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Abstract

We study the problem of computing the minimum vertex cover on k-uniform k-partite hy-
pergraphs when the k-partition is given. On bipartite graphs (k = 2), the minimum vertex cover
can be computed in polynomial time. For k ≥ 3, this problem is known to be NP-hard. For
general k, the problem was studied by Lovász [23], who gave a k

2 -approximation based on the
standard LP relaxation. Subsequent work by Aharoni, Holzman, and Krivelevich [1] showed a
tight integrality gap of

(
k
2 − o(1)

)
for the LP relaxation.

We further investigate the inapproximability of minimum vertex cover on k-uniform k-partite
hypergraphs and present the following results (here ε > 0 is an arbitrarily small constant):

• NP-hardness of obtaining an approximation factor of
(
k
4 − ε

)
for even k, and

(
k
4 −

1
4k − ε

)
for odd k,

• NP-hardness of obtaining a nearly-optimal approximation factor of
(
k
2 − 1 + 1

2k − ε
)
, and,

• An optimal Unique Games-hardness for approximation within factor
(
k
2 − ε

)
, showing the

optimality of Lovász’s algorithm if one assumes the Unique Games conjecture.

The first hardness result is based on a reduction from minimum vertex cover in r-uniform
hypergraphs, for which NP-hardness of approximating within r − 1− ε was shown by Dinur et
al. [8]. We include it for its simplicity, despite it being subsumed by the second hardness result.
The Unique Games-hardness result is obtained by applying the results of Kumar et al. [22],
with a slight modification, to the LP integrality gap due to Aharoni et al. [1]. The modification
ensures that the reduction preserves the desired structural properties of the hypergraph.

The reduction for the nearly optimal NP-hardness result relies on the Multi-Layered PCP of
[8], and uses a gadget based on biased Long Codes, which is adapted from the LP integrality
gap of [1]. The nature of our reduction requires the analysis of several Long Codes with different
biases, for which we prove structural properties of the so called cross-intersecting collections of
set families, variants of which have been studied in extremal set theory.
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1 Introduction

A k-uniform hypergraph G = (V,E) consists of a set of vertices V and a collection of hyperedges
E ⊆ 2V such that each hyperedge e ∈ E contains exactly k vertices. A vertex cover for G is a
subset of vertices V ⊆ V such that every hyperedge e ∈ E contains at least one vertex from V, i.e.,
e∩V 6= ∅. Equivalently, a vertex cover is a hitting set for the collection of hyperedges E. Thus, the
complement of a vertex cover is a subset of vertices I such that no hyperedge e ∈ E is contained
inside I, i.e., e * I. Such a set is called an Independent Set.

The k-HypVC problem requires us to compute the minimum size of a vertex cover in a k-uniform
hypergraph G. It is an extremely well studied combinatorial optimization problem, especially on
graphs (k = 2), and is known to be NP-hard. Indeed, the minimum vertex cover problem on graphs
was one of Karp’s original 21 NP-complete problems [19]. On the other hand, the simple greedy
algorithm that picks a maximal collection of disjoint hyperedges and includes all vertices in the
edges in the vertex cover gives a k-approximation. A k-approximation can also be obtained using
the standard Linear Programming (LP) relaxation for the problem. The best algorithms known
today achieve only a marginally better approximation factor of (1− o(1))k [18, 15].

On the intractability side, there have been several results. For the case k = 2, Dinur and
Safra [9] obtained an NP-hardness of approximation factor of 1.36, improving on a 7

6 − ε hardness
by H̊astad [14]. For general k, a sequence of successive works yielded improved NP-hardness factors:
Ω(k1/19) by Trevisan [28]; Ω(k1−ε) by Holmerin [16]; k− 3− ε by Dinur, Guruswami, and Khot [7];
and the current best of k−1− ε due to Dinur, Guruswami, Khot, and Regev [8]. In [8], the authors
build upon [7] and the work of Dinur and Safra [9]. Moreover, assuming Khot’s Unique Games
Conjecture (UGC) [20], Khot and Regev [21] showed an essentially optimal k−ε inapproximability.
This result was further strengthened in different directions by Austrin, Khot, and Safra [5], and by
Bansal and Khot [6].

