. Put W = {d`(Vi, Vj) : 1 ≤ i < j ≤ q, 1 ≤ ` ≤ k}. Then for every k-colored graph B

on the vertices [q], and for any permutation σ : [q]→ [q], the number of q-tuples v1 ∈ V1, ..., vq ∈ Vq
which span copy a of B with vi playing the role of σ(i) is

(IC(B,W, σ)± δ)nq

Proof: While the proof of Lemma 4.1 can be adapted to the more general setting of Lemma 4.2

it will be easier to reduce Lemma 4.2 to Lemma 4.1. Set γ = γ4.2(δ, q) = γ′4.1(δ, q) and suppose

(Vi, Vj) is γ-regular for every 1 ≤ i < j ≤ q. We call a q-tuple v1 ∈ V1, ..., vq ∈ Vq proper, if

v1, ..., vq span a copy of B with vi playing the role of σ(i).

We denote by c(i, j) the color of the edge (i, j) in B. Let Ei,j be the set of edges connecting a

vertex in Vi to a vertex in Vj whose color is c(σ(i), σ(j)). If v1 ∈ V1, ..., vq ∈ Vq is proper, then the

color of (vi, vj) is c(σ(i), σ(j)). We see that the edges in Ei,j are the only edges between Vi and Vj
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that can ”participate” in a proper q-tuple. Define a q-partite graph S with vertex sets V1, ..., Vq, in

which the edges between Vi and Vj are Ei,j . A q-tuple v1 ∈ V1, ..., vq ∈ Vq is proper if and only if

it spans a copy of Kq in S. So in order to prove Lemma 4.2 it is enough to show that the number

of copies of Kq in S is (IC(B,W, σ) ± δ)nq. By Lemma 4.1, the number of copies of Kq in S is

(IC(Kq;V1, ..., Vq) ± δ)nq where IC(Kq;V1, ..., Vq) =
∏
i<j

dS(Vi, Vj). So to complete the proof it is

enough for us to show that IC(B,W, σ) = IC(Kq;V1, ..., Vq). Indeed, we have

IC(B,W, σ) =
∏
i<j

dc(σ(i),σ(j))(Vi, Vj) =
∏
i<j

|Ei,j |
|Vi||Vj |

=
∏
i<j

dS(Vi, Vj) = IC(Kq;V1, ..., Vq)

�

Lemma 4.3. For every δ > 0 and every q there exists γ = γ4.3(δ, q) such that the following holds:

Suppose that V1, ..., Vq are disjoint vertex sets of size n each, and all pairs (Vi, Vj) are γ-regular.

Put W = {d`(Vi, Vj) : 1 ≤ i < j ≤ q, 1 ≤ ` ≤ k}. Then for every k-colored graph B on the vertices

[q], the number of copies of B which have precisely one vertex in each of the sets V1, ..., Vq is

(IC(B,W )± δ)nq

Proof: Set γ4.3(δ, q) = γ4.2(
δ
q! , q). Let V1, ..., Vq be as in the statement, and let B be any k-colored

graph. By Claim 4.2 for any permutation σ : [q] → [q], the number of copies of B spanned by

v1 ∈ V1, ..., vq ∈ Vq such that vi plays the role of σ(i) is
(
IC(B,W, σ)± δ

q!

)
nq. If we sum over all

permutations σ : [q] → [q], we get
∑
σ

(
IC(B,W, σ)± δ

q!

)
nq. In this summation, we count every

copy of B exactly Aut(B) times. Thus, by dividing by Aut(B), we get that the number of copies

of B is

1

Aut(B)

(∑
σ

(
IC(B,W, σ)± δ

q!

