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Abstract

In 1989, Babai, Nisan and Szegedy [BNS92] gave a construction of a pseudorandom generator
for logspace, based on lower bounds for multiparty communication complexity. The seed length
of their pseudorandom generator was 2Θ(

√

n), because the best lower bounds for multiparty
communication complexity are relatively weak. Subsequently, pseudorandom generators for
logspace with seed length O(log2 n) were given by [N92] and [INW94].

In this paper, we show how to use the pseudorandom generator construction of [BNS92] to
obtain a third construction of a pseudorandom generator with seed length O(log2 n), achieving
the same parameters as [N92] and [INW94]. We achieve this by concentrating on protocols in a
restricted model of multiparty communication complexity that we call the conservative one-way
unicast model and is based on the conservative one-way model of [DJS98]. We observe that
bounds in the conservative one-way unicast model (rather than the standard Number On the
Forehead model) are sufficient for the pseudorandom generator construction of [BNS92] to work.

Roughly speaking, in a conservative one-way unicast communication protocol, the players
speak in turns, one after the other in a fixed order, and every message is visible only to the
next player. Moreover, before the beginning of the protocol, each player only knows the inputs
of the players that speak after she does and a certain function of the inputs of the players that
speak before she does. We prove a lower bound for the communication complexity of conserva-
tive one-way unicast communication protocols that compute a family of functions obtained by
compositions of strong extractors. Our final pseudorandom generator construction is related to,
but different from the constructions of [N92] and [INW94].
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1 Introduction

The problem of derandomizing space bounded computations has attracted a lot of attention over
the last few decades. One way to simulate a randomized, space bounded computation with a deter-
ministic one is using a space psesudorandom generator. Roughly speaking, a space pseudorandom
generator converts a short truly random seed into a long string that looks random to machines
with limited space. The best known constructions of space pseudorandom generators are the con-
structions of [N92] and [INW94]. These pseudorandom generators convert O(log2 n) random bits
to poly(n) bits that look random to any logspace machine.

In this paper, we give a new construction of a space pseudorandom generator with the same
parameters. Our pseudorandom generator construction is based on a lower bound for a certain
model of multiparty communication complexity, relying on the pseudorandom generator construc-
tion of Babai, Nisan and Szegedy [BNS92]. The pseudorandom generator of [BNS92] has seed
length 2Θ(

√
n). The proof that their construction gives a pseudorandom generator relies on a lower

bound for multiparty communication complexity. [BNS92] gave a lower bound for the multiparty
communication complexity of protocols in the Number On the Forehead (NOF) model with black-
board communication. In this model, each player knows all inputs except her own input and the
communication is done by writing messages on a blackboard (broadcast) so that every player sees
all the previous communication. For this model, [BNS92] gave a lower bound of Ω( n

2k
) (where n is

the length of each input and k is the number of players). Improving this lower bound is a major
open problem.

We observe that the pseudorandom generator construction of [BNS92] can be based on lower
bounds for a restricted model of multiparty communication complexity. For this model we are
able to obtain improved lower bounds, resulting in a pseudorandom generator with seed length
O(log2 n).

Definition 1.1 (Conservative One-way Unicast Communication Protocol). Let P be a determin-
istic, multiparty communication protocol for k players p1, . . . , pk. For a function f : B×A1 × · · · ×
Ak → B, we say that P is a conservative one-way unicast communication protocol with respect to
f if for an input b, a1, . . . , ak ∈ B ×A1 × · · · × Ak the following holds:

1. For every i ∈ [k], before the beginning of the protocol, the ith player only knows ai+1, . . . , ak
and the (truth table1 of the) function fi : Ai × · · · × Ak → B, defined by:

fi(zi, . . . , zk) = f(b, a1, . . . , ai−1, zi, . . . , zk)

for every zi, . . . , zk ∈ Ai × · · · × Ak.

