
On Limitations of the Ehrenfeucht-Fraı̈ssé-method in
Descriptive Complexity

Yijia Chen
Department of Computer Science

Shanghai Jiaotong University
yijia.chen@cs.sjtu.edu.cn

Jörg Flum
Mathematisches Institut

Albert-Ludwigs-Universität Freiburg
joerg.flum@math.uni-freiburg.de

Abstract

Ehrenfeucht-Fraı̈ssé games and their generalizations have been quite successful in finite model theory
and yield various inexpressibility results. However, for key problems such as P 6= NP or NP 6= co-NP
no progress has been achieved using the games. We show that for these problems it is already hard to get
the board for the corresponding Ehrenfeucht-Fraı̈ssé game. We obtain similar results for the so-called
Ajtai-Fagin games and for a variant where the structures are obtained randomly.

1. Introduction

Originally Ehrenfeucht-Fraı̈ssé games were used to show that two structures satisfy the same sentences of
first-order logic FO or at least, the same such sentences of quantifier rank at most m for a given natural
number m. In classical model theory the games have widely been applied, e.g., to show the completeness
of theories. While Fraı̈ssé [7] introduced this method in more algebraic terms, Ehrenfeucht [5] phrased
it in an appealing game-theoretic form. Generalizations of the games to fragments and to extensions of
first-order logic were introduced and put to good use.

In finite model theory and in descriptive complexity theory Ehrenfeucht-Fraı̈ssé games for FO are
mainly used to obtain inexpressibility results, that is, they are used to show that given properties are not
expressible in FO (the standard tool for this purpose in classical model theory, the compactness theorem,
does not survive when restricting to finite structures). Concerning generalizations one developed games
for further logics, mainly for logics relevant in descriptive complexity theory like deterministic transitive
closure logic DTC, least fixed-point logic LFP, and finite variable logics.

To show via the Ehrenfeucht-Fraı̈ssé method that, for example, for (finite) graphs 1 “connectivity” is
not expressible in first-order logic one exhibits, for every natural number m, a connected graph Gm and
a graph Hm, which is not connected, such that Gm ≡FOm Hm, that is, Gm and Hm satisfy the same
sentences of first-order logic of quantifier rank at most m. The latter property is shown by analyzing the
Ehrenfeucht-Fraı̈ssé game with board (Gm, Hm).

We realized that essentially in all successful applications of the Ehrenfeucht-Fraı̈ssé method showing
that a property Q of structures is not expressible in a logic L, the boards for the game can be constructed
in a reasonable time and the equivalence of the corresponding structures can be realized efficiently; i.e.,
more or less, the two following conditions are fulfilled (we identify Q with the class of structures having
the property Q):

(i) (“The boards may be constructed in a reasonable time.”) There is an algorithm that on input m
yields a board (Am,Bm) in time polynomial in ‖Am‖ + ‖Bm‖ 2 with Am ∈ Q, Bm /∈ Q, and
Am ≡Lm Bm (that is, Am and Bm satisfy the same sentences of the logic L of “quantifier rank” at
most m).

(ii) (“The property Am ≡Lm Bm may be verified in a reasonable time.”) There is an algorithm that

1In the following all structures will assumed to be finite.
2‖A‖ denotes the size of the structureA.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 65 (2013)

verifies that Am ≡Lm Bm in time f(m) · (‖Am‖ + ‖Bm‖)O(1) for some computable function f :
N→ N.

In finite model theory, Ehrenfeucht-Fraı̈ssé games were also used to get a second type of results, namely,
hierarchy results. A hierarchy result states that a certain hierarchy is strict. E.g., for m ∈ N consider
the fragment FOm consisting of those formulas of FO which contain at most m variables. The hierarchy
(FOm)m∈N is strict, that means, that for every m ∈ N there is an FOm+1-sentence not equivalent to any
FOm-sentence.

Let us mention some further examples of inexpressibility results (see (I1)–(I3)) and hierarchy results
(see (H1)–(H3)) obtained by the Ehrenfeucht-Fraı̈ssé method using the classical Ehrenfeucht-Fraı̈ssé games
or variants such as the so called Ajtai-Fagin games or probabilistic generalizations of them.

(I1) There is a polynomial time property of structures not expressible in fixed-point logic with count-
ing [4].

(I2) Reachability in directed graphs is not expressible in monadic Σ1
1 [1].

(I3) For ordered graphs connectivity is not expressible in monadic Σ1
1 [15].

(H1) The finite variable hierarchy for FO on ordered structures is strict [14].

(H2) The arity hierarchies are strict for DTC and LFP [8].

(H3) For every k ∈ N the hierarchy whose m-th member consists of formulas with at most m nested
k-ary fixed-point operators is strict for DTC and LFP [10].

Also in the corresponding derivations of these hierarchy results (analogues of) the properties (i) and (ii) are
fulfilled.

In contrast to some methods of complexity theory such as the method of proofs merely based on diag-
onalization [3] or the method of natural proofs [13], there exist proofs by the Ehrenfeucht-Fraı̈ssé method
of statements such as P 6= NP or NP 6= co-NP assuming the statements are true. Indeed, P 6= NP if and
only if there is a 3-colorable ordered graph Gm and an ordered graph Hm, which is not 3-colorable, such
that Gm and Hm are indistinguishable by sentences of LFP of “quantifier rank” or length at most m; this
last property would be shown by the Ehrenfeucht-Fraı̈ssé game for LFP. And in [6], the authors remark:

It is known that Σ1
1 6= Π1

1 if and only if such a separation can be proven via second-order
Ehrenfeucht-Fraı̈ssé games. Unfortunately, “playing” second-order Ehrenfeucht-Fraı̈ssé games
is very difficult, and the above promise is still largely unfulfilled; for example, the equivalence
between the NP = co-NP question and the Σ1

1 = Π1
1 question has not so far led to any progress

on either of these questions.

One way of attacking these difficult questions is to restrict the classes under consideration. . . The
hope is that the restriction to the monadic classes will yield more tractable questions and will
serve as a training ground for attacking the problems in their full generality.

Definitely, the authors are right with their observation that “playing” second-order Ehrenfeucht-Fraı̈ssé
games is very difficult.3 However, the results of this paper show that there is a further fundamental dif-
ference between, on the one hand, monadic classes and other cases handled with success so far and partly
mentioned above and, on the other hand, key problems such as P 6= NP and NP 6= co-NP. In fact, there
is a difference already in the complexity of constructing the boards for the Ehrenfeucht-Fraı̈ssé game. So
far in successful applications of the Ehrenfeucht-Fraı̈ssé method the boards could be constructed in a rea-
sonable time (see (i)). However, a sequence of boards (Gm, Hm)m∈N as mentioned above to show that
the 3-colorability problem is not in P (and hence, P 6= NP) can not be constructed in time polynomial in
‖Gm‖+‖Hm‖. Even more, it is open whether we can get such a sequence of boards by an algorithm more
efficient than brute force.

3But note that to derive the results of (H2) and (H3) the corresponding authors successfully apply games for logics containing
nonmonadic second-order quantifiers.

2

Mostly in successful applications of the Ehrenfeucht-Fraı̈ssé method the main task consisted in con-
structing boards such that one can find an argument showing, via Ehrenfeucht-Fraı̈ssé games for the given
logic, that the corresponding structures are indistinguishable to a certain extent. As mentioned, for a proof
of P 6= NP via the Ehrenfeucht-Fraı̈ssé method, already the presumably easier step of merely constructing
the sequence of boards (and forgetting about the concrete verification of their indistinguishability) is hard.
This makes our “negative” results even stronger with respect to the existence of positive applications of the
Ehrenfeucht-Fraı̈ssé method for sufficiently rich logics.

For simplicity, we speak not only in the title but also in the whole paper of the Ehrenfeucht-Fraı̈ssé
method and in some sections even of Ehrenfeucht-Fraı̈ssé games instead of using the cumbersome formu-
lation “the selection of boards for the Ehrenfeucht-Fraı̈ssé game.”

The content of the different sections is the following. After fixing our notation in Section 2, we recall
the Ehrenfeucht-Fraı̈ssé method in Section 3. In particular, we see that a property Q of structures is not
expressible in a logic L if there is a sequence of boards (Am,Bm)m∈N such that Am ∈ Q, Bm /∈ Q,
and such that every Lm-sentence holding in Am holds in Bm (where Lm consists of all L-sentences of
“quantifier rank” at most m). We call such a sequence a (Q,L)-sequence. Among others, in Section 4 we
show that if the logic L captures one of the complexity classes LOGSPACE, P, or PSPACE, then we can’t
get a (Q,L)-sequence by an algorithm which satisfies the resource bound in ‖Am‖+ ‖Bm‖ characteristic
for the corresponding complexity class (e.g., not in space log (‖Am‖ + ‖Bm‖) for LOGSPACE and not
in time polynomial in ‖Am‖ + ‖Bm‖ for P). We realized that in the proof we do not need any specific
properties of Q. Thus we can show that within the same resource bound we can’t get an L-sequence, that
is, a sequence (Am,Bm)m∈N such that Am 6∼= Bm and every Lm-sentence holding in Am holds in Bm.

As it is hard to construct (Am,Bm)m∈N, can we say anything on min{‖Am‖, ‖Bm‖} and max{‖Am‖, ‖Bm‖}?
In Section 5, for least fixed-point logic LFP, we study the minimal size of structures in LFP-sequences and
in (Q,LFP)-sequences (taking as LFPm the set of LFP-formulas of length at most m). It turns out that
2ε·m, for some ε > 0, is a lower bound for the size of the structures of the mth member of such se-
quences; furthermore, one gets an upper bound exponentially related to m for such sequences of structures
of minimum size, at least if Q has no circuit size in 2o(n) (see Theorem 5.1 for the precise statements).

We then turn to generalizations of the Ehrenfeucht-Fraı̈ssé method: We see that limitations similar to
those we obtained in Section 4 for the classical Ehrenfeucht-Fraı̈ssé method hold for the Ajtai-Fagin variant
of it (see Section 6) and for a variant where the structures are obtained randomly (see Section 7).

Finally, in the Appendix, we verify that the successful applications of the Ehrenfeucht-Fraı̈ssé method
mentioned in (I3) and (H2) satisfy the conditions (i) and (ii), since this is not obvious for these two appli-
cations.

2. Preliminaries

By nO(1) we denote the class of all polynomially bounded functions on N, the set of natural numbers. We
let Σ be the alphabet {0, 1} and denote the length of a string x ∈ Σ∗ by |x|. We identify decision problems
with subsets of Σ∗.

Structures. A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. A
structure A of vocabulary τ , or τ -structure, consists of a nonempty set A called the universe, and an
interpretation RA ⊆ Ar of each r-ary relation symbol R ∈ τ . In this paper all structures are assumed to
have a finite universe.

If τ contains a binary relation symbol < and in the structure A the relation <A is a (total) ordering of
the universe, then A is an ordered structure. We denote by ‖A‖ the length of a binary string encoding A,
up to isomorphism, in a natural way. Thereby two ordered isomorphic structures should be encoded by the
same string. A problem (or, property) of τ -structures is a class of τ -structures closed under isomorphism.

