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Abstract

We prove new upper bounds on the size of families of vectors in Zn
m with restricted modular

inner products, when m is a large integer. More formally, if u1, . . . ,ut ∈ Zn
m and v1, . . . ,vt ∈ Zn

m

satisfy 〈ui,vi〉 ≡ 0 (mod m) and 〈ui,vj〉 6≡ 0 (mod m) for all i 6= j ∈ [t], we prove that

t ≤ O(mn/2+8.47). This improves a recent bound of t ≤ mn/2+O(log(m)) by [BDL13] and is the

best possible up to the constant 8.47 when m is sufficiently larger than n.

The maximal size of such families, called ‘Matching-Vector families’, shows up in recent

constructions of locally decodable error correcting codes (LDCs) and determines the rate of the

code. Using our result we are able to show that these codes, called Matching-Vector codes, must

have encoding length at least K19/18 for K-bit messages, regardless of their query complexity.

This improves a known super linear bound of K2Ω(
√

log K) proved in [DGY11].

1 Introduction

A Matching-Vector family (MV family) in Znm is defined as a pair of ordered lists U = (u1, . . . ,ut)

and V = (v1, . . . ,vt) with ui,vj ∈ Znm, satisfying the following property: for all i ∈ [t], 〈ui,vi〉 ≡ 0

(mod m) whereas for all i 6= j ∈ [t], 〈ui,vj〉 6≡ 0 (mod m). Here 〈·, ·〉 denotes the standard inner

product. If one restricts the entries of the vectors in the family to be in the set {0, 1} the inner

products corresponds to the sizes of the intersections (modulo m) and, in this case, MV families are
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more commonly referred to as families of sets with restricted modular intersections. MV families

were studied previously in the context of Ramsey graphs [Gro00], circuit complexity [BBR94] and,

more recently, were used to construct Locally Decodable Codes (LDCs) [Yek08, Efr09, DGY11],

which are error correcting codes with super-efficient decoding properties. We will elaborate more

on the connection to LDCs after we state our results.

We denote by MV(m,n) the size of the largest MV family in Znm (the size of the family is t in

the above notation). It is an interesting (and mostly open) question to determine the value (or even

order of magnitude) of MV(m,n) for arbitrary m and n. Upper and lower bounds on MV(m,n)

can be roughly divided into two kinds, corresponding to the relative size of the two parameters.

One typical regime is when m is small and n tends to infinity and the other is when m >> n (of

course there are intermediate scenarios as well).

Although our work focuses on the regime when m is much larger than n, we first describe the

known results for the other regime, namely when m is a fixed constant and n tends to infinity.

These regime is further divided into the case when m is prime and when m is composite. When

m is a small prime and n tends to infinity, the value of MV(m,n) is known to be of the order of

nm−1 [BF98]. When m is a small composite, the picture is very different and there are exponential

gaps between known lower and upper bounds on MV(m,n). A surprising construction by Grolmuzs

[Gro00] shows that MV(m,n) ≥ exp
(
c · log(n)r

(log logn)r−1

)
when m has r distinct prime factors (here c is

an absolute constant). That is, MV(m,n) can be super-polynomial in n (that is nω(1)) for m as small

as 6 (compared with the polynomial upper bound nm−1 for prime m). A trivial upper bound on

MV(m,n) is mn since an MV family cannot contain the same vector twice. The best upper bound

on MV(m,n) for small composite m was proved in [BDL13] and is mn/2+O(logm). Assuming the

Polynomial-Freiman-Ruzsa (PFR) conjecture [TV07] this can be improved to MV(m,n) ≤ Cn/ log(n)
m

with Cm a constant depending only on m.

Our work focuses on the regime when m is larger than n. In this setting, a construction of

[YGK12] gives MV families of size
(
m+1
n−2

)n/2−1
[YGK12]. For a large prime m, this construction

almost matches an upper bound of O(mn/2) proved in [DGY11]. For composite m, the best upper

bound on MV(m,n) for large m prior to this work was the same mn/2+O(logm) bound from [BDL13].