2. The players communicate one after the other in the fixed order p1, p2, . . . , pk.

3. For every 1 ≤ i < k, the ith message is visible only to pi+1. The message of the last player is
the output of the protocol.

Usually, we will take f to be the function that the players are trying to compute. Note that
the ith player doesn’t know b, a1, . . . , ai−1 as in the NOF model, but she does know the relevant
information on b, a1, . . . , ai−1 that is needed to compute the function f(b, a1, . . . , ai−1, zi, . . . , zk)
for every zi, . . . , zk ∈ Ai × · · · × Ak.

1The truth table is not counted as part of the length of the input

1



Our definition of conservative one-way unicast communication protocols is based on definitions
by Damm, Jukna and Sgall [DJS98]. [DJS98] defined conservative communication protocols as
protocols satisfying item (1) in Definition 1.1, and conservative one-way communication protocols
as protocols satisfying items (1),(2) in Definition 1.1, where the communication is done by writing
messages on a blackboard (broadcast) so that every player sees all the previous communication.

[DJS98] proved lower bounds for the communication complexity of conservative one-way (black-
board) communication protocols that compute the pointer jumping problem. For k = O((n/log n)1/3),
[DJS98] proved a lower bound of Ω(n/k2), and for k ≤ log∗ n− ω(1), they proved a lower bound of
n log(k−1) n(1 − o(1)) (where k is the number of players and n is the length of each input). The
conservative one-way model was further studied by Chakrabarti in [C07], where the Ω(n/k2) lower
bound due to [DJS98] was extended so that it applies for all k.

For conservative communication protocols (satisfying item (1) in Definition 1.1) it is convenient
to consider composed functions as we define next.

Definition 1.2 (Composed Functions). For a function f : {0, 1}m×{0, 1}n → {0, 1}m and 1 < i ∈
N, the ith composition of f is a function f (i) : {0, 1}m+in → {0, 1}m defined for every a0 ∈ {0, 1}m,
a1, . . . , ai ∈ {0, 1}n as

f (i)(a0, a1, . . . , ai) = f(f (i−1)(a0, a1, . . . , ai−1), ai)

where f (1)(a0, a1) = f(a0, a1). In addition, we define f (0)(a0) = a0.

Let f (k) be the kth composition of a function f : {0, 1}m×{0, 1}n → {0, 1}m. Note that for every
input (a0, a1, . . . , ak) ∈ {0, 1}m+kn and every i ∈ [k], if the ith player knows f (i−1)(a0, a1, . . . , ai−1),

then she also knows the function f
(k)
i defined in item (1) in Definition 1.1. Therefore, for the sake of

proving lower bounds for the communication complexity of conservative communication protocols
with respect to f (k), it is enough to assume that for an input (a0, a1, . . . , ak) ∈ {0, 1}m+kn, for
every i ∈ [k], before the beginning of the protocol, the ith player only knows ai+1, . . . , ak and
f (i−1)(a0, a1, . . . , ai−1).

In our paper, we prove lower bounds for the communication complexity of conservative one-way
unicast communication protocols with respect to a certain composed function f (k). Therefore, we
replace item (1) in Definition 1.1 by the assumption that for an input (a0, a1, . . . , ak) ∈ {0, 1}m+kn,
for every i ∈ [k], before the beginning of the protocol, the ith player only knows ai+1, . . . , ak and
f (i−1)(a0, a1, . . . , ai−1).

An Example - The Pointer Jumping Problem

In the pointer jumping problem for k players, the input is k functions Π1, . . . ,Πk : [r] → [r] and an
additional input i0 ∈ [r]. The players need to output Πk ◦ · · · ◦Π1(i0). Let Sr denote the set of all
functions from [r] to [r] and let f : [r]×Sr → [r] be the function defined by f(i,Π) = Π(i) for every
i ∈ [r] and Π ∈ Sr. Note that the pointer jumping problem for k players is the kth composition of
f . In a conservative communication protocol (satisfying item (1) in Definition 1.1) with respect to
the pointer jumping problem, for every i ∈ [k], before the beginning of the protocol, the ith player
only knows Πi+1, . . . ,Πk and f i−1(i0,Π1, . . . ,Πi−1) = Πi−1 ◦ · · · ◦Π1(i0).