We say that a deterministic or nondeterministic algorithm is an algorithm for (ordered) τ -structures if
the class of accepted (ordered) τ -structures is closed under isomorphism. By our convention on the en-
coding of ordered structures every deterministic or nondeterministic algorithm is an algorithm for ordered
τ -structures. By default, algorithms are deterministic.

Often we consider graphs or ordered graphs as structures. Then we also use the graph-theoretic notation
for graphs, That is, we denote them by G = (V (G), E(G)) where V (G) is the vertex set and E(G) the

3

edge set of the graph G.

Logics. If L is any logic, we denote its set of formulas again by L. For a vocabulary τ and any set F of
formulas of L we let F [τ] be the set of formulas of F of vocabulary τ . We write A ≡F B for τ -structures
A and B, if for all F [τ]-sentences ϕ we have (A |= ϕ ⇐⇒ B |= ϕ). Here A |= ϕ means that ϕ holds in
A. And we write A ≡〉FB, if for all F [τ]-sentences ϕ we have that A |= ϕ implies B |= ϕ.

Logics and complexity classes. Let L be a logic. A property Q of τ -structures is expressible in L (or, ax-
iomatizable in L) if there is an L[τ]-sentence such thatQ is its class of models. Thereby we identifyQwith
the class of structures having the property Q. For a complexity class C we write C ≤ L (on ordered struc-
tures) and say that C-properties of (ordered) structures are expressible in L if every problem of (ordered)
structures in C is expressible in L.

The logic L captures the complexity class C (on ordered structures) if for every vocabulary τ and every
property Q of (ordered) τ -structures we have:

Q is expressible in L ⇐⇒ Q ∈ C,

that is, if C ≤ L (on ordered structures) and every problem of (ordered) structures expressible in L is in C.
We assume familiarity with basic notions of first-order logic FO and of standard logics relevant in

descriptive complexity as deterministic transitive closure logic DTC, transitive closure logic TC, least fixed-
point logic LFP, the fragment Σ1

1 of second-order logic, and partial fixed-point logic PFP. Concerning
these logics essentially we only use the following well-known facts (further properties of LFP are needed
in Section 5):

Theorem 2.1. (a) On ordered structures, DTC, TC, LFP, and PFP capture LOGSPACE, NLOGSPACE,
P, and PSPACE, respectively.

(b) Σ1
1 captures NP.

3. The Ehrenfeucht-Fraı̈ssé method

As already mentioned, in finite model theory the Ehrenfeucht-Fraı̈ssé method is often applied to show that
a given problem Q of τ -structures is not expressible in a logic L. Thereby, one uses a filtering of L, that is,
a sequence (Lm)m∈N satisfying (f1) and (f2).

(f1) L0 ⊆ L1 ⊆ . . . ⊆ Lm ⊆ . . . and L =
⋃
m∈N Lm.

(f2) For every vocabulary τ there is an increasing function s : N → N such that s(m) is computable in
space O(log m) and such that for all τ -structures A and B and all m ∈ N we have:

if A ≡〉Ls(m)
B and A 6∼= B, then ‖A‖, ‖B‖ > m.

The condition (f2) is based on the fact that all logics we consider extend first-order logic and therefore, for
every structure they contain a sentence characterizing this structure up to isomorphism. In applications,
Lm may consist of the L-formulas of “quantifier rank” at mostm or of the L-formulas of length at mostm.
Unless stated otherwise explicitly, our results refer to an arbitrary but fixed filtering of the given logic
which we do not mention in the statements of our results.

Most filterings used when applying the Ehrenfeucht-Fraı̈ssé method are finitary in the sense of the
following definition.

Definition 3.1. A filtering (Lm)m∈N of a logic L is finitary if for every vocabulary τ each Lm[τ] contains,
up to logical equivalence, only finitely many sentences.

The Ehrenfeucht-Fraı̈ssé method relies on the implication (i)⇒ (ii) in the following well-known result.

Proposition 3.2. Let L be a logic and Q a problem of τ -structures. Then (i) implies (ii) where:

4

(i) For all m ∈ N there are τ -structures Am and Bm with

Am ∈ Q, Bm /∈ Q, and Am ≡〉LmBm. (1)

(ii) Q is not expressible in L.

Furthermore:

(a) If L is closed under conjunction and disjunction and the filtering is finitary, then (i) and (ii) are
equivalent.

(b) All previous statements (including (a)) remain valid if L is closed under negation and if in (i) we
replace (1) by

(Am ∈ Q ⇐⇒ Bm /∈ Q) and Am ≡Lm Bm,

and all statements remain valid if L is closed under negation and finitary and if in (i) we replace (1)
by

Am ∈ Q, Bm /∈ Q, and Bm ≡〉LmAm.

Proof: (i) ⇒ (ii): By contradiction, assume that Q is the class of models of an L[τ]-sentence ϕ. We
choosem such that ϕ ∈ Lm[τ]. With (i) we getAm and Bm satisfying (1). AsAm ∈ Q, we haveAm |= ϕ
and thus, Bm |= ϕ by Am ≡〉LmBm; therefore, B ∈ Q, a contradiction.

(ii)⇒ (i) (under the additional hypotheses on L mentioned in (a)): By contradiction, assume that (i) fails
for some m ∈ N, that is, for all τ -structures A and B we have

A ∈ Q and A ≡〉LmB imply B ∈ Q. (2)

For every τ -structure A, by our additional assumptions on L, we can view

ϕmA :=
∧{

ψ
∣∣ ψ in Lm[τ] with A |= ψ

}
as an L[τ]-sentence and can assume that {ϕmB | B a τ -structure} is finite. Thus

ϕm :=
∨
{ϕmA | A ∈ Q}

is an L[τ]-sentence, too. Clearly, for every τ -structure we have

B |= ϕmA ⇐⇒ A ≡〉LmB.

With this equivalence and (2) one easily gets that Q is the class of models of ϕm.
To verify the first statement in (b), observe that for every L-sentence ϕ there is a natural number m

such that Lm contains ϕ and its negation “¬ϕ.” Hence, if in addition, the filtering is finitary, then for every
m ∈ N there is a k ≥ m such that, up to equivalence, {¬ϕ | ϕ ∈ Lm} ⊆ Lk; therefore, B ≡〉kA implies
A ≡〉mB. This yields the second statement in (b). 2

So, in order to show by the Ehrenfeucht-Fraı̈ssé method that a problemQ of τ -structures is not express-
ible in the logic L, it suffices to exhibit a (Q,L)-sequence in the sense of the following definition.

Definition 3.3. Let L be a logic and Q a problem of τ -structures. A sequence (Am,Bm)m∈N is a (Q,L)-
sequence if EF(Q) and EF(L) hold.

EF(Q): Am ∈ Q and Bm /∈ Q;

EF(L): Am ≡〉LmBm.

We speak of a strong (Q,L)-sequence if instead of EF(L) the property s-EF(L) holds.

s-EF(L): Am ≡Lm Bm.

5

Clearly, every strong (Q,L)-sequence is a (Q,L)-sequence. By the property (f1) of a filtering every
infinite subsequence of a (strong) (Q,L)-sequence is a (strong) (Q,L)-sequence, too.

Using the terminology just introduced, we can restate (part of) Proposition 3.2 as follows:

Corollary 3.4. (a) If there is a (Q,L)-sequence, then Q is not expressible in L.

(b) If L is closed under conjunction and disjunction and the filtering is finitary, then there is a (Q,L)-
sequence if and only if Q is not expressible in L.

(c) If in addition to the assumptions in (b) the logic L is closed under negation, then there is a strong
(Q,L)-sequence if and only if Q is not expressible in L.

We often will consider a logic L and a complexity class C with C ≤ L only on ordered structures.
Then, in order to show by the Ehrenfeucht-Fraı̈ssé method that a problem of ordered τ -structures is not
expressible in L, and thus, is not in C, of course, one has to choose ordered τ -structures Am and Bm. We
then speak of an ordered sequence (Am,Bm)m∈N.

4. Limitations of the Ehrenfeucht-Fraı̈ssé method

Let C denote one of the complexity classes LOGSPACE, NLOGSPACE, P, NP, or PSPACE. A simple diago-
nalization argument shows:

Proposition 4.1. Let L be a logic and assume that C ≤ L (on ordered structures), that is, that C-
properties of (ordered) structures are expressible in L. LetQ be a problem of (ordered) τ -structures and let
(Am,Bm)m∈N be an (ordered) (Q,L)-sequence. Then there is no algorithm A of type C for τ -structures 4

that accepts all Am and rejects all Bm (that is, that decides Q on {Am,Bm | m ∈ N}).
Furthermore, for every infinite subset I of N the previous statement remains valid if we replace “ac-

cepts all Am and rejects all Bm” by “accepts Am for m ∈ I and rejects Bm for m ∈ I .”

Proof: By contradiction assume that A is an algorithm of type C such that for all m ∈ N,

A accepts Am and A rejects Bm. (3)

As A is an algorithm for (ordered) τ -structures, the class of (ordered) τ -structures accepted by A is closed
under isomorphism. Therefore, since C ≤ L (on ordered structures), there is an L[τ]-sentence ϕ such that
for all (ordered) τ -structures D we have

D |= ϕ ⇐⇒ A accepts D.

We choose m ∈ N such that ϕ ∈ Lm. Then, by (3), Am |= ϕ and Bm 6|= ϕ; but this contradicts EF(L).
The last claim of the proposition follows as we already saw that infinite subsequences of (Q,L)-

sequences are themselves (Q,L)-sequences. 2

Already this simple proposition reflects some limitations of the Ehrenfeucht-Fraı̈ssé method. In fact, to
show that P 6= NP, one could, for example, try to find ordered graphs Gm and Hm such that Gm but not
Hm is 3-colorable and such that every LFP-sentence of “quantifier rank” at mostm holding inGm holds in
Hm. One hopes to get graphs such that it is evident that the first one but not the second one is 3-colorable.
The previous proposition shows that “evident” may not be replaced by “solvable in polynomial time.”

Further note that in the previous proposition the problem Q could be any problem of (ordered) τ -
structures. That is, we need no specific property of Q. This reflects the fact that it is already hard to get
nonisomorphic structures Am and Bm with Am ≡〉LmBm. Proposition 4.3 contains the corresponding
precise statement. The reader will easily prove it along the lines of the proof of Proposition 4.1.

Definition 4.2. Let L be a logic. A sequence (Am,Bm)m∈N of structures, all of the same vocabulary, is
an L-sequence if Am 6∼= Bm and Am ≡〉LmBm for all m ∈ N

(
that is, if Am 6∼= Bm for all m ∈ N and if

EF(L) holds.
)
.

4In particular, for C = NLOGSPACE and C = NP the algorithm A is nondeterministic.

6

Clearly, every (Q,L)-sequence for any problem Q of τ -structures, is an L-sequence.

Proposition 4.3. Let C ≤ L (on ordered structures). For every (ordered) L-sequence (Am,Bm)m∈N of
τ -structures there is no algorithm A of type C for τ -structures that accepts all Am and rejects all Bm.

