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Abstract

We study the class of homogenous ΣΠΣΠ(r) circuits, which are depth 4 homogenous circuits
with top fanin bounded by r. We show that any homogenous ΣΠΣΠ(r) circuit computing the
permanent of an n× n matrix must have size at least exp

(
nΩ(1/r)

)
.

In a recent result, Gupta, Kamath, Kayal and Saptharishi [6] showed that any homogenous
depth 4 circuit with bottom fanin bounded by t which computes the permanent of an n×n matrix
must have size at least exp (Ω(n/t)). Our work builds upon the results of [6], and explores the
limits of computation of depth four homogenous circuits when the restriction for the bottom
fanin is removed.

For any sequence D = D1, D2, . . . , Dk of nonnegative integers such that
∑
Di = n, we also

study the class of homogenous ΣΠDΣΠ circuits, which are homogenous circuits where each Π
gate at the second layer (from the the top) is restricted to having its inputs be polynomials whose
sequence of degrees is precisely D. We show that for every degree sequence D, any ΣΠDΣΠ
circuit computing the permanent of an n× n matrix must have size at least exp (nε), for some
fixed absolute constant ε independent of D.
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1 Introduction

Arithmetic circuits are one of the most fundamental and basic models for the computation of
polynomials. Constructing size efficient arithmetic circuits for a given polynomial and proving
lower bounds for explicit polynomials are two of the central problems in the area of algebraic
complexity. A related and equally fundamental problem in algebraic complexity is the polyno-
mial identity testing (PIT) problem, which is the following: given an arithmetic circuit, decide if
the polynomial it computes is identically zero. There is a very simple randomized algorithm for
this problem. Schwartz [18] and Zippel [21] observed that evaluating the polynomial at a ran-
domly chosen point from a sufficiently large domain suffices to determine with high probability
if the polynomial is identically zero. PIT is one of the most natural problems for which there
is a simple randomized solution, but no deterministic algorithm is known, and derandomizing
PIT is one of the central questions in the areas of derandomization and pseudorandomness.

The two problems of finding deterministic algorithms for PIT and proving lower bounds for
arithmetic circuits are in fact intimately connected. Impagliazzo and Kabanets [7] showed that
a full derandomization of PIT would imply superpolynomial circuit lower bounds. Furthermore
strong enough lower bounds for arithmetic circuits would imply a derandomization of PIT. In
the blackbox model, where the PIT algorithm is only allowed blackbox access to the arithmetic
circuit, the connection between the two problems is even tighter. A blackbox PIT algorithm for
any class of arithmetic circuits gives immediately via interpolation an explicit polynomial that
is hard to compute for that class [1].

Even though the problems of PIT and of proving lower bounds for explicit polynomials
have received widespread attention and have been intensively studied, we basically have no
nontrivial lower bounds or deterministic PIT algorithms for the general model of arithmetic
circuits. Consequently, restricted models of circuits have received attention, and in the past two
decades, circuits of small depth have been widely studied.

Nisan and Wigderson [14] proved exponential lower bounds for homogenous circuits of depth
three which compute the permanent. Grigoriev and Karpinksi [4] showed that any depth 3 circuit
over a fixed finite field (with no restriction of homogeneity) which computes the permanent must
have exponential size. Even after these developments, proving strong lower bounds for general
circuits of depth larger than three, remains a formidable barrier. In fact without the restriction
of homogeneity, the best lower bound for even depth 3 circuits over the reals is just Ω(n2) [19].

In case of PIT, even less is known. Recently and culminating a long sequence of works [12,
3, 9, 11, 16, 17], deterministic blackbox algorithms for PIT for depth 3 circuits with constant
top fanin (ΣΠΣ(r) circuits) were obtained. In the case of depth 4 circuits, we know polynomial
time PIT algorithms for depth 4 circuits with constant top fanin (ΣΠΣΠ(r) circuits) only when
the circuits are restricted to be multilinear [8, 15]. In both cases removing the restriction on
the top fanin seems difficult, and thus currently we have algorithms for only weak classes.

