
An optimal lower bound for monotonicity testing over hypergrids

Deeparnab Chakrabarty

Microsoft Research India
dechakr@microsoft.com

C. Seshadhri

Sandia National Labs, Livermore∗

scomand@sandia.gov

Abstract

For positive integers n, d, consider the hypergrid [n]d with the coordinate-wise product partial
ordering denoted by ≺. A function f : [n]d 7→ N is monotone if ∀x ≺ y, f(x) ≤ f(y). A function
f is ε-far from monotone if at least an ε-fraction of values must be changed to make f monotone.
Given a parameter ε, a monotonicity tester must distinguish with high probability a monotone
function from one that is ε-far.

We prove that any (adaptive, two-sided) monotonicity tester for functions f : [n]d 7→ N
must make Ω(ε−1d log n − ε−1 log ε−1) queries. Recent upper bounds show the existence of
O(ε−1d log n) query monotonicity testers for hypergrids. This closes the question of monotonic-
ity testing for hypergrids over arbitrary ranges. The previous best lower bound for general
hypergrids was a non-adaptive bound of Ω(d log n).

1 Introduction

Given query access to a function f : D 7→ R, the field of property testing [RS96, GGR98] deals with
the problem of determining properties of f without reading all of it. Monotonicity testing [GGL+00]
is a classic problem in property testing. Consider a function f : D 7→ R, where D is some partial
order given by “≺”, and R is a total order. The function f is monotone if for all x ≺ y (in D),
f(x) ≤ f(y). The distance to monotonicity of f is the minimum fraction of values that need to
be modified to make f monotone. More precisely, define the distance between functions d(f, g)
as |{x : f(x) 6= g(x)}|/|D|. Let M be the set of all monotone functions. Then the distance to
monotonicity of f is ming∈M d(f, g).

A function is called ε-far from monotone if the distance to monotonicity is at least ε. A
property tester for monotonicity is a, possibly randomized, algorithm that takes as input a distance
parameter ε ∈ (0, 1), error parameter δ ∈ [0, 1], and query access to an arbitrary f . If f is monotone,
then the tester must accept with probability > 1− δ. If it is ε-far from monotone, then the tester
rejects with probability > 1− δ. (If neither, then the tester is allowed to do anything.) The aim is
to design a property tester using as few queries as possible. A tester is called one-sided if it always
accepts a monotone function. A tester is called non-adaptive if the queries made do not depend on
the function values. The most general tester is an adaptive two-sided tester.

Monotonicity testing has a rich history and the hypergrid domain, [n]d, has received special
attention. The boolean hypercube (n = 2) and the total order (d = 1) are special instances of
hypergrids. Following a long line of work [EKK+00, GGL+00, DGL+99, LR01, FLN+02, AC06,

∗Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 62 (2013)

Fis04, HK08, PRR06, ACCL06, BRW05, BBM12], previous work of the authors [CS13] shows the
existence of O(ε−1d log n)-query monotonicity testers. Our result is a matching adaptive lower
bound that is optimal in all parameters (for unbounded range functions). This closes the question
of monotonicity testing for unbounded ranges on hypergrids. This is also the first adaptive bound
for monotonicity testing on general hypergrids.

Theorem 1.1. Any (adaptive, two-sided) monotonicity tester for functions f : [n]d 7→ N requires
Ω(ε−1d log n− ε−1 log ε−1) queries.

1.1 Previous work

The problem of monotonicity testing was introduced by Goldreich et al [GGL+00], with an O(n/ε)
tester for functions f : {0, 1}n 7→ {0, 1}. The first tester for general hypergrids was given by Dodis
et al [DGL+99]. The upper bound of O(ε−1d log n) for monotonicity testing was recently proven
in [CS13]. We refer the interested reader to the introduction of [CS13] for a more detailed history
of previous upper bounds.