Assume the logic L (and its filtering) have the property that we can decide whether A ≡〉LmB (given
m,A, and B). Then, if there is a (Q,L)-sequence for some decidable property Q of structures or if there is
an L-sequence, we can get such sequences algorithmically; for example, by a brute force algorithm that for
every m ∈ N systematically checks for all pairs (A,B) whetherA ≡〉LmB. Are there efficient algorithms?

Let C be a deterministic complexity class with C ≤ L on ordered structures. Our next result shows
that then we can’t get the structures Am and Bm of an ordered L-sequence by an algorithm of type C,
which satisfies the resource bound in ‖Am‖ + ‖Bm‖. This reveals a further essential limitation of the
Ehrenfeucht-Fraı̈ssé method.

In the following we say that an algorithm A generates the sequence (Am,Bm)m∈N in time g(m)
(
in

space h(m)
)

if A on input m ∈ N outputs Am and Bm in time g(m)
(
in space h(m)

)
.

Theorem 4.4. Let L be a logic.

(a) If LOGSPACE ≤ L on ordered structures, then there is no algorithm that generates an ordered L-
sequence (Am,Bm)m∈N in space O(log (‖A‖+ ‖B‖)).

(b) If P ≤ L on ordered structures, then there is no algorithm that generates an ordered L-sequence
(Am,Bm)m∈N in time (‖Am‖+ ‖Bm‖)O(1).

(c) If PSPACE ≤ L on ordered structures, then there is no algorithm that generates an ordered L-
sequence (Am,Bm)m∈N in space (‖Am‖+ ‖Bm‖)O(1).

Thus, by Theorem 2.1, we get:

Corollary 4.5. Let Q be a problem of ordered τ -structures.

(a) No ordered (Q,DTC)-sequence (and hence, no ordered (Q,TC)-sequence) can be generated in
space O(log (‖Am‖+ ‖Bm‖)).

(b) No ordered (Q,LFP)-sequence (and hence, no ordered (Q,Σ1
1)-sequence) can be generated in time

(‖Am‖+ ‖Bm‖)O(1).

(c) No ordered (Q,PFP)-sequence can be generated in space (‖Am‖+ ‖Bm‖)O(1).

Proof of Theorem 4.4. We prove (b); the other proofs are obtained by the obvious modifications. The
essential idea is the following: Using an algorithm generating an ordered L-sequence (Am,Bm)m∈N in
time (‖Am‖ + ‖Bm‖)O(1) one can define a polynomial time algorithm accepting Am and rejecting Bm
for infinitely many m ∈ N. This contradicts Proposition 4.3 (as subsequences of L-sequences are L-
sequences).

We call a sequence (Am,Bm)m∈N monotone if for all m ∈ N,

max
{
‖Am‖, ‖Bm‖

}
< min

{
‖Am+1‖, ‖Bm+1‖

}
. (4)

Claim. If there is an algorithm generating an ordered L-sequence (Am,Bm)m∈N in time (‖Am‖ +
‖Bm‖)O(1), then there is an algorithm generating a monotone and ordered L-sequence (even a subsequence
of (Am,Bm)m∈N) within the same time bound.

Proof of Claim. Assume that S is an algorithm that generates an ordered L-sequence (Am,Bm)m∈N in
time polynomial in ‖Am‖ + ‖Bm‖. Let s : N → N be the function according to the property (f2) of a
filtering for the common vocabulary of the structures of this sequence. We define a function h : N → N
inductively:

h(m) :=

{
s(0), if m = 0,

s
(
max{‖Ah(m−1)‖, ‖Bh(m−1)‖}

)
, if m > 0.

(5)

7

AsAh(m) ≡〉h(m)Bh(m), that is,Ah(m) ≡〉s
(

max{‖Ah(m−1)‖,‖Bh(m−1)‖}
)Bh(m), we have, by (f2), ‖Ah(m)‖,

‖Bh(m)‖ > max{‖Ah(m−1)‖, ‖Bh(m−1)‖}. Moreover, by property (f1), Ah(m) ≡〉h(m)Bh(m) implies
Ah(m) ≡〉mBh(m). Therefore, it is routine to show that the algorithm which on input m first computes
h(m) and then simulates S generates the monotone and ordered L-sequence (Ah(m),Bh(m))m∈N in the
desired time bound. a

We continue the proof of Theorem 4.4 and assume, by contradiction, that there is an algorithm S
which on input m ∈ N outputs structures Am and Bm in time (‖Am‖ + ‖Bm‖)d (with d ∈ N) such that
(Am,Bm)m∈N is an ordered L-sequence. By the Claim we may assume that the sequence is monotone.
Furthermore, we can assume that ‖Am‖ ≥ ‖Bm‖ for all m ∈ N or that ‖Bm‖ ≥ ‖Am‖ for all m ∈ N
(otherwise, one passes to a subsequence which still can be generated in the required time bound). W.l.o.g.
we assume that ‖Am‖ ≥ ‖Bm‖ for all m ∈ N.

We show that the following polynomial time algorithm A accepts all Am and rejects all Bm, which
contradicts Proposition 4.3.

A // C an ordered τ -structure

1. for i = 0 to ‖C‖ do

2. simulate S on i for
(
2 · ‖C‖

)d
steps

3. if the simulation halts with output (Ai,Bi) and C ∼= Ai
4. then accept

5. reject.

As (Am,Bm) is a monotone sequence, we know that Ai 6∼= Bj for all i 6= j and that m ≤ ‖Am‖. Thus,
the algorithm A will reject all Bm. Now we consider an input C = Am. Then, m ≤ ‖C‖. The simulation
of S on m in Line 2 will halt since, by ‖C‖ = ‖Am‖ ≥ ‖Bm‖,

(2 · ‖C‖)d ≥ (‖Am‖‖+ ‖Bm‖)d.

Therefore, A will accept Am. The algorithm A runs in polynomial time as for any two ordered structures
we can test in polynomial time whether they are isomorphic. 2

The last sentence makes clear why Theorem 4.4 (b) may be wrong if we allow arbitrary and not only
ordered structures. But if the (graph) isomorphism problem GI happens to be in P and L is a logic with
P ≤ L, then there is no algorithm generating an L-sequence (Am,Bm)m∈N in time (‖Am‖+ ‖Bm‖)O(1).
Note that P ≤ Σ1

1 (by Theorem 2.1 (b)). Hence, if GI ∈ P, then this result applies to Σ1
1. Without the

assumption GI ∈ P we only are able to show:

Theorem 4.6. If (Am,Bm)m∈N is a Σ1
1-sequence, then there is no pair (S,T) of algorithms such that on

input m ∈ N the algorithms S and T output Am and Bm, respectively, and S does this in time ‖Am‖O(1).

As NP ≤ Σ1
1, this result is a special case of:

Theorem 4.7. Let L be a logic with NP ≤ L. If (Am,Bm)m∈N is an L-sequence, then there is no pair
(S,T) of algorithms such that on input m ∈ N the algorithms S and T output Am and Bm, respectively,
and S does this in time ‖Am‖O(1).

Proof: The proof is similar to that of Theorem 4.4. By contradiction we assume the existence of a pair
(S,T) of algorithms with the properties mentioned in the theorem; in particular, let d ∈ N be such that S
on input m yieldsAm in time ‖Am‖d. Again we may assume that (Am,Bm)m∈N is monotone, that is, that
it satisfies (4). For this we argue as in the proof of the Claim in Theorem 4.4, however, in (5) we have to
replace the term ‖Bh(m−1)‖ by tB(h(m−1)), where tB(h(m−1)) is the number of steps of the computation of
B on input h(m− 1); in particular, tB(h(m−1)) ≥ ‖Bh(m−1)‖.

On input m ∈ N the algorithm S outputs the encoding of the structure Am; this encodings yields an
ordering <Am of Am. The following polynomial time nondeterministic algorithm A accepts the class

K :=
{
C | there is an m ∈ N such that C ∼= Am}.

8

A // C a τ -structure

1. guess an ordering < on C

2. for i = 0 to ‖C‖ do
3. simulate S on i for ‖C‖d steps

4. if the simulation halts with output Ai and (C, <) ∼= (Ai, <Ai)
5. then accept

6. reject.

As K contains all Am and, by monotonicity of the sequence (Am,Bm), no Bm, this contradicts Proposi-
tion 4.3. 2

It is not clear to us whether a similar result holds for the Bms or whether one can show that such a
sequence (Am,Bm)m∈N cannot be generated in time polynomial in ‖Am‖+ ‖Bm‖. However, both results
hold if GI is in co-NP.

Finally, let us remark that for different classes K of structures containing NP-complete problems it is
known that, when restricting to K, there is a logic capturing P on K. Thus, one might wonder whether
this may help proving P 6= NP via the Ehrenfeucht-Fraı̈ssé method. However, for all known such Ks the
isomorphism problem is solvable in polynomial time on K. But then Theorem 4.4 (b) remains true when
restricting to structures in K.

4.1. A further result for LOGSPACE. For a given Q /∈ LOGSPACE, part (a) of Corollary 4.5 does
not rule out the existence of an ordered (Q,DTC)-sequence (Am,Bm)m∈N computable in time (‖Am‖+
‖Bm‖)O(1). However, we show that if such a sequence exists, then we do not only separate LOGSPACE
and P (by Corollary 4.5 (b)) but also the complexity classes LINSPACE and E and at the same time, from
such a sequence we would get an explicit problem in E \ LINSPACE. Recall that

LINSPACE :=
⋃
c∈N

DSPACE[c · n] and E := DTIME(2O(n)).

Again we state our result on the level of nonisomorphic structures.

Theorem 4.8. Let L be a logic with LOGSPACE ≤ L on ordered structures. If there is an algorithm
generating an ordered L-sequence (Am,Bm)m∈N in time (‖Am‖+ ‖Bm‖)O(1), then LINSPACE 6= E.

Proof: Let the sequence (Am,Bm)m∈N be as in the statement of the result. Again, we may assume
that the sequence is monotone. Furthermore, by passing to a suitable subsequence, we may assume that
‖Am‖ ≥ ‖Bm‖ for all m or that ‖Bm‖ ≥ ‖Am‖ for all m. W.l.o.g. let us assume the second one is the
case. Then there is an algorithm S that on input m computes Bm in time ‖Bm‖d for some d ∈ N.

We consider the following problem:

P :=
{

(m,n, i, b)
∣∣ m,n, i ∈ N in binary, ‖Bm‖ = n and the ith bit of the encoding of Bm is b

}
.

Claim 1. P is in E.

Proof of Claim 1. It is easy to verify that the following algorithm A decides P in exponential time (note
that m,n, i are all in binary).

A // m,n, i ∈ N in binary and b ∈ {0, 1}.

1. simulate S on m for at most nd steps

2. if the simulation does not halt then reject

3. if the simulation halts then let C be its output

4. if ‖C‖ = n and the ith bit of the encoding of C is b then accept

5. else reject.

9

a
Claim 2. P is not in LINSPACE.

Proof of Claim 2. Assume that there is an algorithm A that decides P in linear space. We use A to get an
algorithm B that in logarithmic space accepts allAm and rejects all Bm, which contradicts Proposition 4.3.

Let B the following algorithm:

B // C an ordered structure.