Notice that, when m > 2n, this bound is meaningless since it exceeds the trivial bound of mn. In
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m upper bound for MV(m,n)

general prime O(mn/2) [DGY11]

small, fixed prime O(nm−1) [BF98]

general composite mn/2+O(logm) [BDL13]

small, fixed composite 2Om(n/ logn) [BDL13] (assuming PFR)

general composite O(mn/2+8.47) (Theorem 1.1)

Table 1: List of upper bounds on MV(m,n)

this work we extend the proof method developed in [BDL13] to give the following bound:

Theorem 1.1. For all integers m > 1, n we have MV(m,n) ≤ 100mn/2+8.47. When m is a product

of distinct primes the constant 8.47 can be replaced with 4 + o(1).

For small n, this bound is tight up to the constant 8.47 as the [YGK12] construction shows.

When m is small, this still gives some improvement over the mn/2+O(logm) bound of [BDL13] but

not as dramatic (and probably far from being tight).

The main tool in our proof is Fourier analysis in the spirit of [BDL13], with which we repeatedly

reduce m to one of its factor (eventually reaching the case of m = 1). The distribution of 〈vi,uj〉

over random i, j ∈ [t] is far from the uniform distribution (since the probability of obtaining zero is

small). This fact is used to find a large coefficient in its Fourier spectrum. This coefficient is then

used to carve out a large sub family which is again an MV family, but over some proper factor of

m. The proof ends when we reach the case of prime m. The difference between our proof and the

one in [BDL13] is in the choice of the large coefficient (or character). We are able to show that a

large character appears that has nicer number theoretic properties and so are able to analyze the

loss in each step in a better way – getting rid of the O(logm) factor in the exponent.

1.1 MV families and Locally Decodable Codes

A (q, δ, ε)-Locally Decodable Code, or LDC, encodes a K-symbol message x to an N -symbol code-

word C(x), such that every symbol xi (i ∈ [K]) can be recovered with probability at least 1 − ε

by a randomized decoding procedure that makes only q queries to C(x), even if δN locations

of the codeword C(x) have been corrupted. Understanding the minimum length N = N(k) of

an LDC with constant q is a central research question that is still far from being solved. For
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q = 1, 2, this question is completely answered. There are no LDCs for q = 1 [KT00] and the

best LDCs for q = 2 have exponential length [GKST02, KdW04]. However, for q > 2 there

are huge gaps between lower bound and LDC constructions. The best known lower bound is

N = Ω̃(K1+1/(dr/2e−1)) for k > 4 [Woo07] and N = Ω(K2) for k = 3, 4 [KdW04, Woo10], while

the best construction has super-polynomial length. Constructions of LDCs have been studied ex-

tensively for more than a decade. Until recently, all constructions of LDC with constant q had

exponential encoding length. In a breakthrough work of Yekhanin [Yek08] and following improve-

ments [Efr09, Rag07, KY09, IS10, CFL+10, DGY11, BET10], a new family of LDCs based on

Matching Vector families was introduced. These codes, called Matching-Vector codes, rely on con-

structions of MV families and can have sub-exponential length for q as small as 3 [Efr09]. Using

Grolmuzs construction as a building block, one obtains an encoding length of roughly

N ∼ exp exp
(

(logK)O(log log q/ log q)(log logK)
)
.

The size of the MV family used in the code construction is critical. In its simplest form, an MV

code using an MV family of size t in Znm will send K = t bits of message into N = mn bits of

encoding and will require q = m queries to decode. Several improvements are possible for reducing

the number of queries below m but these are case-based and hard to generalize for arbitrary m.

Our improved bound on the size of MV families allows us to prove an unconditional lower bound

on the encoding length of MV codes, regardless of the query complexity.

Theorem 1.2. For any MV -code with message length K and codeword length N we have N > K
19
18 .

This bound is regardless of the number of queries.

This theorem improves on a bound of N > K2Ω(
√

logK) proved in [DGY11].

1.2 Organization

We begin in Section 2 with a number of preliminary lemmas and notations that will be used

throughout the proof. In Section 3 we prove our main technical lemma which is the heart of our

proof. The lemma is used iteratively in the proof of our main theorem which is given in Section 4.
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The proof of the stronger bound for the case when m is a product of distinct primes is given in the

appendix.

2 Preliminaries

2.1 Fourier lemma

We consider a probability distribution µ over Zm. Let ωm = e
2π
m
i be an order m primitive root

of unity. It is not difficult to see Ex∼µ[ωjxm ] = 0 for all j ∈ {1, 2, . . . ,m − 1} if µ is the uniform

distribution. We will show that Ex∼µ[ωjxm ] is bounded away from zero for some j ∈ {1, 2, . . . ,m−1}

if µ is far from being uniform.