2

2In this case, knowing Πi−1◦· · ·◦Π1(i0) is equivalent to knowing the function fi defined in item (1) in Definition 1.1.
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1.1 Main Result

We say that a communication protocol P computes a function f : {0, 1}n → {0, 1}m with bias
δ > 0 if

Pr
x∈R{0,1}n

[f(x) = P (x)] ≥ 2−m + δ

We denote the length of the longest message sent during the execution of P by L(P ) (on the worst
case input, not including the last message which is the output of the protocol).

Let Ext : {0, 1}m × {0, 1}n → {0, 1}m be a (t, ε) strong extractor (see Definition 2.7). We refer
to the kth composition of Ext, denoted Ext(k), as a (t, ε) composed strong extractor. Composed
strong extractors are closely related to alternating extractors, which are used in [DW09], with
cryptographic applications.

Our lower bound is for the length of the longest message communicated during any conservative
one-way unicast communication protocol that computes a composed strong extractor with bias
δ > 0.

Theorem 1.3. Let Ext(k) : {0, 1}m+nk → {0, 1}m be a (t, ε) composed strong extractor and let
P be a conservative one-way unicast communication protocol with respect to Ext(k) that computes
Ext(k) with bias δ > 0, such that ε < δ · 2−(k+2). Then,

L(P ) ≥ n− t− k − log
1

δ
− 2

In fact, we prove a slightly stronger version of Theorem 1.3 in which we consider projections
of the composed strong extractor (see Theorem 3.3). Using this lower bound together with the
pseudorandom generator construction of Babai, Nisan and Szegedy [BNS92], we obtain a space
pseudorandom generator that converts O(log2 n) random bits to poly(n) bits that look random to
any logspace machine (see Section 4).

Comparison with [N92] and [INW94]

The pseudorandom generator construction of [INW94] is also based on a recursive composition
of extractors. However, their generator is different from the one presented here. The recursive
composition used in [INW94] is different from the composition in Definition 1.2. Moreover, [INW94]
use extractors that output O(log2 n) bits, whereas here we use extractors that output O(log n) bits.

The pseudorandom generator construction of [N92] is based on a recursive composition of hash
functions. This is done by a composition similar to the one in Definition 1.2. We note that
hashing can be viewed as an application of an extractor. However, when viewing the hashing as
an application of an extractor, the composition of [N92] does not fit our definition of a composed
extractor. In particular, in our definition of a composed extractor, the recursion is done by replacing
the seed of the extractor with the output of the extractor from the previous composition, whereas
in [N92], the recursion is done by replacing the source of the extractor with the output of the
extractor from the previous composition.
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2 Preliminaries

2.1 General Notation

Let [n] be the set of numbers {1, 2, . . . , n}. For a binary string x ∈ {0, 1}∗ and an index i ∈ N, let
xi be the ith bit of x. For a set of indexes S = {i1, . . . , ik} ⊆ [|x|], let xS be the string xi1 , . . . , xik .

2.1.1 Functions

For a function f : {0, 1}n → {0, 1}m and a subset S ⊆ [m] of size m′, where m′ ≤ m, the projection
of f on S, denoted fS, is a function from {0, 1}n to {0, 1}m

′
defined as fS(x) = (f(x))S for every

x ∈ {0, 1}n. To simplify notation, for i ∈ [m], we define fi = f{i}. For two functions f : A → B
and h : B → C, let h ◦ f be the function from A to C defined as h(f(a)) for every a ∈ A.

