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Abstract

We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim
and Ofek [14], as a family of unsatisfiable propositional formulas for which refutations of
small size in any propositional proof system that possesses the feasible interpolation property
imply an efficient deterministic refutation algorithm for random 3SAT with n variables and
Ω(n1.4) clauses. Such small size refutations would improve the state of the art (with respect
to the clause density) efficient refutation algorithm, which works only for Ω(n1.5) many
clauses [15].

We demonstrate polynomial-size refutations of the 3XOR principle in resolution operat-
ing with disjunctions of quadratic equations with small integer coefficients, denoted R(quad);
this is a weak extension of cutting planes with small coefficients. We show that R(quad) is
weakly automatizable iff R(lin) is weakly automatizable, where R(lin) is similar to R(quad)
but with linear instead of quadratic equations (introduced in [28]). This reduces the problem
of refuting random 3CNF with n variables and Ω(n1.4) clauses to the interpolation problem
of R(quad) and to the weak automatizability of R(lin).

1 Introduction

In the well known random 3-SAT model one usually considers a distribution on formulas in
conjunctive normal form (CNF) with m clauses and three literals each, where each clause is
chosen independently with repetitions out of all possible 23 ·

(

n
3

)

clauses with n variables (cf. [1]).
The clause density of such a 3CNF is m/n. When m is greater than cn for sufficiently large c,
that is, when the clause density is greater than c, it is known (and easily proved for e.g. c ≥ 5.2)
that with high probability a random 3CNF is unsatisfiable.

A refutation algorithm for random kCNFs is an algorithm that receives a kCNF (with
c sufficiently large) and outputs either “unsatisfiable” or “don’t know”; if the algorithm
answers “unsatisfiable” then the kCNF is required to be indeed unsatisfiable; moreover,
the algorithm should output “unsatisfiable” with high probability (namely, with probability
1− o(n) over the input kCNFs).

We can view the problem of determining the complexity of (deterministic) refutation algo-
rithms as an average-case version of the P vs. coNP problem: a polynomial-time refutation
algorithm for random kCNFs (for a small enough clause density) can be interpreted as showing
that “P = coNP in the average-case”; while a polynomial-time nondeterministic refutation
algorithm (again, for a small enough clause density) can be interpreted as “NP = coNP in the
average-case”.

Refutation algorithms for random kCNFs were investigated in Goerdt and Krivelevich [17]
and subsequent works by Goerdt and Lanka [18], Friedman, Goerdt and Krivelevich [16], Feige
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and Ofek [15] and Feige [13] and [10] (among other works). For random 3CNFs, the best (with
respect to the clause density) polynomial-time refutation algorithm to date works for formulas
with at least Ω(n1.5) clauses [15]. On the other hand, Feige, Kim and Ofek [14] considered
efficient nondeterministic refutation algorithms; namely, short witnesses for unsatisfiability of
3CNFs that can be checked for correctness in polynomial-time. They established the current
best (again, with respect to the clause density) efficient, alas nondeterministic, refutation pro-
cedure: they showed that with probability converging to 1 a random 3CNF with n variables
and Ω(n1.4) clauses has a witness of size polynomial in n.

Since the current state of the art random 3CNF refutation algorithm works for Ω(n1.5)
clauses, while the best nondeterministic refutation algorithm works already for O(n1.4), deter-
mining whether a deterministic polynomial-time (or even a quasipolynomial-time) refutation
algorithm for random 3CNFs with n variables and Ω(n1.4) clauses exists is to a certain extent
the frontier open problem in the area of efficient refutation algorithms.

1.1 Results

In this work we reduce the problem of devising an efficient deterministic refutation algorithm
for random 3CNFs with Ω(n1.4) clauses to the interpolation problem in propositional proof
complexity. For a refutation system P, the interpolation problem for P is the problem that asks,
given a P-refutation of an unsatisfiable formula A(x, y) ∧ B(x, z), for x, y, z mutually disjoint
sets of variables, and an assignment α for x, to return 0 or 1, such that if the answer is 0 then
A(α, y) is unsatisfiable and if the answer is 1 then B(α, z) is unsatisfiable. If the interpolation
problem for a refutation system P is solvable in time T (n) we say that P has interpolation in
time T (n).1 When T (n) is a polynomial we say that P has feasible interpolation. The notion
of feasible interpolation was proposed in [20] and developed further in [30, 7, 22].

We present a family of unsatisfiable propositional formulas, denoted Υn and called the
3XOR principle formulas, expressing a combinatorial principle, such that for any given refuta-
tion system P that admits short refutations of Υn, solving efficiently the interpolation problem
for P provides an efficient deterministic refutation algorithm for random 3CNFs with Ω(n1.4)
clauses. In other words, we have the following:

Theorem 1. If there exists a propositional proof system P that has interpolation in time T (n)
and that admits s(n)-size refutations of Υn, then there is a deterministic refutation algorithm
for random 3CNF formulas with n variables and Ω(n1.4) clauses that runs in time T (s(n)). In
particular, if P has feasible interpolation and admits polynomial-size refutations of Υn then the
refutation algorithm runs in polynomial-time.

The argument is based on the following: we show that the computationally hard part of the
Feige, Kim and Ofek nondeterministic refutation algorithm (namely, the part we do not know
how to efficiently compute deterministically) corresponds to a disjoint NP-pair. Informally, the
pair (A,B) of disjoint NP sets is the following: A is the set of 3CNFs that have a certain
combinatorial property, that is, they contain a collection of sufficiently many inconsistent even
k-tuples, as defined by Feige et al. (see Definition 2); and B is the set of 3CNFs with m clauses
for which there exists an assignment that satisfies more than m − ℓ clauses as 3XORs (for ℓ a
certain function of the number of variables n).

Theorem 1 then follows from the known relation between disjoint NP-pairs and feasible
interpolation [29, 27]: in short, if A and B are two disjoint NP sets and A(x, y) and B(x, z)
are the two polynomial-size Boolean formulas corresponding to A and B, respectively (i.e., for
all x, there exists a short y such that A(x, y) = 1 iff x ∈ A; and similarly for B), then short
refutations of A(x, y)∧B(x, z) imply a polynomial-size algorithm that separates A from B. For

1We do not distinguish in this paper between proofs and refutations: proof systems prove tautologies and
refutation systems refute unsatisfiable formulas (or, equivalently prove the negation of unsatisfiable formulas).

2



more on the relation between disjoint NP-pairs and propositional proof complexity see, e.g.,
[27, 3].

In general, we observe that every efficient refutation algorithm (deterministic or not) cor-
responds directly to a disjoint NP-pair as follows: every efficient refutation algorithm is based
on some property P of CNFs that can be witnessed (or better, found) in polynomial-time.
Thus, every efficient refutation algorithm corresponds to a family of formulas P (x) →¬SAT(x),
expressing that if the input CNF has the property P then x is unsatisfiable; thus, P (x) and
SAT(x) are two disjoint NP predicates. In the case of the refutation algorithm of Feige, Kim
and Ofek, P (x) expresses simply that the 3CNF x has the Feige et al. witness. However, the
disjoint NP-pair (A,B) we work with is not of this type. Namely, A is not the predicate P (x)
for the full Feige, Kim and Ofek witnesses, rather a specific combinatorial predicate (mentioned
above) that is only one ingredient in the definition of the Feige et al. witness; and B is not
SAT(x). This saves us the trouble to formalize and prove in a weak propositional proof system
the full Feige et al. argument (such a formalization was done recently in [25]; see Sec. 1.2 for a
comparison with [25]).