)
nq

)
=

(
1

Aut(B)

∑
σ

IC(B,W, σ)± δ

)
nq

= (IC(B,W )± δ)nq

�

Lemma 4.4. For every δ > 0 and q there are γ = γ4.4(δ, q) and t = t4.4(δ, q) such that the following

holds: Suppose that R is a k-colored regularity instance of order at least t and regularity parameter

at most γ. Then for every k-colored graph B on q vertices, the number of copies of B in any

n-vertex k-colored graph satisfying R is

(IC(B,R)± δ)
(
n

q

)

11



Proof: Put

t = t4.4(δ, q) =

⌈
4q2

δ

⌉
and

γ = γ4.4(δ, q) = min

{
δ

4q2
, γ4.3

(
δ

4
, q

)}
.

Let R be a k-colored regularity instance as in the statement, let G be an n-vertex k-colored

graph satisfying R and let B be any k-colored graph on q vertices. Let V1, ..., Vr be an equipartition

of V (G) satisfying R. Let C be the collection of all q-tuples that have at most one vertex in each

of the sets Vi. By a union bound, the number of q-tuples that have more than one vertex in one of

the sets Vi is at most

r
(n
r

)2(n− 2

q − 2

)
≤ q2

r

(
n

q

)
≤ q2

t

(
n

q

)
≤ 1

4
δ

(
n

q

)
.

So |C| ≥
(
1− δ

4

) (
n
q

)
. Therefore the lemma will follow from showing that the number of q-tuples

belonging to C which span a copy of B is
(
IC(B,R)± 3

4δ
)
|C|.

Given A = {x1, ..., xq} ⊆ {1, ..., r} let N(A) denote the number of q-tuples v1 ∈ Vx1 , ..., vq ∈ Vxq
which span a copy of B. We say that A is good if all the pairs (Vxi , Vxj ) (1 ≤ i < j ≤ q) are

γ-regular. Otherwise A is called bad. If A is good we get from our choice of γ via Lemma 4.3 that

N(A) =

(
IC(B,W (A))± 1

4
δ

)(n
r

)q
where we set

W (A) = {d`(Vi, Vj) : i, j ∈ A, 1 ≤ ` ≤ k}.

We can thus estimate the number of q-tuples belonging to C which span a copy of B by∑
A⊆[r],|A|=q

N(A) =
∑

A is good

((
IC(B,W (A))± 1

4
δ

)(n
r

)q)
+

∑
A is bad

N(A) =

∑
A⊆[r],|A|=q

((
IC(B,W (A))± 1

4
δ

)(n
r

)q)
+

∑
A is bad

(
N(A)− IC(B,W (A))

(n
r

)q)
=

(
IC(B,R)± 1

4
δ

)(
r

q

)(n
r

)q
+

∑
A is bad

(
N(A)− IC(B,W (A))

(n
r

)q)
(4)

Since (Vi, Vj) is γ-regular for every (i, j) /∈ R̄ there are at most γ
(
r
2

)
pairs (Vi, Vj) which are not

γ-regular. Therefore the number of bad sets A ⊆ {1, ..., r} is at most

γ

(
r

2

)(
r − 2

q − 2

)
≤ γq2

(
r

q

)
≤ 1

4
δ

(
r

q

)
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Using the facts that 0 ≤ IC(B,W (A)) ≤ 1 and 0 ≤ N(A) ≤
(
n
r

)q
for every A ⊆ [r], and the bound

on the number of bad sets, we get that∣∣∣∣∣ ∑
A is bad

(
N(A)− IC(B,W (A))

(n
r

)q)∣∣∣∣∣ ≤ 1

2
δ

(
r

q

)(n
r

)q
By plugging the above inequality in (4) we get that the number of q-tuples belonging to C which

span a copy of B is
(
IC(B,R)± 3

4δ
) (

r
q

) (
n
r

)q
. Observe that |C| =

(
r
q

) (
n
r

)q
. Therefore the number

of those q-tuples is
(
IC(B,R)± 3

4δ
)
|C|, as required. �

Proof (of Lemma 2.13): Put t = t2.13(δ, q, k) = t4.4(k
−(q2)δ, q), γ = γ2.13(δ, q, k) = γ4.4(k

−(q2)δ, q).