There have been numerous lower bounds for monotonicity testing. We begin by summarizing
the state of the art. The known adaptive lower bounds are Ω(logn) for the total order [n] by
Fischer [Fis04], and Ω(d/ε) for the boolean hypercube {0, 1}d by Brody [Bro13]. For general
hypergrids, Blais, Raskhodnikova, and Yaroslavtsev [BRY13] recently proved the first result, a
non-adaptive lower bound of Ω(d log n). Theorem 1.1 is the first adaptive bound for monotonicity
testing on hypergrids and is optimal (for arbitrary ranges) in all parameters.

Now for the chronological documentation. The first lower bound was the non-adaptive bound of
Ω(log n) for the total order [n] by Ergun et al [EKK+00]. This was extended by Fischer [Fis04] to
an (optimal) adaptive bound. For the hypercube domain {0, 1}d, Fischer et al [FLN+02] proved the
first non-adaptive lower bound of Ω(

√
d). (This was proven even for the range {0, 1}.) This was im-

proved to Ω(d/ε) by Br̈ıet et al [BCGSM12]. Blais, Brody, and Matulef [BBM12] gave an ingenious
reduction from communication complexity to prove an adaptive, two-sided bound of Ω(d). (Honing
this reduction, Brody [Bro13] improved this bound to Ω(d/ε).) The non-adaptive lower bounds
of Blais, Raskhodnikova, and Yaroslavtsev [BRY13] were also achieved through communication
complexity reductions.

We note that our theorem only holds when the range is N, while some previous results hold for
restricted ranges. The results of [BBM12, Bro13] provide lower bounds for range [

√
d]. The non-

adaptive bound of [BRY13] holds even when the range is [nd]. In that sense, the communication
complexity reductions provide stronger lower bounds than our result.

1.2 Main ideas

The starting point of this work is the result of Fischer [Fis04], an adaptive lower bound for mono-
tonicity testing for functions f : [n] 7→ N. He shows that adaptive testers can be converted to
comparison-based testers, using Ramsey theory arguments. A comparison-based tester for [n] can
be easily converted to a non-adaptive tester, for which an Ω(log n) bound was previously known.
We make a fairly simple observation. The main part of Fischer’s proof actually goes through for
functions over any partial order, so it suffices to prove lower bounds for comparison-based testers.
(The reduction to non-adaptive testers only holds for [n].)

We then prove a comparison-based lower bound of Ω(ε−1d log n − ε−1 log ε−1) for the domain
[n]d. As usual, Yao’s minimax lemma allows us to prove determinstic lower bounds over some
distribution of functions. The major challenge in proving (even non-adaptive) lower bounds for
monotonicity is that the tester might make decisions based on the actual values that it sees. Great

2

care is required to construct a distribution over functions whose monotonicity status cannot be
decided by simply looking at the values. But a comparison-based tester has no such power, and
optimal lower bounds over all parameters can be obtained with a fairly clean distribution.

2 The reduction to comparison based testers

Consider the family of functions f : D 7→ R, where D is some partial order, and R ⊆ N. We
will assume that f always takes distinct values, so ∀x, y, f(x) 6= f(y). Since we are proving lower
bounds, this is no loss of generality.

Definition 2.1. An algorithm A is a (t, ε, δ)-monotonicity tester if A has the following properties.
For any f : D 7→ R, the algorithm A makes t (possibly randomized) queries to f and then outputs
either “accept” or “reject”. If f is monotone, then A accepts with probability > 1− δ. If f is ε-far
from monotone, then A rejects with probability > 1− δ.

Given a positive integer s, let Ds denote the collection of ordered, s-tupled vectors with each
entry in D. We define two symbols acc and rej, and denote D′ = D ∪ {acc, rej}. Any (t, ε, δ)-
tester can be completely specified by the following family of functions. For all s ≤ t, x ∈ Ds,
y ∈ D′, we consider a function pyx : Rs 7→ [0, 1], with the semantic that for any a ∈ Rs, pyx(a)
denotes the probability the tester queries y as the (s+ 1)th query, given that the first s queries are
x1, . . . ,xs and f(xi) = ai for 1 ≤ i ≤ s. By querying acc, rej we imply returning accept or reject.
These functions satisfy the following properties.

