
Non-autoreducible Sets for NEXP

Dung T. Nguyen∗ Alan L. Selman †

April 19, 2013

Abstract

We investigate autoreducibility properties of complete sets for NEXP under different
polynomial reductions. Specifically, we show under some polynomial reductions that there
is are complete sets for NEXP that are not autoreducible. We obtain the following results:

• There is a ≤p
tt -complete set for NEXP that is not ≤p

btt -autoreducible.

• For any positive integers s and k such that 2s − 1 > k, there is a ≤p
s−T -complete set

for NEXP that is not ≤p
k−tt -autoreducible.

• There is a Turing complete set for NEXP that is not ≤p
tt -autoreducible.

• For any positive integer k, there is a ≤p
k−tt -complete set for NEXP that is not weakly

≤p
k−tt -autoreducible.

• There is a ≤p
3−tt -complete set for NEXP that is not ≤p

3−tt -autoreducible, given that
the autoreduction cannot be allowed to ask a query too short or too long.

• Relative to some oracle, there is a ≤p
2−T -complete set for NEXP that is not ≤p

T -
autoreducible.

• Relative to some oracle, there is a ≤p
m -complete set for NEXP that is not ≤p

NOR−tt -
autoreducible.

We will show that settling the question whether every ≤p
dtt -complete set for NEXP is

≤p
NOR−tt -autoreducible either positively or negatively would lead to major results about the

exponential time complexity classes.

1 Introduction

Autoreducibility was first introduced by Trakhtenbrot [9] in a recursion theoretic setting. A
set A is autoreducible if A is reducible to A via an oracle Turing machine M such that M
never queries x on input x. Ambos-Spies [1] introduced the polynomial-time variant of autore-
ducibility, where the oracle Turing machine now runs in polynomial time. In this paper, we
focus on the autoreducibility in this setting. Moreover, each notion of reduction induces the
corresponding notion of autoreducibility.

The question of whether complete sets for various classes are polynomial-time autoreducible
has been studied extensively. Over many years, many results about the autoreducibility of
complete sets of different classes have been discovered. Glaßer et al. [5] showed that all m-
complete sets of the following complexity classes are many-one autoreducible: NP, PSPACE,
EXP, NEXP, ΣP

k , ΠP
k , and ∆P

k+1 for k ≥ 1. Beigel and Feigenbaum [8] showed that Turing com-

plete sets for the classes that form the polynomial-time hierarchy, ΣP
k , ΠP

k , and ∆P
k , are Turing

∗University at Buffalo, The State University of New York, dtn3@buffalo.edu
†University at Buffalo, The State University of New York, selman@buffalo.edu

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 63 (2013)



autoreducible. Also, all Turing complete sets for NP are Turing autoreducible. So studying au-
toreducibility is an interesting research area and in some cases, it turns out that resolving some
open questions would lead to major class separation results. Buhrman et al. [2] proved various
autoreducibility results for many different complexity classes and demonstrated strong evidence
that studying the structural property of the complete sets, especially the autoreducibility prop-
erty, might be an important tool to separate the complexity classes. For example, if there exists
a Turing complete set of NEXP that is not Turing autoreducible, then EXP is different from
NEXP.

With this motivation in mind, we study autoreducibility questions for NEXP. Buhrman
et al. [2] extensively studied autoreducibility for EXP. Especially, for EXP, it is known that
under many-one, 1-tt, 2-tt, and Turing reductions, all complete sets for EXP are autoreducible.
Also for any k ≥ 3, under ≤p

k−tt -reduction, there exists a complete set for EXP that is not
autoreducible. For NEXP, it is known that all many-one complete sets are autoreducible.
Moreover, Glaßer et al. [4] took a next step to show that under 2-tt, disjunctive-truth-table,
and conjunctive-truth-table reductions, all complete sets for NEXP are autoreducible. We make
progress in this paper by proving non-autoreducibility of complete sets for NEXP under some
polynomial-time reductions. In particular, we will show that

• there is a ≤p
tt -complete set for NEXP that is not ≤p

btt -autoreducible.

• there is a ≤p
T -complete set for NEXP that is not ≤p

tt -autoreducible.

• there is a ≤p
3−tt -complete set for NEXP that is not poly-honest ≤p

3−tt -autoreducible.1

• for any positive integer k, there is a ≤p
k−tt -complete set for NEXP that is not weakly

≤p
k−tt -autoreducible.

This paper is organized as follows. Section 2 contains notation and definitions about many
different polynomial-time reductions and autoreducibilities. In section 3, the diagonalization
technique is extensively exploited together with other tricks to obtain the non-autoreducibility
results for many different complete sets in NEXP. We prove in Section 4 that settling the ques-
tion whether every ≤p

dtt -complete for NEXP is ≤p
NOR−tt -autoreducible would lead to important

results about the exponential time complexity classes. In section 5, we will show negative results
in relativized worlds for some open questions.

2 Preliminaries

Most of the notations and definitions are standard[7]. Strings are elements of {0, 1}∗. For every
string x, denote |x| to be a length of x. For every Turing machine M , L(M) denotes the language
accepted by the machine M . We denote MA to be an oracle Turing machine M that accesses
to the oracle B. Also for every input x, denote M(x) to be the outcome of the computation of
M on input x; i.e., M(x) = 1 if and only if M accepts input x. We assume that the pairing
function 〈. . .〉 is a one-to-one, polynomial computable function that can take any finite number
of inputs and its range does not intersect with 0∗. For every set A, the characteristic function
of A is denoted by A; that is, A(x) = 1 if x ∈ A and A(x) = 0 otherwise. Also |A| denotes the
cardinality of A.

For any two sets A and B, A is Turing-reducible to B in polynomial time, A≤p
TB, if

there exists a deterministic polynomial-time-bounded oracle Turing machine M such that A =
L(MB). In this paper, if we do not mention explicitly the running time of a reduction, then

1All definitions to follow.

2



that reduction is a polynomial time reduction. The reduction is nonadaptive, A≤p
ttB, if the

queries are independent of the oracle and so they do not depend on the answers to the previous
queries. Other notions of reductions are also considered. A set A is k-truth-table-reducible
to B, A≤p

k−tt , if there exists a nonadaptive oracle Turing machine MB that accepts A such

that for any input x, the computation of MB on input x asks no more than k queries. A
set A is bounded-truth-table-reducible to B, A≤p

bttB, if there exists some integer k such that
A≤p

k−ttB. A set A is disjunctive-truth-table reducible to B in polynomial time, A≤p
dttB, if

there exists a polynomial computable function f such that for any x, f(x) = 〈q1, . . . , qk〉, and
x ∈ A ⇐⇒ A(q1)∨ · · · ∨A(qk) = 1. Similarly, a set A is conjunctive-truth-table reducible to B
in polynomial time, A≤p

cttB if there exists a polynomial computable function f such that for any
x, f(x) = 〈q1, . . . , qk〉, and x ∈ A ⇐⇒ A(q1)∧· · ·∧A(qk) = 1. Other notions ≤p

k−dtt and ≤p
k−ctt

are defined analogously. For any k-ary Boolean function α, a set A is α-truth-table reducible to
B in polynomial time, A≤p

αttB, if there exists a polynomial time computable function f such
that for any x, f(x) = 〈q1, . . . , qk〉, and x ∈ A ⇐⇒ α(A(q1), . . . , A(qk)) = 1.

For any oracle Turing machine MB, let Q(MB, x) denote the set of all queries of the com-
putation of MB on input x.

EXP =
⋃
{DTIME(2p(n))|p is a polynomial} is the class of languages that can be decided

by a deterministic Turing machine in exponential time
NEXP =

⋃
{NTIME(2p(n))|p is a polynomial} is the class of languages that can be decided

by a nondeterministic Turing machine in exponential time

Definition 2.1. Autoreducibility For any reduction ≤, a set A is ≤-autoreducible if A ≤
A via an oracle Turing machine MA such that for any x, x /∈ Q(MA, x). We call M an
autoreduction of A by ≤-reduction. The reduction ≤ can apply to any reductions, specifically,
all those that we mention above, such as ≤p

T ,≤
p
tt ,≤

p
k−tt ,≤

p
dtt , etc.