1. n← ‖C‖
2. `← 1

3. while ` ≤ n do
4. diff← FALSE

5. i← 1

6. while diff = FALSE and i ≤ n do
7. b← the ith bit of the encoding of C
8. if A rejects (`, n, i, b) then diff← TRUE

9. else i← i+ 1

10. if diff = FALSE then reject and halt

11. else `← `+ 1

12. accept.

Let C be an ordered structure and n := ‖C‖. First assume C = Bm for some m ∈ N; by monotonicity,
then m is uniquely determined and m ≤ ‖Bm‖ = ‖C‖ = n. Therefore, eventually the variable ` reaches
the value m. Then, the while loop between Line 6 to Line 9 detects that C = Bm and the algorithm B
rejects. If C is not (isomorphic to) any of the Bm, then clearly the algorithm B accepts. As the sequence
(Am,Bm)m∈N is monotone, we know that Ai 6∼= Bj for all i, j ∈ N and thus B accepts all Am.

The algorithm B requires space in order

– to store the variables n, `,diff, i, b;

– to simulate A on (`, n, i, b).

As A runs in linear space (for inputs `, n and i given in binary) and n denotes the size of the input of the
algorithm B, this algorithm runs in logarithmic space. a

The result follows from Claim 1 and Claim 2. 2

5. On the size of the structures of an EF-sequence: a case study

Theorem 4.4 (b) shows for the least fixed-point logic LFP, a logic that captures P on ordered structures, that
it is hard to construct ordered LFP-sequences. Here we analyze how big the structures of such a sequence
have to be at least and how the size increases if we consider (Q,LFP)-sequences for a given Q. We carry
out our analysis for a fixed filtering and a fixed vocabulary.

We consider the following finitary filtering (LFPm)m∈N of least fixed-point logic,

LFPm :=
{
ϕ,¬ϕ

∣∣ ϕ an LFP-sentence with ‖ϕ‖ ≤ m
}
.

Here ‖ϕ‖ denotes the number of symbols (that is, of connectives, quantifiers, LFP-operators, variables, . . .)
in ϕ.

10

We fix the vocabulary τ := {E,<} for ordered graphs. We assume that an ordered τ -structure has, for
some n ≥ 1, the set [n] := {1, . . . , n} as universe and that < is interpreted by the natural ordering on [n].
We therefore can use the graph-theoretic notation G = (V (G), E(G)) for ordered τ -structures.

For our analysis we define the function I : N→ N by

I(m) := min
{

max{‖G‖, ‖H‖}
∣∣ G and H are ordered τ -structures such that

G 6∼= H and G ≡〉LFPmH
}
.

And for every problem Q of ordered graphs not solvable in polynomial time we introduce a function
(which we denote by Q, too, as from the context it will be always clear whether we mean the problem or
the function) Q : N→ N by

Q(m) := min
{

max{‖G‖, ‖H‖}
∣∣ G and H are ordered graphs such that

G ∈ Q, H /∈ Q, and G ≡〉LFPmH ,
}
.

Clearly, I(m) ≤ Q(m). If (Gm, Hm)m∈N is an ordered LFP-sequence, then I(m) ≤ max{‖Gm‖, ‖Hm‖};
and Q(m) ≤ max{‖Gm‖, ‖Hm‖} for any (Q,LFP)-sequence (Gm, Hm)m∈N of ordered graphs.

In this section we aim to show the following theorem which contains lower and upper bounds for I(m)
and Q(m). The lower bound we derive for I(m) turns out to be also a lower bound for min{‖G‖, ‖H‖}
(instead of max{‖G‖, ‖H‖} in the definition of I(m)), cf. Corollary 5.6 for the precise statement. In parts
of the theorem we assume that the circuit size of the given problem Q is not in 2o(n). Recall that the circuit
size of Q is the function HQ : N→ N defined by

HQ(n) := min
{
d ∈ N

∣∣∣ there exists a circuit D with n input variables and with |D| ≤ d such

that for every ordered graph G with ‖G‖ = n
(
G ∈ Q ⇐⇒ D(G) = 1

)}
.

Theorem 5.1. Let Q be a problem of ordered graphs not solvable in polynomial time.

(a) For some ε > 0 and all sufficiently large m ∈ N,

2ε·m ≤ I(m) ≤ Q(m).

(b) Let ε > 0. Then for all sufficiently large m ∈ N,

I(m) ≤ 2(1+ε)·m·log m.

(c) Let ε > 0. If the circuit size HQ(n) of Q is not in 2o(n), then for infinitely many m ∈ N,

Q(m) ≤ 2(1+ε)·m·log m.

The inequality I(m) ≤ Q(m) is clear from the definitions of the functions. The following considera-
tions will lead to a proof of the remaining claims.

We set
LFP0

m :=
{
ϕ
∣∣ ϕ an LFP-sentence with ‖ϕ‖ ≤ m

}
.

We often tacitly use the fact that the relations≡〉LFPm ,≡LFP0
m

, and≡LFPm coincide. Hence, every (Q,LFP)-
sequence is strong.

By a tedious induction one can show:

Lemma 5.2. Let m ∈ N. Then LFP0
m[τ] contains at most mm sentences up to logical equivalence.

Lemma 5.3 ([16]). There is an algorithm that for every ordered τ -structure G, all m ∈ N, and all ϕ ∈
LFPm decides whether G |= ϕ in time

O
(
m · ‖G‖2·m

)
.

11

The next lemma could be reformulated in order to give an explicit function s in (f2) for our concrete
case.

Lemma 5.4. There is a c ∈ N such that for any nonisomorphic ordered τ -structures G and H and every
m ∈ N,

if G ≡LFPm H , then |V (G)| > 2(m−c)/c − 1 and |V (H)| > 2(m−c)/c − 1.

Proof: As LFP captures P on ordered structures, there are LFP-formulas ϕ+1(x, y) and ϕ×2(x, y) such
that for all ordered τ -structures G (recall that by convention, V (G) =

[
|V (G)|

]
) and every u, v ∈ V (G)

we have

– G |= ϕ+1(u, v) ⇐⇒ u+ 1 = v;

– G |= ϕ×2(u, v) ⇐⇒ u× 2 = v.

Let i ≥ 1 be a natural number with binary representation b1 . . . bk(i), where b1 = 1; we write

[i]2 = b1 . . . bk(i).

For j ∈ [k(i)] we define inductively the formula ϕi,j such that for every ordered τ -structure G and any
v ∈ V (G)

G |= ϕi,j(v) ⇐⇒ [v]2 = b1 . . . bj .

In particular, then for the formula vertexi(x) := ϕi,k(i)(x), we get

G |= vertexi(v) ⇐⇒ v = i.

We set

ϕi,1(x) := ∀y x ≤ y,

ϕi,j+1(x) :=

{
∃y
(
ϕi,j(y) ∧ ϕ×2(y, x)

)
, if bi+1 = 0,

∃y∃z
(
ϕi,j(y) ∧ ϕ×2(y, z) ∧ ϕ+1(z, x)

)
, if bi+1 = 1.

Note that ‖vertexi‖ = O(k(i)) = O(log i). For every i, j ∈ N let

edgei,j(x, y) := ∃x∃y
(
vertexi(x) ∧ vertexj(y) ∧ Exy

)
.

It follows that

– for every ordered τ -structure G we have

G |= edgei,j ⇐⇒ |V (G)| ≥ max{i, j} and (i, j) ∈ E(G);

– there is a c ∈ N such that ‖edgei,j‖ ≤ c · log max(i, j) + c; in particular, then∥∥∃x vertexi(x)
∥∥ ≤ c · log i+ c− 1. (6)

Now assume m ∈ N and let G and H be ordered τ -structures with G ≡LFPm H and with

n := |V (G)| ≤ 2(m−c)/c − 1.

Then, G |= ¬∃x vertexn+1(x). By (6)∥∥¬∃x vertexn+1(x)
∥∥ ≤ c · log (n+ 1) + c ≤ m.

Therefore, H |= ¬∃x vertexn+1(x), i.e., |V (H)| ≤ n. By symmetry, we conclude |V (G)| = |V (H)| = n.
For every i, j ∈ [n] we have

‖edgei,j‖ ≤ c · log n+ c ≤ m.
Therefore,

G |= edgei,j ⇐⇒ H |= edgei,j .

Thus, G and H are isomorphic. 2

12

Lemma 5.5. There is an ε > 0 such that for all m ∈ N,

2ε·m ≤ I(m).

Proof: We choose c ∈ N such that the conclusion of Lemma 5.4 holds and set ε = 1/(2c). Let m ≥ 2c.
By definition of the function I , there are ordered τ -structures Gm and Hm with

(i) Gm 6∼= Hm and Gm ≡LFPm Hm;

(ii) ‖Gm‖ ≤ I(m) and ‖Hm‖ ≤ I(m).

By (i) and Lemma 5.4,
|V (Gm)|, |V (Hm)| > 2(m−c)/c − 1 ≥ 2ε·m − 1.

Then (ii) implies that
I(m) ≥ 2ε·m. 2

The preceding proof shows that the inequalities in Theorem 5.1 (a) even hold if we replace in the definitions
of the functions I and Q the max-operation by the min-operation; that is:

Corollary 5.6. There is an ε > 0 such that for all ordered LFP-sequences (Gm, Hm) and all sufficiently
large m ∈ N,

2ε·m ≤ ‖Gm‖, ‖Hm‖.

We derive an upper bound for Q (and hence, for I).

Lemma 5.7. Let Q be a problem of ordered graphs with HQ(n) /∈ 2o(n). Then for every ε > 0 and
infinitely many m ∈ N,

Q(m) ≤ 2(1+ε)·m·log m.

Proof: Let m ∈ N and km := Q(m)− 1. Thus, for every pair of ordered graphs G and H ,

if ‖G‖ ≤ km, ‖H‖ ≤ km and G ≡LFPm H , then both, G and H , are in Q or none is. (7)

We use this fact to define an algorithm Am decidingQ on ordered graphs of size at most km (= Q(m)−1).
Then we will see that the statement “Q(m) > 2(1+ε)·m·log m for all sufficiently large m ∈ N” implies that
HQ(n) ∈ 2o(n).

We come to the details. For every ordered graph G the following algorithm AmG , on input an ordered
graph H , decides whether G ≡LFPm H:

AmG // H an ordered graph.

1. for all sentences ψ ∈ LFPm with G |= ψ do
2. if H 6|= ψ then reject

3. accept.

Since G is a fixed graph, the algorithm AmG actually uses a list of all sentences ψ ∈ LFPm with G |= ψ.
Therefore, by Lemma 5.2,

‖AmG‖ = O (m ·mm) . (8)

By Lemma 5.3 the running time of AmG on input H can be bounded by

O
(
mm ·m · ‖H‖2·m

)
. (9)

Clearly, ≡〉LFPm (=≡LFP0
m

) is an equivalence relation on all ordered graphs with at most 2m
m

equivalence
classes (by Lemma 5.2). For each equivalence class containing a graph G ∈ Q with ‖G‖ ≤ km we choose
such a G as a representative. Then the following algorithm Am accepts an ordered graph H if and only if
it is LFPm-equivalent to a graph G ∈ Q with ‖G‖ ≤ km.