In recent years there have been several results “explaining” this lack of progress in proving
lower bounds or PIT results for circuits of larger depth. Agrawal and Vinay [2] showed that
proving exponential lower bounds for just depth 4 circuits (even when the circuits are restricted to
be homogenous) would suffice for proving exponential lower bounds for circuits of arbitrary depth.
Thus, depth 4 circuits seem to capture the inherent complexity of general circuits. Koiran [13]
improved the parameters of this result and proved that showing exp(

√
n log2 n) lower bounds for

depth four homogenous circuits with bottom fanin bounded by
√
n for the permanent of an n×n

matrix would imply a superpolynomial lower bound for general arithmetic circuits computing
the permanent. When the circuits are not restricted to be homogenous, very surprisingly Gupta,
Kayal, Kamath and Saptharishi [5] showed that strong enough exponential lower bounds just
for circuits of depth 3 over the reals would imply superpolynomial circuit lower bounds.

We state some of these results more formally below. In order to be more precise, we first
define some basic notions. A ΣΠΣΠ circuit is a circuit of depth four where the layers have
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alternating + and × gates with the top layer being that of + gates. An n variate homogenous
polynomial of degree d computed by a homogenous ΣΠΣΠ circuit can be represented in the
form

P (x1, x2, x3, . . . , xn) =
m∑
i=0

di∏
j=1

Qij (1)

Here for every i and j, Qij is an n- variate homogenous polynomial being computed by a ΣΠ
circuit. The homogeneity restriction on C implies that for every i ∈ [m],

deg(P ) = d =
di∑
j=1

deg(Qij) (2)

A bound of t on the bottom fanin of ΣΠΣΠ circuits restricts the degrees of the Qij to be at
most t.

We now state below the results of Agrawal, Vinay [2] and Koiran [13].

Theorem 1.1. [2, 13] If there is a polynomial sized circuit for computing the permanent of an
n×n matrix, then there is a 2O(

√
n log2 n)-homogenous ΣΠΣΠ circuit computing the permanent,

such that the fanin of the bottom product gates is bounded by
√
n.

In a remarkable recent result in this direction, Gupta, Kamath, Kayal and Saptharishi [6]
proved a exp(

√
n) lower bound for the permanent against homogenous ΣΠΣΠ circuits with

bottom fanin bounded by
√
n; thus coming really close to the bound which via the result of [13]

would imply superpolynomial arithmetic circuit lower bounds. More precisely they showed the
following result:

Theorem 1.2. [6] Any homogenous ΣΠΣΠ circuit, with bottom fanin at most t computing the
permanent of an n× n matrix must have size at least exp(Ω(n/t)).

Improving the exponent in the above lower bound even slightly would have extremely strong
consequences, and it seems to be an extremely tempting line of approach towards proving lower
bounds for general circuits. However, as of now it is not clear how simple the task might be,
and seems quite possible that getting strong enough improved lower bounds might be out of the
scope of current techniques.

1.1 Our results

In this paper, we explore the limits of computation of depth 4 homogenous circuits when the
restriction for the bottom fanin is removed. There seem to be two main obstacles in extending
the lower bounds of [6] for general depth 4 homogenous ΣΠΣΠ circuits. The lower bounds
in [6] work only when the degrees of all polynomials feeding into the product gate at the second
layer are small (in other words, the bottom fan in is small), say ≤

√
n. It is easy to see that

if the degrees of all polynomials feeding into the product gate at the second layer is large (i.e.
the bottom fanin of all the gates is large), say ≥

√
n, then for sparsity reasons and simple

monomial counting, it is easy to obtain exponential lower bounds. The first obstacle is to
handle the case when the degrees of some of the polynomials is small and for some of them it
is large. For instance fix any arbitrary sequence D of degrees summing to n, and assume that
the polynomials feeding into each product gate at the second from top layer have their degrees
coming from this sequence. Is it still possible to obtain exponential lower bounds? The second
obstacle to extending the results from [6] is to find a way to combine the lower bounds for all
these various cases into a common lower bound for the case when the circuit is composed of
product gates of different kinds. For instance we know lower bounds when all product gates at
the second layer have small incoming degrees and when all product gates have large incoming
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degrees. However we do not know how to combine these lower bounds into a single lower bound
when the circuit is the sum of two circuits, one of the low degree kind, and one of the high
degree kind. In this paper we show how to resolve the first obstacle. This result is formally
stated as Theorem 1.4 below. As a consequence of our results we also obtain lower bounds for
homogenous ΣΠΣΠ(r) circuits, stated formally as Theorem 1.3 below.