Let R be a regularity instance of order at least t and regularity parameter at most γ and let G be

a k-colored graph satisfying R. Let B ∈ B. By our choice of γ and t via Lemma 4.4, the number of

copies of B in G is (IC(B,R)± k−(q2)δ)
(
n
q

)
. Clearly |B| ≤ k(q2), so the number of copies of graphs

B ∈ B in G is

∑
B∈B

((
IC(B,R)± k−(q2)δ

)(n
q

))
=

(∑
B∈B

IC(B,R)± δ

)(
n

q

)
�

4.2 Proof of Lemma 2.14

We will derive Lemma 2.14 from the following lemma.

Lemma 4.5. For every δ and q there is λ = λ4.5(δ, q) such that the following holds: Let R and

M be k-colored regularity instances of order r, and densities {η`i,j : 1 ≤ i < j ≤ r, 1 ≤ ` ≤ k}
and {µ`i,j : 1 ≤ i < j ≤ r, 1 ≤ ` ≤ k} respectively. Let B be a k-colored graph on the vertices [q].

Suppose that µ`i,j = η`i,j ± λ. Then

|IC(B,R)− IC(B,M)| ≤ δ

Proof: Put

λ = λ4.5 = (δ, q) =
δ

2(q2)q!
.

Let R,M be k-colored regularity instances as in the statement. Let A = {x1, ..., xq} ⊆ {1, ..., r},
and put

WR(A) = {η`xi,xj : 1 ≤ i < j ≤ q , 1 ≤ ` ≤ k}

and

WM (A) = {µ`xi,xj : 1 ≤ i < j ≤ q , 1 ≤ ` ≤ k} .
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Denote the color of (i, j) in B by c(i, j). Let σ : [q] → [q] be a permutation. By Definition 2.9 we

have

|IC(B,WR(A), σ)− IC(B,WM (A), σ)| =

∣∣∣∣∣∣
∏

1≤i<j≤q
ηc(σ(i),σ(j))xi,xj −

∏
1≤i<j≤q

µc(σ(i),σ(j))xi,xj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∏

1≤i<j≤q
ηc(σ(i),σ(j))xi,xj −

∏
1≤i<j≤q

(
ηc(σ(i),σ(j))xi,xj ± λ

)∣∣∣∣∣∣
Opening the parentheses in the above product gives 2(q2) − 1 summands, all of which are multiples

of ±λ. Therefore |IC(B,WR(A), σ)− IC(B,WM (A), σ)| ≤ λ2(q2). By Definition 2.10, the triangle

inequality and our choice of γ we have

|IC(B,WR(A))− IC(B,WM (A))| =

∣∣∣∣∣ 1

Aut(B)

∑
σ

(IC(B,WR(A), σ)− IC(B,WM (A), σ))

∣∣∣∣∣
≤ q!λ2(q2) = δ .

By Definition 2.11 and the triangle inequality we have

|IC(B,R)− IC(B,M)| =

∣∣∣∣∣∣ 1(
r
q

) ∑
A⊆{1,...,r}, |A|=q

(IC(B,WR(A))− IC(B,WM (A)))

∣∣∣∣∣∣ ≤ δ ,
as needed. �

Proof (of Lemma 2.14): Put λ = λ2.14(δ, q, k) = λ4.5(k
−(q2)δ, q). By the choice of λ via Lemma

4.5 we get that |IC(B,R) − IC(B,M)| ≤ k−(q2)δ for every B ∈ B. Since |B| ≤ k(q2) the triangle

inequality thus gives (1). �

4.3 Proof of Lemma 2.16

We will derive Lemma 2.16 from the following lemma.

Lemma 4.6. Let U, V be disjoint vertex sets in a graph satisfying |U | = |V | = n ≥ n4.6(γ, k).