13

Am // H an ordered graph.

1. for all G ∈ Q with ‖G‖ ≤ km which is a representative do
2. simulate AmG on H

3. if the simulation accepts then accept

4. reject.

Together with (7) we get:

for every ordered graph H with ‖H‖ ≤ km:
(
H ∈ Q ⇐⇒ Am accepts H

)
. (10)

By (8), we have:
‖Am‖ = O(2m

m

·m ·mm) = 2O(mm). (11)

Furthermore, (9) implies that the running time of Am on any ordered input graph H is bounded by

O
(

2m
m

·mm ·m · ‖H‖2·m
)

= 2O(mm+m·log ‖H‖). (12)

Now let n ∈ N be arbitrary and choose an m ∈ N such that

Q(m)− 1 = km < n ≤ km+1. (13)

Since every algorithm A of running time t(n) can be simulated by a family of circuits of sizeO(‖A‖·t2(n))
(see [12]), we get (by (10)–(12))

HQ(n) = 2O((m+1)m+1) · 2O((m+1)m+1+(m+1)·log n) = 2O((m+1)m+1+(m+1)·log n). (14)

Let ε > 0 and, by contradiction, assume that Q(m) > 2(1+ε)·m·log m for all sufficiently large m ∈ N; thus,
for ε′ := ε/2 and for sufficiently large m,

Q(m) > 2(1+ε′)·(m+1)·log m.

Then, for n ∈ N as in (13),
n ≥ 2(1+ε′)·(m+1)·log m.

Therefore,

n′ := n1/(1+ε′) ≥ 2(m+1)·log m. (15)

The mapping

x 7→ log x
log log x

is defined for x ≥ 4 and it is increasing. Hence, by (15),

log n′

log log n′
≥ (m+ 1) · log m

log (m+ 1) + log log m
=

m+ 1

log (m+ 1)/log m+ log log m/log m
=
m+ 1

ι(n)

for an appropriate nonincreasing function ι : N→ R with limn→∞ ι(n) = 1. Or equivalently,

m+ 1 ≤ ι(n) · log n′

log log n′
.

Then, by (14),

HQ(n) ≤ 2O
(

(ι(n)·log n′/log log n′)ι(n)·log n′/log log n′+(ι(n)·log n′/log log n′)·log n
)

≤ 2(log n′)ι(n)·log n′/log log n′

· 2o(n)(
as n′ = n1/(1+ε′) is sufficiently large and lim

n→∞
ι(n) = 1

)
= 2n

ι(n)/(1+ε′)
.

14

As ε′ > 0, altogether we get
HQ(n) = 2o(n),

which contradicts our assumption HQ(n) /∈ 2o(n). 2

Remark 5.8. Let us assume that for the problem Q of ordered graphs we have HQ(n) /∈ 2o(n) infinitely
often. By this we mean that for every function h : N → N in o(n) and all sufficiently large n we have
HQ(n) > 2h(n). Then a slight modification of the above proof yields that for every ε > 0 we have

Q(m) ≤ 2(1+ε)·m·log m

for all sufficiently large m ∈ N. Together with Lemma 5.5 we thus see that Q(m) and m are exponentially
related.

A simple counting argument shows that for every n there exists a Boolean function {0, 1}n → {0, 1}
which cannot be computed by any circuit of size

2n

2 · n
.

The mapping sending n to the term just displayed is not in 2o(n) infinitely often. We can turn these Boolean
functions into a class Q of ordered graphs with HQ(n) /∈ 2o(n) infinitely often.

Proof of Theorem 5.1. Part (a) follows from Lemma 5.5 and part (c) from Lemma 5.7. By the previous
remark we have seen that there are problems Q of ordered graphs such that

Q(m) ≤ 2(1+ε)·m·log m

for all ε > 0 and sufficiently large m ∈ N. As I(m) ≤ Q(m), now part (b) follows from (c). 2

5.1. Upper bounds on the time to generate EF-sequences. In Section 4 we have seen that we can’t
generate an ordered LFP-sequence (Gm, Hm) in time polynomial in ‖Gm‖+ ‖Hm‖. The following result
yields an upper bound for the generating time of a corresponding “brute-force” algorithm in terms of I(m)
and hence, using the results of Theorem 5.1 (b), in terms of m. We derive the corresponding result for
(Q,LFP)-sequences, where first we take the 3-colorability problem for ordered graphs as Q.

Proposition 5.9. (a) There is an algorithm that generates an ordered LFP-sequence (Gm, Hm)m∈N of
τ -structures with

I(m) = max{‖Gm‖, ‖Hm‖} in time 2O
(
I(m)2

)
.

(b) Let Q be the 3-colorability problem for ordered graphs. If P 6= NP, then there is an algorithm that
generates an (Q,LFP)-sequence (Gm, Hm)m∈N of ordered graphs with

Q(m) = max{‖Gm‖, ‖Hm‖} in time 2O
(
Q(m)2

)
.

Proof: We prove (a) and leave (b) to the reader. It should be obvious that the following algorithm A
generates an ordered LFP-sequence (Gm, Hm)m∈N with I(m) = max{‖Gm‖, ‖Hm‖}.

A // m ∈ N.

1. n← 1

2. for all ordered τ -structures G with ‖G‖ = n do
3. for all i = 1 to n do
4. for all ordered τ -structures H with ‖H‖ = i do
5. if G 6∼= H and G ≡LFPm H

6. then output (G,H) and halt

7. n← n+ 1

8. goto 2.

15

For every n there are at most
2n

2

· n · 2n
2

= 22n2+log n

pairs (G,H) reaching Line 5. For each such pair checking the condition in Line 5 takes time at most

O
(
mm ·m · n2·m + n

)
= 2O(m·log m+m·log n)

by Lemma 5.2 and Lemma 5.3. For n = I(m) the algorithm A will halt in Line 6 for some pair (G,H).
Therefore, the running time of A on input m is bounded by

O
(
I(m) · 22I(m)2+log I(m) · 2O(m·log m+m·log I(m)

)
.

By Lemma 5.4, we know that m ≤ I(m) for sufficiently large m. Thus, we immediately get that the
running time of A on input m is bounded by

2O
(
I(m)2

)
. 2

As the preceding proof shows, the function I(m) may be computed in time 2O
(
I(m)2

)
(and similarly, if Q

is the 3-colorability problem the function Q(m) may be computed in time 2O
(
Q(m)2

)
).

Suppose that instead of the 3-colorability problem we consider any problem Q of ordered graphs not
solvable in polynomial time. IfG ∈ Q is solvable in time t(‖G‖), then the obvious changes in the preceding
proof yields a (Q,LFP)-sequence (Gm, Hm)m∈N of ordered graphs with Q(m) = max{‖Gm‖, ‖Hm‖} in

time 2O
(
Q(m)2+log t(Q(m))

)
. In particular, for every Q ∈ NP \ P, we have the time bound 2Q(m)O(1)

.

6. The Ajtai-Fagin variant of the Ehrenfeucht-Fraı̈ssé-method

We fix again an arbitrary logic L with a filtering and a problem Q of τ -structures. We reinterpret the
Ehrenfeucht-Fraı̈ssé-method by a game. In the (Q,L)-game there are two players, called Spoiler and
Duplicator. The rules of the game are as follows:(

(Q,L)-1
)
: Spoiler selects an m ∈ N.(

(Q,L)-2
)
: Duplicator selects τ -structures A and B.

Duplicator wins if
A ∈ Q, B /∈ Q, and A ≡〉LmB. (16)

Otherwise, Spoiler wins. Spoiler or Duplicator has a winning strategy if he can guarantee that he will win,
no matter how the other player plays. Thus, we can identify (Q,L)-sequences with winning strategies for
Duplicator.

By Corollary 3.4 we know that if Duplicator has a winning strategy, then Q is not expressible in L.
Furthermore, this condition is also necessary if L is closed under Boolean conjunction and disjunction and
the filtering is finitary.

The Ajtai-Fagin game is a variant of this game tailored for pseudo-elementary classes of L which
simplifies for Duplicator the verification that Q is not pseudo-elementary. The main known applications of
this game are for L = FO and thus we will restrict ourselves to this case here. Then the pseudo-elementary
classes are those axiomatizable by a Σ1

1-sentence, that is, by a sentence of the form

∃X1 . . . ∃X` ψ,

where ψ = ψ(X1, . . . , X`) is a first-order formula containing the second-order variables X1, . . . , X` of
any arity. It is easy to see that every such sentence is logically equivalent to one of the form

∃Xχ

with first-order χ. Recall that Σ1
1 captures NP (cf. Theorem 2.1 (b)).

16

We assume that a finitary filtering (FOm)m∈N of first-order logic has been fixed. As already mentioned
in the proof of Proposition 3.2, then for every τ -structure A and m ∈ N the first-order (!) sentence

ρmA :=
∧{

ψ | ψ ∈ FOm[τ], A |= ψ
}

(17)

has the property that for every τ -structure B we have

B |= ρmA ⇐⇒ A ≡〉FOmB.

Furthermore, for notational simplicity, we assume that the property (f2) of a filtering has the simple form

if A ≡〉FOmB and A 6∼= B, then |A|, |B| ≥ m.

The Q-AF-game, the Ajtai-Fagin game for Q, 5 again is played by Spoiler and Duplicator. The rules are
as follows:

(Q1) Spoiler selects r,m ∈ N.

(Q2) Duplicator selects a τ -structure A ∈ Q.

(Q3) Spoiler selects an r-ary relation R on A, that is, R ⊆ Ar.

(Q4) Duplicator selects a τ -structure B /∈ Q and an r-ary relation S on B.

Duplicator wins if
(B, S) ≡〉FOm(A, R). 6

Theorem 6.1 ([1]). The problem Q is not expressible in the logic Σ1
1-sentence or, equivalently, is not in

NP if and only if Duplicator has a winning strategy in the Q-AF-game.

Proof: First assume that Q is axiomatized by a sentence ∃Xχ with X of arity r0 and with ¬χ ∈ FOm0 .
Then it is easy to see that the following strategy is a a winning strategy for Spoiler: He chooses r0,m0 in
the first step and after the selection of a structure A in Q by Duplicator, he chooses an R ⊆ Ar such that
(A, R) |= χ.

For the converse, note first that for every τ -structure A and m ∈ N the first-order (!) sentence

ρmA :=
∧{

ψ | ψ ∈ FOm[τ], A |= ψ
}

has the property that for every τ -structure B we have

B |= ρmA ⇐⇒ A ≡〉FOmB.

Now assume that Spoiler has a winning strategy and that he chooses r,m ∈ N in the first step if he plays
according to it. Then it is easy to verify, using (17), that Q is the class of models of

∃X
∧{
¬ρm(B,S)

∣∣ B /∈ Q and S ⊆ Br
}
,

where the relation variable X is r-ary. 2

Definition 6.2. A (doubly indexed) sequence (Ar,m)r,m∈N of τ -structures is a Q-AF-sequence if Duplica-
tor can win the Q-AF-game by choosing Ar,m in (Q2) assuming that Spoiler selected r,m in (Q1).