In [BDL13], it was shown that

max
1≤j≤m−1

∣∣∣∣ Ex∼µ[ωjxm ]

∣∣∣∣ = Ω(
1

m1.5
)

if the statistical distance between µ and the uniform distribution is big, i.e. 1
2

∑
x∈Zm |µ(x)− 1

m | =

Ω( 1
m). In the following lemma, we prove a better lower bound that depends only on s = order(ωjm)

under a stronger condition |µ(0)− 1
m | = Ω( 1

m).

Consider µ as a function from Zm to C. For 0 ≤ j ≤ m− 1, the Fourier coefficient µ̂(j) is

µ̂(j) =
1

m

∑
x∈Zm

µ(x)ω−jxm =
1

m
E
x∼µ

[ω−jxm ].

One can see that µ̂(0) = 1
m . The set of functions {ωjxm | 0 ≤ j ≤ m− 1} is an orthogonal basis for

all functions from Zm to C, and the function µ(x) can be written as

µ(x) =
m−1∑
j=0

µ̂(j)ωjxm . (1)

Lemma 2.1. Let µ : Zm 7→ [0, 1] be a probability distribution over Zm (i.e.
∑

x∈Zm µ(x) = 1). If

µ(0) ≤ 1
100m , there must exist j ∈ {1, 2, . . . ,m−1} such that

∣∣∣Ex∼µ[ωjxm ]
∣∣∣ ≥ 1

sf(s) , where s = m
gcd(j,m)

is the order of ωjm for ωm = e
2π
m
i, and f : Z+ 7→ R is any function satisfying

∑∞
s=2

1
f(s) ≤ 0.99.
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Proof. By setting x = 0 in (1), we have

µ(0) =
m−1∑
j=0

µ̂(j)ωj·0m =
m−1∑
j=0

µ̂(j) =
1

m
+

1

m

m−1∑
j=1

E
x∼µ

[ω−jxm ].

Therefore

m−1∑
j=1

∣∣∣∣ Ex∼µ[ωjxm ]

∣∣∣∣ ≥
∣∣∣∣∣∣
m−1∑
j=1

E
x∼µ

[ωjxm ]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
m−1∑
j=1

E
x∼µ

[ω−jxm ]

∣∣∣∣∣∣ = m ·
∣∣∣∣µ(0)− 1

m

∣∣∣∣ ≥ 0.99. (2)

For every d | m (1 ≤ d ≤ m− 1), define Td = {j | gcd(j,m) = d, 1 ≤ j ≤ m− 1}. For all j ∈ Td,

the order of ωjm is sd = m
d (2 ≤ sd ≤ m). We also see Td = {k · d | 1 ≤ k < sd, gcd(k, sd) = 1},

hence |Td| = ϕ(sd) < sd.

If the lemma was not true, we have

m−1∑
j=1

∣∣∣∣ Ex∼µ[ωjxm ]

∣∣∣∣ =
∑
d|m
d<m

∑
j∈Td

∣∣∣∣ Ex∼µ[ωjxm ]

∣∣∣∣
 <

∑
d|m
d<m

(
sd ·

1

sdf(sd)

)
<
∞∑
s=2

1

f(s)
≤ 0.99.

This violates inequality (2). Thus the lemma is proved.

2.2 Notations and Facts about MV Families

We use 〈·, ·〉 to denote the inner product over Z between two vectors. In all calculations, we identify

Zm as {0, 1, . . . ,m− 1} and treat the numbers as on Z. Conventionally, we consider a mod 1 to be

0 for any integer a.

Notation 2.2. Let r be a positive integer. For an integer v, define v(r) ∈ {0, 1, . . . , r − 1} to be v

modulo r. For a vector v = (v1, v2, . . . , vn), define v(r) = (v
(r)
1 , v

(r)
2 , . . . , v

(r)
n ). For a list of vectors

V = (v1,v2, . . . ,vt), define V (r) = (v
(r)
1 ,v

(r)
2 , . . . ,v

(r)
t ).