2.1.2 Distributions and Random Variables

We write x ∈R X if x is chosen uniformly at random from X . For a distribution D and a subset S
of the support of D, let D(S) be the sum

∑

s∈S D(s). For a random variable X and an event E, we
write X|E to denote X conditioned on E. We write X ∈ X if X is distributed over the set X . For
two random variables X and Y , we write X ∼ Y if X and Y have the same distribution. Slightly
abusing notation, given a random variable X, we let x ∼ X indicate the sampling of x from the
distribution of X.

2.2 Statistical Distance

Definition 2.1 (Statistical Distance). Let D1 and D2 be two distributions over the same space Ω.
Their statistical distance is

‖D1 −D2‖ = max
S⊆Ω

|D1(S)−D2(S)| =
1

2

∑

x∈Ω
|D1(x)−D2(x)|

For two random variables X1,X2 ∈ Ω distributed according to D1 and D2 respectively, we define
‖X1 −X2‖ = ‖D1 −D2‖.

Proposition 2.2. Let X,X ′ ∈ X be two random variables and let f : X → Y be any deterministic
function. Then,

‖f(X)− f(X ′)‖ ≤ ‖X −X ′‖

Proposition 2.3. Let X ∈ X , Y ∈ Y and Z ∈ Z be three random variables, and let U be uniform
over X , independent of X, Y and Z. Then,

‖(Z,X) − (Z,U)‖ ≤ ‖(Y,Z,X) − (Y,Z,U)‖

2.3 Space Pseudorandom Generators

A deterministic, space s(n) Turing machine uses s(n) space on any input of size n. A non-uniform,
space s(n) statistical test is a deterministic, space s(n) Turing machineM and an infinite sequence of
binary strings a = (a1, . . . , an, . . . ) called the advice strings, where the length of an is exp(s(n)), for
every n ∈ N. The result of the test on input x, denoted Ma(x), is the result of runningM on x when
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it has access to the advice a|x|. The machine M reads the advice as if it is on a normal input tape,
and it has a one-way access to the input x (i.e., it can access the next bit of x but it cannot go “back”
and review bits it already read). A pseudorandom generator for space bounded computations is
required to produce strings that can be used instead of truly random strings in randomized, space
bounded computations (while introducing only small additional error). Therefore, a pseudorandom
generator must produce strings that look random to any non-uniform, bounded space statistical
test. The following is a formal definition. For more information see e.g. [BNS92].

Definition 2.4. G =
{

Gn : {0, 1}m(n) → {0, 1}n
}

is an ε pseudorandom generator for space s(n)
if for every non-uniform, space s(n) statistical test Ma it holds that

∣

∣

∣

∣

Pr
x∈R{0,1}n

[Ma(x) = 1]− Pr
y∈R{0,1}m(n)

[Ma(G(y)) = 1]

∣

∣

∣

∣

≤ ε

The following is an equivalent definition (upto a small change in ε).

Definition 2.5. G =
{

Gn : {0, 1}m(n) → {0, 1}n
}

is an ε pseudorandom generator for space s(n)
if for every i ∈ [n] and for non-uniform, space s(n) statistical test Ma it holds that

∣

∣

∣

∣

Pr
y∈R{0,1}m(n)

[Ma(first i− 1 bits of G(y)) = ith bit of G(y)]−
1

2

∣

∣

∣

∣

≤ ε

In this paper, we use Definition 2.5.

2.4 Strong Extractors

The notion of weak source was first defined by Nisan and Zuckerman [NZ93].

Definition 2.6 (Min-Entropy). For a random variable X, the min-entropy of X is

H∞(X) = − log max
x

Pr[X = x]

An (n, t) source is a random variable in {0, 1}n that has min-entropy at least t.

Definition 2.7 (Strong Extractor [NZ96]). A function Ext : {0, 1}m ×{0, 1}n → {0, 1}ℓ is a (t, ε)
strong extractor if for every (n, t) source X and every seed S uniformly distributed over {0, 1}m it
holds that

‖S,Ext(S,X) − U‖ ≤ ε

where U is uniformly distributed over {0, 1}m+ℓ.