Definition 2.2. Polynomial-honest reduction Given any two sets A and B and an arbitrary
number c, we define a truth-table polynomial honest reduction ≤p

tt−h−c as follows: A≤p
tt−h−cB

if there exists a nonadaptive Turing machine M with the oracle B such that MB accepts x if
and only if x ∈ A and for any input x, all queries q made to the oracle B have length satisfying
|x|1/c ≤ |q| ≤ |x|c

Definition 2.3. NOR-reduction Given any two sets A and B, we define a NOR-truth-table
reduction ≤p

NOR−tt as follows: A≤p
NOR−ttB if there exists a nonadaptive Turing machine M

with the oracle B such that for any input x, letting q1, . . . , qk be all queries of MB on input x,
then x ∈ A ⇐⇒ q1 /∈ B ∧ · · · ∧ qk /∈ B.

Definition 2.4. Weak-reduction Given any two sets A and B, we define a weak truth-table
reduction ≤p

tt−w as follows: A≤p
tt−wB if and only if there exist two polynomial computable

functions f and g such that for any input x, f(x) = 〈q1, . . . , qk〉, g(x) = h(α1, . . . αk) is a
boolean function such that h is neither an OR nor a NOR boolean function, and x ∈ A ⇐⇒
h(B(q1), . . . , B(qk)) = 1.

3 Non-autoreducible sets for NEXP

Buhrman and Torenvliet [3] showed that there is a ≤p
tt -complete set for EXP that is not ≤p

btt

autoreducible. Homer [6] and Watanabe[10] obtained several results about separating the no-
tions of reductions in complexity classes EXP and NEXP. Based on their ideas, we have the
following autoreducibility results for NEXP.

Theorem 3.1. There is a ≤p
tt -complete set for NEXP that is not ≤p

btt autoreducible.

3



Algorithm 1 Thm 3.1. B’s construction at stage n. It will encode all strings x of length
between yn−1n−1 + 1 and ynn such that x ∈ K into B. Also diagonalize against Mm

1: Compute m and k such that n = 〈m, k〉
2: Compute Q← Q(MB

m , 0
yn)

3: f ← true . Boolean variable to determine whether the diagonalization step is needed here
4: if |Q| > k then
5: Q← ∅
6: f ← false . Because the number of queries is more than k, no diagonalization is needed

7: for every string x, yn−1n−1 < |x| ≤ ynn do . Encoding K into B
8: for every string j, |j| = dlog |x|e do
9: if 〈x, j〉 /∈ Q and x ∈ K then

10: B ← B ∪ {〈x, j〉}
11: if f is true then
12: if (MB

m rejects 0yn) then
13: B ← B ∪ {0yn} . Diagonalize against Mn using the string 0yn

Proof.
We assume a polynomial-time computable one-to-one pairing function that can take any

finite number of inputs such that its range does not intersect with 0∗.
Let {Mj}j≥1 be an enumeration of all polynomial-time bounded truth-table reductions.
Let {NEXPi}i≥1 be an enumeration of all nondeterministic exponential time oracle Turing

machines.
For each j ≥ 1, assume that the computations of Mj and NEXPj on input x have the

running times that are bounded by |x|j and 2|x|
j
, respectively.

Let K = {〈i, x, l〉 | NEXPi accepts input x within l steps} be a canonical complete set for
NEXP.

We will construct a set B with the following property
x ∈ K ⇐⇒ there exists a string j, |j| = dlog |x|e and 〈x, j〉 ∈ B
which ensure that K≤p

ttB, and we need B ∈ NEXP. So B is ≤p
tt -complete set for NEXP.

We also need a set B such that for any n ≥ 1, the following property holds
0y

n ∈ B ⇐⇒ MB
m rejects input 0y

n
(value of yn and m will be chosen later in the proof)

which ensures that Mn is not an autoreduction of B. Then we can conclude that B is not
autoreducible for NEXP.

We will construct the set B in stages. In each stage, we will encode K into B and diagonalize
all ≤p

btt -reductions using the string 0yn simultaneously to obtain those above two properties.
Before going into detail of how the set B is constructed, let’s define the sequence {yn}n≥0

such that y0 = 1 and yn+1 = 2y
n
n + 1 for every n ≥ 0.

The set B is constructed in each stage as follows.

• Initially we set B = ∅.

• At stage n, suppose that the set B has been already constructed such that all strings x of
length up to yn−1n−1 and x ∈ K are all encoded into B appropriately. In this stage, we will

encode all strings of length between yn−1n−1 + 1 and ynn. The Algorithm 1 describes how B
is constructed in this stage.

Lemma 3.1. K≤p
ttB.

4



Proof.
Refer to the Algorithm 1, for all strings x such that x /∈ K, for every string j of length

dlog |x|e, the string 〈x, j〉 is not added to B. So to prove K≤p
ttB, we just need to prove that for

every string x ∈ K, one of strings 〈x, j〉, |j| = dlog |x|e, is added to B.
For any string x in K, denote n be the integer such that yn−1n−1 < |x| ≤ ynn. We have the

following facts:
2dlog |x|e ≥ |x| > yn−1n−1 ≥ n ≥ k ≥ |Q|
So there exists a string j of length dlog |x|e such that 〈x, j〉 /∈ Q. Refer to the line 9 in the

Algorithm 1, the string 〈x, j〉 is added to B and then satisfies the truth-table reduction from K
to B

So K≤p
ttB. �

Lemma 3.2. B ∈ NEXP

Proof.
The Algorithm 2 decides B correctly and it is consistent to the B’s construction in the

Algorithm 1.
Now we will analyze the running time of the Algorithm 2
Running-time Analysis:
Notice that in the Algorithm 2, most of the steps can easily be done in exponential time.

We will consider some interesting steps below:

• Line 17: Notice that checking whether q ∈ B can be done nondeterministically in 2|x|

where q = 〈x, j〉. So it can be checked deterministically in no more than 22
|x|

. Also

|x| ≤ yn−1n−1, so the running time will be at most 22
yn−1
n−1

< 2yn = 2|b|.

• Line 30 and Line 38: It can be done nondeterministically in exponential time in terms of
|x| by simulating the Turing machine to accept K on input x.

So B ∈ NEXP. �

Lemma 3.3. B is not ≤p
btt -autoreducible.

Proof. Suppose that B is ≤p
btt -autoreducible, then there is some number m such that

B≤p
bttB by the autoreduction MB

m . Because Mm is ≤p
btt -reduction, denote k be a number such

that for any input x, the number of queries made in the computation of MB
m on input x is no

more than k. Then consider the computation of MB
m on input 0yn , where n = 〈m, k〉. By B’s

construction in the Algorithm 1, MB
m accepts 0yn if and only if 0yn /∈ B. But that contradicts

to the fact that Mm is the reduction from B to itself.
So B is not ≤p

btt -autoreducible. �

Conclusion: By Lemma 3.1, Lemma 3.2, and Lemma 3.3, B is the ≤p
tt -complete set for

NEXP that is not ≤p
btt -autoreducible. �

As we can see the strategy used in the above proof, for every string x in K that we want
to encode into B, we can encode by one of the strings 〈x, 0〉, 〈x, 1〉, etc. It is easy to see that
in the above proof we have more options to encode than the number of queries of Mn on input
0yn ; i.e. there exists an i such that 〈x, i〉 is not a query and then we can encode x in K by 〈x, i〉
in B and so it does not affect the computation of MB

n on input 0yn . In the following theorem,

5



Algorithm 2 Thm 3.1. Algorithm to decide B

Require: An input string b
Ensure: Return YES if b ∈ B. Otherwise, return NO

1: if (b = 0∗) then
2: Compute n such that |b| = yn
3: if no n exists then
4: Return NO
5: else
6: Compute integers m and k such that n = 〈m, k〉
7: Compute Q← Q(MB

m , 0
yn)

8: if |Q| > k then
9: Return NO

10: else
11: Simulate the Turing machine MB

m on input 0yn

12: for every query q do
13: Compute x and j such that q = 〈x, j〉. . If no x and j are found, the

answer is NO
14: if |x| > yn−1n−1 then
15: Answer NO
16: else
17: Call recursively this function to check whether q ∈ B.

18: if MB
m accepts 0yn then

19: Return NO
20: else
21: Return YES
22: else
23: Compute x and j such that b = 〈x, j〉, |j| = dlog |x|e
24: if no such x and j then
25: Return NO
26: Compute n such that yn−1n−1 < |x| ≤ ynn
27: Compute integers m and k such that n = 〈m, k〉.
28: Compute Q← Q(MB

m , 0
yn)

29: if |Q| > k then
30: if x ∈ K then
31: Return YES
32: else
33: Return NO
34: else
35: if b ∈ Q then
36: Return NO
37: else
38: if x ∈ K then
39: Return YES
40: else
41: Return NO

6



we have a slightly different situation in which options to encode are adaptive, so if we want to
construct B such that K≤p

2−TB, we can encode every x in K by using two options out of three
possible options to encode into B.