∀s ≤ t, ∀x ∈ Ds, ∀a ∈ Rs,
∑
y∈D′

pyx(a) = 1 (1)

∀x ∈ Dt, ∀y ∈ D, ∀a ∈ Rt, pyx(a) = 0 (2)

(1) ensures the decisions of the tester at step (s + 1) must form a probability distribution. (2)
implies that the tester makes at most t queries.

For any positive integer s, let R(s) denote unordered sets of R of cardinality s. For reasons that
will soon become clear, we introduce new functions as follows. For each s, x ∈ Ds, y ∈ D′, and
each permutation σ : [s] 7→ [s], we associate functions qyx,σ : R(s) 7→ [0, 1], with the semantic

For any set S = (a1 < a2 < · · · < as) ∈ R(s), qyx,σ(S) := pyx(aσ(1), . . . , aσ(s))

That is, qyx,σs(S) sorts the answers in S in increasing order, permutes it according to σ, and
passes the permuted ordered tuple to pyx. Any adaptive tester can be specified by these functions.
The important point to note is that they are finitely many such functions; their number is upper
bounded by (t|D|)t+1. These q-functions allow us to define comparison based testers.

Definition 2.2. A monotonicity tester A is comparison-based if for all s,x ∈ Ds, y ∈ D′, and
permutations σ : [s] 7→ [s], the function qyx,σ is a constant function on R(s). In other words, the
(s+ 1)th decision of the tester given that the first s questions is x, depends only on the ordering of
the answers received, and not on the values of the answers.

The following theorem is implicit in the work of Fischer [Fis04].

Theorem 2.3. Suppose there exists a (t, ε, δ)-monotonicity tester for functions f : D 7→ N. Then
there exists a comparison-based (t, ε, 2δ)-monotonicity tester for functions f : D 7→ N.

This implies that a comparison-based lower bound suffices for proving a general lower bound on
monotonicity testing. We provide a proof of the above theorem in the next section for completeness.

3

2.1 Performing the reduction

We basically present Fischer’s argument, observing that D can be any partial order. A monotonicity
tester is called discrete if the corresponding functions pyx can only take values in {i/K | 0 ≤ i ≤ K}
for some finite K. Note that this implies the functions qyx,σ also take discrete values.

Claim 2.4. Suppose there exists a (t, ε, δ)-monotonicity tester A for functions f : D 7→ N. Then
there exists a discrete (t, ε, 2δ)-monotonicity tester for these functions.

Proof. We do a rounding on the p-functions. Let K = 100t|D|t/δ2. Start with the p-functions
of the (t, ε, δ)-tester A. For y ∈ D ∪ acc, x ∈ Ds, a ∈ Rs, let p̂yx(a) be the largest value in
{i/K | 0 ≤ i ≤ K} at most pyx(a). Set p̂

rej
x (a) so that (1) is maintained.

Note that for y ∈ D ∪ acc, if pyx(a) > 10|D|t/(δK), then(
1− δ

10|D|t

)
pyx(a) ≤ p̂yx(a) ≤ pyx(a).

Furthermore, p̂
rej
x (a) ≥ prejx (a).

The p̂-functions describe a new discrete tester A′ that makes at most t queries. We argue that
A′ is a (t, ε, 2δ)-tester. Given a function f that is either monotone or ε-far from monotone, consider
a sequence of queries x1, . . . , xs after which A returns a correct decision ℵ. Call such a sequence
good, and let α denote the probability this occurs. We know that the sum of probabilities over all
good query sequences is at least (1− δ). Now,

α := px1 · px2x1(f(x1)) · px3(x1,x2)(f(x1), f(x2)) · · · · pℵ(x1,...,xs)(f(x1), . . . , f(xs))

Two cases arise. suppose all of the probabilities in the RHS are ≥ 10t/δK. Then, the probability
of this good sequence arising in A′ is at least (1− δ/10t)tα ≥ α(1− δ/2). Otherwise, suppose some
probability in the RHS is < 10t/δK. Then the total probability mass on such good sequences in
A is atmost 10t/δK · |D|t ≤ δ/2. Therefore, the probability of good sequences in A′ is at least
(1− 3δ/2)(1− δ/2) ≥ 1− 2δ. That is, A′ is a (t, ε, 2δ) tester.