For the general model of ΣΠΣΠ circuits, only very weak lower bounds seem to be known.
Even PIT for ΣΠΣΠ circuits is known only when the top fanin is constant and the circuit is
multilinear (in the multilinear case, the degree of the polynomials computed must anyway be
bounded by the number of variables, and hence, multilinearity is a much bigger restriction than
homogeneity1). The problem of showing lower bounds for depth 4 circuits with bounded top
fanin is hence a problem that is simpler than derandomizing PIT for the same model (at least
in the black box model), and it seems to be the first crucial step in that direction.

Lower bounds for homogenous ΣΠΣΠ(r) circuits: We consider homogenous ΣΠΣΠ(r)
circuits, which are depth 4 homogenous circuits whose top fanin is bounded by r. When r is a
constant we prove exponential lower bounds2 for the class of ΣΠΣΠ(r) circuits3. In particular,
we prove the following theorem:

Theorem 1.3. Let C be a homogenous ΣΠΣΠ(r) circuit that computes the n × n permanent.
Let s be the size of C. Then

s ≥ exp
(
nΩ(1/r)

)
.

Prior to this result, we are not aware of any such lower bounds for depth 4 circuits even
when the top fanin r is bounded by 2.

Lower bounds for homogenous ΣΠDΣΠ circuits: Another class of circuits we are
able to prove a lower bound for is the class of depth 4 circuits where each product at the second
layer (from the top) has the same degree sequence of incoming polynomials.

For any degree sequence D = D1, D2, . . . , Dk of nonnegative integers such that
∑
Di = n,

we study the class of homogenous ΣΠDΣΠ circuits, which are homogenous circuits where each
Π gate at the second layer is restricted to having its inputs be polynomials whose sequence of
degrees is precisely D. (We give a more formal definition in Section 2.) We show that for every
degree sequence D, any ΣΠDΣΠ circuit computing the permanent of an n×n matrix must have
size at least exp (nε), for some fixed absolute constant ε independent of D.

Theorem 1.4. Let C be a homogenous ΣΠDΣΠ circuit that computes the n × n permanent.
Let s be the size of C. Then

s ≥ exp (nε) ,

for some fixed absolute constant ε > 0.

One consequence of the above result is that we show that one can partition the set of product
gates of every depth 4 circuit into constantly many parts (roughly 10 parts would suffice), and
for each part we are able to prove exponential lower bounds. However as of now we do not
know how to combine this bound across the parts in order to get a lower bound for all depth 4
circuits.

1In all the results of this paper, the restriction of homogeneity can be replaced by the restriction that all gates in
the circuit compute polynomials of degree at most n.

2In the rest of the paper, by exponential lower bound we will mean a lower bound of the form 2nε for some constant
ε.

3It is important to observe that the reduction of an polynomial sized homogenous ΣΠΣΠ circuit with arbitary
bottom fanin to a homogenous ΣΠΣΠ circuit with bounded bottom fanin as given by the results of [2, 13] can lead

to circuits of size O(2O(
√

n log2 n)) and so Theorem 1.2 does not imply any nontrivial lower bounds for it.
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1.2 Completeness of the model of ΣΠΣΠ(r) circuits

Depth 3 and depth 4 circuits with bounded top fanin (ΣΠΣ(r) and ΣΠΣΠ(r) respectively) have
been extensively studied in the past especially in the context of polynomial identity testing
(PIT). The question of lower bound for ΣΠΣ(r) circuits is almost uninteresting since it can
be shown quite easily that for r < n, ΣΠΣ(r) circuits cannot compute the n × n permanent
or determinant, no matter what the size of the circuit. Thus the class of ΣΠΣ(r) circuits is
not complete, in the sense that the class of circuits cannot even compute all polynomials. In
contrast, the class of depth 2 ΣΠ circuits (with no restriction on top fanin) is complete, but
lower bounds are trivial for this model since any polynomial with m monomials needs a ΣΠ
circuit of size at least m to compute it.

It was observed by Kayal [10] that if one considers the class of depth 4 circuits and one
imposes the additional requirement that each product gate has at least 2 nontrivial factors,
then the class of ΣΠΣΠ(r) circuits with r < n/2 circuits is not complete. This is because if α
is a common root of at least two of the factors of each of the product gates, then it would be a
zero of multiplicity 2 of the polynomial computed by the circuit. Also if r < n/2 then such an
α always exists. Hence if one starts with a polynomial that does not vanish at any point with
multiplicity 2, then it cannot be computed by such a circuit. Thus in this case we can prove
lower bounds easily.