Theorem 3.2. There is a ≤p
2-T -complete set for NEXP that is not ≤p

2-tt -autoreducible.

Proof.
Let {Mj}j≥1 be an enumeration of all ≤p

2-tt reductions.
Let {NEXPi}i≥1 be an enumeration of all nondeterministic exponential time oracle Turing

machines.
For each j ≥ 1, assume that the running times of computations of Mj and NEXPj on input

x are bounded by |x|j and 2|x|
j
, respectively.

Let K = {〈i, x, l〉 | NEXPi accepts input x within l steps } be a canonical complete set for
NEXP.

We will construct a set B such that K≤p
2-TB but B is not ≤p

2-tt -autoreducible.

Algorithm 3 Thm 3.2. ≤p
2−T Algorithm that reduces K to B

Require: An input string x
Ensure: Return YES if x ∈ K. Otherwise, return NO

1: if 〈x, 00〉 ∈ B then
2: if 〈x, 01〉 ∈ B then
3: Return YES
4: else
5: Return NO
6: else
7: if 〈x, 10〉 ∈ B then
8: Return YES
9: else

10: Return NO

The ≤p
2-T reduction from K to B is described in the Algorithm 3. During the B’s construc-

tion, we try to maintain that property to make sure that this ≤p
2−T -reduction from K to B

is correct. At the same time, we need to diagonalize all ≤p
2−tt -reductions Mn to make B not

autoreducible.
Let’s define the sequence {yn}n≥0 such that y0 = 1 and yn+1 = 2y

n
n + 1 for every n ≥ 0.

The set B is constructed in each stage as follows.

• Initially we set B = ∅.

• At stage n, suppose that the set B has been constructed in the way that all strings of length
up to yn−1n−1 are all encoded into B appropriately to make the reduction in Algorithm 3

works. In this stage, we will encode all strings of length between yn−1n−1 + 1 and ynn into B.
The construction is described in the Algorithm 4.

Refer to the B’s construction in the Algorithm 4, to see that K≤p
2−TB, we will show that

the property that is described in the Algorithm 3 is maintained:
For any x, consider the following cases in the Algorithm 4

• Line 7 : Because 〈x, 00〉 is not put into B and then 〈x, 10〉 ∈ B ⇐⇒ x ∈ K. So the
reduction in Algorithm 3 is correct with this input.

7



Algorithm 4 Thm 3.2. B’s construction at stage n.

Ensure: Encoding all strings x such that yn−1n−1 + 1 ≤ |x| ≤ ynn into B to make the reduction
algorithm 3 correct. Also diagonalize Mn using the string 0yn

1: Compute Q← Q(MB
n , 0

yn)
2: Compute P ← {x||x| > yn−1n−1 and 〈x, a〉 ∈ Q for some a ∈ {00, 01, 10}}
3: for every x ∈ P do
4: Compute P x ← {〈x, a〉|x ∈ P and a ∈ {00, 01, 10}}
5: for every x in P do
6: if P x = {q1, q2} then
7: if q1 = 〈x, 00〉 and q2 = 〈x, 01〉 then
8: if x ∈ K then
9: B ← B ∪ {〈x, 10〉} . Don’t put 〈x, 00〉 and 〈x, 01〉 into B, then
x ∈ K ⇐⇒ 〈x, 10〉 ∈ B

10: if q1 = 〈x, 00〉 and q2 = 〈x, 10〉 then
11: B ← B ∪ {〈x, 00〉}
12: if x ∈ K then
13: B ← B ∪ {〈x, 01〉}
14: if q1 = 〈x, 01〉 and q2 = 〈x, 10〉 then
15: B ← B ∪ {〈x, 01〉}
16: if x ∈ K then
17: B ← B ∪ {〈x, 00〉}
18: if P x = {q} then
19: if q = 〈x, 00〉 or q = 〈x, 01〉 then
20: if x ∈ K then
21: B ← B ∪ {〈x, 10〉}
22: if q = 〈x, 10〉 then
23: B ← B ∪ {〈x, 00〉}
24: if x ∈ K then
25: B ← B ∪ {〈x, 01〉}
26: for every string x such that yn−1n−1 + 1 ≤ |x| ≤ ynn and x /∈ P do . Encoding all remaining

strings
27: if x ∈ K then
28: B ← B ∪ {〈x, 10〉} . Because 〈x, 00〉 /∈ B, x ∈ K ⇐⇒ 〈x, 10〉 ∈ B
29: if MB

n rejects 0yn then . diagonalization step
30: B ← B ∪ {0yn}

8



• Line 14: If x ∈ K then 〈x, 00〉 is put into B. And also 〈x, 01〉 ∈ B. So it is correct. If
x /∈ K, then 〈x, 00〉 is not put into B; that also means, 〈x, 10〉 is used to determine x ∈ K
or not. And by the construction, 〈x, 10〉 /∈ B. So it is correct.

• Line 26: Because 〈x, 00〉 is not put into B, 〈x, 10〉 is used to encode whether x ∈ K. And
the construction in this case reflects correctly.

The following lemma claims the time complexity of B

Lemma 3.4. B ∈ NEXP.

Proof. Obviously B only contains elements of the following forms: 0y
n
, 〈y, 00〉, 〈y, 01〉, and

〈y, 10〉.
Given an input b, to decide whether b ∈ B, we consider the following cases:

• b = 0y
n
: Simulate the Turing machine Mn on input 0y

n
while resolving all queries the

same way as how B is constructed in the above algorithm.

Accept b ⇐⇒ Mn rejects 0y
n
.

• b is of the forms 〈x, 00〉, 〈x, 01〉, or 〈x, 10〉: Reverse direction from how B is constructed.

All operations can be done deterministically in exponential time; except checking whether
x is in K that can be done nondeterministically in exponential time.

So B ∈ NEXP. �

So B is the ≤p
2−T -complete set for NEXP. And also by the way B is constructed, it is easy

to see that B is not ≤p
2−tt -autoreducible.

�

Notice that Glaßer et al. [4] showed that every ≤p
2−tt -complete set for NEXP is ≤p

2−tt -
autoreducible. So this theorem is somehow “tight” and also we have the following corollary
that separates the notions of ≤p

2-T and ≤p
2-tt .

Corollary 3.1. There is a ≤p
2-T -complete set for NEXP that is not ≤p

2-tt complete.

By using a similar technique, Theorem 3.2 can be generalized to show the following:

Theorem 3.3. For any positive integers s and k such that 2s−1 > k, there is a ≤p
s-T -complete

set for NEXP that is not ≤p
k-tt -autoreducible.

Proof.
Let {Mj}j≥1 be an enumeration of all ≤p

k-tt reductions.
Let {NEXPi}i≥1 be an enumeration of all nondeterministic exponential time oracle Turing

machines.
For each j ≥ 1, assume that the running time of Mj and NEXPj are bounded by nj and

2n
j
, respectively.
Let K = {〈i, x, l〉 | NEXPi accepts input x within l steps } be a canonical complete set for

NEXP.
We will construct a set B such that K≤p

s-TB but B is not ≤p
k-tt -autoreducible.

The ≤p
s-T reduction from K to B will be as follows: we build a full binary tree of height

s. This tree has exactly 2s − 1 nodes. We number the nodes from top to down, left to right
by using numbers 0, 1, . . . , 2s − 1; i.e. the root node will be numbered 0, then its two children
nodes will be 1 and 2, etc. Then for any string x, each node i will be labeled by the pair 〈x, i〉.

9



From now on, for every such x, we denote T (x) is such a query tree and for every node N , N
is referred as a node itself or its label interchangeably. Also for any two nodes N1 and N2 such
that one node is an ancestor of another node, denote P(N1,N2) be a unique path from N1 to
N2. For every node N , denote the left path L(N ) be a path from N to a leaf node by just
traversing left. The right path R(N ) is defined similarly. Those labels are possible queries that
can be asked to the oracle B by this reduction. Specifically, start at the root node, and if the
current query is the node N , if the answer is YES, N ∈ B, then the next query will be N ’s left
child node; otherwise the right child node will be asked. The reduction accepts if and only if
the last query (certainly, it is one of the leaf nodes) belongs to B.