Notation 2.3. Let r be a positive integer. For an integer v, define v[r] ∈ Z to be (v− v(r))/r. For

a vector v = (v1, v2, . . . , vn), define v[r] = (v
[r]
1 , v

[r]
2 , . . . , v

[r]
n ). Thus v = rv[r] + v(r) for any vector

v. For a list of vectors V = (v1,v2, . . . ,vt), define V [r] = (v
[r]
1 ,v

[r]
2 , . . . ,v

[r]
t ).
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Definition 2.4. Let U = (u1,u2, . . . ,ut) and V = (v1,v2, . . . ,vt) be two lists of vectors in Znm.

(U, V ) is a matching vector family if 〈ui,vi〉 ≡ 0 (mod m) for all i ∈ [t] and 〈ui,vj〉 6≡ 0 (mod m)

for all i 6= j ∈ [t]. The number t is the size of the MV family and is denoted by |(U, V )|.

Claim 2.5. For an MV family (U, V ) where U = (u1,u2, . . . ,ut), V = (v1,v2, . . . ,vt) and i 6= j ∈

[t], we have ui 6= uj and vi 6= vj.

Proof. Assume ui = uj for i 6= j, we have 〈ui,vj〉 = 〈ui,vi〉 ≡ 0 (mod m). This violates the

definition of MV family.

Notation 2.6. Let U, V, U ′, V ′ be 4 lists of vectors in Znm, and say U = (u1,u2, . . . ,ut), V =

(v1,v2, . . . ,vt). We write (U ′, V ′) ⊆ (U, V ) if there exists a set T ⊆ [t] such that U ′ = (ui : i ∈ T )

and V ′ = (vi : i ∈ T ). Observe that if (U, V ) is an MV family, so is (U ′, V ′).

Definition 2.7. (r1, r2, r3) is a partition of m if r1, r2, r3 ∈ Z+ and r1r2r3 = m. (r1, r2, r3 are not

assumed to be coprime.)

Definition 2.8. For an MV family (U, V ) where U = (u1,u2, . . . ,ut) and V = (v1,v2, . . . ,vt), we

say (U, V ) respects (r1, r2, r3), where (r1, r2, r3) is a partition of m, if the following conditions are

satisfied:

1. ∃u0 ∈ Znr1 such that u
(r1)
i = u0 for all i ∈ [t],

2. ∃v0 ∈ Znr2 such that v
(r2)
i = v0 for all i ∈ [t],

3. 〈u[r1]
i ,v0〉 modulo r2 is the same for all i ∈ [t],

4. 〈u0,v
[r2]
i 〉 modulo r1 is the same for all i ∈ [t].

Claim 2.9. If an MV family (U, V ) respects (r1, r2, r3), then 〈ui,vj〉 ≡ 0 (mod r1r2) for all ui ∈

U,vj ∈ V .

Proof. Let u0 = u
(r1)
i and v0 = v

(r2)
j . They are fixed for all ui ∈ U and vj ∈ V . We have

〈ui,vj〉 = 〈r1u
[r1]
i + u0, r2v

[r2]
j + v0〉

= r1r2〈u[r1]
i ,v

[r2]
j 〉+ r1〈u[r1]

i ,v0〉+ r2〈u0,v
[r2]
j 〉+ 〈u0,v0〉.
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The first term is 0 modulo r1r2. The second term is fixed modulo r1r2 because 〈u[r1]
i ,v0〉 is fixed

modulo r2. Similarly, the third term is also a constant modulo r1r2. Therefore 〈ui,vj〉 modulo

r1r2 is the same for all ui ∈ U and vj ∈ V . Note that when i = j, 〈ui,vj〉 ≡ 0 (mod r1r2) since

(U, V ) is an MV family. Therefore 〈ui,vj〉 ≡ 0 (mod r1r2) for all ui ∈ U,vj ∈ V .

Claim 2.10. Every MV family (U, V ) respects (1, 1,m).

Proof. Let u0 and v0 be the zero vector. All the conditions are satisfied.

Claim 2.11. If an MV family (U, V ) respects (r1, r2, 1), then it must has size 1.

Proof. Since r1r2 = m, by Claim 2.9 we have 〈ui,vj〉 ≡ 0 (mod m) for all ui ∈ U,vj ∈ V . By the

definition of MV family, the size of (U, V ) must be 1.