Suppose the bipartite graph (U, V ) is γ-regular with d(U, V ) = µ. Let {η` : 1 ≤ ` ≤ k} be nonnegative

reals satisfying
∑m

`=1 η
` = µ and

∑k
`=m+1 η

` = 1−µ. Then there is a (k,m)-coloring of (U, V ) such

that the resulting k-colored graph is 2γ-regular and satisfies d`(U, V ) = η` for every 1 ≤ ` ≤ k.

For the proof of Lemma 4.6 we need the following standard Chernoff-type inequality:

Lemma 4.7. Suppose X1, ..., Xm are independent Boolean random variables and P(Xi = 1) = pi.

Let E =
∑m

i=1 pi. Then P(|
∑m

i=1Xi − E| ≥ δm) ≤ 2e−2δ
2m.
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Proof (of Lemma 4.6): We will show that the edges between U and V can be colored with colors

1, ...,m in a way that satisfies the requirements. The same argument can be used to color the non-

edges with colors m+ 1, ..., k. First assume that µ ≤ γ. If this is the case, just color any η`n2 of the

edges between U and V with color `, for every 1 ≤ ` ≤ m. This way we made sure that d`(U, V ) = η`.

Let U ′ ⊆ U, V ′ ⊆ V with |U ′|, |V ′| ≥ 2γn. Before the coloring we had d(U ′, V ′) = µ± γ. Therefore

after the coloring we have 0 ≤ d`(U ′, V ′) ≤ µ+ γ, so |d`(U ′, V ′)− η`| ≤ µ+ γ ≤ 2γ.

Assume from this point on that µ ≥ γ. For every edge e ∈ E(U, V ) roll a die with sides 1, ...,m

so that probability of side ` is η`

µ . If the die falls on side ` then color e with color `. Then the

expected number of edges of color ` is η`n2. By Lemma 4.7, the probability that the number of

edges colored by ` deviates from its expectation by more than n
3
2 is at most 2e−2n/µ ≤ 2e−2n.

If n ≥ n4.6(γ, k) then this probability is less than 1
4k . This means, by a union bound, that with

probability at least 3
4 the number of edges colored by ` is η`n2 ± n

3
2 for every 1 ≤ ` ≤ m.

Claim 4.8. With probability at least 3
4 all sets U ′ ⊆ U, V ′ ⊆ V such that |U ′|, |V ′| ≥ 2γn satisfy

d`(U ′, V ′) = η` ± 3γ
2

Proof: Let U ′ ⊆ U, V ′ ⊆ V such that |U ′|, |V ′| ≥ 2γn. The density of edges between U ′ and V ′

before the coloring is µ±γ. Therefore the expected density of edges with color ` is η`

µ (µ±γ) = η`±γ.

So it is enough to show that with probability at least 3
4 , there are no sets U ′, V ′ and color 1 ≤ ` ≤ m

such that the density of edges of color ` between U ′ and V ′ deviates from its expectation by more

than γ
2 .

By Lemma 4.7, the probability that the density of edges of color ` between U ′ and V ′ deviates

from its expected value by more than γ
2 is at most 2e−2(

γ
2
)2|U ′||V ′|/d(U ′,V ′) ≤ 2e−γ

2|U ′||V ′|/2. We

assumed that |U ′|, |V ′| ≥ 2γn, so this probability is at most 2e−γ
4n2/2. The number of choices of

sets U ′, V ′ as above is at most 22n, and the number of colors is at most k, so by a union bound

we get: The probability that there are sets U ′, V ′ and a color ` , such that the density of edges

between U ′, V ′ with color ` deviates from its expectation by more than γ
2 is at most k22n2e−γ

4n2/2.

This expression is less than 1
4 if n is large enough, namely n ≥ n4.6(γ, k). �

Getting back to the proof of Lemma 4.6 we see that so far we proved that with probability at

least 1
2 the following two conditions hold:

1. d`(U, V ) = η` ± n−
1
2 for every 1 ≤ ` ≤ m.