So now we will try to construct such a set B that satisfies the above reduction. At the same
time, we want to diagonalize all Mn such that Mn accepts 0yn if and only if 0yn /∈ B. yn will
be defined formally as follows:

Define the sequence {yn}n≥0 such that y0 = 1 and yn+1 = 2y
n
n + 1 for every n ≥ 0.

The set B is constructed in each stage as follows.
Initially we set B = ∅.
At stage n, suppose that the set B has been constructed such that all strings of length up to

yn−1n−1 have already been encoded into B appropriately to make the above reduction work. We

will encode all strings of length between yn−1n−1 + 1 and ynn into B in this stage.
Compute Q that is the set of all queries q of Mn on input 0yn such that q = 〈x, i〉, i ≤ 2s−1,

and yn−1n−1+1 ≤ |x| ≤ ynn. Denote P be the set of all x such that 〈x, i〉 ∈ Q for some 0 ≤ i ≤ 2s−1.
And for each x ∈ P , denote P x be the set of all 〈x, i〉 such that 〈x, i〉 ∈ Q and 0 ≤ i ≤ 2s − 1.

For each x in P , consider the set P x. Notice that |P x| ≤ k < 2s − 1. Consider the query
tree T (x)

• Case 1: If all leaf nodes are in P x then there are some internal nodes such that they are
not in Px. Denote N be the smallest node in the set of those nodes. Put N into B if and
only if x ∈ K. Also for every node N ′ in L(N ) and N ′ 6= N , add N ′ to B. Finally for
every node N ′ in the path P(Root,N ), add N ′ to B if and only if its left child node is in
the path.

• Case 2: If there are some leaf nodes that are not in P x. Denote N be the smallest node
in the set of those nodes. Add N to B if and only if x ∈ K. For every node N ′ in
P(Root,N ), add N ′ to B if and only if its left child is in that path

For every x /∈ P such that yn−1n−1 + 1 ≤ |x| ≤ ynn, put 〈x, 2s − 1〉 into B if and only if x ∈ K.
After all those steps are done, put 0yn into B if and only if MB

n rejects 0yn

That is all how B is constructed. It is straightforward to see that the construction satisfies
two properties: K≤p

s-TB and B is not ≤p
k-tt -autoreducible. The following lemma claims the

time complexity of B

Lemma 3.5. B ∈ NEXP

Proof. Notice that all elements of B have one of two forms 0∗ and 〈x, i〉 where 0 ≤ i ≤ 2s−1.
So for any input of different forms, it just rejects immediately.

Given an input b, consider the following cases:

• If b = 0yn for some n (otherwise, b /∈ B). Then by the construction above, 0yn ∈ B ⇐⇒
MB
n rejects 0yn . So if we know how to resolve all queries made to the oracle B then it is

easy to determine whether MB
n accepts 0yn in exponential time. Now notice that in the

above construction, for every query q, it can be resolved by considering the query tree and
it does not depend on the membership of some x in K. So it can be done deterministically
in exponential time.

10



• If b = 〈x, i〉 for some 0 ≤ i ≤ 2s − 1. Then just by considering the query tree T (x), there
are two cases

– The membership of b in B can be determined straightforward, based on the above
construction, and not depend on the fact that x ∈ K or not.

– b ∈ B ⇐⇒ x ∈ K. In this case, we can simulate the machine to accept K on an
input x. Notice that x and b have the same polynomial length, so it can be done
nondeterministically in exponential time.

So B ∈ NEXP
�

So B is ≤p
s−tt -complete set for NEXP that is not ≤p

k−tt -autoreducible.
�

It has been known that there is a Turing complete set for EXP that is not ≤p
tt -autoreducible

[3]. By a little trick to the proof in Theorem 3.3, we show that it also holds for NEXP.

Theorem 3.4. There is a Turing complete set for NEXP that is not ≤p
tt -autoreducible.

Proof. Using the same technique in Theorem 3.3 with a little trick, we can obtain the
above result. Notice that in this case, the Mn autoreduction will not ask just k queries on
input 0yn , but it can ask up to ynn queries, because its running time on input 0yn is bounded
by ynn. Another modification is that the reduction from K to B will now need to ask more
queries, saying |x|2 adaptive queries; that also means the query tree will have height |x|2.
With this trick in mind, in the construction algorithm of B at stage n, for every x in P ,

|P x| ≤ ynn = 2y
n−1
n−1n < 2y

2(n−1)
n−1 < 2|x|

2
. So the number of nodes in the query tree T (x) will be

bigger than the number of queries of Mn on input 0yn , so in two cases, 1 and 2, the construction
will work similarly. �

Now we consider the question whether every ≤p
3−tt -complete set for NEXP is ≤p

3−tt -
autoreducible. Notice that the above technique cannot be used because the number of options
to encode every x in K into B is no more than the number of queries of MB

n on input 0yn ; both
are equal 3 in this case. This difficulty arises because we have no “room” for the encoding and
diagonalization at the same time. We need to use a different trick and the following lemma will
help in the proof:

Lemma 3.6. Let f be any boolean function of 3 variables a1, a2, b1. Then at least one of the
following statements must be true:

• There exists a matrix A of size 4 × 3 that will be described below. Each entry is 0 or 1.
Columns are labeled a1, a2, b1 from left to right. The submatrix A[1..4, 1..2] contains 4 dis-
tinct binary rows. For every k = 1, . . . , 4, the row k satisfies the condition f(a1, a2, b1) = 1.
Also either one of the following statements must be true:

– A[b1] is constant

– A[b1] = A[c1]∧A[c2] or A[b1] = A[c1]∨A[c2] for some c1, c2 ∈ {a1, a2}. Note that c1
can be equal to c2. Here A[b1] denotes the column b1.

• There exists a matrix A of size 2 × 3 that will be described below. Each entry is 0 or
1. Columns are labeled b1, a1, a2 from left to right. The submatrix A[1..2, 1..1] contains 2
distinct binary rows. For every k = 1, 2, the row k satisfies the condition f(a1, a2, b1) = 0.
Also for every column ai, i = 1, 2, A[ai] is constant or A[ai] = A[b1].

11



The following are illustrations of possible matrices, where βi and αj are 0 or 1.


a1 a2 b1

row1 0 0 β1
row2 0 1 β2
row3 1 0 β3
row4 1 1 β4

 ( b1 a1 a2

row1 0 α1 α2

row2 1 α3 α4

)

Proof.
Given any boolean function f of 3 variables a1, a2, and b1, if ∃a1∃a2∀b1f(a1, a2, b1) = 0 then

we easily have the matrix of form 2. So now we assume that ∀a1∀a2∃b1f(a1, a2, b1) = 1. For
every a1 and a2, denote g(a1, a2) be the smallest b1 such that f(a1, a2, b1) = 1. The following 9
matrices will show most of the cases.

Fig. 1, 2, 3:
a1 a2 g(a1, a2)

0 0 0
0 1 0
1 0 0
1 1 0



a1 a2 g(a1, a2)

0 0 0
0 1 0
1 0 0
1 1 1



a1 a2 g(a1, a2)

0 0 0
0 1 0
1 0 1
1 1 0


Fig. 4, 5, 6:

a1 a2 g(a1, a2)

0 0 0
0 1 0
1 0 1
1 1 1



a1 a2 g(a1, a2)

0 0 0
0 1 1
1 0 0
1 1 0



a1 a2 g(a1, a2)

0 0 0
0 1 1
1 0 0
1 1 1


Fig. 7, 8, 9:

a1 a2 g(a1, a2)

0 0 0
0 1 1
1 0 1
1 1 0



a1 a2 g(a1, a2)

0 0 0
0 1 1
1 0 1
1 1 1



a1 a2 g(a1, a2)

0 0 1
0 1 0
1 0 0
1 1 0


Consider the following cases:

• Case 1,2,4,6,8: Correspond to Fig. 1,2,4,6,8. Straightforward.

• Case 3: Correspond to Fig. 3. If f(1, 1, 1) = 1 then matrix we need is in Fig. 4. If
f(1, 1, 1) = 0, then the following matrix is what we need:

( b1 a1 a2

row1 0 1 0
row2 1 1 1

)
• Case 5: Correspond to Fig. 5. Then obviously f(0, 1, 0) = 0. If f(1, 1, 1) = 1 then Fig.