In the second part of this paper (Section 5 onwards) we reduce the problem of determinizing
the Feige et al. nondeterministic refutation algorithm to the interpolation problem of a concrete
and apparently weak refutation system. Specifically, we demonstrate polynomial-size refutations
for Υn in a refutation system denoted R(quad) that extends both the cutting planes with small
coefficients2 (cf. [11, 7, 26]) and Res(2) (for any natural k, the system Res(k) is resolution
that operates with kDNFs instead of clauses, introduced by Kraj́ıček [23]). We note also that
R(quad) is a subsystem of TC0-Frege.

An R(quad) refutation (see Section 5.1 for a formal definition) over the variables {x1, . . . , xn}
operates with disjunctions of quadratic equations, where each quadratic equation is of the form:

∑

i,j∈[n]

cijxixj +
∑

i∈[n]

cixi + c0 = a,

in which all ci, cij and a are integers written in unary representation. The system R(quad) has
the following derivation rule, which can be viewed as a generalized resolution rule: from two
disjunctions of quadratic equations

∨

i Li ∨ (L = a) and
∨

j Lj ∨ (L′ = b) one can derive:
∨

i

Li ∨
∨

j

Lj ∨ (L− L′ = a− b).

We also add axioms that force our variables to be 0, 1. An R(quad) refutation of an unsatisfiable
set of disjunctions of quadratic equations is a sequence of disjunctions of quadratic equations
(called proof-lines) that terminates with 1 = 0, and such that every proof-line is either an axiom,
or appears in T, or is derived from previous lines by the derivation rules.

We show the following:

Theorem 2. R(quad) admits polynomial-size refutations of the 3XOR principle formulas Υn.

This polynomial upper bound on the refutation size of the 3XOR principle is non-trivial
because the encoding of the 3XOR formula is complicated in itself and further the refutation
system is very restrictive.

By Theorem 1, we get the reduction from determinizing Feige et al. work to the interpolation
problem for R(quad). In other words:

Corollary 3. If R(quad) has feasible interpolation then there is a deterministic polynomial-time
refutation algorithm for random 3CNFs with n variables and Ω(n1.4) clauses.

2A refutation in cutting planes with small coefficients is a restriction of cutting planes in which all intermediate
inequalities are required to have coefficients bounded in size by a polynomial in n, where n is the size of the
formula to be refuted (see [7]).
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Next we reduce the problem of determinizing the Feige et al. refutation algorithm to the
weak automatizability of a weaker system than R(quad), namely R(lin), as explained in what
follows.

The concept of automatizability, introduced by Bonet, Pitassi and Raz [8] (following the
work of [24]), is central to proof-search algorithms. The proof-search problem for a refutation
system P asks, given an unsatisfiable formula τ , to find a P-refutation of τ . A refutation system
P is automatizable if for any unsatisfiable τ the proof-search problem for P is solvable in time
polynomial in the smallest P-refutation of τ (and equivalently, if there exists a polynomial-time
algorithm that on input τ and a number m in unary, outputs a P-refutation of τ of size at most
m in, case such a refutation exists). Following Atserias and Bonet [3], we say that a refutation
system P is weakly automatizable if there exists an automatizable refutation system P ′ that
polynomially simulates P. Note that if P is not automatizable, it does not necessarily follow
that also P ′ is not automatizable. Hence, from the perspective of proof-search algorithms, weak
automatizability is a more natural notion than automatizability (see [27] on this).

In [28], the system R(lin) was introduced which is similar to R(quad), except that all equa-
tions are linear instead of quadratic. In other words, R(lin) is resolution over linear equations
with small coefficients. We show the following:

Theorem 4. R(quad) is weakly automatizable iff R(lin) is weakly automatizable.

The proof of this theorem follows a similar argument to Pudlák [27]. Since weak automa-
tizability of a proof system implies that the proof system has feasible interpolation [8, 27], we
obtain the following:

Corollary 5. If R(lin) is weakly automatizable then there is a deterministic refutation algorithm
for random 3CNFs with n variables and Ω(n1.4) clauses.

1.2 Consequences and relations to previous work

The key point of this work is the relation between constructing an efficient refutation algorithm
for the clause density Ω(n0.4) to proving upper bounds in weak enough propositional proof
systems for the 3XOR principle (namely, proof systems possessing feasible interpolation); as
well as establishing such upper bounds in relatively week proof systems.

There are two ways to view our results: either as (i) proposing an approach to improve
the current state of the art in refutation algorithms via proof complexity upper bounds; or
conversely as (ii) providing a new kind of important computational consequences that will
follow from feasible interpolation and weak automatizability of weak proof systems. Indeed,
the consequence that we provide is of a different kind from the group of important recently
discovered algorithmic-game-theoretic consequences shown by Atserias and Maneva [4], Huang
and Pitassi [19] and Beckmann, Pudlák and Thapen [6]. In what follows we explain these two
views in more details.

(i) Our results show that by proving that R(quad) has feasible interpolation or by demon-
strating a short refutation of the 3XOR principle in some refutation system that admits feasible
interpolation, one can advance the state of the art in refutation algorithms. We can hope that if
feasible interpolation of R(quad) does not hold, perhaps interpolation in quasipolynomial-time
holds (either for R(quad) or for any other system admitting short refutations of the 3XOR
principle), which would already improve exponentially the running time of the current best
deterministic refutation algorithm for 3CNFs with Ω(n1.4) clauses, since the current algorithm
works in time 2O(n0.2 logn) [14].

As mentioned above, R(quad) is a common extension of Res(2) and cutting planes with
small coefficients (though it is apparently not the weakest such common extension because al-
ready R(lin) polynomially simulates both Res(2) and cutting planes with small coefficients).
Whether Res(2) and cutting planes with small coefficients have feasible interpolation (let alone,
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interpolation in quasi-polynomial time) is open and there are no conclusive evidences for or
against it. Note that by Atserias and Bonet [3], Res(2) has feasible interpolation iff resolution
is weakly automatizable. However this does not necessarily constitute a strong evidence against
the feasible interpolation of Res(2), because the question of whether resolution is weakly au-
tomatizable is itself open, and there is no strong evidence ruling out a positive answer to this
question3. Similarly, there are no strong evidences that rule out the possibility that cutting
planes is weakly automatizable.

(ii) Even if our suggested approach is not expected to lead to an improvement in refuta-
tion algorithms, it is still interesting in the following sense. The fact that R(quad) has short
refutations of the 3XOR principle provides a new evidence that (weak extensions of) Res(2)
and cutting planes with small coefficients may not have feasible interpolation, or at least that
it would be highly non-trivial to prove they do have feasible interpolation; the reason for this is
that establishing the feasible interpolation for such proof systems would entail quite strong algo-
rithmic consequences, namely, a highly non-trivial improvement in refutation algorithms. This
algorithmic consequence adds to other recently discovered and important algorithmic-game-
theoretic consequences that would follow from feasible interpolation of weak proof systems.