3 Proof of the Main Lemma

Consider an MV family (U, V ), where U = (u1,u2, . . . ,ut) and V = (v1,v2, . . . ,vt). We pick u ∈ U

and v ∈ V uniformly at random and consider the distribution of 〈u,v〉(m). The inner product is

0 with probability 1/t. Thus the distribution is far from uniform when t >> m. We will take

advantage of this fact and prove our key lemma. For an MV family (U, V ) respecting (r1, r2, r3),

we can find a large subfamily and reduce r3 to some smaller number.

Let f : Z+ 7→ R be a function satisfying
∑∞

s=2
1

f(s) ≤ 0.99. We will specify f(s) in later proofs.

Lemma 3.1. If an MV family (U, V ) respects (r1, r2, r3) for some r3 ≥ 2 and |(U, V )| = t ≥

100m, then there exists s | r3 with s ≥ 2 and an MV family (U ′, V ′) ⊆ (U, V ) with |(U ′, V ′)| ≥

t/(sn/2+4f(s)2) that respects either (r1s, r2, r3/s) or (r1, r2s, r3/s).

Proof. We prove the lemma in 4 steps.
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Step 1: Finding a nice character with a large bias.

By Claim 2.9, 〈u,v〉r1r2
is an integer for all u ∈ U,v ∈ V . We can also see 〈u,v〉r1r2

≡ 0 (mod r3) iff

〈u,v〉 ≡ 0 (mod m). Consider the distribution of
(
〈u,v〉
r1r2

)(r3)
∈ Zr3 , where u and v are uniformly

drawn from U and V respectively. We have

Pr

[(
〈u,v〉
r1r2

)(r3)

= 0

]
= Pr

[
〈u,v〉 ≡ 0 (mod m)

]
=

1

t
≤ 1

100m
≤ 1

100r3
.

Applying Lemma 2.1 on Zr3 , there exists a j ∈ {1, 2, . . . , r3 − 1} such that∣∣∣∣∣ E
u∼U
v∼V

[
ω
j
〈u,v〉
r1r2

r3

]∣∣∣∣∣ ≥ 1

sf(s)
, (3)

where ωr3 = e
2πi
r3 and s = r3

gcd(j,r3) is the order of ωjr3 . Note that we have dropped the modulo r3

operation because (ωjr3)r3 = 1. It follows that

E
u,ũ∼U
v∼V

[
ω
j
〈u−ũ,v〉
r1r2

r3

]
= E

v∼V

∣∣∣∣ E
u∼U

[
ω
j
〈u,v〉
r1r2

r3

]∣∣∣∣2 ≥
∣∣∣∣∣ E
u∼U
v∼V

[
ω
j
〈u,v〉
r1r2

r3

]∣∣∣∣∣
2

≥ 1

s2f(s)2
.

Therefore there exists a fixed ũ ∈ U such that∣∣∣∣∣ E
u∼U
v∼V

[
ω
j
〈u−ũ,v〉
r1r2

r3

]∣∣∣∣∣ =

∣∣∣∣∣ E
u∼U
v∼V

[
ω
j〈u−ũ

r1
,v〉/r2

r3

]∣∣∣∣∣ ≥ 1

s2f(s)2
.

Since u(r1) = ũ(r1), we have u− ũ = r1(u[r1] − ũ[r1]). The above inequality can be written as∣∣∣∣∣ E
u∼U
v∼V

[
ωj〈u

[r1]−ũ[r1],v〉/r2
r3

]∣∣∣∣∣ ≥ 1

s2f(s)2
. (4)

Step 2: Partitioning into buckets.

We partition the set U into buckets according to u[r1] − ũ[r1] modulo s: U =
⋃

w∈Zns
B(w, U), where

B̃(w, U) =

{
u ∈ U

∣∣∣ (u[r1] − ũ[r1]
)(s)

= w

}
.
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We also partition V into buckets B(w, V ) = {v ∈ V | (v[r2])(s) = w} for all w ∈ Zns . Define

pw = |B̃(w, U)|/t to be the density of B̃(w, U) and qw = |B(w, V )|/t be the density of B(w, V ).

Picking u uniformly from U can be equivalently considered as two steps: 1. For each bucket

B̃(w, U), pick a representative uw ∈ B̃(w, U) uniformly; 2. Pick one bucket according to the

probability distribution pw, and output the representative. For inequality (4), we split the procedure

of picking u ∼ U into these two steps.