6 is what we need. Otherwise, if f(1, 1, 1) = 0 then the following matrix will satisfy the
form 2:

( b1 a1 a2

row1 0 0 1
row2 1 1 1

)
• Case 7: Correspond to Fig. 7. Then f(1, 0, 0) = 0. If f(1, 1, 1) = 1 then Fig. 8 is what

we need. Otherwise, if f(1, 1, 1) = 0, then the following matrix will satisfy the form 2:

12



( b1 a1 a2

row1 0 1 0
row2 1 1 1

)
• Case 9,. . . ,16: In these cases, f(0, 0, 0) = 0.

– If f(0, 1, 1) = 0, then we have the following satisfied matrix:

( b1 a1 a2

row1 0 0 0
row2 1 0 1

)
– Else if f(1, 0, 1) = 0, then we have the following satisfied matrix:( b1 a1 a2

row1 0 0 0
row2 1 1 0

)
– Else if f(1, 1, 1) = 0, then we have the following satisfied matrix:( b1 a1 a2

row1 0 0 0
row2 1 1 1

)

– Else we have the following satisfied matrix:


a1 a2 b1

row1 0 0 1
row2 0 1 1
row3 1 0 1
row4 1 1 1


�

Theorem 3.5. For any number c, there is a ≤p
2−T -complete set for NEXP that is not

≤p
3−tt−h−c-autoreducible.

Proof Sketch. The basic idea is to use the diagonalization technique to diagonalize the
string 0m against the autoreduction Mn. At the same time, we need to encode the complete
set K into B. In this proof, we will encode K into B by 2 tracks: for every x ∈ K, we will
encode 〈0, x〉 if 0m ∈ B; otherwise we will encode 〈1, x〉 into B. The diagonalization part will
ensure that we do not add 0m to B if MB

n accepts 0m. Here notice that we need to determine
whether MB

n accepts 0m and this task can affect the encoding and vice versa. For example, if
the queries of MB

n on input 0m are 〈1, q1〉, 〈1, q2〉, and 〈0, q3〉. Then the value of MB
n (0m) will

depends on B(〈1, q1〉), B(〈1, q2〉), and B(〈0, q3〉). It is possible to have the case when setting
B(〈1, q1〉) = 1 will make MB

n accepts 0m, and then in this case the encoding needs to take place
in 〈1, q1〉. But if q1 /∈ K then it will cause the contradiction and break the ≤p

3−tt -hardness of B.
To resolve this issue, we can consider the truth-table of MB

n on input 0m. If we have the case
when whatever the values of B(〈1, q1〉) and B(〈1, q2〉) are, there exists a value of B(〈0, q3〉) such
that MB

n accepts 0m. Then in this case, we can set B(〈1, q1〉) and B(〈1, q2〉) to the appropriate
values depending on their membership in K. And this way will make the diagonalization part
and encoding part consistent. But there is a catch here: The value of B(〈0, q3〉) will depend
on B(〈1, q1〉) and B(〈1, q2〉), and because NEXP is not known to be closed under complement,
it will make the complexity of the set B go beyond the NEXP class. To resolve this problem,
we try to find a way to make the value of B(〈0, q3〉) depend positively on B(〈1, q1〉) and/or
B(〈1, q2〉); i.e. B(〈0, q3〉) = 1 ⇐⇒ B(〈1, q1〉) = 1. By this way, it will force B to belong to
NEXP.

13



�

Proof.
Let {Mi}i≥1 be a standard enumeration of all ≤p

3−tt−h−c autoreductions clocked such that

Mi runs in time ni.
Let K be a canonical complete set for NEXP. We will construct the ≤p

2−T complete set A
for NEXP incrementally in each stage and diagonalize all autoreductions Mi.

We assume a polynomial-time computable one-to-one pairing function that can take any
finite number of inputs such that its range does not intersect with 0∗.

We define the sequence {yn}n≥1 recursively as follows: y1 = 1 and yn+1 = max(ynn, y
c2
n ) + 1

for all n ≥ 1.
In each stage, we will construct the set B such that the following procedure is the ≤p

2−T
reduction that reduces K to B. Given any input x, ask a query 0m to the oracle B, where m
is a number that is bounded by some polynomial of |x|. If the answer is YES, then accept x if
and only if 〈0, x〉 ∈ B. If the answer is NO, then accept x if and only if 〈1, x〉 ∈ B. Obviously
if B satisfies this condition, then B is ≤p

2−T -hard for NEXP.
The detail of how B is constructed will be as follows.

• Initially B = ∅

• Suppose at stage n, the set B is constructed up to length yn − 1. In this stage n, we
will add appropriate strings of length between yn and yn+1 − 1 to accomplish two things:
encoding K into B and diagonalize the string 0y

c
n against the autoreduction Mn that asks

no more than 3 queries. So in the following steps, if Mn asks more than 3 queries then
the diagonalization task will be skipped to the next stage.

Algorithm 5 Thm 3.5. Handle-Case-1: B’s construction algorithm when all queries of MB
n

on input 0y
c
n are of the forms 〈1, q〉.

. In this case, Q+ = {〈1, q1〉, 〈1, q2〉, 〈1, q3〉}
. f : Boolean truth-table function of MB

n on input 0y
c
n

1: if f is constant 1 then
2: for every string x, yn ≤ |x| ≤ yn+1 − 1 do
3: if x ∈ K then
4: B ← B ∪ {〈1, x〉} . 0y

c
n /∈ B, so encoding each x in K by 〈1, x〉.

5: else . Encoding each x in K by 〈0, x〉
6: Compute (α1, α2, α3)← lexicographically smallest value satisfying f(α1, α2, α3) = 0
7: for i = 1 to 3 do
8: if αi = 1 then
9: B ← B ∪ {〈1, qi〉}

10: for every string x, yn ≤ |x| ≤ yn+1 − 1 do
11: if x ∈ K then
12: B ← B ∪ {〈0, x〉}
13: B ← B ∪ {0ycn} . Diagonalization. MB

n rejects 0y
c
n in this case

The Algorithm 8 describes how to construct B at the stage n. We will show that the
construction of B maintains the property that for any x, if 0y

c
n ∈ B then x ∈ K ⇐⇒ 〈0, x〉 ∈ B.

Otherwise, if 0y
c
n /∈ B, then x ∈ K ⇐⇒ 〈1, x〉 ∈ B. So this reflects the ≤p

2−T from K to B as
we mentioned before.

14



Algorithm 6 Thm 3.5. Handle-Case-2: B’s construction algorithm when all queries of MB
n

on input 0y
c
n are of the forms 〈0, q〉.

. In this case, Q− = {〈0, q1〉, 〈0, q2〉, 〈0, q3〉}
. f : Boolean truth-table function of MB

n on input 0y
c
n

1: if f is constant 0 then . Encoding each x in K by 〈0, x〉
2: for every string x, yn ≤ |x| ≤ yn+1 − 1 do
3: if x ∈ K then
4: B ← B ∪ {〈0, x〉}
5: B ← B ∪ {0ycn} . Diagonalization here. MB

n rejects 0y
c
n in this case

6: else . Encoding each x in K by 〈1, x〉
7: Compute (α1, α2, α3)← lexicographically smallest value satisfying f(α1, α2, α3) = 1
8: for i = 1 to 3 do
9: if αi = 1 then

10: B ← B ∪ {〈0, qi〉}
11: for every string x, yn ≤ |x| ≤ yn+1 − 1 do
12: if x ∈ K then
13: B ← B ∪ {〈1, x〉}

Consider the Algorithm 5. In line 1, MB
n accepts 0y

c
n . So in this case, we need to encode

every x ∈ K by 〈1, x〉 in B. It is done by line 2-4. And notice that by adding those strings to
B does not affect the fact that MB

n accepts 0y
c
n because f is constant. In another case, consider

line 5, if we choose whether or not to add 〈1, qi〉 to B appropriately, then MB
n rejects 0y

c
n . And

so we encode every x in K by 〈0, x〉 in B. It is reflected in line 10-12. The Algorithm 6 will do
the similar job.

Consider the Algorithm 7. In line 2, we can make f equal to 1, then we can encode every
x ∈ K by 〈1, x〉 in B. By doing that, for every query 〈0, ri〉, we need to add it to B or not
depend on the other queries 〈1, qj〉. All of those operations are reflected in line 7-14. In line 15,
we have the similar reasoning.