Specifically, in recent years several groups of researchers discovered connections between
feasible interpolation and weak automatizability of small depth Frege systems to certain game-
theoretic algorithms: Atserias and Maneva [4] showed that solving mean payoff games is re-
ducible to the weak automatizability of depth-2 Frege (equivalently, Res(n)) systems and to the
feasible interpolation of depth-3 Frege systems (actually, depth-3 Frege where the bottom fan-in
of formulas is at most two). Subsequently, Huang and Pitassi [19] showed that if depth-3 Frege
system is weakly automatizable, then simple stochastic games are solvable in polynomial time.
Finally, Beckmann, Pudlák and Thapen [6] showed that weak automatizability of resolution
implies a polynomial-time algorithm for the parity game.

Comparison with Müller and Tzameret [25]. In [25] a polynomial-size TC0-Frege proof
of the correctness of the Feige et al. witnesses was shown. However the goal of [25] was differ-
ent from the current paper. In [25] the goal was to construct short propositional refutations
for random 3CNFs (with sufficiently low clause density). Accordingly, the connection to the
interpolation problem was not made in [25]; and further, it is known by [8] that TC0-Frege does
not admit feasible interpolation (under cryptographical assumptions). On the other hand, this
paper aims to demonstrate that certain short refutations will have algorithmic consequences
(for refutation algorithms). Indeed, since we are not interested here to prove the correctness of
the full Feige et al. witnesses, we are isolating the computationally hard part of the witnesses
from the easy (polytime computable) parts, and formalize the former part (i.e., the 3XOR prin-
ciple) as a propositional formula in a way that is suitable for the reduction to the interpolation
problem.

One advantage of this work over [25] is that Theorem 2 gives a more concrete logical char-
acterization of parts of the Feige et al. witnesses (because the proofs in [25] were conducted
indirectly, via a general translation from first-order proofs in bounded arithmetic), and this
characterization is possibly tighter (because R(quad) is apparently strictly weaker than TC0-
Frege).

2 Preliminaries

Let F be a 3CNF with n variables X = {x1, . . . , xn} and m clauses. We denote {1, . . . , n}
by [n]. The truth value of a formula G under the Boolean assignment A is written G(A). An

3It is known that, based on reasonable hardness assumptions from parameterized complexity, resolution is not
automatizable by Alekhnovich and Razborov [2], which is, as the name indicates, a stronger property than weak
automatizability.
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assignment A satisfies as a 3XOR thew clause ℓ1 ∨ ℓ2 ∨ ℓ3 if (ℓ1 ⊕ ℓ2 ⊕ ℓ3)(A) = 1 (where ⊕
denotes the XOR operation, and the ℓi’s are literals, namely variables or their negation).

2.1 Disjoint NP-pairs and feasible interpolation of propositional proofs

In this section we review the notion of a disjoint NP-pair and its relation to propositional proofs
and the feasible interpolation property.

A disjoint NP-pair is simply a pair of languages in NP that are disjoint. Let L,N be
a disjoint NP-pair such that R(x, y) is the corresponding relation for L and Q(x, z) is the
corresponding relation for N ; namely, there exists polynomials p, q such that R(x, y) and Q(x, z)
are polynomial-time relations where x ∈ L iff ∃y, |y| ≤ p(|x|) ∧ R(x, y) = true and x ∈ N iff
∃z, |z| ≤ q(|x|) ∧Q(x, z) = true.

Since both polynomial-time relations R(x, y) and Q(x, z) can be converted into a family of
polynomial-size Boolean circuits, they can be written as a family of polynomial-size (in n) CNF
formulas (by adding extension variables, that we may assume are incorporated in the certificates
y and z). Thus, let An(x, y) be a polynomial-size CNF in the variables x = (x1, . . . , xn) and
y = (y1, . . . , yℓ), that is true iff R(x, y) is true, and let Bn(x, z) be a polynomial-size CNF in
the variables x and z = (z1, . . . , zm), that is true iff Q(x, z) is true (for some ℓ,m that are
polynomial in n). For every n ∈ N, we define the following unsatisfiable CNF formula in three
mutually disjoint vectors of variables x, y, z:

Fn := An(x, y) ∧Bn(x, z). (1)

Note that because y and z are disjoint vectors of variables and An(x, y)∧Bn(x, z) is unsatisfiable,
it must be that given any x ∈ {0, 1}n, either An(x, y) or Bn(x, z) is unsatisfiable (or both).

Feasible interpolation. We use standard notions from the theory of propositional proof
complexity (see [5, 31, 9, 21] for surveys and introductions to the field). In particular, we some-
times mix between refutations (that is, proofs of unsatisfiability of a formula) and proofs (that
is, proofs of tautologies). From the perspective of proof complexity refutations of contradictions
and proofs of tautologies are for most purposes the same.

A propositional proof system P is a polynomial-time relation V (π, τ) such that for every
propositional formulas τ (encoded as binary strings in some natural way), τ is a tautology iff
there exists a binary string π (the supposed “proof of τ”) with V (π, τ) = true. (Note that |π|
is not necessarily polynomial in |τ |.) A propositional proof system P polynomially-simulates
another propositional proof system Q if there is a polynomial-time computable function f that
maps Q-proofs to P-proofs of the same tautologies.

Consider a family of unsatisfiable formulas Fn := An(x, y) ∧ Bn(x, z), i ∈ N, in mutually
disjoint vectors of variables, as in (1) above. We say that the Boolean function f(x) is the
interpolant of Fn if for every n and every assignment α to x:

f(α) = 1 =⇒ An(α, y) is unsatisfiable; and
f(α) = 0 =⇒ Bn(α, z) is unsatisfiable.

(2)

In other words, if only An(α, y) is unsatisfiable (meaning that Bn(α, z) is satisfiable) then
f(α) = 1, and if only Bn(α, z) is unsatisfiable (meaning that An(α, z) is satisfiable) then f(α) =
0, and if both An(α, y) and Bn(α, z) are unsatisfiable then f(α) can be either 0 or 1. Note that
L (as defined above) is precisely the set of those assignments α for which A(α, y) is satisfiable,
and N is precisely the set of those assignments α for which B(α, z) is satisfiable, and L and N
are disjoint by assumption, and so f(x) separates L from N ; namely, it outputs different values
for those elements in L and those elements in N .
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Definition 1 (Interpolation property). A propositional proof system P is said to have the
interpolation property in time T (n) if the existence of a size s(n) P-refutation of a family Fn

as in (1) above implies the existence of an algorithm computing f(x) in T (s(n)) time. When
a proof system P has the interpolation property in time poly(n) we say that P has the feasible
interpolation property, or simply that P has feasible interpolation.

2.2 Refutation algorithms

We repeat here the definition given in the introduction. The distribution of random 3CNF
formulas with n variables and m clauses is defined by choosing m clauses with three literals
each, where each clause is chosen independently with repetitions out of all possible 23 ·

(

n
3

)

clauses with n variables. A refutation algorithm for random 3CNFs is an algorithm A with
input a 3CNF and two possible outputs “unsatisfiable” and “don’t know”, such that (i)
if on input C, A outputs “unsatisfiable”, then C is unsatisfiable; and (ii) for any n, with
probability at least 1 − o(1) A outputs “unsatisfiable” (where the probability is considered
over the distribution of random 3CNFs with n variables and m clauses, and where o(1) stands
for a term that converges to 0 when n tends to infinity).

3 The 3XOR principle

The following definitions and proposition are due to Feige et al. [14].

Definition 2 (Inconsistent even k-tuple). An even k-tuple is a tuple of k many 3-clauses in
which every variable appears even times. An inconsistent even k-tuple is an even k-tuple in
which the total number of negative literals is odd.