We introduce some Ramsey theory terminology. For any positive integer i, a finite coloring of
N(i) is a function coli : N(i) 7→ {1, . . . , C} for some finite number C. An infinite set X ⊆ N is called
monochromatic w.r.t coli if for all sets A,B ∈ X(i), coli(A) = coli(B). A k-wise finite coloring
of N is a collection of k colorings col1, . . . , colk. (Note that each coloring is over different sized
tuples.) An infinite set X ⊆ N is k-wise monochromatic if X is monochromatic w.r.t. all the coli’s.

The following is a simple variant of Ramsey’s original theorem. (We closely follow the proof of
Ramsey’s theorem as given in Chap V1, Theorem 4 of [Bol00].)

Theorem 2.5. For any k-wise finite coloring of N, there is an infinite k-wise monochromatic set
X ⊆ N.

Proof. We proceed by induction on k. If k = 1, then this is trivially true; let X be the maximum
color class. Since the coloring is finite, X is infinite. We will now iteratively construct an infinite
set of N via induction.

Start with a0 being the minimum element in N. Consider a (k − 1)-wise coloring of (N \ {a0})
col′1, . . . , col

′
k−1, where col′i(S) := coli+1(S ∪ a0). By the induction hypothesis, there exists an

infinite (k − 1)-wise monochromatic set A0 ⊆ N \ {a0} with respect to coloring col′is. That is, for
1 ≤ i ≤ k, and any set S, T ⊆ A0 with |S| = |T | = i− 1, we have coli(a0∪S) = coli(a0∪T) = C0

i ,
say. Denote the collection of these colors as a vector C0 = (C0

1 , C
0
2 , . . . , C

0
k).

4

Subsequently, let a1 be the minimum element in A0, and consider the (k − 1)-wise coloring
col′ of (A0 \ {a1}) where col′i(S) = coli+1(S ∪ {a1}) for S ⊆ A0 \ {a1}. Again, the induction
hypothesis yields an infinite (k− 1)-wise monochromatic set A1 as before, and similarly the vector
C1. Continuing this procedure, we get an infinite sequence a0, a1, a2, . . . of natural numbers, an
infinite sequence of vectors of k colors C0,C1, . . ., and an infinite nested sequence of infinite sets
A0 ⊃ A1 ⊃ A2 Every Ar contains as,∀s > r and by construction, any set ({ar} ∪ S), S ⊆ Ar,
|S| = i − 1, has color Cir. Since there are only finitely many colors, some vector of colors occurs
infinitely often as Cr1 ,Cr2 , The corresponding infinite sequence of elements ar1 , ar2 , . . . is k-wise
monochromatic.

Proof. (of Theorem 2.3) Suppose there exists a (t, ε, δ)-tester for functions f : D 7→ N. We need to
show there is a comparison-based (t, ε, 2δ)-tester for such functions.

By Claim 2.4, there is a discrete (t, ε, 2δ)-tester A. Equivalently, we have the functions qyx,σ as
described in the previous section. We now describe a t-wise finite coloring of N. Consider s ∈ [t].
Given a set A ⊆ N(s), cols(A) is a vector indexed by (y,x, σ), where y ∈ D′, x ∈ Ds, and σ is a
s-permutation, whose entry is qyx,σ(A). The domain is finite, so the number of dimensions is finite.
Since the tester is discrete, the number of possible colors entries is finite. Applying Theorem 2.5,
we know the existence of a t-wise monochromatic infinite set R ⊆ N. We have the property that
for any y,x, σ, and any two sets A,B ∈ R(s), we have qyx,σ(A) = qyx,σ(B). That is, the algorithm A
is a comparison based tester for functions with range R.

Consider the strictly monotone map φ : N 7→ R, where φ(b) is the bth element of R in sorted
order. Now given any function f : D 7→ N, consider the function φ ◦ f : D 7→ R. Consider an
algorithm A′ which on input f runs A on φ ◦ f . More precisely, whenever A queries a point x, it
gets answer φ ◦ f(x). Observe that if f is monotone (or ε-far from monotone), then so is φ ◦ f ,
and therefore, the algorithm A′ is a (t, ε, 2δ)-tester of φ ◦ f . Since the range of φ ◦ f is R, A′ is
comparison-based.