The general class of depth 4 ΣΠΣΠ(r) circuits even when r = 1 is a complete class, since it
contains the class of depth 2 ΣΠ circuits. However lower bounds for ΣΠΣΠ(r) circuits for r ≥ 2
did not seem to be known prior to this work.

Organization of the paper: In Section 2, we discuss some preliminary notions used in
the paper. In Section 3, we give an overview of the proof. In Section 4, we present the proof of
Theorem 1.3. We conclude with some future directions of work and open problems in Section 5.

2 Preliminaries

An arithmetic circuit over a field F and variables {x1, x2, . . . , xn} is a directed acyclic graph with
every node, called a gate, being labelled by one of the symbols from the set {+,×, x1, x2, . . . , xn}
or constants from the field F. The gates labelled by the set of variables or field elements are
called input gates. The circuit has one or more gates of fanout 0 called the output gate. The size
of the circuit is the number of nodes in the circuit and the depth of the circuit is the length of
the longest path from an output gate to an input gate. A circuit is said to be homogenous if the
polynomial computed at every gate is homogenous. A ΣΠΣΠ circuit is a circuit of depth four
where the layers have alternating + and × gates with the top layer being that of + gates. In
this work, we will mainly be working with ΣΠΣΠ(r) circuits, which are depth four homogenous
circuits whose top fanin is bounded by r. An n variate homogenous polynomial of degree d
computed by such a circuit C can be represented in the form

P (x1, x2, x3, . . . , xn) =
r∑
i=1

di∏
j=1

Qij (3)

For each i ∈ [r], the product Pi =
∏di
j=1Qij is said to be computed by the product gate i.

Therefore, P =
∑r
i=1 Pi. Here for every i and j, Qij is an n variate homogenous polynomial

being computed by a ΣΠ circuit. The homogeneity restriction on C implies that for every
product gate i,

deg(P ) = d =
di∑
j=1

deg(Qij) (4)
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With every product gate i ∈ [r], we can associate a multiset D = (Di,mi), where

Di = {deg(Qij) : j ∈ [di]} (5)

and mi is a map from Di to N, which assigns to every element l in Di, the number of j ∈ [di]
such that Qij has degree equal to l. For a homogenous depth 4 circuit, computing a degree d
polynomial, equation 4 can be rewritten as

deg(P ) = d =
∑
j∈Di

j ×mi(j) (6)

for each i in [r]. We define ΣΠDΣΠ circuits to be ΣΠΣΠ circuits in which every product gate i
has the same multiset (Di,mi) = D associated with it.

For more on arithmetic circuits and related results, we refer the interested reader to the
survey [20].
For any positive integer n, the permanent of an n× n matrix M is defined as

Perm(M) =
∑
σ∈Sn

∏
i∈[n]

M [i, σ(i)] (7)

where M [i, j] is the element in the ith row and jth column of M , and Sn is the set of all n!
permutations of {1, 2, . . . , n}. When M is a matrix such that M [i, j] = xij , the permanent is a
homogenous polynomial of degree n in n2 variables. We will use Permn for the permanent of
an n× n matrix.

We will now define the notion of shifted partial derivatives which is the basic complexity
measure used for the proof. This is the same measure that was used in the results on [6], and
we use the same definitions. For an n variate polynomial f ∈ F[x1, x2, . . . , xn] and a positive
integer k, we denote by ∂=kf , the set of all partial derivatives of order equal to k of f . Our
proof uses the notion of shifted partial derivatives of a polynomial defined below.

Definition 2.1 ( [6]). For an n variate polynomial P ∈ F[x1, x2, . . . , xn] and integers k, ` ≥ 0,
the space of ` shifted kth order partial derivatives of P is defined as

〈∂=kP 〉≤`
def
= F-span{

∏
i∈[n]

xi
ji · g :

∑
i∈[n]

ji ≤ `, g ∈ ∂=kP} (8)

Here, ∂=kP is the set of all partial derivatives of P of order k.