Note that for any even k-tuple, k must be an even number (since by assumption the total
number of variables occurrences 3k is even). The following is the combinatorial principle, due
to Feige et al. [14] that we consider in this work:

The 3XOR Principle. Let K be a 3CNF over the variables X. Let S be t inconsistent even
k-tuples from K, such that every clause from K appears in at most d inconsistent even k-tuples
in S. Then, given any Boolean assignment to the variables X, the number of clauses in K that
are unsatisfied by the assignment as 3XOR is at least ⌈t/d⌉.

The correctness of the 3XOR principle follows directly from the following proposition and
the fact that every clause in K appears in at most d even k-tuples in S:

Proposition 6 ([14]). For any inconsistent even k-tuple (over the variables X) and any Boolean
assignment A to X, there must be a clause in the k-tuple that is unsatisfied as 3XOR.

The proof follows a simple counting modulo 2. For completeness we prove this proposition.

Proof. Assume by a way of contradiction that for some assignment A every clause from the
k-tuple is satisfied as a 3XOR and recall that k must be even. Thus, if we sum modulo 2 all the
literals in the k-tuple via clauses, then since k is even we get that the sum equals 0 modulo 2.

On the other hand, if we count via literals then summing modulo 2 all literals ℓi(A) in the
k-tuple, we get 1 (modulo 2), for the following reason. First, we sum all variables xi that have
odd number of negative occurrences. Because xi appears an even number of times in the k-tuple,
the number of positive occurrences of xi is also odd. So in total all occurrences of xi(A) and
¬xi(A) contribute 1 to our sum (modulo 2). There must be an odd number of such variables xi
in our k-tuple because the k-tuple is inconsistent. Thus this sums up to 1 (modulo 2). Then we
add to this sum those variables that have an even number of negative occurrences (and hence
also an even number of positive occurrences); but they cancel out when summing their values
under A modulo 2, and so they contribute 0 to the total sum. Hence, we get 1 as the total sum.
This contradicts the counting in the previous paragraph which turned out 0. QED
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4 From short proofs to refutation algorithms

In this section we demonstrate that polynomial-size proofs of (encodings of the) 3XOR principle
in a proof system that has the feasible interpolation property yield deterministic polynomial-
time refutation algorithms for random 3CNF formulas with Ω(n1.4) clauses.

4.1 The witness for unsatisfiability

Feige, Kim and Ofek nondeterministic refutation algorithm [14] is based on the existence of a
polynomial-size witness of unsatisfiability for most 3CNF formulas with sufficiently large clause
to variable ratio. The witness has several parts, but as already observed in [14], apart from the
t inconsistent even k-tuples (Definition 2), all the other parts of the witness are known to be
computable in polynomial-time. In what follows we define the witnesses for unsatisfiability.

Let K be a 3CNF with n variables x1, . . . , xn and m clauses. The imbalance of a variable
xi is the absolute value of the difference between the number of its positive occurrences and
the number of its negative occurrences. The imbalance of K is the sum over the imbalances
of all variables, in K, denoted I(K). We define M(K) to be an n × n rational matrix M as
follows: let i, j ∈ [n], and let d be the number of clauses in K where xi and xj appear with
different signs and s be the number of clauses where xi and xj appear with the same sign. Then
Mij :=

1
2(d− s). In other words, for each clause in K in which xi and xj appear with the same

sign we add 1
2 to Mij and for each clause in K in which xi and xj appear with different signs

we subtract 1
2 from Mij . Let λ be a rational approximation of the biggest eigenvalue of M(K).

We shall assume that additive error of the approximation is 1/nc for a constant c independent
of n; i.e., |λ− λ′| ≤ 1/nc, for λ′ the biggest eigenvalue of M(K); see [25].

Definition 3 (FKO witness). Given a 3CNF K, the FKO witness for the unsatisfiability of K
is defined to be the following collection:

1. the imbalance I(K);

2. the matrix M(K) and the (polynomially small) rational approximation λ of its largest
eigenvalue;

3. a collection S consisting of t < n2 inconsistent even k-tuples such that every clause in K
appears in at most d many even k-tuples, for some positive natural k;

4. the inequality t > d·(I(K)+λn)
2 + o(1) holds.

(The o(1) above stands for a specific rational number b/nc, for c and b constants independent
of n).

Feige et al. [14] showed that if a 3CNF has a witness as above it is unsatisfiable. We have
the following:

Theorem 7 ([14]). There are constants c0, c1 such that for a random 3CNF K with n variables
and Ω(n1.4) clauses, with probability converging to 1 as n tends to infinity there exist natural
numbers k, t, d such that t = Ω(n1.4) and

k ≤ c0 · n
0.2 and t < n2 and d ≤ c1 · n

0.2, (3)

and K has a witness for unsatisfiability as in Definition 3.

Inspecting the argument in [14], it is not hard to see that it is sufficient to replace part 3 in
the witness with a witness for the following:

3’. No assignment can satisfy more than m− ⌈t/d⌉ − 1 clauses in K as 3XORs.
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Therefore, since I(K), M(K) and λ are all polynomial-time computable (see [14] for this), in
order to determinize the nondeterministic refutation algorithm of [14] it is sufficient to provide
an algorithm that almost surely determines (correctly) that part 3’ above holds (when also t
and d are such that part 4 in the witness holds). In other words, in order to construct an
efficient refutation algorithm for random 3CNFs (with Ω(n1.4) clauses) it is sufficient to have
a deterministic algorithm A that on every input 3CNF (and for t and d such that part 4 in
the witness holds) answers either “condition 3’ is correct” or “don’t know”, such that A
is never wrong (i.e., if it says “condition 3’ is correct” then condition 3’ holds) and with
probability 1− o(n) over the input 3CNFs A answers “condition 3’ is correct”. Note that
we do not need to actually find the Feige et al. witness nor do we need to decide if it exists or
not (it is possible that condition 3’ holds but condition 3 does not, meaning that there is no
Feige et al. witness). The relation between unsatisfiability and bounding the number of clauses
that can be satisfied as 3XOR in a 3CNF was introduced by Feige in [12] (and used in [15] as
well as in [14]).

4.2 The disjoint NP-pair corresponding to the 3XOR principle

We define the corresponding 3XOR principle disjoint NP-pair as the pair of languages (L,N),
where k, t, d are natural numbers given in unary :

L := {〈X, k, t, d〉
∣

∣ X is a 3CNF with n variables and Equation (3) holds for k, t, d

and there exists t inconsistent even k-tuples such that

each clause of X appears in no more than d many k-tuples},

N :=
{

〈X, k, t, d〉
∣

∣ X is a 3CNF with n variables and m clauses and Equation (3)

holds for k, t, d and there exists an assignment that

satisfies at least m− ⌈t/d⌉ clauses in X as 3XOR
}

.

It is easy to verify that both L and N are indeed NP sets, and that by the 3XOR principle,
L ∩N = ∅.

Using the same notation as in Section 2.1, we denote by R(x, y) and Q(x, z) the polynomial-
time relations for L and N, respectively. Further, for every n ∈ N, there exists an unsatisfiable
CNF formula in three mutually disjoint sets of variables x, y, z:

Υn := An(x, y) ∧Bn(x, z), (4)

where An(x, y) and Bn(x, z) are the CNF formulas expressing that R(x, y) and Q(x, z) are true
for x of length n, respectively.