1.1 Vertex Cover on k-uniform k-partite Hypergraphs

In this paper, we study the minimum vertex cover problem on k-partite k-uniform hypergraphs,
when the underlying partition is given. We denote this problem as k-HypVC-Partite. This
is an interesting problem by itself and its variants have been studied for applications related to
databases such as distributed data mining [10], schema mapping discovery [11], and optimization
of finite automata [17]. On bipartite graphs (k = 2), by König’s Theorem, computing the minimum
vertex cover is equivalent to computing the maximum matching which can be done efficiently. For
general k, the problem was studied by Lovász who, in his doctoral thesis [23], proved the following
upper bound.

Theorem 1.1 (Lovász [23]). For every k-partite k-uniform hypergraph G: vc(G)/lp(G) ≤ k/2,
where vc(G) denotes the size of the minimum vertex cover and lp(G) denotes the value of the
standard LP relaxation. This yields an efficient k/2 approximation for k-HypVC-Partite.

Note that the standard LP relaxation does not utilize the knowledge of the k-partition and
therefore, by Lovász’s result, lp(G) is a k/2 approximation to vc(G) even when the k-partition
is not known. The above upper bound was shown to be tight by Aharoni, Holzman, and Krivele-
vich [1], who proved the following theorem.
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Theorem 1.2 (Aharoni et al.[1]). For every k ≥ 3, there exists a family of k-partite k-uniform
hypergraphs G such that vc(G)/lp(G) ≥ k/2− o(1). Thus, the integrality gap of the standard LP
relaxation is k/2− o(1).

A proof of the above theorem describing the integrality gap construction is included in the appendix.

On the hardness side, the problem was shown to be APX-hard in [17] and [11] for k = 3, which
can be extended easily to k ≥ 3.

1.2 Our Results

We present the following inapproximability results for k-HypVC-Partite. The results of Theorems
1.3 and 1.5 were presented in the conference paper by Guruswami and Saket [13], and the result of
Theorem 1.4 appeared in the conference paper by Sachdeva and Saket [27].

Theorem 1.3. For any ε > 0 and k ≥ 5, k-HypVC-Partite is NP-hard to approximate within a
factor of k

4 − ε for even k, and k
4 −

1
4k − ε for odd k.1

The above theorem is obtained via a reduction from the k-HypVC problem and using the
k − 1− ε factor NP-hardness proved for it by Dinur et al. [8]. While the result itself is subsumed
by the theorem below, the reduction is simple and instructive, and we present it along with the
proof of Theorem 1.3 in Section 2.

Theorem 1.4. For any ε > 0 and integer k ≥ 4, it is NP-hard to approximate k-HypVC-Partite
to within a factor of k

2 − 1 + 1
2k − ε.

The NP-hardness factor obtained in the above theorem is off by at most an additive constant of 1
from the optimal for any k ≥ 4. The hardness reduction is based on combining a new combinatorial
gadget with the Multi-Layered PCP of Dinur et al. [8], and is analyzed using tools from extremal
set theory. The hardness factor we obtain is within an additive constant of 1 from the algorithmic
upper bound. The sub-optimality is due to fundamental limitations of currently known techniques
and is analogous to that of the hardness factor for k-HypVC obtained in [8]. The extremal set-
theoretic results, the Multi-Layered PCP, and the hardness reduction are presented in Sections 3,
4, and 5 respectively.

Theorem 1.5. Assuming the Unique Games Conjecture of Khot [20], it is NP-hard to approximate
k-HypVC-Partite to within a factor of k

2 − ε for any ε > 0.