5As the logic is always FO, we do not mention it explicitly.
6In view of the winning condition (16) for the Ehrenfeucht-Fraı̈ssé-game, perhaps the reader would also expect here the condition

(A, R) ≡〉FOm (B, S). But note that by the second statement of Proposition 3.2 (b), in (16) we could replace (A, R) ≡〉FOm (B, S)
by (B, S) ≡〉FOm (A, R).

17

Thus, a Q-AF-sequence is part of a winning strategy for Duplicator. As a (Q,L)-sequence it contains
the answer to the first selection of Spoiler. The following result shows that it is already hard to get this part
of a winning strategy.

Theorem 6.3. LetQ be a class of τ -structures. Then there is no algorithm that generates aQ-AF-sequence
(Ar,m)r,m∈N in time ‖Ar,m

∥∥O(1)
.

In the proof of this theorem, we need the following consequence of standard proofs of Fagin’s Theorem,
i.e., of Theorem 2.1 (b).

Theorem 6.4. Let K be a class of τ -structures closed under isomorphism. Assume that there is a nonde-
terministic algorithm accepting K in time O(nd). Then, there is a Σ1

1-sentence

ϕ = ∃Xψ

with X of arity 2(d+ 4) and a first-order sentence ψ such that for all sufficiently large A,

A ∈ K ⇐⇒ A |= ϕ.

Furthermore, we observe:

Lemma 6.5. If (Ar,m)r,m∈N is a Q-AF-sequence, then |Ar,m| ≥ m for all r,m ∈ N.

Proof: Let r,m ∈ N and assume that in a Q-AF-game, which Duplicator plays according to a winning
strategy based on (Ar,m)r,m∈N, Spoiler first chooses r and m. So, in (Q2) Duplicator chooses Ar,m. Let
R ⊆ Arr,m be Spoiler’s selection in (Q3) and B /∈ Q and S ⊆ Br Duplicator’s selection in (Q4). Then
(Br,m, S) ≡〉FOm(A, R) and thus, |Ar,m| ≥ m. 2

Proof of Theorem 6.3: By contradiction suppose that there is an algorithm S generating a Q-AF-sequence
(Ar,m)r,m∈N in time ‖Ar,m

∥∥O(1)
. We may assume that

|Ar,m| < |Ar,m+1| for all r,m ∈ N. (18)

Otherwise we pass to the Q-AF-sequence (A∗r,m)r,m∈N given by

A∗r,0 := Ar,0
A∗r,m+1 := Ar,|A∗r,m|+1.

Then Lemma 6.5 ensures (18).
The algorithm S, on input r,m ∈ N, outputs a string encoding the structure Ar,m; this encoding yields

an ordering <r,m of Ar,m. There is a d ∈ N such that from S we obtain, for r ∈ N, a nondeterministic
algorithm Ar (defined similarly as the nondeterministic algorithm A of page 9) that accepts the class

Kr :=
{
A
∣∣ A ∼= Ar,k for some k ∈ N

}
and has running time O(nd). The constant hidden in the big-O notation may depend on r but note that d is
independent of r.

As Kr is closed under isomorphism, by Theorem 6.4 there is a Σ1
1-sentence

ϕr = ∃Xψr

with X of arity 2(d+ 4) and first-order ψr such that for all sufficiently large A,

A ∈ Kr ⇐⇒ A |= ϕr. (19)

We set r0 := 2(d+ 4) and choose m0 so large that ¬ψr0 ∈ FOm0
and that for r = r0 the equivalence (19)

holds for structures A with |A| ≥ m0.

18

As Ar0,m0
∈ Kr0 and |Ar0,m0

| ≥ m0,

Ar0,m0 |= ∃Xψr0 ,

i.e., there exists an r0-ary relation R ⊆ Ar0r0,m0
with(

Ar0,m0 , R
)
|= ψr0 . (20)

In (Q1) of an AF-game let Spoiler choose r0 and m0. Then Duplicator can win the game by choosing
Ar0,m0

in (Q2). Let Spoiler choose R in (Q3). Then in (Q4) Duplicator answers with a structure B /∈ Q
together with an r0-ary relation S on B such that(

B, S
)
≡〉FOm0

(
Ar0,m0

, R
)
.

In particular, |B| ≥ m0. Furthermore, (B, S) 6|= ¬ψr0 , as otherwise, (Ar0,m0
, R) |= ¬ψr0 contradict-

ing (20). Thus, (B, S) |= ψr0 , and therefore,

B |= ∃Xψr0 .

Hence, B ∈ Kr0 by (19). Thus, B ∈ Q, a contradiction. 2

6.1. The monadic case. Originally, Ajtai and Fagin used (a variant of) AF games to prove inexpressibility
results for mon-Σ1

1, the monadic part of Σ1
1. It consists of all formulas of the form

∃X1 . . . ∃X` ψ,

where ψ = ψ(X1, . . . , X`) is a first-order formula and the second-order variablesX1, . . . , X` are monadic,
that is, of arity one. They realized:

A problem Q is not axiomatizable by a sentence of mon-Σ1
1 if and only if Duplicator has a

winning strategy in the Q-mAF-game,

where the rules of the Q-mAF-game are as follows:

(mQ1) Spoiler selects r,m ∈ N.

(mQ2) Duplicator selects a τ -structure A ∈ Q.

(mQ3) Spoiler selects unary relations R1, . . . , Rr on A.

(mQ4) Duplicator selects a τ -structure B /∈ Q and unary relations S1, . . . , Sr on B.

And Duplicator wins if
(B, S1, . . . , Sr) ≡〉FOm(A, R1, . . . , Rr).

If in Definition 6.2 we replace Q-AF-game by Q-mAF-game and (Q2) by (mQ2), we get the notion of
Q-mAF-sequence.

However, Theorem 6.3 does not survive in the monadic context, not even for ordered structures. In fact,
let Q be the connectivity property of ordered graphs. Then, in [15], Schwentick (implicitly) shows:

There is an algorithm which generates a Q-mAF-sequence (Ar,m)r,m∈N in time ‖Ar,m
∥∥O(1)

.

6.2. The nonisomorphic case. The reader will have noticed that essentially, in the proof of Theorem 6.3,
again we did not use any specific property of Q. And again it turns out that it is already hard to find
a sequence (Ar,m)r,m∈N for Duplicator which may serve him as part of a winning strategy in the “Ajtai-
Fagin game for isomorphism.” Here we introduce the corresponding framework, state the result, and sketch
the proof (which, however, is more involved than that of Theorem 6.3). Again we fix a vocabulary τ .

The ∼=-AF-game, the Ajtai-Fagin game for isomorphism, consists of the following steps:

19

(∼=1) Spoiler selects r,m ∈ N.

(∼=2) Duplicator selects a τ -structure A.

(∼=3) Spoiler selects an r-ary relation R on A, that is, R ⊆ Ar.

(∼=4) Duplicator selects a τ -structure B and an r-ary relation S on B.

Duplicator wins if

A 6∼= B and (B, S) ≡〉FOm(A, R).

Definition 6.6. A sequence (Ar,m)r,m∈N of τ -structures is an ∼=-AF-sequence if Duplicator can win the
∼=-AF-game by choosing Ar,m in (∼=2) supposing that Spoiler selected r,m in (∼=1).

Clearly, every Q-AF-sequence for any class Q of τ -structures is an ∼=-AF-sequence. Hence, the fol-
lowing result generalizes Theorem 6.3.

Theorem 6.7. There is no algorithm that generates an ∼=-AF-sequence (Ar,m)r,m∈N in time ‖Ar,m
∥∥O(1)

.

Proof: Let r,m ∈ N. We say that a τ -structure A is (r,m)-suitable if for every R ⊆ Ar there is a
τ -structure B and S ⊆ Br such that

A 6∼= B and (B, S) ≡〉FOm(A, R).

The next two claims follow immediately from the definition of ∼=-AF-sequence.

Claim 1: If (Ar,m)r,m∈N is an ∼=-AF-sequence, then Ar,m is (r,m)-suitable for every r,m ∈ N. a

Claim 2: Let A be a τ -structure and r,m ∈ N. Then A is (r,m)-suitable if and only if the following
algorithm C halts on input (A, r,m):

C // A a τ -structure and r,m ∈ N

1. for all R ⊆ Ar do
2. exhaustively search for a τ -structure B and S ⊆ Br

3. such that A 6∼= B and (B, S) ≡〉FOm(A, R).

Moreover, if A is (r,m)-suitable, then for every R ⊆ Ar there is a τ -structure B and S ⊆ Br such that
(B, S) ≡〉FOm(A, R), and

m ≤ |A|, |B| ≤ tC(A, r,m),

where tC(A, r,m) denotes the running time of the algorithm C on input (A, r,m). a

Claim 3: Assume that there is an algorithm that generates an∼=-AF-sequence (Ar,m)r,m∈N in time ‖Ar,m
∥∥O(1)

.

Then there is an algorithm which generates a monotone∼=-AF-sequence (A′r,m)r,m∈N in time ‖A′r,m
∥∥O(1)

,
where here monotone means that for every r,m ∈ N:

(i) |A′r,m| < |A′r,m+1|;

(ii) for every R ⊆ A′rr,m there is a τ -structure B and S ⊆ Br such that (B, S) ≡〉FOm(A′r,m, R), and

|A′r,m| ≤ B < |A′r,m+1|.

Proof of Claim 3: We set
A′r,m := Ar,πr(m),

where πr : N→ N is defined inductively by:

πr(0) := 0
πr(m+ 1) := 1 + tC(Ar,πr(m), r, πr(m)).

20

We leave it to the reader to verify that (A′r,m)r,m∈N is a monotone ∼=-AF-sequence. a

Now the proof essentially runs along the lines of that of Theorem 6.3. By contradiction, we assume
that there is an algorithm S generating an ∼=-AF-sequence (Ar,m)r,m∈N in time

‖Ar,m‖O(1).

We can assume that the sequence is monotone. Again we denote by <r,m the ordering induced by the
encoding of the structure Ar,m as output of S.

We can turn S into a class of nondeterministic algorithms (Ar)r∈N such that for some d ∈ N:

– For every r ∈ N the nondeterministic algorithm Ar accepts the class

Kr :=
{
A
∣∣ A ∼= Ar,m for some m ∈ N

}
.

– The running time of Ar is bounded by O(nd).

By Theorem 6.4, there are Σ1
1-sentences

ϕr = ∃Xψr
with X of arity 2(d+ 4) and first-order ψr such that for all sufficiently large A

A ∈ Kr ⇐⇒ A |= ϕr. (21)

We set r0 := 2(d+ 4) and choose m0 so large that ¬ψr0 ∈ FOm0 and that for r = r0 the equivalence (21)
holds for structures A with |A| ≥ m0.

In particular, as Ar0,m0
∈ Kr0 and |Ar0,m0

| ≥ m0,

Ar0,m0 |= ∃Xψr0 ,

i.e., there exists an r0-ary relation R ⊆ Ar0r0,m0
with(

Ar0,m0 , R
)
|= ψr0 . (22)

By the property (ii) of (Ar,m)r,m∈N (mentioned in Claim 3) we can choose a structure B, Ar0,m0 6∼= B,
together with S ⊆ Br0 such that (

B, S
)
≡〉FOm0

(
Ar0,m0

, R
)

(23)

and
|Ar0,m0

| ≤ |B| < |Ar0,m0+1|.