Theorem 1. Assume that there exists a propositional proof system that has interpolation in
time T (n) and that admits size s(n) refutations of Υn. Then, there is a deterministic refutation
algorithm for random 3CNF formulas with Ω(n1.4) clauses running in time T (s(n)).

Remark 8. Specifically, if the propositional proof system has feasible interpolation and admits
polynomial-size refutations of Υn we obtain a polynomial-time refutation algorithm.

Proof. By the assumption, and by the definition of the feasible interpolation property, there
exists a deterministic polynomial-time interpolant algorithm A that on input a 3CNF K and
three natural numbers k, t, d given in unary, if A(K, k, t, d) = 1 then 〈K, k, t, d〉 6∈ L and if
A(K, k, t, d) = 0 then 〈K, k, t, d〉 6∈ N .

The desired refutation algorithm works as follows: it receives the 3CNF K and for each
3-tuple of natural numbers 〈k, t, d〉 for which Equation (3) holds it runs A(K, k, t, d). Note
there are only O(n3) such 3-tuples. If for one of these runs A(K, k, t, d) = 0 then we know that
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〈K, k, t, d〉 6∈ N ; in this case we check (in polynomial-time) that the inequality in Part 4 of the
FKO witness (Definition 3) holds, and if it does, we answer “unsatisfiable”. Otherwise, we
answer “don’t know”.

The correctness of this algorithm stems from the following two points:
(i) If we answered “unsatisfiable”, then there exist k, t, d such that 〈K, k, t, d〉 6∈ N and Part
4 in the FKO witness holds, and so Condition 3’ (from Section 4.1) is correct, and hence, by
the discussion in 4.1, K is unsatisfiable.

(ii) For almost all 3CNFs we will answer “unsatisfiable”. This is because almost all of them
will have an FKO witness (by Theorem 7), which means that 〈K, k, t, d〉 ∈ L for some choice of
t < n2, d, k (in the prescribed ranges) and hence the interpolant algorithm A must output 0 in
at least one of these cases (because A(K, k, t, d) = 1 means that 〈K, k, t, d〉 6∈ L). QED

5 Short refutations of the 3XOR principle

In this section we define the propositional refutation system in which we demonstrate
polynomial-size refutations of the 3XOR principle. We then give an explicit encoding of the
3XOR principle as an unsatisfiable set of disjunctions of linear equations.

5.1 The propositional refutation systems R(lin) and R(quad)

The refutation system in which we shall prove the unsatisfiability of the 3XOR principle is
denoted R(quad). It is an extension of the refutation system R(lin) introduced in [28]. The sys-
tem R(lin) operates with disjunctions of linear equations with integer coefficients and R(quad)
operates with disjunctions of quadratic equations with integer coefficients, where in both cases
the coefficients are written in unary representation. We also add axioms that force all variables
to be 0, 1. First we define the refutation system R(lin).

The size of a linear equation a1x1 + ...+ anxn + an+1 = a0 is defined to be
∑n+1

i=0 |ai|, that
is, the sum of the sizes of all ai written in unary notation. The size of a disjunction of linear
equations is the total size of all linear equations in it. The size of a quadratic equation and of
a disjunction of quadratic equations is defined in a similar manner (now counting the size of
the constant coefficients, the coefficients of the linear terms and the coefficients of the quadratic
terms). The empty disjunction is unsatisfiable and stands for the truth value false.

Notation: For L a linear or quadratic sum and S ⊆ Z, we write L ∈ S, to denote the disjunction
∨

s∈S L = s. We call L ∈ S a generalized linear (or quadratic) equation.

Definition 4 (R(lin)). Let K := {K1, . . . ,Km} be a collection of disjunctions of linear equations
in the variables x1, . . . , xn. An R(lin)-proof from K of a disjunction of linear equations D is a
finite sequence π = (D1, ..., Dℓ) of disjunctions of linear equations, such that Dℓ = D and for
every i ∈ [ℓ] one of the following holds:

1. Di = Kj, for some j ∈ [m];

2. Di is a Boolean axiom xt ∈ {0, 1}, for some t ∈ [n];

3. Di was deduced by one of the following R(lin)-inference rules, using Dj , Dk for some
j, k < i:

Resolution Let A,B be two, possibly empty, disjunctions of linear equations and let
L1, L2 be two linear equations. From A ∨ L1 and B ∨ L2 derive A ∨ B ∨ (L1 − L2).
(We assume that every linear form with n variables is written as a sum of at most
n+ 1 monomials.4)

4Accordingly, in R(quad) we assume that every quadratic sum with n variables is written as a sum of at most
1 + 2n+

(

n

2

)

monomials.
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Weakening From a possibly empty disjunction of linear equations A derive A ∨ L ,
where L is an arbitrary linear equation over the variables x1, . . . , xn.

Simplification From A ∨ (0 = k) derive A, where A is a possibly empty disjunction
of linear equations and k 6= 0.

An R(lin) refutation of a collection of disjunctions of linear equations K is a proof of the empty
disjunction from K. The size of an R(lin) proof π is the total size of all the disjunctions of
linear equations in π (where coefficients are written in unary representation).

Definition 5 (R(quad)). The system R(quad) is similar to R(lin) except that proof-lines can
be disjunctions of quadratic equations with integer coefficients

∑

i,j cijxixj +
∑

i cixi + c = S
instead of linear equations; and the Boolean axioms are now defined for all i, j ∈ [n], as
follows:

xi ∈ {0, 1}, xi + xj − xixj ∈ {0, 1}, xi − xixj ∈ {0, 1} .

The size of an R(quad) refutation is the total size of all the proof-lines in it.

Both R(lin) and R(quad) can be proved to be sound and complete (for their respective lan-
guages, namely, disjunctions of linear and quadratic equations, respectively) refutation systems.

5.2 Comparison of the refutation system R(quad) with other systems

The R(quad) refutation system is a weak propositional proof system that, loosely speaking, can
both count and compose mappings, as we explain below.

Recall that the cutting planes refutation system with small coefficients operates with linear
integer inequalities of the form

∑

i aixi ≥ C (where the ai’s are polynomial in the size of the
formula to be refuted) that can be added, multiplied by a positive integer, simplified and divided
by an integer c in case c divides every integer ai, in which the division of the right hand side
C/c is rounded up (i.e., we obtain

∑

i
ai
c
xi ≥ ⌈C

c
⌉).

The cutting planes with small coefficients system can “count” to a certain extent, namely
it can prove efficiently certain unsatisfiable instances encoding counting arguments (like the
pigeonhole principle). However, other simple counting arguments like the Tseitin graph formulas
[32] are not known to have polynomial-size cutting planes refutations.

A weak extension of cutting planes with small coefficients is defined so to allow disjunctions
of linear equations (a big disjunction of linear equations can represent a single inequality). This
way we obtain the system R(lin), that is similar to R(quad) but with linear instead of quadratic
equations. It was shown in [28] that even when we allow disjunctions of only a constant number
of generalized5 linear equations in each proof-line, R(lin) has short refutations of the Tseitin
formulas; this shows that using (fairly restricted) disjunctions of linear equations allows to
improve the ability of cutting planes with small coefficients to refute contradictions that involve
counting.