2.4.1 Average Min-Entropy and Average-Case Extractors

The following definitions and lemmas appear in [DORS08].

Definition 2.8 (Average Min-Entropy). For two random variables X ∈ X and Y ∈ Y, the average
min-entropy of X given Y is

H̃∞(X|Y ) = − log E
y∼Y

max
x∈X

Pr[X = x|Y = y] = − log E
y∼Y

[

2−H∞(X|Y=y)
]
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Lemma 2.9. Let X,Y and Z be random variables. If Y has at most 2ℓ possible values, then

H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y )|Z)− ℓ ≥ H̃∞(X|Z) − ℓ

Definition 2.10 (Average-case Strong Extractor). A function Ext : {0, 1}m × {0, 1}n → {0, 1}ℓ

is an average-case (t, ε) strong extractor if for every pair of random variables (W, I) such that
W ∈ {0, 1}n and H̃∞(W |I) ≥ t, and every seed S uniformly distributed over {0, 1}m, it holds that

‖I, S,Ext(S,W ) − I, U‖ ≤ ε

where U is uniformly distributed over {0, 1}m+ℓ.

Lemma 2.11. For any γ > 0, if Ext is a (t − log 1/γ, ε) strong extractor, then Ext is also an
average-case (t, ε+ γ) strong extractor.

3 Lower Bounds for Conservative One-way Unicast Communica-

tion Protocols

For the construction of the pseudorandom generator in Section 4, we will need a lower bound for
the communication complexity of a function that outputs a single bit. To this end we consider also
projections of composed strong extractors (see notation for projections in Section 2.1).

Definition 3.1. A function g : {0, 1}m+nk → {0, 1}m
′
is called a (t, ε) projection of a composed

strong extractor (PCSE) if g = Ext
(k)
S , where S ⊆ [m] is a subset of size m′ for m′ ≤ m and

Ext(k) : {0, 1}m+nk → {0, 1}m is a (t, ε) composed strong extractor.

The following lemma is the main technical part of our paper. The proof is related to the proof
of the “alternating extraction theorem” in [DW09], which uses ideas from [DP07]. See also lecture
notes [Lec11].

Lemma 3.2. Let Ext
(k)
S : {0, 1}m+nk → {0, 1}m

′
be a (t, ε) PCSE and let A0 ∈ {0, 1}m, A1, . . . , Ak ∈

{0, 1}n be uniformly and independently distributed. Let P be a conservative one-way unicast com-
munication protocol with respect to Ext(k), and let M1, . . . ,Mk be the messages sent during the
execution of P on inputs A0, . . . , Ak, where the ith player sends Mi, for i ∈ [k]. Fix γ > 0 and
assume that M1, . . . ,Mk−1 ∈ {0, 1}ℓ, for ℓ ≤ n− t− log 1

γ . Then,

‖(Mk, Ext
(k)
S (A0, A1, . . . , Ak))− (Mk, U

′)‖ ≤ 2k+1(ε+ γ)

where U ′ is uniformly distributed over {0, 1}m
′
.

Proof. To simplify notation, for every i ∈ [k] we write Ext(i) instead of Ext(i)(A0, A1, . . . , Ai) and
let Ai = (Ai, . . . , Ak). For i > k we define Ai to be the empty string. Let U be uniformly distributed
over {0, 1}m. Recall that U ′ is uniformly distributed over {0, 1}m

′
. Then, for every z ∈ {0, 1}m

′
,

by Proposition 2.2,

‖(Ext
(k)
S |Mk = z)− U ′‖ ≤ ‖(Ext(k)|Mk = z)− U‖

Therefore, it is enough to prove that

‖(Mk, Ext(k))− (Mk, U)‖ ≤ 2k+1(ε+ γ) (1)
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By the definition of a conservative one-way unicast communication protocol with respect to Ext(k),
for every i ∈ [k] it holds that