1

s2f(s)2
≤

∣∣∣∣∣ E
u∼U
v∼V

[
ωj〈u

[r1]−ũ[r1],v〉/r2
r3

]∣∣∣∣∣
=

∣∣∣∣∣∣ E
for each w,

uw∼B̃(w,U)

E
w∼pw

E
v∼V

[
ωj〈u

[r1]
w −ũ[r1],v〉/r2

r3

]∣∣∣∣∣∣
≤ E

for each w,

uw∼B̃(w,U)

∣∣∣∣ E
w∼pw

E
v∼V

[
ωj〈u

[r1]
w −ũ[r1],v〉/r2

r3

]∣∣∣∣ .
There exists a fixed list of representatives from each bucket (uw ∈ B(w, U) : w ∈ Zns ) such that

1

s2f(s)2
≤

∣∣∣∣∣ E
w∼pw
v∼V

[
ωj〈u

[r1]
w −ũ[r1],v〉/r2

r3

]∣∣∣∣∣ . (5)

For every w ∈ Zns and u ∈ B(w, U), we use u′ to denote the vector (u[r1] − ũ[r1])[s]. Thus

u
[r1]
w − ũ[r1] = su′w + (u

[r1]
w − ũ[r1])(s) = su′w + w.

Hence inequality (5) can be written as

1

s2f(s)2
≤

∣∣∣∣∣ E
w∼pw
v∼V

[
ωj〈su

′
w+w,v〉/r2

r3

]∣∣∣∣∣ . (6)
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Step 3: Finding a large bucket.

By inequality (6),

(
1

s2f(s)2

)2

≤

∣∣∣∣∣∣
∑
w∈Zns

∑
v∈V

pw ·
1

t
· ωj〈su′w+w,v〉/r2

r3

∣∣∣∣∣∣
2

≤

 ∑
w∈Zns

p2
w

 ·
 ∑

w∈Zns

∣∣∣∣∣∑
v∈V

1

t
· ωj〈su′w+w,v〉/r2

r3

∣∣∣∣∣
2


=

 ∑
w∈Zns

p2
w

 ·
 ∑

w∈Zns

∑
v,ṽ∈V

1

t2
· ωj〈su′w+w,v−ṽ〉/r2

r3


=

 ∑
w∈Zns

p2
w

 ·
 ∑

v,ṽ∈V

1

t2
·
∑
w∈Zns

ωj〈su
′
w+w,v[r2]−ṽ[r2]〉

r3


=

 ∑
w∈Zns

p2
w

 ·
 ∑

v,ṽ∈V

1

t2
·
∑
w∈Zns

ωj〈w,v
[r2]−ṽ[r2]〉

r3


=

 ∑
w∈Zns

p2
w

 ·
 ∑

v,ṽ∈V

1

t2
· sn · 1

v[r2] 6=ṽ[r2]


=

 ∑
w∈Zns

p2
w

 ·
 ∑

w∈Zns

q2
w

 · sn. (7)

In the last step we used the fact v[r2] 6= ṽ[r2] for two v, ṽ ∈ V . This can be seen by contrapositive.

If v[r2] = ṽ[r2], we have v = ṽ since v(r2) = ṽ(r2). This contradicts Claim 2.5.

By (7), we see either
∑
p2
w ≥ 1/(sn/2+2f(s)2) or

∑
q2
w ≥ 1/(sn/2+2f(s)2). Without loss of

generality, assume
∑
p2
w ≥ 1/(sn/2+2f(s)2). By

max{pw} = max{pw} ·
∑

pw ≥
∑

p2
w,

there exists a bucket B̃(w0, U) with size at least t/(sn/2+2f(s)2). Let Ũ be that bucket, and Ṽ

be the subset of V with the same indices. Then (Ũ , Ṽ ) ⊆ (U, V ) is an MV family of size at least

t/(sn/2+2f(s)2). Next, we will find a subfamily (U ′, V ′) ⊆ (Ũ , Ṽ ) that respects (r1s, r2, r3/s).
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Step 4: Analyzing the elements in the large bucket.