3 Proof Overview

Most lower bounds for arithmetic circuits proceed by identifying some kind of “progress mea-
sure”, and show that for any given circuit in a circuit class, the measure is small if the size
of the circuit is small, whereas for the polynomial one is trying to compute (for instance the
permanent), the measure is large. In the result by Gupta et al. [6], the progress measure used is
the dimension of the ` shifted kth order partial derivative dim(〈∂=kP 〉≤`), for a suitable choice
of ` and k. It is shown that every small depth 4 circuit with bounded bottom fanin has small
dim(〈∂=kP 〉≤`) compared to that of the permanent. Thus if a depth 4 circuit with bounded
bottom fanin must compute the permanent, then it must be large. More precisely it is shown
that every product gate Qi =

∏d
j=1Qij has dim(〈∂=kP 〉≤`) much smaller than that of the per-

manent, provided the degrees of the Qij are small. This is the core of the argument. Combined
with the sub-additivity of dim(〈∂=kP 〉≤`), the result easily follows.

Our proof builds upon the results of [6], and combines the use of the progress measure
dim(〈∂=kP 〉≤`) with the notion of “sparsity”. Suppose C =

∑r
i=0

∏di
j=1Qij is a homogenous
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ΣΠΣΠ circuit computing the n × n permanent. If all the Qij had low degree, then the results
of [6] give exponential lower bounds for the size of C computing the permanent. Also in the
extreme case where all the Qij have high degree, then since C is homogenous, the number of
Qij per product gate Qi =

∏d
j=1Qij must be small, and hence their product cannot have too

many monomials4. If the number of monomials is too few, we would not even be able to get
all the monomials in the permanent. In general of course there might be some high degree and
some low degree polynomials, and we attempt to interpolate between the two settings to obtain
our results.

For each product gate Qi =
∏d
j=1Qij , recall that each Qij is a homogenous polynomial of

degree dij (say), and
∑d
j=1 dij = n. If the size of the circuit is at most s, then each Qij has at

most s monomials. We decompose each product gate into its inputs Qij of high degree (those
of degree ≥ t) and its inputs Qij of low degree (those of degree <t). Observe that there cannot
be too many (greater than n/t) high degree polynomials Qij as otherwise their product would
have degree exceeding n. Thus the product of all the high degree Qij cannot have more than
sn/t monomials. Let H be the product of the high degree Qij , and L be the product of the low
degree Qij . Then, by writing out H as a sum of monomials (H =

∑
k hk) and multiplying each

monomial hk with L, we can expand out Q as
∑
k hk ·L. Note that L is a product of low degree

polynomials. Also, each hk is a monomial and hence a product of degree 1 polynomials. Thus
we have expressed Q as a ΣΠΣΠ circuit, where now all the product gates multiply polynomials
of degree at most t.

The hope at this point would be to apply this transformation to all the product gates and
then possibly apply the result by [6] to obtain a lower bound. The trouble with this argument
is that under the transformation described, the top fanin of the original circuit might blow up
by a factor equalling the number of monomials in H, which could be nearly as large as sn/t.
With this loss in parameters, the bound given by the [6] result gives nothing nontrivial. Thus
in general one cannot choose an absolute threshold t and for all product gates choose degrees
greater than t to be the high degree polynomials and the ones below t to the the low degree
polynomials.

What we show is that by examining the degrees of the polynomials feeding into the product
gates, one can carefully choose a threshold t that works for each product gate individually,
though it might not be the same threshold for all gates. It turns out that this threshold that
we find is purely a function of the degree sequence D of the product gate. Thus if all product
gates have the same degree sequence, i.e. we have a ΣΠDΣΠ circuit, then we obtain exponential
lower bounds. However for general ΣΠΣΠ circuits it can be a problem, since if the threshold is
different for different gates, we do not have any one single progress measure that works for all
gates and thus for the entire circuit. However we are still able to show that for each gate, only
very few thresholds are “bad”, and when the top fanin is a constant, then we show there is a
single threshold that will work for all gates to give exponential lower bounds.

4 Proof of Theorem 1.3

In this section, we will present the proof of Theorem 1.3. Let us consider a homogenous ΣΠΣΠ(r)
circuit C of size s computing the permanent of an n×n matrix M . From Equation 3, this implies
that

Perm(M) =
r∑
i=1

di∏
j=1

Qij (9)

4The number of monomials in each Qij is a most the size of the circuit.
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where for every value of i and j, Qij is a homogenous polynomial being computed by a sub-
circuit of depth 2 of C. Observe that Qij is being computed by a ΣΠ circuit and hence, the
number of monomials with nonzero coefficients in a sum of products expansion of Qij will be at
most the size of C. In other words, Qij is s sparse for each i ∈ [r] and j ∈ [di]. Without loss of
generality, we will assume that for every i ∈ [r], di = n, since if di < n for any i, we can always
make it equal to n by multiplying it with the identically 1 polynomial.