Mi = gi(Ai+1,Mi−1, Ext(i−1)) (2)

where gi is some (deterministic) function, and M0 = 0ℓ. We prove by induction on i, that for every
0 ≤ i ≤ k,

‖(Ai+1,Mi, Ext(i))− (Ai+1,Mi, U)‖ ≤
i

∑

j=0

2j(ε+ γ)

Substituting i = k we get equation (1) as required. For i = 0 we have that ‖(A1,M0, Ext(0)) −
(A1,M0, U)‖ = 0, and the claim holds. Assume that the claim holds for some 0 ≤ i < k and let
∆ = ‖(Ai+2,Mi+1, Ext(i+1))− (Ai+2,Mi+1, U)‖. By equation (2) and Proposition 2.2,

∆ ≤ ‖(Ai+2,Mi, Ext(i), Ext(i+1))− (Ai+2,Mi, Ext(i), U)‖

By the definition of Ext(i+1),

∆ ≤ ‖(Ai+2,Mi, Ext(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, Ext(i), U)‖

Let S be uniformly distributed over {0, 1}m. By the triangle inequality,

‖(Ai+2,Mi, Ext(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, Ext(i), U)‖ ≤

‖(Ai+2,Mi, Ext(i), Ext(Ext(i), Ai+1))− (Ai+2,Mi, S,Ext(S,Ai+1))‖+ (3)

‖(Ai+2,Mi, S,Ext(S,Ai+1))− (Ai+2,Mi, S, U)‖+ (4)

‖(Ai+2,Mi, S, U)− (Ai+2,Mi, Ext(i), U)‖ (5)

By Lemma 2.11, Ext is also an average-case (t+ log 1/γ, ε+ γ) strong extractor. By Lemma 2.9,

H̃∞(Ai+1|Ai+2,Mi) ≥ H̃∞(Ai+1|Ai+2)− ℓ = H∞(Ai+1)− ℓ = n− ℓ ≥ t+ log 1/γ

and therefore, by Definition 2.10, (4) ≤ ε+ γ. By Propositions 2.2 and 2.3,

(3), (5) ≤ ‖(Ai+1,Mi, Ext(i))− (Ai+1,Mi, S)‖

By the inductive hypothesis, ‖(Ai+1,Mi, Ext(i)) − (Ai+1,Mi, S)‖ ≤
∑i

j=0 2
j(ε + γ). Putting it

together we get that

∆ ≤ ε+ γ + 2 ·

i
∑

j=0

2j(ε+ γ) =

i+1
∑

j=0

2j(ε+ γ)

as required.

Finally, we give a lower bound for the length of the longest message in a conservative one-way
unicast communication protocol that computes a projection of a composed strong extractor.

Theorem 3.3. Let Ext
(k)
S : {0, 1}m+nk → {0, 1}m

′
be a (t, ε) PCSE and let P be a conservative one-

way unicast communication protocol with respect to Ext(k) that computes Ext
(k)
S with bias δ > 0,

such that ε < δ · 2−(k+2). Then,

L(P ) ≥ n− t− k − log
1

δ
− 2
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Proof. Let A0 ∈ {0, 1}m, A1, . . . , Ak ∈ {0, 1}n be uniformly and independently distributed and
let M1, . . . ,Mk be the messages sent during the execution of the protocol P on inputs A0, . . . , Ak,
where the ith player sends Mi, for i ∈ [k]. To simplify notation, we write Ext(k) instead of

Ext(k)(A0, A1, . . . , Ak). Since the protocol P computes Ext
(k)
S with bias δ,

δ + 2−m′

≤ Pr
Ā∈R{0,1}m+nk

[

Mk = Ext
(k)
S

]