So it can be verified that the B’s construction in the Algorithm 8 makes sure that B is
≤p

2−T -hard for NEXP and B is not autoreducible because of the diagonalization. We just need
to prove that B ∈ NEXP.

Lemma 3.7. B ∈ NEXP

Proof. We will show that given any input x, determining whether x ∈ B can be done
nondeterministically in exponential time. Given an input x, consider the following cases:

• If x = 0∗: if |x| 6= ycn for all n then reject. Otherwise, consider all queries of Mn on input
0y

c
n and the boolean truth-table f on that input, we have the following cases:

– If all queries are of the form 〈1, q〉
∗ If f is constant 1, then reject

∗ Otherwise, accept

– If all queries are of the form 〈0, q〉, then accept if and only if f is constant 0

– If all queries are of the form 〈1, q1〉, . . . , 〈1, qs〉, 〈0, r1〉, . . . , 〈0, rt〉. If the matrix A is
of the form 1, then reject. Otherwise, accept

• If x = 〈1, x1〉: determine n such that yn ≤ |x| < yn+1. Consider the k queries of Mn on
input 0y

c
n and the boolean truth-table f on that input. We will show some interesting

cases; other cases are straightforward from the construction of B or similar.

15



Algorithm 7 Thm 3.5. Handle-Case-3: B’s construction algorithm when all queries of MB
n

on input 0y
c
n are of the forms 〈1, q1〉, . . . , 〈1, qs〉, 〈0, r1〉, . . . , 〈0, rt〉.
. The boolean truth-table function of MB

n on input 0y
c
n is f(a1, . . . , as, b1, . . . , bt)

. MB
n accepts 0y

c
n ⇐⇒ f(B(〈1, q1〉), . . . , B(〈1, qs〉), B(〈0, r1〉), . . . , B(〈0, rt〉)) = 1

1: Compute matrix A in the Lemma 3.6
2: if A is of the form 1 then . 0y

c
n /∈ B, so encoding each x ∈ K by 〈1, x〉

3: for every string x, yn ≤ |x| ≤ yn+1 − 1 do
4: if x ∈ K then
5: B ← B ∪ {〈1, x〉}
6: for i = 1 to t do
7: if A[bi] is a constant 1 then
8: B ← B ∪ {〈0, ri〉}
9: if A[bi] = A[ai1 ] ∨A[ai2 ] for some 1 ≤ i1, i2 ≤ s then

10: if (qi1 ∈ K) or (qi2 ∈ K) then
11: B ← B ∪ {〈0, ri〉}
12: if A[bi] = A[ai1 ] ∧A[ai2 ] for some 1 ≤ i1, i2 ≤ s then
13: if (qi1 ∈ K) and (qi2 ∈ K) then
14: B ← B ∪ {〈0, ri〉}
15: if A is of the form 2 then . 0y

c
n ∈ B, so encoding each x ∈ K by 〈0, x〉.

16: for every string x, yn ≤ |x| ≤ yn+1 − 1 do
17: if x ∈ K then
18: B ← B ∪ {〈0, x〉}
19: for i = 1 to s do
20: if A[ai] is a constant 1 then
21: B ← B ∪ {〈1, qi〉}
22: if A[ai] = A[bi1 ] ∨A[bi2 ] for some 1 ≤ i1, i2 ≤ t then
23: if (ri1 ∈ K) or (ri2 ∈ K) then
24: B ← B ∪ {〈1, qi〉}
25: if A[ai] = A[bi1 ] ∧A[bi2 ] for some 1 ≤ i1, i2 ≤ t then
26: if (ri1 ∈ K) and (ri2 ∈ K) then
27: B ← B ∪ {〈1, qi〉}
28: B ← B ∪ {0ycn} . MB

n rejects 0y
c
n , adding 0y

c
n to B to diagonalize against MB

n

16



Algorithm 8 Thm 3.5. B’s construction algorithm at stage n

Ensure: Encoding all strings of length between yn and yn+1 − 1 to make K≤p
2−TB correct.

Also diagonalize against MB
n using the string 0y

c
n

1: Compute Q← Q(MB
n , 0

ycn)
2: Compute f ← boolean truth-table function of MB

n on input 0y
c
n

3: Compute Q+ ← {〈1, x〉|〈1, x〉 ∈ Q}
4: Compute Q− ← {〈0, x〉|〈1, x〉 ∈ Q}
5: if Q+ = {〈1, q1〉, 〈1, q2〉, 〈1, q3〉} then
6: Call Handle-Case-1 . It is described in the Algorithm 5

7: if Q− = {〈0, q1〉, 〈0, q2〉, 〈0, q3〉} then
8: Call Handle-Case-2 . It is described in the Algorithm 6

9: if Q = {〈1, q1〉, . . . , 〈1, qs〉, 〈0, r1〉, . . . , 〈0, rt〉} then . s+t = 3
10: Call Handle-Case-3 . it is described in the Algorithm 7

– If all queries are of the form 〈1, q〉 then :

∗ If f is constant 1, then accept if and only if x1 ∈ K.

∗ Else

· If x is one of the queries 〈1, qi〉, then compute α1, . . . , αk, the lexicographi-
cally first value satisfying f(α1, . . . , αk) = 0. Accept if and only if αi = 1

· Else reject

– If all queries are of the form 〈0, q〉: similar to the previous case.

– If all queries are of the form 〈1, q1〉, . . . , 〈1, qs〉, 〈0, r1〉, . . . , 〈0, rt〉, compute the matrix
A.

∗ If the matrix A is of the form 1, then accept if and only if x1 ∈ K.

∗ If the matrix A is of the form 2, then

· If x is not one of those queries, then reject

· else if x = 〈1, qi〉
· If A[ai] is a constant c, then accept if and only if c = 1

· Else if A[ai] = A[bi1 ] ∨ A[bi2 ], then accept if and only if ri1 ∈ K or ri2 ∈ K.
To do this, we just run the Turing machine to accept K simultaneously for
2 inputs ri1 and ri2 . If one of those 2 paths terminates in YES, then accept.
Otherwise, reject.

· Else if A[ai] = A[bi1 ]∧A[bi2 ], then accept if and only if ri1 ∈ K and ri2 ∈ K.
To do this, we just run the Turing machine to accept K simultaneously
for 2 inputs ri1 and ri2 . If both 2 paths terminates in YES, then accept.
Otherwise, reject.

• If x = 〈0, x2〉: similar to the case 〈1, x1〉

Now we will analyze the running time it takes to do the above tasks. All expensive tasks
are as follows:

• Determining the membership of y in K. Because Mn is a poly-honest reduction, it can be
done nondeterministically in exponential time in terms of input’s length.

• Compute the queries and truth-table f of Mn on input 0y
c
n . It takes yncn , which is at most

2ync.

17



So B ∈ NEXP
�

So B is ≤p
2−T -complete set for NEXP that is not ≤p

3−tt−h−c-autoreducible.
�

We note that Lemma 3.6 cannot be generalized to a boolean function of 4 variables
a1, a2, b1, b2 or more because we found a counterexample in that case. So the proof of The-
orem 3.5 cannot be generalized to work with ≤p

k−tt -reductions for k ≥ 4. Nevertheless, the
following theorem will show non-autoreducibility for ≤p

k−tt -reductions if we reduce the power of
the ≤p

k−tt -autoreduction by not allowing the truth-table function to be an OR or a NOR.

Theorem 3.6. For any positive integer k, there is a ≤p
k−tt -complete set for NEXP (EXP) that

is not weakly ≤p
k−tt−w -autoreducible.

Proof. We assume a polynomial-time computable one-to-one pairing function that can take
any finite number of inputs such that its range does not intersect with 0∗.

Let {Mj}j≥1 be an enumeration of polynomial-time weak ≤p
k−tt autoreductions.

Let {NEXPi}i≥1 be an enumeration of all nondeterministic exponential time oracle Turing
machines.

For each j ≥ 1, suppose that nj bounds the running time of Mj and 2n
j

bounds the running
time of NEXPj

Let K = {〈i, x, l〉 | NEXPi accepts input x within l steps } be a canonical complete set for
NEXP.

Denote α1, . . . , αk be the lexicographically first k strings of length dlog ke.
We will construct a set B with the following property
x ∈ K ⇐⇒ there exists a j, 1 ≤ j ≤ k, and 〈αj , x〉 ∈ B
which ensure that K≤p

k−ttB, and then B is ≤p
k−tt -hard for NEXP.