Let us now consider the polynomial computed at a product gate near the top of C. It is of
the form Q =

∏
i∈[n]Qi. Let us also assume without loss of generality that the Qi are arranged

in non-increasing order of their degrees. The idea of the proof as described in Section 3 would
be to decompose the Qi into high degree and low degree parts and then multiply out all the
high degree parts and count on their sparsity to show that the product does not blow up the
dimension of the space of shifted partial derivatives by too much. We will then use the following
lemma implicit in the work of [6], to obtain our bounds.

Lemma 4.1. [Implicit in [6]] Let P =
∏d
i=1 P̃i be a polynomial in N variables such that the

sum of the degrees of any k of these d polynomials P̃1, P̃2, . . . , P̃d is at most D. Then, for any
integer ` ≥ 0,

dim(〈∂=kf〉≤`) ≤
(
d+ k − 1

k

)(
N +D − k + `

N

)
.

Proof. The proof of the lemma is very similar to that in [6]. The version of the Lemma in [6]
is when all degrees are small and hence the sum of few degrees is also small. In particular, the
only change to the result of [6] is to replace their bound of tk (which for them was the sum of
degrees of k polynomials of degree at most t), by our bound of D.

The following lemma is the core of our argument.

Lemma 4.2. Let Q =
∏
j∈[n]Qi be a depth 3 ΠΣΠ homogenous circuit of degree n in N

variables, where each Qi has at most s monomials. Let 0 < ε < 1 be any small constant.
Consider k = ni/m, for 1 ≤ i ≤ m and any integer ` ≥ 0. Then for all but 1/ε choices of i ,

dim(〈∂=kQ〉≤`) ≤ sk·n
−1/m

·
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

Proof. Since the Qi’s are arranged in order of decreasing degree, Q1 has highest degree and Qn
has the smallest degree.

For 1 ≤ i ≤ m, let Si = {Qj |j ≤ ni/m} be the set of the first ni/m of the Qj ’s. For each i,
we will sum the degrees of the Qj ’s in Si \ Si−1. Let

Di =
∑

j s.t.Qj∈Si\Si−1

deg(Qj).

Then
∑m
i=1Di = n. Thus there are at most 1/ε choices of i for which Di ≥ εn. We will

show that for all other choices of i, for k = ni/m and any integer ` ≥ 0, dim(〈∂=kQ〉≤`) ≤
sk·n

−1/m ·
(
k/ε+k−1

k

)(
N+4εn−k+`

N

)
.

Let us fix i such that Di ≤ εn. We will split up the various Qj ’s into those that are in Si−1

and those that are not. For those Qj in Si−1, we will exploit the fact that there aren’t too many
of them and they each have at most s monomials, to show that they do not affect the dimension
of shifted partial derivatives by too much. For the rest of the Qj we will take advantage of the
fact that their degrees are not too large, and hence the sum of degrees of any k of them is small,
and thus we will be able to bound the span of shifted partial derivatives of their product using
the argument presented in [6].
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Let H =
∏
Qj∈Si−1

Qj , and let QH̄ = Q/H. Since each Qi has at most s monomials, thus

H has at most sn
(i−1)/m

monomials. Hence we can express the polynomial Q as the sum of at
most sn

(i−1)/m
polynomials P1, P2, . . . Pu, where each of the polynomials is the product of some

monomial (from H), and the product of all the Qj that are not in Si−1 (i.e. those in QH̄) .
We will show that for each Pj , 1 ≤ j ≤ u, for k = ni/m,

dim(〈∂=kPj〉≤`) ≤
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

Since u is at most the number of monomials in H, thus u ≤ sn
(i−1)/m

= sk·n
−1/m

. Since
Q =

∑
j∈[u] Pj , the sub-additivity of dim(〈∂=k〉≤`) will imply that

dim(〈∂=kQ〉≤`) ≤ sk·n
−1/m

·
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

Let us focus our attention on any one of these polynomials Pj , and call it P .
Then P = h·QH̄ = h·

∏
j≥n(i−1)/m+1Qj , where h is a monomial of H and can be thus written

as a product of degree one homogenous polynomials. Let us rename the degree 1 polynomials
in h and the different Qj dividing QH̄ , so that P = P̂1P̂2 · · · P̂`.