Let u0 and v0 denote u(r1) and v(r2) respectively for u ∈ U,v ∈ V . For every u ∈ Ũ , we know

(u[r1]− ũ[r1])(s) equals the same vector w0 by the definition of the bucket. Therefore u[r1]− ũ[r1] =

su′ + w0 and

u = r1u
[r1] + u0 = r1(ũ[r1] + su′ + w0) + u0 = r1su

′ +
(
r1ũ

[r1] + r1w0 + u0

)
. (8)

We can see u(r1s) = r1ũ
[r1] + r1w0 + u0 is the same for all u ∈ Ũ . Also v(r2) = v0 is the same for

all v ∈ Ṽ . These two conditions are still satisfied for any subfamily of (Ũ , Ṽ ). It suffices to find

(U ′, V ′) ⊆ (Ũ , Ṽ ) such that

• 〈u[r1s],v0〉 modulo r2 is the same for all u ∈ U ′. By (8) we have u[r1s] = u′, so we need

〈u′,v0〉 modulo r2 to be the same for all u ∈ U ′.

• 〈r1ũ
[r1] + r1w + u0,v

[r2]〉 modulo r1s is the same for all v ∈ V ′.

Since 〈u[r1],v0〉 = 〈su′+ ũ[r1] +w,v0〉 modulo r2 is the same for all u ∈ U by (U, V ) respecting

(r1, r2, r3), we can see that s〈u′,v0〉 modulo r2 is the same for all u ∈ U . Hence there are gcd(s, r2)

possible values for 〈u′,v0〉 modulo r2. We pick the most frequent value c1 and keep only the vectors

with 〈u′,v0〉 ≡ c1 (mod r2) in Ũ and the corresponding vectors in Ṽ .

Since 〈u0,v
[r2]〉 modulo r1 is the same for all v ∈ V by (U, V ) respecting (r1, r2, r3), we can see

that there are s possible values for 〈u0,v
[r2]〉 modulo sr1. We pick the most frequent value c2 and

keep only the vectors with 〈u0,v
[r2]〉 ≡ c2 (mod sr1) in Ũ and the corresponding vectors in Ṽ .

After the above two steps, the MV family has size at least

|(Ũ , Ṽ )|
gcd(s, r2) · s

≥ |(Ũ , Ṽ )|
s2

≥ t

sn/2+4f(s)2
. (9)

And this is the required (U ′, V ′).
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4 Proof of Theorems 1.1 and 1.2

We now prove Theorem 1.1 by repeatedly applying Lemma 3.1.

Proof of Theorem 1.1. By Claim 2.10, (U, V ) is good with respect to (1, 1,m). Initially we set

r1 = 1, r2 = 1 and r3 = m. By Lemma 3.1, we there is a subfamily that respects (r′1, r
′
2, r
′
3),

where r′1r
′
2r
′
3 = m and r′3 < m. We repeatedly apply Lemma 3.1. Each round r3 is reduced by

some factor. We can continue this procedure until either r3 = 1 or the size of the MV family

becomes less than 100m. For the case r3 = 1, the size of the MV family is also less than 100m by

Claim 2.11. Say there are k rounds, and in each round we divide r3 by s1, s2, . . . , sk respectively.

We have s1s2 · · · sk ≤ m and in the ith round (i ∈ [k]), the size of the MV family is decreased by a

factor at most s
n/2+4
i f(si)

2. Therefore the original size is upper bounded by

|(U, V )| ≤ 100m ·
k∏
i=1

s
n/2+4
i f(si)

2 ≤ 100m ·mn/2+4 ·
k∏
i=1

f(si)
2 = 100mn/2+5

k∏
i=1

f(si)
2.

Pick f(s) = s1.735, we can verify
∑∞

s=2
1

f(s) ≤ 0.99. Therefore |(U, V )| ≤ 100mn/2+5(m1.735)2 =

100mn/2+8.47.

Combining with the lower bound mn−1+om(1) proved in [DGY11], we can give a universal lower

bound for the length of the MV code in [DGY11]. This is a restatement of Theorem 1.2 stated in

the introduction.

Corollary 4.1. Any MV code (as constructed in [DGY11]) has encoding length at least N > K
19
18 ,

where K is the message length regardless of the query complexity.

Proof. Given an MV family in Znm with size t, we can encode a message of length K = t into a

codeword of length N = mn.

If n ≥ 19, by Theorem 1.1 we have K ≤ mn/2+8.47. Hence K ≤ m(1/2+8.47/19)n < m
18
19
n = N

18
19

and N > K
19
18 .