3 Lower bounds

We assume that n is a power of 2, set ` := log2 n, and think of [n] as {0, 1, . . . , n − 1}. For any
number 0 ≤ z < n, we think of the binary representation as z as an `-bit vector (z1, z2, . . . , z`),
where z1 is the least significant bit.

Consider the following canonical, one-to-one mapping φ : [n]d 7→ {0, 1}d`. For any ~y =
(y1, y2, . . . , yd) ∈ [n]d, we concatenate their binary representations in order to get a d`-bit vec-
tor φ(~y). Hence, we can transform a function f : {0, 1}d` 7→ N into a function f̃ : [n]d 7→ N by
defining f̃(~y) := f(φ(~y)).

We will now describe a distribution of functions over the boolean hypercube with equal mass
on monotone and ε-far from monotone functions. The key property is that for a function drawn
from this distribution, any deterministic comparison based algorithm errs in classifying it with
non-trivial probability. This property will be used in conjunction with the above mapping to get
our final lower bound.

3.1 The hard distribution

We focus on functions f : {0, 1}m 7→ N. (Eventually, we set m = d`.) Given any x ∈ {0, 1}m, we
let val(x) :=

∑m
i=1 2i−1xi denote the number for which x is the binary representation. Here, x1

denotes the least significant bit of x.

5

For convenience, we let ε be a power of 1/2. For k ∈ {1, . . . , 1
2ε}, we let

Sk := {x : val(x) ∈ [2(k − 1)ε2m, 2kε2m − 1) }.

Note that Sk’s partition the hypercube, with each |Sk| = ε2m+1. In fact, each Sk is a subhypercube
of dimension m′ := m + 1 − log(1/ε), with the minimal element having all zeros in the m′ least
significant bits, and the maximal element having all ones in those.

We describe a distribution Fm,ε on functions. The support of Fm,ε consists f(x) = 2val(x),

and m′

2ε functions indexed as gj,k with j ∈ [m′] and k ∈ [1
2ε], defined as follows.

gj,k(x) =

{
2val(x)− 2j − 1 if xj = 1 and x ∈ Sk
2val(x) otherwise

The distribution Fm,ε puts probability mass 1/2 on the function f = 2val and ε
m′ on each of

the gj,k’s. All these functions take distinct values on their domain. Note that 2val induces a total
order on {0, 1}m.

The distinguishing problem: Given query access to a random function f from Fm,ε, we want
a deterministic comparison-based algorithm that declares that f = 2val(x) or f 6= 2val(x). We
refer to any such algorithm as a distinguisher. Naturally, we say that the distinguisher errs on f if
it’s declaration is wrong. Our main lemma is the following.

Lemma 3.1. Any deterministic comparison-based distinguisher that makes less than m′

8ε queries
errs with probability at least 1/8.

The following proposition allows us to focus on non-adaptive comparison based testers.

Proposition 3.2. Given any deterministic comparison-based distinguisher A for Fm,ε that makes
at most t queries, there exists a deterministic non-adaptive comparison-based distinguisher A′ mak-
ing at most t queries whose probability of error on Fm,ε is at most that of A.

Proof. We represent A as a comparison tree. For any path in A, the total number of distinct domain
points involved in comparisons is at most t. Note that 2val(x) is a total order, since for any x, y
either val(x) < val(y) or vice versa. For any comparison in A, there is an outcome inconsistent
with this ordering. (An outcome “f(x) < f(y)” where val(x) > val(y) is inconsistent with the
total order.) We construct a comparison tree A′ where we simply reject whenever a comparison is
inconsistent with the total order, and otherwise mimics A. The comparison tree of A′ has an error
probability at most that of A (since it may reject a few f 6= 2val), and is just a path. Hence, it
can be modeled as a non-adaptive distinguisher. We query upfront all the points involving points
on this path, and make the relevant comparisons for the output.