Consider all the polynomials P̂i dividing P which have degree at most εn/k, and group them
together and multiply them so that each of the grouped polynomials now has degree at least
εn/k and at most 2εn/k. Clearly this can be done. Call the new set of polynomials (the grouped
ones and the ones that had degree at least εn/k to start out with) P̃1, P̃2, . . . , P̃d. Since the sum
of their degrees is at most n, thus the total number d of these polynomials is at most k/ε.

Proposition 4.3. The sum of the degrees of any k of these d polynomials P̃1, P̃2, . . . , P̃d is at
most 4εn.

Proof. Out of the k polynomials, we see what fraction lie among the “grouped” polynomials, and
what lie among the original ungrouped polynomials. Recall that by the choice of i, and setting
k = n

i
m , the sum of degrees of any k − kn−1

m of the P̂i dividing P was at most εn. Therefore,
the sum of the degrees of any k of them will be at most 2εn. Thus, the contribution from
the original ungrouped polynomials is at most 2εn. Also, the contribution from the grouped
polynomials can be at most 2εn since there are at most k of them, and each has degree at most
2εn/k. Thus the total sum of degrees is at most 4εn.

Thus, P =
∏d
i=1 P̃i is a polynomial in N variables such that the sum of the degrees of any

k of the d polynomials P̃1, P̃2, . . . , P̃d is at most D = 4εn. Recall also that d ≤ k/ε. Hence, by
Lemma 4.1, for any integer ` ≥ 0,

dim(〈∂=kP 〉≤`) ≤
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

Theorem 4.4. Let C be a homogenous ΣΠΣΠ(r) circuit in N variables, of size s and of degree
at most n. Then for all constants ε, with 0 < ε < 1, there exists a choice of i, with 1 ≤ i ≤ 2r/ε,
such that for k = nεi/2r, and for all integers ` ≥ 0,

dim(〈∂=kC〉≤`) ≤ r · sk·n
−ε/2r

·
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.
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Proof. Let m = 2r/ε. Let C =
∑r
j=1Qj . Let i ∈ [m].

Then for each Qj , by Lemma 4.2, for all but 1/ε choices of i, for k = ni/m,

dim(〈∂=kQj〉≤`) ≤ sk·n
−1/m

·
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

Hence for each Qj we get at most 1/ε choices of i that may not work to get the bound above,
and we call those choices “bad” for Qj . We call the rest of the choices “good” for Qj . Thus by
the union bound there are at most r/ε choices of i that are bad for some Qj . Since m > r/ε,
thus there is a choice of i ∈ [m] that is good for every Qj .

Thus for any integer ` ≥ 0 and k = ni/m, for all j ∈ [r],

dim(〈∂=kQj〉≤`) ≤ sk·n
−1/m

·
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

Hence

dim(〈∂=kC〉≤`) ≤ r · sk·n
−1/m

·
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

We can observe that the choice of the threshold and k for every product gate just depends
upon the multiset of the degrees associated with the input feeding into it. In particular, if we
start with a ΣΠDΣΠ circuit, then the value of the threshold and k that works for one product
gate also works for the circuit in general. Hence, we have the following theorem which gives us
an upper bound on the dimension of the shifted partial derivative space of a ΣΠDΣΠ circuit.

Theorem 4.5. Let C be a homogenous ΣΠDΣΠ circuit in N variables, of size s, top fanin r
and of degree at most n. Then for all constants ε, with 0 < ε < 1, there exists a choice of i,
with 1 ≤ i ≤ m, where m = 1/ε+ 1 such that for k = ni/m, and for all integers ` ≥ 0,

dim(〈∂=kC〉≤`) ≤ r · sk·n
−1/m

·
(
k/ε+ k − 1

k

)(
N + 4εn− k + `

N

)
.

It is important to note the difference between the bounds in Theorem 4.4 and Theorem 4.5.
In Theorem 4.5, the exponent of s is independent of the top fanin r as m is a constant.

Now, by the results of [6], we will bound the dimension of the space of shifted partial
derivatives for the permanent and then use this bound to complete the proof of Theorem 1.3.
Below we state the results we use from [6].

Theorem 4.6 ([6]). For any integers n,m, k, l ≥ 0

dim(〈∂=kPermn〉≤`) ≥
(
n+ k

2k

)(
n− k − 1
m− n+ k

)(
n2 − n+ `− k + 1
n2 − 2n+m+ 1

)
.