Hence, B /∈ Kr0 . On the other hand, as¬ψr0 ∈ FOm0 , we conclude, using (23) and (22), that (B, S) |= ψr0
and thus,

B |= ∃Xψr0 .

Therefore, B ∈ Kr0 by (21), a contradiction. 2

7. Ehrenfeucht-Fraı̈ssé games on random structures

We have seen (cf. Theorem 4.4 (b)) that for any logic L with P ≤ L on ordered structures (that is, polyno-
mial time properties of ordered structures are expressible in L), we cannot construct an ordered L-sequence
efficiently. What happens if we consider random sequences? We deal with this question here.

So far, we already got our results without taking into consideration a further natural property we expect
that an L-sequence (Am,Bm)m∈N fulfills if it should serve for the Ehrenfeucht-Fraı̈ssé method; namely,
we must be able to verify that Am ≡〉LmBm holds in a reasonable time (see (ii) in the Introduction).
Condition (r3) in the following definition of random L-sequence takes care of this property. Throughout
we fix a logic L with P ≤ L on ordered structures and a vocabulary τ ; all structures are assumed to be
τ -structures.

21

Definition 7.1. We say that a probabilistic algorithm P generates a random L-sequence (Am,Bm)m∈N if
(r1)–(r3) are satisfied.

(r1) For every m ∈ N the algorithm P first deterministically computes the universes Am and Bm, and
then constructs the structures Am and Bm probabilistically.

(r2) There is a polynomial time algorithm I such that:

– For all structures A and B, if I accepts (A,B), then A 6∼= B.
– For sufficiently large m ∈ N, 7

Pr
[
I accepts (Am,Bm)

]
≥ 4

5
.

(r3) There is an algorithm E such that:

– For all structures A and B and all m ∈ N, if E accepts (A,B,m), then A ≡〉LmB.
– For sufficiently large m ∈ N,

Pr
[
E accepts (Am,Bm,m)

]
≥ 4

5
.

– The running time of E on input (A,B,m) is bounded by f(m) · (‖A‖ + ‖B‖)O(1) for some
computable function f : N→ N.

If we restrict to ordered structures, we can replace (r2) by the equivalent condition: For all sufficiently
large m ∈ N,

Pr
[
Am 6∼= Bm

]
≥ 4

5
.

Furthermore, observe that the constant 4/5 in (r2) and (r3) can be replaced by any constant εwith 0 < ε < 1
using the standard amplification method by repetition. For example, for ε = 1/2, we repeat the algorithm P
on input m three times thereby obtaining three pairs of structures. If one of them is accepted by both, I
and E, then output the first pair with this property; otherwise, choose an arbitrary one.

In this section we show:

Theorem 7.2. Let L be a logic with P ≤ L on ordered structures. Assume that there is a 2d`/ce-pseudoran-
dom generator for some natural number c ≥ 1. Then there is no probabilistic algorithm that generates a
random ordered L-sequence (Am,Bm)m∈N in time (‖Am‖+ ‖Bm‖)O(1).

The following is known: If, for the circuit size HP of some problem P ⊆ {0, 1}∗ with P ∈ E, we
have HP (n) /∈ 2o(n) infinitely often (cf. Remark 5.8), then for some c ≥ 1 we can construct a 2d`/ce-
pseudorandom generator [11, 9]. For the reader’s convenience we recall the definition of pseudorandom
generator, following the presentation of [2].

Definition 7.3. Let c ∈ N. An algorithm G is a 2d`/ce-pseudorandom generator if it satisfies (g1) and (g2).

(g1) On every input s ∈ {0, 1}∗ the algorithm G computes a string G(s) ∈ {0, 1}∗ with

|G(s)| = 2d|s|/ce

in time 2|s|.

(g2) For every ` ∈ N and every circuit C of size at most t3, where t := 2d`/ce, we have∣∣∣∣ Pr
s∈{0,1}`

[
C(G(s)) = 1

]
− Pr
r∈{0,1}t

[
C(r) = 1

]∣∣∣∣ < 1

10
.

In the left term we consider the uniform probability space on {0, 1}`, in the right term the uniform
probability space on {0, 1}t.

7Here and in the following we consider the probability space of the internal coin tosses of the algorithm P on input m with the
uniform distribution.

22

The following lemmas will finally yield a proof of Theorem 7.2: Essentially we use the pseudoran-
dom generator to derandomize the algorithm P in such a way that we obtain a deterministic algorithm
which generates an ordered L-sequence (Am,Bm)m∈N in time (‖Am‖ + ‖Bm‖)O(1), which contradicts
Theorem 4.4 (b).

We say that a random L-sequence is strongly monotone if for all m ∈ N we have:

– max{|Am|, |Bm|} < min{|Am+1|, |Bm+1|}

– dd · log (|Am|+ |Bm|)e < dd · log (|Am+1|+ |Bm+1|)e;

– f(m) ≤ max{|Am|, |Bm|} (where f is the computable function of (r3) used to bound the running
time of E).

Recall that the universes of the structures Am and Bm of a random L-sequence are obtained deterministi-
cally. Therefore, arguing similarly as we obtained the Claim in the proof of Theorem 4.4, one gets:

Lemma 7.4. If there is a probabilistic algorithm that generates a random orderedL-sequence (Am,Bm)m∈N
in time (‖Am‖ + ‖Bm‖)O(1), then there is a probabilistic algorithm that generates a strongly monotone
random ordered L-sequence (A′m,B′m)m∈N in time (‖A′m‖+ ‖B′m‖)O(1).

Lemma 7.5. Assume

– there is a 2d`/ce-pseudorandom generator G for some c ∈ N;

– there is a probabilistic algorithm P that generates a strongly monotone and random L-sequence
(Am,Bm)m∈N in time (‖Am‖+ ‖Bm‖)O(1).

Then there is a deterministic algorithm A such that for every m ∈ N the algorithm A computes a sequence
of pairs

(A1
m,B1

m), . . . , (Atmm ,Btmm)

of ordered structures, where allAim haveAm as universe, that is,Aim = Am for i ∈ [tm] (:= {1, 2, . . . , tm})
and all Bim have Bm as universe (recall that Am and Bm are the universes deterministically computed
by P on input m). Moreover, the following conditions hold:

(a1) The algorithm A runs in time (|Am|+ |Bm|)O(1); in particular, tm = (|Am|+ |Bm|)O(1).

(a2) For all sufficiently large m ∈ N

Pr
p∈[tm]

[
Apm 6∼= Bpm and Apm ≡〉LmBpm

]
≥ Pr
p∈[tm]

[
I accepts (Apm,Bpm) and E accept (Apm,Bpm,m)

]
>

1

2
,

where I and E are the algorithms associated with P and mentioned in (r2) and (r3) of Definition 7.1.
Note that the first inequality is immediate by (r2) and (r3).

(a3) For every m ∈ N we have

– max{|Am|, |Bm|} < min{|Am+1|, |Bm+1|},
– dlog (|Am|+ |Bm|)e < dlog (|Am+1|+ |Bm+1|)e,
– f(m) ≤ max{|Am|, |Bm|} (where f is the function of (r3)).

Proof: For P choose algorithms I and E satisfying (r2) and (r3), respectively. By the assumptions, we know
that there is d ∈ N such that:

– The running time of P on m is bounded by(
|Am|+ |Bm|

)d
(here we use that, for fixed vocabulary τ , we have ‖A‖ ≤ |A|O(1) for every τ -structure A).

23

– The running time of I on structures A and B and the running time of E on inputs (A,B,m) with
f(m) ≤ max{|A|, |B|} is bounded by (

|A|+ |B|
)d
.

By the strong monotonicity of (Am,Bm)m∈N we already know that (a3) holds.

We let A be the following deterministic algorithm:

A // m ∈ N in unary

1. simulate the (deterministic) part of the computation of P
2. on input m yielding the universes Am and Bm
3. n← |Am|+ |Bm|
4. `← c · dd · log ne
5. for all s ∈ {0, 1}` do
6. compute G(s)

7. simulate P on input m where in the simulation

8. the internal coin tosses of P are replaced according to G(s)

9. output (Asm,Bsm), the output of this simulation of P.

Of course, then (a1) holds and thus, it remains to establish (a2). So, by contradiction assume that

for infinitely many m ∈ N: Pr
p∈[tm]

[
I accepts (Apm,Bpm) and E accepts (Apm,Bpm,m)

]
≤ 1

2
. (24)

For every m ∈ N we let
nm := |Am|+ |Bm|.

Clearly there is an algorithm that, given n ∈ N, decides in time O(n2d) whether n is equal to nm for some
m ∈ N, and if so, outputs m

(
which is unique by (a3)

)
. We consider the following algorithm D:

D // r ∈ {0, 1}∗

1. compute an m with |r| = 2dd·log nme

2. if no such m exists then reject

3. compute the output (Am,Bm) of P on input m if

4. the internal coin tosses of P are replaced according to r

5. simulate I on (Am,Bm)

6. if the simulation rejects then reject

7. simulate E on (Am,Bm,m)

8. if the simulation rejects then reject

9. accept.

First note that by (24),

for infinitely many m ∈ N and for ` := c · dd · log nme: Pr
s∈{0,1}`

[
D(G(s)) = 1

]
≤ 1

2
. (25)

Moreover, as f(m) ≤ max{|Am|, |Bm|} (by the strong monotonicity of the random L-sequence computed
by S), we see that D is a polynomial time algorithm. Using the Cook-Levin’s reduction, from the algo-
rithm D we can construct, for everym ∈ N and n∗ := 2dd·log nme (≈ ndm), a circuit Cn∗ such that for every

24

r ∈ {0, 1}n∗ ,

Cn∗(r) = 1 ⇐⇒ D(r) = 1 (26)

and
|Cn∗ | = O

(
(n∗)2 + n2·d

m

)
= O

(
(n∗)2

)
. (27)

Thus, by (r2) and (r3) for sufficiently large m ∈ N, and hence sufficiently large n∗ = 2dd·log nme,

Pr
r∈{0,1}n∗

[
Cn∗(r) = 1

]
= Pr
p∈[tm]

[
I accepts (Apm,Bpm) and E accepts (Apm,Bpm,m)

]
≥ 3

5
. (28)

By (25) and (26), we know that for infinitely many m ∈ N we have for n∗ = 2dd·log nme and ` :=
c · dd · log nme,

Pr
s∈{0,1}`

[
Cn∗(G(s)) = 1

]
≤ 1

2
.

Together with (28) we get for such n∗ and `,∣∣∣ Pr
r∈{0,1}n∗

[
Cn∗(r) = 1

]
− Pr
s∈{0,1}`

[
Cn∗(G(s)) = 1

]∣∣∣ ≥ 3

5
− 1

2
=

1

10
,

which, by (27), contradicts (g2) in Definition 7.3. 2

Proof of Theorem 7.2: Assume that there is a probabilistic algorithm that generates a random ordered L-
sequence (Am,Bm)m∈N in time (‖Am‖ + ‖Bm‖)O(1). We show that there is a deterministic algorithm
which generates an ordered L-sequence (A′m,B′m)m∈N in time (‖A′m‖ + ‖B′m‖)O(1). This contradicts
Theorem 4.4 (b).