Combined with Proposition 3.2, the following lemma completes the proof of Lemma 3.1.

Lemma 3.3. Any deterministic, non-adaptive, comparison-based distinguisher A making fewer
than t ≤ m′

8ε queries, errs with probability at least 1/8.

Proof. Let X be the set of points queried by the distinguisher. Set Xk =: X ∩ Sk; these form a
partition of X. We say that a pair of points (x, y) captures the (unique) coordinate j, if j is the
largest coordinate where xj 6= yj . (By largest coordinate, we refer to the value of the index.) For
a set Y of points, we say Y captures coordinate j if there is a pair in Y that captures j.

Claim 3.4. For any j, k, if the algorithm distinguishes between val and gj,k, then Xk captures j.

6

Proof. If the algorithm distinguishes between val and gj,k, there must exist (x, y) ∈ X such that
val(x) < val(y) and gj,k(x) > gj,k(y). We claim that x and y capture j; this will also imply they
lie in the same Sk′ since the m− j most significant bit of x and y are the same.

Firstly, observe that we must have yj = 1 and xj = 0; otherwise, gj,k(y)− gj,k(x) ≥ 2(val(y)−
val(x)) > 0 contradicting the supposition. Now suppose (x, y) don’t capture j implying there
exists i > j which is the largest coordinate at which they differ. Since val(y) > val(x) we have
yi = 1 and xj = 0. Therefore, we have

gj,k(y)− gj,k(x) ≥ 2(val(y)− val(x))− 2j − 1 ≥ (2i + 2j)−
∑

1≤r<i
2r − 2j − 1 > 0.

So, x, y capture j and lie in the same Sk′ . If k′ 6= k, then again gj,k(y) − gj,k(x) = 2(val(y) −
val(x)) > 0. Therefore, Xk captures j.

The following claim allows us to complete the proof of the lemma.

Claim 3.5. A set Y captures at most |Y | − 1 coordinates.

Proof. We prove by induction on |Y |. When |Y | = 2, this is trivially true. Otherwise, pick the
largest coordinate j captured by Y and let Y0 = {y : yj = 0} and Y1 = {y : yj = 1}. By induction,
Y0 captures at most |Y0| − 1 coordinates, and Y1 captures at most |Y1| − 1 coordinates. Pairs
(x, y) ∈ Y0 × Y1 only capture coordinate j. Therefore, the total number of captured coordinates is
at most |Y0| − 1 + |Y1| − 1 + 1 = |Y | − 1.

If |X| ≤ m′/8ε, then there exist at least 1/4ε values of k such that |Xk| ≤ m′/2. By Claim 3.5,
each such Xk captures at most m′/2 coordinates. Therefore, there exist at least 1

4ε ·
m′

2 = m′

8ε
functions gj,k’s that are indistinguishable from the monotone function 2val to a comparison-based
procedure that queries X. This implies the distinguisher must err (make a mistake on either these
gj,k’s or 2val) with probability at least min(ε

m′ ·
m′

8ε , 1/2) = 1/8.

3.2 The final bound

Recall, given function f : {0, 1}d` 7→ N, we have the function f̃ : [n]d 7→ N by defining f̃(~y) :=
f(φ(~y)). We start with the following observation.

Proposition 3.6. The function 2̃val is monotone and every g̃j,k is ε/2-far from being monotone.

Proof. Let ~u and ~v be elements in [n]d such that ~u ≺ ~v. We have val(φ(~u)) < val(φ(~v)), so 2̃val
is monotone. For the latter, it suffices to exhibit a matching of violated pairs of cardinality ε2d`

for g̃j,k. This is given by pairs (~u,~v) where φ(~u) and φ(~v) only differ in their jth coordinate, and
are both contained in Sk. Note that these pairs are comparable in [n]d and are violations.

Theorem 3.7. Any (t, ε/2, 1/16)-monotonicity tester for f : [n]d 7→ N, must have t ≥ d logn−log(1/ε)
8ε .