Let U ′ be uniformly distributed over {0, 1}m
′
. Since Mk = Ext

(k)
S is a statistical test on the

distribution (Mk, Ext
(k)
S ), and the same statistical test on (Mk, U

′) passes with probability 2−m′
,3

∣

∣

∣

∣

Pr
Ā∈R{0,1}m+nk

[

Mk = Ext
(k)
S

]

− 2−m′

∣

∣

∣

∣

≤ ‖(Mk, Ext
(k)
S )− (Mk, U

′)‖

Assume for simplicity and without loss of generality, that all messages M1, . . . ,Mk−1 have the same
length, denoted ℓ. Fix γ = δ · 2−(k+2) and assume towards a contradiction that ℓ < n − t− log 1

γ .
Then, by Lemma 3.2,

‖(Mk, Ext
(k)
S )− (Mk, U

′)‖ ≤ 2k+1(ε+ γ)

We get that δ ≤ 2k+1(ε+ γ) and therefore, γ ≥ δ · 2−(k+1) − ε > δ · 2−(k+2), which contradicts our
choice of γ.

4 Logspace Pseudorandom Generators

We review the construction of the pseudorandom generator of Babai, Nisan and Szegedy [BNS92].
The generator is based on a function f that takes k arguments, each r bits long, and has high
multiparty communication complexity. The ε multiparty communication complexity of f , denoted
Cε(f), is the communication complexity of the best deterministic communication protocol in the
NOF model with blackboard communication that computes f with bias at least ε.

The input to the generator consists of t random strings of length r each. Fix k ≤ t and let
S1, S2, . . . , S(tk)

be all k-subsets of the input strings in anti-lexicographic order (i.e., each Si is a set

of k strings, each string is r bits long, and Si appears before Sj if the last string in the symmetric
difference of Si and Sj belongs to Sj). The output of the generator is f(S1), f(S2), . . . , f(S(tk)

).

The proof of the following lemma appears in [BNS92]. We give it for completeness.

Lemma 4.1. For every ε > 0, every function f : {0, 1}rk → {0, 1} and every s < Cε(f)/k, the above
construction gives an ε pesudorandom generator for space s (see Definition 2.5).

Proof. Fix f : {0, 1}rk → {0, 1}, ε > 0 and s < Cε(f)/k. Assume towards a contradiction that the
ith bit of the output of the generator can be predicted by a non-uniform, space s statistical test.
That is, there exists a non-uniform, space s statistical test Ma such that

Pr
y∈R{0,1}tr

[Ma(first i− 1 bits of G(y)) = ith bit of G(y)]−
1

2
> ε

where G is the generator that is defined by the construction above. Fix y = (y1, . . . , yt) ∈ ({0, 1}r)t

and let the ith bit of the output of the generator on input y be f(S), where S = {yi1 , yi2 , . . . , yik}

3We can assume, without loss of generality, that Mk is of length m′.
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and i1 > i2 > · · · > ik. By an averaging argument, we can fix all input strings from y that are not
in S, such that the prediction bias of Ma is preserved. We describe a multiparty communication
protocol for k players, that computes f(S) with bias ε. The model of this multiparty communication
protocol is the NOF model with blackboard communication, in which the jth player knows all input
strings except yij , for j ∈ [k], and the players broadcast their messages. The players simulate the
running of Ma on the first i− 1 bits of G(y) as follows. The first player starts the simulation and
continues it for as long as she can, that is, as long as she has access to the input bits that the
test reads. Then, the first player sends the state of Ma (i.e., all the memory space used by the
machine) to the second player. The second player continues the simulation for as long as she can,
and so on. Note that for every j ∈ [k], the jth player can simulate Ma until the simulation requires
the value f(T ) for a set T that contains yij . Moreover, because the sets used to compute the bits
of the generator are ordered in anti-lexicographic order, every set that appears after T , until S
appears, contains yij . Therefore, the kth player can continue the simulation until it reaches a set
that contains yi1 , yi2 , . . . , yik , which must be the set S, when the simulation ends and the prediction
is made. Sending the space used by the machine k − 1 times, by each of the first k − 1 players,
results in less than ks communicated bits. Since ks < Cε(f), we get a contradiction.