However, for our refutation of the 3XOR principle to work out we need to use quadratic
instead of linear equations. Informally, the reason for this is to be able to “compose maps”:
as observed by Pudlák [27], the reason why the k-Clique and (k − 1)-Coloring contradictions
provably do not have short cutting planes refutations is that cutting planes cannot compose two
mappings, which then makes it impossible to perform a routine reduction from the k-Clique
and (k − 1)-Coloring contradiction to the pigeonhole principle contradiction (and the latter
contradiction does admit short cutting planes refutations). This is why Pudlák introduced in
[27] the system CP 2 which is cutting planes operating with quadratic inequalities. The system
R(quad) we work with is an extension of CP 2 (when the latter is restricted to small coefficients).

5A generalized equation is an equation L ∈ S, for S ⊂ Z; which stands for the disjunction
∨

s∈S
L = s.
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5.3 The 3XOR principle formula

We now describe the formula Υn encoding the 3XOR principle (the formula depends also on
the parameters t,m and k, but we will suppress these subscripts).

Recall that we wish to construct a family of formulas in three mutually disjoint sets of
variables X,Y , Z:

Υn := An(X,Y ) ∧Bn(X,Z), (5)

(where, in the terminology of Section 4.2, An(X,Y ) and Bn(X,Z) are the CNF formulas ex-
pressing that R(x, y) and Q(x, z) are true for x of length n, respectively).

Apart from the variables X,Y , Z we also add a group of variables, serving as extension
variables: variables that encode the product of two other variables, namely, (extension) variables
that are forced to behave like products of two variables from X,Y , Z. We denote such

extension variables with the J·K symbol; e.g., Jxi · yjK.
Since we cannot use the Y variables in the second part of formula 5 and we cannot use the

Z variables in the first part of the formula 5, we can encode only products of variables from
X,Y and from X,Z, but not products of a Y variable with a Z variable.

It will be convenient sometimes to denote by xi+n the literal ¬xi, when it is assumed we use
the n variables x1, ..., xn in the 3CNF encoded by X.

A technical remark: For the sake of simplicity we do not encode the three unary parameters
k, t, d (appearing in the disjoint NP-pair in Sec. 4.2) in our formula for Υn (and accordingly
we do not encode the constraints in Equation (3)). This slightly simplifies things, and does not
harm the validity of the results, as it is easy to add these constraints to the formula and give
short R(quad) refutations for such a formulation.

Variables and their meaning. The variables X correspond to the input 3CNF with n
variables. The variables Y correspond to the collections of t many inconsistent even k-tuples.
The Z = {z1, ..., zn} variables stand for a Boolean assignment for the n variables of the 3CNF.
(Note that we use the variables xi for the variables in the 3CNF and the variables xij for the
variables in our encoding of the 3CNF.)

The input 3CNF X is encoded as a 3m × 2n table X, where each block of three rows
corresponds to a clause, and columns from 1 to n correspond to positive literals occurrences,
and columns n + 1 to 2n correspond to negative literals occurrences. Formally, let 1 ≤ i =
3 · l + r ≤ 3m, where r ∈ {0, 1, 2}, l ∈ [n], and let j ∈ [2n]. Then xij = 1 means that the rth
literal in the lth clause in the input 3CNF is:

xj if j ≤ n, and ¬xj−n, if j > n.

The collection of t inconsistent k even tuples is encoded as t tables, each table is encoded by

the variables Y
(s)

, for s ∈ [t]. Each Y
(s)

represents a table of dimension k×m, where y
(s)
jl = 1 iff

the jth member in the sth k-tuple is the lth clause (meaning the lth clause in the input 3CNF
encoded by X).

Group I of formulas (containing only X,Y ):

1. Every row in X contains exactly one 1:

2n
∑

j=1

xij = 1, for every i ∈ [3m].
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2. Every row in Y
(s)

contains exactly one 1:

m
∑

j=1

y
(s)
ij = 1, for all s ∈ [t], i ∈ [k].

3. Every column in Y
(s)

contains at most one 1:

k
∑

i=1

y
(s)
ij ∈ {0, 1}, for all s ∈ [t], j ∈ [m].

4. For any j ∈ [k], r ∈ [m], s ∈ [t], ℓ ∈ [3m], i ∈ [2n], we introduce the new

single formal variable Jy(s)jr · xℓiK which will stand for the product of two other formal

variables y
(s)
jr · xℓi . For this we shall have the following axioms:

y
(s)
jr − Jy(s)jr · xℓiK ∈ {0, 1} and xℓ − Jy(s)jr · xℓiK ∈ {0, 1}

and
y
(s)
jr + xℓi − Jy(s)jr · xℓiK ∈ {0, 1}

As an abbreviation (not a formal variable) we define the following:

Q
(s)
ijh :=

m
∑

r=1

Jy(s)jr · x(3(r−1)+h)iK , for all i = [2n] and h ∈ {0, 1, 2} and s ∈ [t],

which expresses that xi occurs as the hth literal in the jth clause of Y
(s)

.

5. We express that all the Y
(s)

’s are even k-tuples (that is, that every variable xi appears
even times) by:

∑

r∈[k],h=0,1,2

Q
(s)
irh +Q

(s)
(i+n)rh ∈ {0, 2, 4, ..., k}, for all i ∈ [n], s ∈ [t].

We can assume that k is even, since for every even k-tuple k must be even.

6. Similarly, we encode that the Y
(s)

’s are inconsistent (that is, the number of negative
literals in them is odd) by:

∑

r∈[k],h=0,1,2
i∈[n]

Q
(s)
(i+n)rh ∈ {0, 3, 5, ..., k − 1}.

7. Every clause i ∈ [m] appears in at most d even k-tuples Y
(1)

, ..., Y
(t)
. We put:

∑

j∈[k],s∈[t]

y
(s)
ji ∈ {0, 1, ..., d}, for every i ∈ [m].

This finishes the encoding of the t inconsistent even k-tuples.
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Group II of formulas (containing only X,Z): We now turn to the formulas expressing
that there are assignments Z that satisfy more than m − ⌈t/d⌉ clauses in X as 3XORs. For
every j ∈ [3m], i ∈ [2n], ℓ ∈ [n], let Jxji ·zℓK be a new formal variable that stands for the product
xji · zℓ. As in part 4 of the formula above, we include the axioms that force Jxji · zℓK to stand
for xji · zℓ.

Let us use the following abbreviation:

Uj :=
∑

h=0,1,2

(

n
∑

i=1

q
x(3(j−1)+h)i · zi

y
+

n
∑

i=1

(

x(3(j−1)+h)(i+n) −
q
x(3(j−1)+h)(i+n) · zi

y)
)

.

Then, Uj ∈ {1, 3} states that the jth clause in X is satisfied as 3XOR by Z. Note
that x(3(j−1)+h)(i+n) −

q
x(3(j−1)+h)(i+n) · zi

y
is a linear term that expresses the quadratic term

x(3(j−1)+h)(i+n) · (1− zi).

8. Let uj be a new formal variable expressing that the jth clause in X is satisfied as 3XOR
by Z. Hence, Uj ∈ {1, 3} iff uj = 1, and we encode it as:

Uj ∈ {0, 2} ∨ (uj = 1) and Uj ∈ {1, 3} ∨ (uj = 0),

9. There are assignments Z that satisfy more than m− ⌈t/d⌉ clauses in X as 3XORs:

m
∑

j=1

uj ∈ {m− ⌈t/d⌉+ 1, ...,m}.

The set of formulas described in this section has no 0, 1 solution by virtue of the 3XOR
principle itself (Section 4.1).