Proof. By Theorem 2.3, it suffices to show this for comparison-based (t, ε/2, 1/8) testers. By Yao’s
minimax lemma, it suffices to produce a distribution D over functions f : [n]d 7→ N such that
any deterministic comparison-based (t, ε/2, 1/8)-monotonicity tester for D must have t ≥ s, where

s := d logn−log(1/ε)
8ε .

Consider the distribution D where we generate f from Fm,ε and output f̃ . Suppose t < s. By
Proposition 3.6, the deterministic comparison based monotonicity tester acts as a determinisitic
comparison-based distinguisher for Fm,ε making fewer than s queries, contradicting Lemma 3.3.

7

4 Conclusion

In this paper, we exhibit a lower bound of Ω(ε−1d log n − ε−1 log ε−1) queries on adaptive, two-
sided monotonicity testers for functions f : [n]d 7→ N, matching the upper bound of O(ε−1d log n)
queries of [CS13]. Our proof hinged on two things: that for monotonicity on any partial order
one can focus on comparison-based testers, and a lower bound on comparison-based testers for the
hypercube domain. Some natural questions are left open. Can one focus on some restricted class
of testers for the Lipschitz property, and more generally, can one prove adaptive, two-sided lower
bounds for the Lipschitz property testing on the hypergrid/cube? Currently, a Ω(d log n)-query
non-adaptive lower bound is known for the problem [BRY13]. Can one prove comparison-based
lower bounds for monotonicity testing on a general N -vertex poset? For the latter problem, there

is a O(
√
N/ε)-query non-adaptive tester, and a Ω(N

1
log logN)-query non-adaptive, two-sided error

lower bound [FLN+02]. Our methods do not yield any results for bounded ranges, but there are
significant gaps in our understanding for that regime. For monotonicity testing of boolean functions
f : {0, 1}n 7→ {0, 1}, the best adaptive lower bound of Ω(log n), while the best non-adaptive bound
is Ω(

√
n) [FLN+02].

References

[AC06] N. Ailon and B. Chazelle. Information theory in property testing and monotonicity
testing in higher dimension. Information and Computation, 204(11):1704–1717, 2006.
2

[ACCL06] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a mono-
tone function. Random Structures and Algorithms, 31(3):1704–1711, 2006. 2

[BBM12] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012. 2

[BCGSM12] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah. Monotonicity testing
and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012. 2

[Bol00] Béla Bollobás. Modern Graph Theory. Springer, 2000. 4

[Bro13] Joshua Brody. Personal communication, 2013. 2

[BRW05] T. Batu, R. Rubinfeld, and P. White. Fast approximate PCP s for multidimensional
bin-packing problems. Information and Computation, 196(1):42–56, 2005. 2

[BRY13] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev. Lower bounds for testing properties
of functions on hypergrid domains. Technical Report TR13-036, ECCC, March 2013.
2, 8

[CS13] D. Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings of Symposium on Theory of
Computing (STOC), 2013. 2, 8

[DGL+99] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky.
Improved testing algorithms for monotonicity. Proceedings of the 3rd International
Workshop on Randomization and Approximation Techniques in Computer Science
(RANDOM), pages 97–108, 1999. 2

8

[EKK+00] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers.
Journal of Computer Systems and Sciences (JCSS), 60(3):717–751, 2000. 2

[Fis04] E. Fischer. On the strength of comparisons in property testing. Information and
Computation, 189(1):107–116, 2004. 2, 3

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorod-
nitsky. Monotonicity testing over general poset domains. In Proceedings of the 34th
Annual ACM Symposium on the Theory of Computing (STOC), pages 474–483, 2002.
2, 8

[GGL+00] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing
monotonicity. Combinatorica, 20:301–337, 2000. 1, 2

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998. 1

[HK08] S. Halevy and E. Kushilevitz. Testing monotonicity over graph products. Random
Structures and Algorithms, 33(1):44–67, 2008. 2

[LR01] E. Lehman and D. Ron. On disjoint chains of subsets. Journal of Combinatorial
Theory, Series A, 94(2):399–404, 2001. 2

[PRR06] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approx-
imation. Journal of Computer and System Sciences, 6(72):1012–1042, 2006. 2

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal of Computing, 25:647–668, 1996. 1

9

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