By Lemma 7.4, we have an algorithm A with the properties stated in Lemma 7.5. The following
algorithm S generates an ordered L-sequence (A′m,B′m)m∈N in the claimed time; note that by (a3) in
Lemma 7.5, the algorithm E is applied to inputs (A,B,m) with f(m) ≤ max{|A|, |B|}; on such inputs its
running time is bounded by (‖A‖+ ‖B‖)O(1).

S // m ∈ N

1. simulate A on input m to compute (A1
m,B1

m), . . . , (Atmm ,Btmm)

2. for all i ∈ [tm] do
3. simulate I on (Aim,Bim) and E on (Aim,Bim,m)

4. if both simulations accept then output (Aim,Bim) as (A′m,B′m) and halt

By (a2) in Lemma 7.5, the algorithm S will halt on input m and yield the desired (A′m,B′m). 2

8. Appendix

In the Introduction we mentioned some concrete successful applications of the Ehrenfeucht-Fraı̈ssé method,
cf. (I1)–(I3) and (H1)–(H3). Often it is straightforward to verify the conditions (i) and (ii) mentioned on
page 1. The purpose of this Appendix is to help the reader to verify them in the cases (I3) and (H2). We
emphasize that we want to show the conditions for the concrete structures considered in the correspond-
ing applications. Sometimes, one can achieve these conditions by a simple trick, namely, by artificially
enlarging structures. We explain this trick at the end of the first example.

25

Graph connectivity. Let Q be the connectivity property of ordered graphs. In [15], Schwentick shows
thatQ is not expressible in mon-Σ1

1. For this purpose he presents an orderedQ-mAF-sequence (Gr,m)r,m∈N
8; thereby he considers the filtering of FO adequate for the classical Ehrenfeucht-Fraı̈ssé-game. So allGr,m
are connected ordered graphs. It is easy to verify that there is an algorithm generating this sequence in time
‖Gr,m

∥∥O(1)
. For every selection R1, . . . , Rr of unary relations on Gr,m, the author shows the existence

of an ordered graph Hr,m, which is not connected and has the same vertex set as Gr,m and the existence
of unary relations S1, . . . , Sr such that (Gr,m, R1, . . . , Rr) ≡FOm (Hr,m, S1, . . . , Sr). We sketch why the
verification of this FOm-equivalence is possible in time f(m) · (‖Gr,m‖ + ‖Hr,m‖)O(1) (thus satisfying
the property (ii) of the Introduction). Both, Gr,m and Hr,m consist of “columns” C1, . . . , Cs, where

n := |C1| = · · · = |Cs| < log log ‖Gr,m‖ = log log ‖Hr,m‖.

If in both structures one replaces the ordering relation by its successor relation, then one gets struc-
tures, which have a path decomposition whose bags along the path consist of the vertices in the columns
C1, C2, C3, the vertices in the columns C1, C3, C4, . . . , and the vertices in the columns C1, Cs−1, Cs. As
the ordering is definable in monadic second-order logic from the successor relation, we obtain our claim by
applying (the extension of) Courcelle’s Theorem for monadic second-order logic

(
to structures of treewidth

O(log log n)
)
.

We sketch how one could satisfy (i) and (ii) once one knows that an orderedQ-mAF-sequence (Gr,m)r,m∈N
exists. We can assume that there is an algorithm that generates (Gr,m)r,m∈N (by a brute force algorithm
that takes into consideration all structures and all expansions by unary relations in a diagonal fashion). Now
by adding a sufficiently large path “at the end of the ordering” to Gr,m, say a path consisting of i(r,m)
many points, one obtains an ordered graph G′r,m in time ‖G′r,m‖O(1) such that the treewidth of G′′r,m is
bounded by log log ‖G′r,m‖, where G′′r,m is obtained from G′r,m by replacing the ordering by its successor
relation. The number i(r,m) should be so big that once Spoiler has selected unary relations R1, . . . , Rr
on Gr,m, Duplicator can choose an ordered graph Hr,m such that he wins the Q-mAF-game and such that
by adding a path consisting of i(r,m) many points at the end of the ordering to Hr,m one gets an ordered
graph H ′r,m, whose corresponding H ′′r,m has a treewidth bounded by log log ‖H ′r,m‖. Now we can argue
as above.

The arity hierarchy. In [8], Grohe shows, among others, that the arity hierarchy for the logics LFP, IFP,
and PFP are strict, the arity of a formula being the maximal arity of a relation variable occurring in this
formula. For this purpose he defines, for every k ≥ 2, a query Qk expressing that a certain k-tuple of
vertices of a graph is not in the transitive closure of a relation definable by a quantifier-free formula. Let us
writeA ≡PFPk,m B ifA and B satisfy the same sentences of PFP of arity at most k and “quantifier rank” at
most m. Grohe introduces a game of Ehrenfeucht-Fraı̈ssé type which allows to verify that A ≡PFPk,m B.
Now he constructs (essentially) graphs Gk,m ∈ Qk and Hk,m /∈ Qk and verifies with this game that
Gk,m ≡PFPk−1,m

Hk,m. Here we want to sketch that these graphs can be constructed in time polynomial
in their size. This is not obvious as they are obtained from bigger structures by a factorization process. As
the graphs Gk,m and Hk,m only differ in a minor point, we concentrate on the construction of Gk,m. We
address a reader familiar with the paper [8]

The starting point of Grohe’s construction is a graph A := A(k,m) with universe {1, . . . ,m} ×
{−k, . . . ,−1, 1, . . . , k}; thus |A| = 2k · m. For every I1, . . . , Ik−1 ∈ [m] and a ∈ [k] a partial bijec-
tion p(I1, . . . , Ik−1, a) of A is defined; thus in total ` := k · mk−1 many partial bijections p1, . . . , p`
are introduced. 9 Let Γ := (Z2,+)` be the product of ` copies of the group (Z2,+). Note that
|A × Γ| = 2k · m · 2k·mk−1

. The elements of A × Γ are written in the form (I, a, γ) where (I, a) ∈ A
and γ ∈ Γ. Grohe defines an equivalence relation ∼ on A× Γ. The vertex set V (Gk,m) of the graph Gk,m
consists of the equivalence classes of ∼ and indeed has a size decisively smaller than that of A × Γ. Step
by step one can prove the following claims.

8See Section 6.1 for the definition of Q-mAF-sequence
9Actually, the partial bijection p(I1, . . . , Ik−1, a) only depends on a and the set {I1, . . . , Ik−1}; but the following arguments

are the same as for the notationally simpler case with ` = k ·mk−1 considered here.

26

Claim 1: For fixed k there is an algorithm deciding whether two tuples are equivalent in time polynomial
in m. a

We say that the bijection pj = p(I1, . . . , Ik−1, a) is critical for I ∈ [m], if |I − Ij | ≤ 1 for some
j ∈ [k − 1]. We set

critic(I) := {j ∈ [`] | pj is critical for I}.

Claim 2: Let I ∈ [m]. Then |critic(I)| = Θ
(
k2 ·mk−2). a

Recall that in [8], for γ ∈ Γ the support supp(γ) of γ is defined by

supp(γ) :=
{
i ∈ [`]

∣∣ the i-th component of γ is 1
}
.

Claim 3: Let I ∈ [m], a ∈ {−k, . . . ,−1, 1, . . . , k}, and γ ∈ Γ. Then for the unique δ ∈ Γ with

supp(δ) = supp(γ) ∩ critic(I)

we have
(I, a, γ) ∼ (I, a, δ).

Hence, |V (Gk,m)| ≤ 2 · k ·m · 2Θ(k2·mk−2). a

Thus, by Claim 1 and Claim 3 we can construct V (Gk,m) in time polynomial in the expression on the
right hand side of the last statement and thus in the desired time, once we have shown that we can replace≤
by = there. For this purpose we say that the bijection pj = p(I1, . . . , Ik−1, a) is undefined for I ∈ [m] if
|I − Ij | = 1 for some j ∈ [k − 1]. We set

undef(I) := {j ∈ [`] | pj is undefined for I}.

Claim 4: For every I ∈ [m] we have undef(I)| = Θ(k2 ·mk−2). a

For the last statement in the next claim we also need the fact shown in [8] that (I, a, σ) 6∼ (J, b, δ) if
I 6= J .

Claim 5: Let I ∈ [m] and a, b ∈ {−k, . . . ,−1, 1, . . . , k}. Then for distinct γ, δ ∈ Γ with

supp(γ), supp(δ) ⊆ undef(I)

we have
(I, a, σ) 6∼ (I, b, δ).

Hence, |V (Gk,m|)| = 2 · k ·m · 2Θ(k2·mk−2). a

It remains to be shown that the edge relation of the graph can be defined in time polynomial in the size
of V (Gk,m). The reader will easily convince himself that this relation can be defined in this time using the
following claim.

Claim 5: Assume (I, a, γ) ∼ (I, a′, ξ) and (J, b, δ) ∼ (J, b′, ξ) with supp(γ) ⊆ critic(I) and supp(δ) ⊆
critic(J). Then there exists a ξ′ ∈ Γ such that

(I, a, γ) ∼ (I, a′, ξ′), (J, b, δ) ∼ (J, b′, ξ′) and supp(ξ) ⊆ critic(I) ∪ critic(J).

a

References

[1] Miklós Ajtai and Ronald Fagin. Reachability is harder for directed than for undirected finite graphs.
The Journal of Symbolic Logic, 55(1):113–150, 1990.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge Uni-
versity Press, 2009.

27

[3] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P=?NP question. SIAM
Journal on Computing, 4(4):431–442, 1975.

[4] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identifications. Combinatorica, 12(4):389–410, 1992.

[5] Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized theories.
Fundamenta Mathematicae, 49:129–141, 1961.

[6] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic NP vs. monadic co-NP. Infor-
mation and Computation, 120(1):78–92, 1995.

[7] Roland Fraı̈ssé. Sur quelques classifications des systèmes de relations. Université d’Alger, Publica-
tions Scientifiques, Série A, 1:35–182, 1954.

[8] Martin Grohe. Arity hierarchies. Annals of Pure and Applied Logic, 82(2):103–163, 1996.

[9] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing
(STOC’97), pages 220–229, 1997.

[10] Max Kubierschky. Yet another hierarchy theorem. The Journal of Symbolic Logic, 65(2):627–640,
2000.

[11] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and System Sci-
ences, 49(2):149–167, 1994.

[12] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[13] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System Sci-
ences, 55(1):24–35, 1997.

[14] Benjamin Rossman. Ehrenfeucht-Fraı̈ssé games on random structures. In Proceedings of the 16th
International Workshop on Logic, Language, Information and Computation (WoLLIC’09), Lecture
Notes in Computer Science, pages 350–364. Springer, 2009.

[15] Thomas Schwentick. Graph connectivity and monadic NP. In Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science (FOCS’94), pages 614–622. IEEE Computer Society,
1994.

[16] Moshe Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of the 14th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’95), pages 266–
276, 1995.

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