6 Short refutations for the 3XOR principle

In this section we demonstrate polynomial-size (in n) R(quad) refutations of the 3XOR principle
as encoded by disjunctions of linear equations in the previous section.

Theorem 2. R(quad) admits polynomial-size refutations of the 3XOR principle formulas.

We sometimes give only a high level description of the derivations. We use the terminology
and abbreviations in Section 5. We also use freely the ability of R(lin) (and hence R(quad)) to
count. For a detailed treatment of efficient counting arguments inside R(lin) see [28].

Step 1: Working in R(quad), we first show that our axioms prove that Z cannot satisfy as

3XOR all clauses of Y
(s)

, for any s ∈ [t].
Recall from Section 5 the abbreviation

Q
(s)
ijh :=

m
∑

r=1

Jy(s)jr · x(3(r−1)+h)iK , for all i = [2n] and h ∈ {0, 1, 2} and s ∈ [t],

which stands for the statement that xi occurs as the hth literal in the jth clause of Y
(s)

(and
where xi for i > n stands for the literal ¬xi−n). Let us use the abbreviation:

Pjhs :=
n
∑

i=1

Q
(s)
ijh · zi +

n
∑

i=1

Q
(s)
(i+n)jh · (1− zi).
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Then, Pjhs is a quadratic sum that stands for the statement that the hth literal in clause j in

Y
(s)

is true under Z. Thus,

Pj0s + Pj1s + Pj2s ∈ {1, 3}, for all j ∈ [k] (6)

expresses that all the clauses in Y
(s)

are satisfied as 3XOR under Z.

Our goal now is to refute (6), based on our axioms. Informally, this refutation is done by

counting: first count by clauses in Y
(s)

, namely, add all left hand sides of (6) together reaching
an even number (in the right hand side) by virtue of k being even (recall we can assume that k
is even). Then, count by literals, namely sum all values of literals in Y (s) under the assignment
Z, which we can prove is odd from our axioms. We now describe this refutation more formally.

Since k is even, counting by clauses in Y
(s)

, namely, adding the left hand sides of (6) gives
us easily the following (with a polynomial-size R(quad) proof):

k
∑

j=1

Pj0s + Pj1s + Pj2s ∈ {0, 2, 4, ..., 3k}. (7)

Now we need to count by literals in Y
(s)

. We can abbreviate the number of occurrences in Y
(s)

of the literal xi, for i ∈ [2n], s ∈ [t], by:

Ti :=
∑

j∈[k]
h=0,1,2

Q
(s)
ijh .

Let us abbreviate by Si the contribution of the literals xi and ¬xi to the total sum (7). Thus

Si :=
∑

j∈[k]
h=0,1,2

Q
(s)
ijh · zi +

∑

j∈[k]
h=0,1,2

Q
(s)
(i+n)jh · (1− zi).

It is possible to prove the following:

Ti ∈ {0, 2, 4, ..., k} ∨ Si ∈ {1, 3, 5, ..., k − 1} (8)

which states that if the number of occurrences in Y
(s)

of the literal xi is odd then (since by our
axioms stating that every variable occurs even times, the number of occurrences of the literal
¬xi must also be odd) the contribution of xi and ¬xi to the total sum (7) is also odd (because
either zi = 0 or zi = 1).

By the axioms saying that the number of negative literals is odd (axiom 6) we get that:

n
∑

i=1

Ti+n ∈ {1, 3, 5, ..., k · n− 1}. (9)

And from the axioms stating that each variable occurs even times in Y
(s)

we have:

Ti + Ti+n ∈ {0, 2, 4, ..., k}, for all i ∈ [n]. (10)

From (10) we obtain
∑2n

i=1 Ti ∈ {0, 2, 4, ..., k · n}, and from this and (9) we obtain

n
∑

i=1

Ti ∈ {1, 3, 5, ..., k · n− 1}. (11)

Note that (8) can be interpreted as saying that if Ti is odd then so does Si. Accordingly, one
can use (8) to substitute all T1, ..., Tn in (11) with S1, ..., Sn, respectively. We thus get that the
total sum in the left hand side of (7) is in {1, 3, 5, ...}, and we obtain a contradiction with (7).
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From a refutation of the collection of disjunctions (6), for any s ∈ [t], we can actually get
the negation of this collection, that is:

∨

j∈[k]

(Pj0s + Pj1s + Pj2s) ∈ {0, 2}. (12)

This stems from the following: it is already true in resolution that if we have a size γ resolution
refutation of A1, ..., Al, then assuming the axioms A1∨B1, ..., Al∨Bl, we can have a size O(γ ·d)
resolution derivation of B1 ∨ ... ∨Bl, given that the total size of the Bi’s is d. To see this, take
the resolution refutation of A1, ..., Al and OR every line in this refutation with B1∨ ...∨Bl (note
that the resulting new axioms are actually derivable from the axioms Ai ∨ Bi via Weakening).
Now, to get (12) from (6), we do the same, putting Pj0s + Pj1s + Pj2s ∈ {1, 3} instead of Aj

and Pj0s + Pj1s + Pj2s ∈ {0, 2} instead of Bj , for all j ∈ [k], noting that:

(Pj0s + Pj1s + Pj2s ∈ {1, 3}) ∨ (Pj0s + Pj1s + Pj2s ∈ {0, 2}), for all j ∈ [k]. (13)

Step 2: The next step in our R(quad) refutation is showing how to obtain the final contra-
diction, given the collection of formulas (12), for all s ∈ [t]. This is again by counting: we know
that for every truth assignment Z, each Y (1), ..., Y (t) must contribute at least one clause from
X that is unsatisfiable as 3XOR under Z. We can view this as a mapping g : [t] → [m] from
Y (1), ..., Y (t) to the m clauses in X, such that g(i) = j means that Y (i) contributes the clause j
in X that is unsatisfiable under Z as 3XOR. The mapping g is not 1-to-1, but d-to-1, because
every clause of X can appear at most d times in Y (1), ..., Y (s). Our R(quad) refutation proceeds
as follows.

By assumption we have
∑m

i=1 ui ∈ {m−⌈t/d⌉+1, ...,m}, meaning that the number of clauses
in X that are satisfied as 3XOR under the assignment Z is at least m−⌈t/d⌉+1. Also, by the
axioms in our formula, for all i ∈ [m] we can prove that ui = 1 implies that Ui ∈ {1, 3}; namely
that the number of true literals in the ith clause of X is 1 or 3.

For any s ∈ [t], we can think of Y
(s)

as a mapping f (s) : [k] → [m] that maps the k clauses

in Y
(s)

to the clauses in X. Then, y
(s)
ij = 1 means that f (s)(i) = j. Thus, ui · y

(s)
ji = 1 means

that the jth clause in Y
(s)

is the ith clause in X and that the ith clause in X is satisfiable as
3XOR under Z.

Now, it is possible to show that for any s ∈ [t], i ∈ [m] and j ∈ [k], there is a proof of the
following line:

(

ui · y
(s)
ji = 0

)

∨ (Pj0s + Pj1s + Pj2s ∈ {1, 3}) (14)

which states that if the ith clause in X is satisfied as 3XOR under the assignment Z and the

jth clause in Y
(s)

maps to the ith clause in X, then the jth clause in Y
(s)

is satisfied as 3XOR
under Z.