We also need the set B such that for any n ≥ 1, the following property holds
0yn ∈ B ⇐⇒ MB

n rejects input 0yn (value of yn will be chosen later in the proof)
which ensures that Mn is not an autoreduction of B. Then we can conclude that B is not

autoreducible for NEXP.
We will construct the set B in stage. In each stage, we will encode K into B and diago-

nalize all weak ≤p
k−tt -reduction using the string 0yn simultaneously to obtain those above two

properties.
Before going into detail of how the set B is constructed, let’s define the sequence {yn}n≥0

such that y0 = 1 and yn+1 = 2y
n
n + 1 for every n ≥ 0.

The set B is constructed in each stage as follows.
Initially we set B = ∅.
At stage n, suppose that the set B is already constructed up to strings of length yn−1n−1. We

will encode all strings of length between yn−1n−1 + 1 and ynn.
The construction in this stage will be as follows:
Denote Q be the set of all queries q of Mn on input 0yn such that |q| > yn−1n−1
Denote P = {x| there exists a 1 ≤ j ≤ k such that 〈αj , x〉 ∈ Q}
For every x ∈ P , denote P x = {〈αj , x〉|〈αj , x〉 ∈ Q}.
Consider the following cases:

• If |P x| < k for all x, then for every x ∈ P , denote t be the smallest number such that
〈αt, x〉 /∈ Q. Put 〈αt, x〉 into B if and only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉
into B if and only if x ∈ K. Finally, put 0yn into B if and only if MB

n rejects 0yn .

18



• If |P x| = k for some x, consider the truth-table function g of Mn on input 0yn , we have
two following cases:

– If g(0, 0, . . . , 0) = 0, then denote c1, . . . , ck be the lexicographically smallest non-zero
value such that g(c1, . . . , ck) = 0. For every ci such that ci = 1, put 〈αi, x〉 into B
if and only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉 into B if and only if x ∈ K.
Finally put 0yn into B.

– If g(0, 0, . . . , 0) = 1, then denote c1, . . . , ck be the lexicographically smallest non-zero
value such that g(c1, . . . , ck) = 1. For every ci such that ci = 1, put 〈αi, x〉 into B if
and only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉 into B if and only if x ∈ K.

That is all how B is constructed. The following lemma claims the time complexity of B.

Lemma 3.8. B ∈ NEXP

Proof. Given an input b, one of the following cases can happen:

• Case 1: If b has the form 0∗: if |b| 6= yn for all n then reject. Otherwise, compute the
set Q of all queries when running a Turing machine MB

n on input 0yn . The notations of
P and P x are defined similarly to the B’s construction above.

– If |P x| < k for all x, then simulate the Turing machine MB
n on input 0yn . Whenever

a query q is asked, the answer from the oracle B will be resolved as follows:

∗ If the length of q is greater than yn−1n−1 then answer is NO.

∗ Otherwise, check whether q ∈ B recursively.

– If |P x| = k for some x. Then denote g be a boolean truth-table function of MB
n on

input 0yn .

∗ If g(0, . . . , 0) = 0 then accept.

∗ Otherwise, reject.

• Case 2: b = 〈αi, x〉 for some αi (if b 6= 〈αj , x〉 for all j then just reject)

Compute the number n such that yn−1n−1 < |b| ≤ ynn.

Consider the set Q, P , and P x as above. We have the following cases:

– If |P x| < k for all x, then the following cases can happen. If b ∈ Q then reject.
Otherwise, accept if and only if i = 1 and x ∈ K.

– If |P x| = k for some x. Denote g be a boolean truth-table function of Mn on input
0yn . Consider two following cases:

∗ If g(0, . . . , 0) = 0. Denote c1, . . . , ck be the lexicographically smallest non-zero
value such that g(c1, . . . , ck) = 0. If b ∈ Q, then accept if and only if ci = 1 and
x ∈ K. Otherwise, accept if and only if i = 1 and x ∈ K.

∗ If g(0, . . . , 0) = 1. Denote c1, . . . , ck be the lexicographically smallest non-zero
value such that g(c1, . . . , ck) = 1. If b ∈ Q, then accept if and only if ci = 1 and
x ∈ K. Otherwise, accept if and only if i = 1 and x ∈ K.

Now we will analyze the running time of the above tasks. Most expensive tasks will be
described as follows:

• The number n can be determined in polynomial time in terms of length of input b.

19



• The query set Q and the truth-table function g can be computed in time ynn, which is no
more than O(2|b|

2
).

• In case 1, recursively check whether the query q of length smaller than yn−1n−1 belongs to B

or not deterministically takes time 22
yn−1
n−1

, which is no more than 2yn = 2|b|

• Determining whether x belongs to K can be done nondeterministically in 2|x| < 2|b|

So B ∈ NEXP
�

Lemma 3.9. K≤p
k−ttB

Proof. Notice in the construction algorithm of B, for every x that is in K, we encode
at least one of the following strings 〈α1, x〉 . . . 〈αk, x〉 into B. If x /∈ K, no those strings are
encoded into B. So B≤p

k−ttK.
�

Lemma 3.10. B is not weakly ≤p
k−tt -autoreducible.

Proof. Straightforward from the B’s construction.
�

By Lemma 3.8, Lemma 3.9, and Lemma 3.10, B is ≤p
k−tt -complete for NEXP that is not

weakly ≤p
k−tt -autoreducible. �

The above proof also yields the following corollary:

Corollary 3.2. For any positive integer k, there is a ≤p
k−dtt -complete set for NEXP(EXP) that

is not weakly ≤p
k−tt -autoreducible.

4 Implications

We begin with the following theorem.

Theorem 4.1. Every ≤p
dtt -complete set for EXP is ≤p

NOR−tt -autoreducible.

Glaßer et al. [4] also showed that every ≤p
dtt -complete set for EXP is ≤p

dtt -autoreducible. So
by Theorem 4.1, the Corollary 3.2 is somehow “tight” for EXP.

Proof.
Let A be a ≤p

dtt -complete set for EXP. We will show that A is also ≤p
NOR−tt -autoreducible.

Let {Mi}i≥1 be a standard enumeration of all ≤p
dtt reduction such that Mi runs in time

pi(n) = ni on inputs of size n.
Consider the set B containing elements of the form 〈0i, x〉 which are decided by the following

nondeterministic algorithm in exponential time:
Given an input 〈0i, x〉,

• Compute Q, the set of all queries of Mi on input 〈0i, x〉.

• If x /∈ Q then Accept 〈0i, x〉 ⇐⇒ x /∈ A.

20



• Otherwise, Reject 〈0i, x〉

Obviously B ∈ EXP.
Since A is the ≤p

dtt -complete set for EXP, B≤p
dttA by some disjunctive truth-table reduction

Mj .
For any x, if x is one of the queries of Mj on input 〈0j , x〉, then 〈0j , x〉 /∈ B. This fact implies

that for all queries q, including x, q /∈ A. So x /∈ A. If x is not one of the queries q1, . . . , qk of
Mj on input 〈0j , x〉, then x ∈ A ⇐⇒ 〈0j , x〉 /∈ B ⇐⇒ qi /∈ A for all i

Based on that observation, we have the following autoreduction algorithm for A:
Given input x,

• Compute Q = {q1, . . . , qk}, the set of all queries of Mj on input 〈0j , x〉

• If x /∈ Q, then accept ⇐⇒ q1 /∈ A ∧ · · · ∧ qk /∈ A

• Otherwise, reject x.

Observe that the above autoreduction is ≤p
NOR−tt -autoreduction. So A is ≤p

NOR−tt -
autoreducible.

�

Recall that every ≤p
k−dtt -complete set for NEXP is ≤p

k−dtt -autoreducible [4]. Also every
≤p

k−dtt -complete set for EXP is both ≤p
k−dtt -autoreducible [4] and ≤p

NOR−k−tt -autoreducible.
So we want to know whether the same holds for NEXP; that is, whether every ≤p

k−dtt -complete
set for NEXP is also ≤p

NOR−k−tt -autoreducible. Settling this question would lead to important
complexity class results.

Theorem 4.2. For any positive integer k,

• If every ≤p
k−dtt -complete set for NEXP is ≤p

NOR−k−tt -autoreducible, then NEXP =
coNEXP.

• If there is a ≤p
k−dtt -complete set for NEXP that is not ≤p

NOR−k−tt -autoreducible, then
NEXP 6= EXP.