Theorem 4.7 ([6]). ∃ε0 > 0 such that the following holds: Let ε be a constant, with 0 < ε < ε0.
Let `,m, n, k, t, d > 0 be integers such that ` = n2t, m = 2n − (n/t), k = ε(n/t), d = cn/t for
some constant c ≤ 3. Let

E =

(
n+k
2k

)(
n−k−1
m−n+k

)(
n2−n+`−k+1
n2−2n+m+1

)(
d+k−1
k

)(
n2+`+(t−1)k

n2

) .

Then, E ≥ exp(Ω(nt )).

We now prove our main result, Theorem 1.3.
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Proof of Theorem 1.3. Clearly the degree of the polynomial computed by C is n and the number
of variables in C is n2 = N . Let ε be a constant such that 0 < ε < ε0, where ε0 is the same
constant as in Theorem 4.7. Let ε′ = ε/4.

By Theorem 4.4, there exists a choice of i, with 1 ≤ i ≤ 2r/ε′, such that for k = nε
′i/2r, and

for all integers ` ≥ 0,

dim(〈∂=kC〉≤`) ≤ r · sk·n
−ε′/2r

·
(
k/ε′ + k − 1

k

)(
N + 4ε′n− k + `

N

)
.

Fix that choice of i and set k = nε
′i/2r. Let t = εn/k. Thus tk = εn. Let ` = n2t,

m = 2n− (n/t), and d = k/ε′ = 4n/t.
Also by Theorem 4.6,

dim(〈∂=kPermn〉≤`) ≥
(
n+ k

2k

)(
n− k − 1
m− n+ k

)(
n2 − n+ `− k + 1
n2 − 2n+m+ 1

)
.

Since C computes Permn, thus dim(〈∂=kC〉≤`) ≥ dim(〈∂=kPermn〉≤`). Thus

r·sk·n
−ε′/2r

·
(
k/ε′ + k − 1

k

)(
N + 4ε′n− k + `

N

)
≥
(
n+ k

2k

)(
n− k − 1
m− n+ k

)(
n2 − n+ `− k + 1
n2 − 2n+m+ 1

)
.

Hence,

r · sk·n
−ε′/2r

≥
(
n+k
2k

)(
n−k−1
m−n+k

)(
n2−n+`−k+1
n2−2n+m+1

)(
k/ε′+k−1

k

)(
N+4ε′n−k+`

N

)
≥
(
n+k
2k

)(
n−k−1
m−n+k

)(
n2−n+`−k+1
n2−2n+m+1

)(
d+k−1
k

)(
N+tk−k+`

N

)
≥ exp(Ω(

n

t
)) = exp(Ω(k)) (by Theorem 4.7).

Using the fact that r is at most s (in fact it is much much smaller), we conclude that

k · n−ε
′/2r · log s ≥ Ω(k).

Thus
log s ≥ Ω(nε

′/2r)

and hence
s ≥ exp

(
nΩ(1/r)

)
.

A very similar calculation lets us prove Theorem 1.4.

Proof of Theorem 1.4. For a ΣΠDΣΠ circuit, the calculation will proceed exactly the same as
above, and in the end, we will get

s ≥ exp
(
nΩ(1/m)

)
,

which on substituting m = 1/ε+ 1, completes the proof. Thus, for all D we obtain exponential
lower bounds for ΣΠDΣΠ circuits computing the permanent regardless of their top fanin.
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5 Future directions

One of the most interesting questions left open by this work is to remove the restriction on top
fanin, and to prove super polynomial lower bounds for all homogenous ΣΠΣΠ circuits. While
this would not still suffice in proving lower bounds for general arithmetic circuits, this seems to
be an important step in that direction. Our results show that given any homogenous ΣΠΣΠ
circuit we can partition the circuit as a sum of constantly many circuits, such that for each of
those circuits, for some choice of ` and k, the dimension of the span of ` shifted kth order partial
derivative is a strong enough progress measure for proving lower bounds for that circuit. The
trouble is that the value of k and ` could be different for the different parts, and we do not know
how to combine these different values of k and ` into one single progress measure which would
work for the original circuit. Another very interesting direction would be to give nontrivial PIT
results for ΣΠΣΠ(r) circuits when r is a constant. So far, we only know how to derandomize
PIT when the ΣΠΣΠ(r) circuits are multilinear, and our lower bound for ΣΠΣΠ(r) circuits
could be viewed an a first step in this direction.
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