Informally, the proof of (14) is explained as follows: the term Pj0s +Pj1s +Pj2s can be seen

as the addition, denoted S, of all inner products of the jth row of Y
(s)

with the columns of X
(for each h = 0, 1, 2 we can consider the column of X restricted to the h · i rows only (i ∈ [m]),

and so a row of Y
(s)

which is of length m can have an inner product with such a column of

length m in X). Because we assume that y
(s)
ij = 1, only the ith coordinate in the jth row of

Y
(s)

is 1 (and all the other entries in this row are 0, by our axioms). Thus, S equals in fact a
single column from X; and this single column is precisely Ui.

From (14) and (12) we can derive, for any s ∈ [t] and any i ∈ [m]:

∨

j∈[k],i∈[m]

(

y
(s)
ji · (1− ui) = 1

)

, (15)
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stating that for some j ∈ [k], i ∈ [m], the jth clause in Y
(s)

is the ith clause in X and the ith
clause in X is not satisfied as 3XOR under Z.

Now, from (15) and axioms 7 in the 3XOR principle formulas, stating that g : [t] → [m] is
d-to-1, we can obtain that the number of ui’s that are true is no more than m− ⌈t/d⌉, that is,
∑

i∈[m] ui ∈ {0, ...,m− ⌈t/d⌉}, contradicting the axiom
∑m

j=1 uj ∈ {m− ⌈t/d⌉+ 1, ...,m}. The
formal proofs of this in R(quad) is shown in the following lemma:

Lemma 9. There are polynomial-size R(quad) refutations of (15) and the axioms in parts 7
and 9 in the 3XOR principle.

Proof. First sum all axioms (7) to obtain:

∑

j∈[k],s∈[t]
r∈[m]

y
(s)
jr ∈ {0, 1, ..., d ·m}. (16)

From (15) we can obtain:

∑

j∈[k],r∈[m]

y
(s)
jr · (1− ui) ∈ {1, 2, ..., k ·m}, for every s ∈ [t].

And by summing this for all s ∈ [t] and i ∈ [m], we get:

∑

i∈[m]

∑

j∈[k],r∈[m]
s∈[t]

y
(s)
jr · (1− ui) =

∑

i∈[m]

(1− ui) ·
∑

j∈[k],r∈[m]
s∈[t]

y
(s)
jr

∈ {t ·m, t ·m+ 1, ..., t · k ·m2}. (17)

From the axiom in part (9) in the 3XOR principle
∑m

j=1 uj ∈ {m − ⌈t/d⌉ + 1, ...,m} we can
obtain easily

∑

i∈[m]

(1− ui) ∈ {0, 1, ..., ⌈t/d⌉ − 1}.

From this and (16) we get, via Lemma 10 proved below, the following:

∑

i∈[m]

(1− ui) ·
∑

j∈[k],s∈[t]
r∈[m]

y
(s)
jr ∈ {0, 1, ..., d ·m · (⌈t/d⌉ − 1)} .

Since d ·m · (⌈t/d⌉−1) < d ·m · ⌈t/d⌉ ≤ m · t, we obtain a contradiction with (17), which finishes
the refutation. QED

It remains to prove Lemma 10, which was used in the above proof:

Lemma 10. Let
∑

i∈I xi ∈ {0, 1, ..., n} and
∑

j∈J yj ∈ {0, 1, ...,m} be disjunctions of linear
equations, both of size at most s. Given these two disjunctions we can prove in R(quad) with a
polynomial-size in s proof, the following:

∑

i∈I

xi ·
∑

j∈J

yj ∈ {0, 1, ...,m · n}. (18)

Proof. We can reason in a case-by-case manner as follows (see [28] on how to carry out informal
case-analysis reasoning inside R(lin)): assume that

∑

j∈J yj = a, for a ∈ {0, 1, ...,m}. We wish
to show that x1 ·

∑

j∈J yj = ax1. If x1 = 0 then x1 ·
∑

j∈J yj = 0 = ax1. Otherwise, x1 = 1.
Then, x1 ·

∑

j∈J yj =
∑

j∈J yj = a = ax1. Since we have the axiom (x1 = 0) ∨ (x1 = 1) we
conclude that x1 ·

∑

j∈J yj = ax1. In a similar way we can derive for all i ∈ I:

xi ·
∑

j∈J

yj = axi. (19)

17



And by adding (19) for all i ∈ I we obtain:
∑

i∈I

xi ·
∑

j∈J

yj = a ·
∑

i∈I

xi.

Now using the axiom
∑

i∈I xi ∈ {0, 1, ..., n}, we get
∑

i∈I

xi ·
∑

j∈J

yj ∈ {0, a, 2a, ..., n · a}. (20)

Recall that (20) was obtained under the assumption that
∑

j∈J yj = a. This means that if we
have the axiom

∑

j∈J yj ∈ {0, 1, ...,m}, we can obtain:
∑

i∈I

xi ·
∑

j∈J

yj ∈ {b · c | b ∈ {0, 1, .., n} and c ∈ {0, 1, ...,m}} = {0, 1, ..., n ·m}.

QED

Note that the proof of Lemma 10 would also work if instead of the sums
∑

i∈I xi or
∑

j∈J yj
we have

∑

i∈I bixi or
∑

j∈J cjyj , for integers bi, cj .

7 Reduction to weak automatizability of R(lin)

Here we show that R(lin) is weakly automatizable if and only if R(quad) is weakly automatizable.
To show that R(lin) is weakly automatizable iff R(quad) is weakly automatizable we use a

similar idea to Pudlák [27]. Namely, we show that the canonical pair of R(quad) is polynomially
reducible to the canonical pair of R(lin).

Definition 6 ([29]). The canonical pair of a refutation system P is the disjoint NP-pair, whose
first NP language consists of all pairs (τ, 1m) where τ is an unsatisfiable formula that has a
P-refutation of size at most m, and whose second NP language is the set of pairs (µ, 1m) where
µ is a satisfiable formula and m is some natural number.

We say that a canonical pair (A,B) of a refutation system P ′ is polynomially reducible to the
canonical pair (A′, B′) of another refutation system P if there is a polynomial-time computable
function f such that for all x it holds that x ∈ A ⇐⇒ f(x) ∈ A′ and x ∈ B ⇐⇒ f(x) ∈ B′.
A simple corollary of the above definitions is the following:

Proposition 11 ([27]). If the canonical pair of P ′ is polynomially reducible to the canonical
pair of P then P ′ is weakly automatizable if P is weakly automatizable.

In view of this proposition, and since R(quad) clearly polynomially simulates R(lin) (as an
extension of it), it remains to show the following:

Proposition 12. The canonical pair of R(quad) is polynomially reducible to the canonical pair
of R(lin).

Proof. (Sketch) Similar to [27], the idea is to encode a product of any two variables xi · xj
as a new single formal variable xij . Thus, the reduction sends all pairs (τ, 1m) to the pair
(τ ′, 1poly(m)), where τ ′ is obtained from τ by adding the axioms that force all new variables xij
to encode the product xi · xj , as shown in Section 5. QED

Corollary 4. R(quad) is weakly automatizable iff R(lin) is weakly automatizable.

Since R(quad) admits polynomial-size refutations of the 3XOR principle, and since weak au-
tomatizability entails feasible interpolation, we get a reduction of the problem of determinizing
Feige et al. nondeterministic refutation algorithm to the problem of establishing weak automa-
tizability of R(lin):

Corollary 5. If R(lin) is weakly automatizable then there is a deterministic refutation algorithm
for random 3CNFs with Ω(n1.4) clauses.
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