Proof.
If there is a ≤p

k−dtt -complete set for NEXP that is not ≤p
NOR−k−tt -autoreducible, then by

Theorem 4.1 , NEXP 6= EXP.
Otherwise, suppose every≤p

k−dtt -complete set for NEXP is≤p
NOR−k−tt -autoreducible. Notice

that K, the canonical complete set of NEXP, is also ≤p
k−dtt -complete. So by the assumption,

K is ≤p
NOR−k−tt -autoreducible.

Denote f be the autoreduction of K. That is, for every x, f(x) = 〈q1, . . . , qk〉, x 6= qi for all
i, and x ∈ K ⇐⇒ q1 /∈ K ∧ · · · ∧ qk /∈ K.

By that, we have the following fact:
x ∈ K ⇐⇒ x /∈ K ⇐⇒ q1 ∈ K ∨ · · · ∨ qk ∈ K. So K̄≤p

k−dttK

The following lemma shows that K ∈ NEXP.

Lemma 4.1. If A≤p
k−dttB and B ∈ NEXP then A ∈ NEXP.

Proof.
Suppose that B ∈ NEXP. Denote N be a nondeterministic Turing machine to accept B in

exponential time.
Denote f be the reduction from A to B by a disjunctive truth-table. That is, for every x,

f(x) = 〈q1, . . . , qk〉, and x ∈ A ⇐⇒ q1 ∈ B ∨ · · · ∨ qk ∈ B.
For every x, determining whether x ∈ A is as follows:

21



• Compute f(x) = 〈q1, . . . , qk〉.

• Simultaneously simulating the machine N on k inputs q1, . . . , qk. If one of them turns out
to be an accepting path, then accept. Otherwise reject.

So A ∈ NEXP. �

By this lemma, we have K ∈ NEXP. So NEXP = coNEXP. �

In the following section, we will show a partial result about NOR-autoreducibility for a
≤p

dtt -complete set for NEXP in the relativized world.

5 Relativization

While the question whether every ≤p
dtt -complete set for NEXP is ≤p

NOR−tt -autoreducible is still
open, we can prove that it does not hold in the relativized world.

Theorem 5.1. Relative to some oracle B, there is a ≤pB

m -complete set for NEXPB that is not

≤pB

NOR−tt -autoreducible.

Proof. We assume a polynomial-time computable one-to-one pairing function that can take
any finite number of inputs such that its range does not intersect with 0∗.

Let {MB
j }j≥1 be an enumeration of polynomial-time ≤pB

NOR−tt autoreductions. Notice that

MB
j can now access the oracle B.

Let {NEXPBi }i≥1 be an enumeration of all nondeterministic exponential time oracle Turing
machines.

For each j ≥ 1, suppose that nj bounds the running time of MB
j and 2n

j
bounds the running

time of NEXPBj
Let KB = {〈i, x, l〉 | NEXPBi accepts input x within l steps } be a canonical complete set

for NEXPB.
We will construct sets A and B with the following property
x ∈ KB ⇐⇒ 〈0, x〉 ∈ A
which ensure that KB≤p

mA, and then A is ≤p
m -hard set for NEXPB.

We also need the sets A and B such that for any n ≥ 1, the following property holds
0y

n ∈ A ⇐⇒ MB,A
n rejects input 0y

n
(value of yn will be chosen later in the proof)

which ensures that MB
n is not an autoreduction of A. Then we can conclude that A is not

autoreducible for NEXPB.
We will construct the sets A and B together in stage. In each stage, we will encode KB into

A and diagonalize all ≤pB

NOR−tt -reductions using the string 0yn simultaneously to obtain those
above two properties.

Before going into detail of how those sets are constructed, let’s define the sequence {yn}n≥0
such that y0 = 1 and yn+1 = ynn + 1 for every n ≥ 0.

Suppose that at stage n, the set A has already been constructed up to length yn−1. In this
stage, we will construct the set A for strings of length between yn and yn+1 − 1.

Consider all queries q of MB
n on input 0yn made to the oracle A when |q| >= yn and

q = 〈0, x〉 for some j. Denote Q be the set of all such queries q.
Consider the following cases:

1. If there is a query q′ such that |q′| < yn and q′ ∈ A. Then put 0yn to A and 〈02yn , 0yn〉
to B. Finally, for all strings s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if and only if
x ∈ KB.

22



2. Otherwise, ignore all queries of length smaller than yn. For every q′ = 〈0, x〉 ∈ Q such
that x ∈ KB, choose any accepting path of KB on input x and denote Qq

′
be the set of

all queries made in that path. Consider the following cases:

(a) If no such q′ exists, then for all strings s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A
if and only if x ∈ KB.

(b) Otherwise, denote P be the union of Qq
′

for all such q′. Notice that there are no
more than ynn such q′, and for every q′, |Qq′ | ≤ 2|x| < 2y

n
n . So |P | < ynn2y

n
n < 22

yn
.

So there exists a string t of length 2yn such that t /∈ P . Put 〈t, 0yn〉 into B. Put 0yn

into A. Finally, for all strings of s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if and
only if x ∈ KB.

That is all how two sets A and B are constructed.
Now we will briefly show that the set A belongs to NEXPB. To determine the membership

of an input 0y, we just need guess one string t of length 2y and ask one query 〈t, 0y〉 to the
oracle B; accept if and only if the answer is YES. For other input of the form 〈0, x〉, accept if
and only if x ∈ KB. So A ∈ NEXPB.

To see that A is not reduced to itself by any ≤pB

NOR−tt autoreduction, we will show that for

any Mn, MA,B
n accepts 0yn if and only if 0yn /∈ A. In case 1), because there is one query q′

such that q′ ∈ A, so by NOR-tt reduction, Mn rejects 0yn . And notice that putting 〈02yn , 0yn〉
into B does not affect the membership of q′ in A. In case 2a), Mn accepts 0yn and in this case
0yn is not put into A, and then it makes Mn not reduce A to itself. In case 2b), Mn does not
accept 0yn and notice that putting 〈t, 0yn〉 into B does not affect the memberships of all q′ in
KB. And finally 0yn is added to A to make Mn not reduce A to itself.

Finally it is easy to see that KB≤p
mA because we encode all strings x ∈ KB by 〈0, x〉 into

A and nothing else, except the strings of form 0∗.

So A is many-one complete for NEXPB that is not ≤pB

NOR−tt -autoreducible. �

We note that Theorem 4.1 actually relativizes; that is, for any set B, relative to the oracle

B, every ≤pB

dtt -complete set for EXP is ≤pB

NOR−tt -autoreducible. So we have the following familiar
corollary:

Corollary 5.1. There is a set B such that relative to the oracle B, EXPB 6= NEXPB.

Buhrman et al. [2] showed that relative to some oracle, there is a ≤p
2-T -complete set for

EXP that is not Turing autoreducible. Their technique also works for NEXP. So we have the
following theorem:

Theorem 5.2. Relative to some oracle, there is a ≤p
2-T -complete set for NEXP that is not

Turing autoreducible.

Acknowledgements

Our thanks to Nils Wisiol and Benedikt Budig for useful discussions and feedback on drafts of
this paper.

References

[1] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding, editors,
Logic and Machines, Lecture Notes in Computer Science 177, pages 1–23. Springer-Verlag,
1984.

23



[2] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Using autoreducibility to
separate complexity classes. SIAM Journal on Computing, 29(5):1497–1520, 2000.

[3] H. Buhrman and L. Torenvliet. On the structure of complete sets. In Structure in Com-
plexity Theory Conference, 1994., Proceedings of the Ninth Annual, pages 118–133, 1994.

[4] C. Glaßer, D. Nguyen, C. Reitwießner, A. Selman, and M. Witek. Autoreducibility of
complete sets for log-space and polynomial-time reductions. ICALP, 2013.

[5] C. Glaßer, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Autoreducibility and mitotic-
ity. SIGACT News, 2009.

[6] Steven Homer. Structural properties of nondeterministic complete sets. In Structure in
Complexity Theory Conference, pages 3–10, 1990.

[7] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial time reducibil-
ities. Theoretical Computer Science, 1:103–123, 1975.

[8] J. Feigenbaum R. Beigel. On being incoherent without being very hard. Computational
Complexity, 2:1–17, 1992.

[9] B. Trahtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192, 1970. Translation in
Soviet Math. Dokl. 11: 814– 817, 1970.

[10] Osamu Watanabe. A comparison of polynomial time completeness notions. Theoretical
Computer Science, 54:249–265, 1987.

24

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