2. d`(U ′, V ′) = η` ± 3γ
2 for every 1 ≤ ` ≤ m and every two sets U ′ ⊆ U, V ′ ⊆ V of size at least

2γn.

Now take a coloring that satisfies conditions 1 and 2. Let us write d`(U, V ) = η` + ε` where∣∣ε`∣∣ ≤ n− 1
2 . Observe that

m∑
`=1

(
η` + ε`

)
=

m∑
`=1

d`(U, V ) = µ =

m∑
`=1

η`
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Therefore
m∑̀
=1

ε` = 0. We can change the colors of at most mn
3
2 ≤ kn

3
2 edges to make sure that

d`(U, V ) is exactly η`. For every U ′ ⊆ U, V ′ ⊆ V of size at least 2γn this final change changes

d`(U ′, V ′) by at most k

(2γ)2n
1
2

which is less than γ
2 if n ≥ n4.6(γ, k). So in the end we have

d`(U ′, V ′) = η` ± 2γ as required. �

Remark 4.9. In fact, we could have proved the following stronger lemma: Let U, V be disjoint

sets in a graph, |U | = |V | = n ≥ n4.6(γ, ε, k). Suppose U, V is γ-regular and d(A,B) = µ, and let

{η` : 1 ≤ ` ≤ k} be nonnegative numbers satisfying
∑m

l=1 η
` = µ and

∑k
l=m+1 η

` = 1 − µ . Then

there is a (k,m)-coloring of U, V such that the resulting k-colored graph is γ(1 + ε)-regular and

satisfies d`(U, V ) = η`. The choice of 2γ in Lemma 4.6 and in Definition 2.15 is for convenience.

Proof (of Lemma 2.16): Put n2.16(γ, t, k) = t · n4.6(γ, k). Let R be a graph regularity instance

of order r ≤ t and regularity parameter γ. Let R′ be a (k,m)-chopping of R′ and let {η`i,j : 1 ≤
i < j ≤ r, 1 ≤ ` ≤ k} be the densities of R′. Let G be a graph with at least n2.16(γ, t, k) vertices

that satisfies R. Let V1, ..., Vr be a γ-regular equipartition of V (G) that corresponds to R. For

every 1 ≤ i ≤ r we have |Vi| ≥ n2.16(γ,t,k)
r ≥ n4.6(γ, k). If (i, j) /∈ R̄ apply Lemma 4.6 for Vi, Vj and

{η1i,j , ..., ηki,j}. Color the rest of the edges and non-edges arbitrarily. The resulting k-colored graph

satisfies R′. �

References

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Combi-

natorica 20 (2000), 451-476.

[2] N. Alon, E. Fischer, I. Newman and A. Shapira, A combinatorial charactarization of testable

graph properties - it is all about regularity, SIAM J. on Computing 39 (2009), 143-167.

[3] E. Fischer and I. Newman, Testing versus estimation of graph properties, SIAM J. on Com-

puting 37 (2007), 482-501.
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János Bolyai Math. Soc., Budapest (1996), 295–352.

[5] L. Lovász and K. Vesztergombi, Nondeterministic graph property testing, manuscript, 2012.

[6] L. Lovász, B. Szegedy: Testing properties of graphs and functions, Israel J. Math. 178 (2010),

113156.

[7] E. Fischer, The difficulty of testing for isomorphism against a graph that is given in advance,

SIAM Journal on Computing 34 (2005), 1147-1158.

16



[8] O. Goldreich (ed), Property Testing: Current Research and Suerveys, LNCS 6390, Springer,

2010.

[9] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and

approximation, J. ACM 45 (1998), 653-750.

[10] O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties, Random

Structures and Algorithms 23 (2003), 23-57.

[11] R. Rubinfeld and A. Shapira, Sublinear time algorithms, SIAM J. on Discrete Math 25 (2011),

1562-1588.
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