If n ≤ 18, it was shown in [DGY11] that K ≤ mn−1+om(1). Hence K < mn− 18
19 ≤ mn− n

19 =

13



m
18
19
n = N

18
19 and N > K

19
18 . Note that here we assumed m is sufficient large. This is reasonable

because we are considering encoding an arbitrarily long message and K is sufficiently large.

5 The case of distinct prime factors

If m is a product of distinct primes, the bound can be improved to mn/2+4+om(1). The proof follows

the same outline as general composite m.

Theorem 5.1. Let m be a product of distinct primes. For every MV family (U, V ) in Znm, |(U, V )| ≤

100mn/2+4+om(1), where om(1) goes to 0 as m grows.

Proof. The proof is similar to Theorem 1.1. We only sketch the changes here.

First, we improve the size of (U ′, V ′) found in Lemma 3.1 to t/(sn/2+2f(s)2). Since m is a

product of distinct primes, r1 and r2 must be coprime to s, where s is the number in inequality (3).

Let τ1 and τ2 be integers that τ1r1 ≡ 1 (mod s) and τ2r2 ≡ 1 (mod s), we have

ω
j
〈u,v〉
r1r2

r3 = ωj〈u,v〉τ1τ2r3 .

We partition U and V into buckets according to u modulo s and v modulo s: U =
⋃

w∈Zns
B(w, U)

and V =
⋃

w∈Zns
B(w, V ), where

B(w, U) = {u ∈ U | u(s) = w}

and

B(w, V ) = {v ∈ V | v(s) = w}.
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We still use pw to denote |B(w, U)|/t and qw to denote |B(w, V )|/t. By inequality (3),

(
1

sf(s)

)2

≤

∣∣∣∣∣ E
u∼U
v∼V

[
ωj〈u,v〉τ1τ2r3

]∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
w∈Zns

∑
v∈V

pw ·
1

t
· ωj〈w,v〉τ1τ2r3

∣∣∣∣∣∣
2

≤

 ∑
w∈Zns

p2
w

 ·
 ∑

w∈Zns

∣∣∣∣∣∑
v∈V

1

t
· ωj〈w,v〉τ1τ2r3

∣∣∣∣∣
2


=

 ∑
w∈Zns

p2
w

 ·
 ∑

v,ṽ∈V

1

t2
·
∑
w∈Zns

ωj〈w,v−ṽ〉τ1τ2r3


=

 ∑
w∈Zns

p2
w

 ·
 ∑

w∈Zns

q2
w

 · sn.
We can see either

∑
p2
w ≥ 1/(sn/2+1f(s)) or

∑
q2
w ≥ 1/(sn/2+1f(s)). Without loss of generality,

assume
∑
p2
w ≥ 1/(sn/2+1f(s)). By

max{pw} = max{pw} ·
∑

pw ≥
∑

p2
w,

there exists a bucket with size |B(w, U)| ≥ t/(sn/2+1f(s)). Let Ũ be that bucket, and Ṽ be

the subset of V with the same indices. Then (Ũ , Ṽ ) ⊆ (U, V ) is an MV family of size at least

t/(sn/2+1f(s)).

Next we find (U ′, V ′) ⊆ (Ũ , Ṽ ) using the same method as in Lemma 3.1. By inequality (9),

|(U ′, V ′)| ≥ |(Ũ , Ṽ )|
gcd(s, r2) · s

=
|(Ũ , Ṽ )|

s
≥ t

sn/2+2f(s)
.

At last, we use the proof of Theorem 1.1 except f(s) = 1
3s ln2 s

. One can verify
∑∞

s=2
1

f(s) < 0.99.

Let s1, s2, . . . , sk be the numbers divided from r3 in each round, by the proof of Theorem 1.1,

|(U, V )| ≤ 100m
k∏
i=1

s
n/2+2
i f(si) ≤ 100mn/2+3

k∏
i=1

(3si ln2 si) ≤ 100mn/2+4
k∏
i=1

(3 ln2 si).
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For a sufficiently large integer s, we have 3 ln2 s < sε, where ε is an arbitrary fixed small number.

When m→∞, all s1, s2, . . . , sk except a constant number of them must be that large. Take ε→ 0,

we have |(U, V )| ≤ mn/2+4+om(1).
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