We make few observations on Lemma 4.1 and its proof, that will allow us to use our lower
bound from Section 3:

1. In the multiparty communication protocol used for the proof, the players communicate in
a fixed order. Hence, we can consider communication protocols that satisfy item (2) in
Definition 1.1.

2. In the multiparty communication protocol used for the proof, for every i < k, the ith message,
sent by the ith player, is used only by player i+ 1. Therefore, the blackboard is not required
and we can consider communication protocols that satisfy item (3) in Definition 1.1.

3. In the multiparty communication protocol used for the proof, for every j ∈ [k], if the jth

player needs to compute f(T ) during the simulation, then it holds that the set T comes
before the set S in the anti-lexicographic order, and yi1 , . . . , yij−1 ∈ T and yij /∈ T . For
every such a set T , the jth player can compute f(T ) without knowing yi1 , . . . , yij−1 . It
suffices that she knows the strings that were fixed, the input strings yij+1 , . . . , yik and the
function f(yi1 , . . . , yij−1 , zj , . . . , zk) for every zj , . . . , zk ∈ {0, 1}r . Hence, we can consider
communication protocols that satisfy item (1) in Definition 1.1.

4. In the multiparty communication protocol used for the proof, all messages have the same
length. Hence, we can use a lower bound for the length of the longest message sent during
the execution of the protocol.

Note that the function f from Definition 1.1 has an additional input string b ∈ B. We can think
of b as if it is added to all subsets S1, S2, . . . , S(tk)

. Formally, our adjusted construction is as

follows. The input to the generator consists of t random strings of length r each and an additional
random string b ∈ {0, 1}m. Let S1, S2, . . . , S(tk)

be all k-subsets of the input strings (not including

the string b) in anti-lexicographic order, as in the original construction. For every 1 ≤ j ≤
(t
k

)

,
let Sj = {yij,1 , . . . , yij,k}, where ij,1 > ij,2 > · · · > ij,k. Then, the jth bit in the output of the
generator is f1(b, yij,1 , . . . , yij,k). Recall that f1 returns the first bit of the function f (see notation
for projections in Section 2.1).
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We get the following lemma.

Lemma 4.2. Fix ε > 0 and a function f : {0, 1}m+kr → {0, 1}m, such that for every conservative
one-way unicast communication protocol with respect to f that computes f1 with bias ε, the length
of the longest message is at least C. Then, for every s < C, the adjusted construction gives an ε
pesudorandom generator for space s.

Corollary 4.3. For every constant c > 0, there exists an (explicitly given) n−c pseudorandom
generator for logspace which converts O(log2 n) random bits to poly(n) bits.

Proof. Let m = O(log n), r = O(log n) and let f : {0, 1}m+r → {0, 1}m be a (t′, ε) strong extractor,
such that t′ < r−2 log n−c log n−2 and ε < 1/4nc+1. For an explicit construction of a strong extractor
with such parameters see Theorem 4.2 in [GW97] (for more information see e.g. [NT99], [S02] and
[V12]). Let δ = n−c, k = log n and let P be a conservative one-way unicast communication protocol

with respect to f (k) that computes f
(k)
1 with bias δ. Since ε < δ · 2−(k+2) = 1/4nc+1, Theorem 3.3

guarantees that L(P ) ≥ r − t′ − k − log 1
δ − 2 = r − t′ − log n− c log n− 2 > log n. By Lemma 4.2,

using the adjusted construction with the PCSE f
(k)
1 and t = k · 2c

′
for any constant c′ > 1, we get

a δ pseudorandom generator for space log n, that on a seed of length m+ tr = O(log2 n) produces
a pseudorandom string of length

(t
k

)

≥ nc′ .
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