The above theorem follows by combining a dictatorship gadget with an instance of Unique
Games via the approach followed in the work of Kumar, Manokaran, Tulsiani, and Vishnoi [22].
The gadget is derived from the LP integrality gap of Aharoni et al. [1]. As in most UGC based
hardness results, the key element is the construction of an appropriate dictatorship gadget. The
crucial observation is that the construction of the dictatorship gadget can be done in a way such
that it preserves the structural properties (i.e. the k-partiteness) of the integrality gap instance.
In Section 7 we describe the dictatorship gadget and its crucial properties. The hardness reduction
from Unique Games, using this gadget, follows the standard approach for which we refer the reader
to Kumar et al. [22].

1The conference version of [13] erroneously stated a factor k
4
− ε hardness also for odd values of k
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1.3 Our Techniques

As noted above, the proof of Theorem 1.3 follows from a relatively simple gadget reduction from
the k − 1− ε hardness of approximation result for k-HypVC in Dinur et al. [8]. In this informal
description we shall focus on the techniques used to prove Theorems 1.4 and 1.5.

Nearly Optimal NP-Hardness of k-HypVC-Partite

It is helpful to first briefly review the hardness reduction of [8] for k-HypVC.

The main idea of their construction can be illustrated by the following gadget. Consider a finite
domain R and the set of all its subsets H = 2R. Sample subsets from H by choosing each element
of R with probability 1− 1/k− ε (for some small ε > 0), and let the weight of each subset in H be
its corresponding sampling probability, thus making the sum of all weights to be 1. The set H along
with the associated weights is an example of a biased Long Code over R. Construct a k-uniform
hypergraph over the vertex set H by adding an edge between any k subsets whose intersection
is empty. In this hypergraph it is easy to see that every element r ∈ R yields a corresponding
independent set (in the hypergraph) of weight (1− 1/k− ε), by choosing all subsets which contain
that element. On the other hand, Dinur et al. [8] show via an analysis based on extremal set
theory, that any independent set of weight ε must contain k subsets in H which have a small
intersection, thus yielding a special small subset of R. This gap of 1− 1/k− ε vs ε for independent
set corresponds to a gap of 1/k+ε vs 1−ε for the complementary minimum vertex cover objective.

The construction of [8] combines the above Long Code based gadget with a new Multi-Layered
PCP. This is a two variable CSP consisting of several layers of variables, and constraints between
variables from each pair of layers. The work of [8] shows that it is NP-hard to find a labeling of the
variables which satisfies a small fraction of the constraints between any two layers, even if there is a
labeling that satisfies all the constraints of the instance. The reduction to a k-uniform hypergraph
(as an instance of k-HypVC) involves replacing each variable of the PCP with a biased Long Code
and adding the edges of the above gadget across different Long Codes.

The starting point for our hardness reduction for k-HypVC-Partite is – as in [8] – the Multi-
Layered PCP. While we do not explicitly construct a standalone Long Code based gadget, our
reduction can be thought of as adapting the integrality gap construction of Aharoni et al. [1] into
a Long Code based gadget in a manner that preserves the k-uniformity and k-partiteness of the
integrality gap.

Such transformations of integrality gaps into Long Code based gadgets have recently been
studied in the works of Raghavendra [25] and Kumar et al. [22] who show this for a wide class
of CSPs and their appropriate SDP and LP integrality gaps respectively. These Long Code based
gadgets can be combined with a Unique Games instance to yield tight UGC based hardness results,
where the reduction is analyzed via the Mossel’s Invariance Principle [24]. Indeed, Theorem 1.5
combines the integrality gap of [1] with (a slight modification) of the approach of Kumar et al. [22]
to obtain an optimal UGC based hardness result.

Our reduction, on the other hand, combines Long Codes with the Multi-Layered PCP instead
of Unique Games and so we cannot adopt a Invariance Principle based analysis. Thus, in a flavor
similar to that of [8], our analysis is via extremal combinatorics. However, our gadget involves several
biased Long Codes with different biases and each hyperedge includes vertices from differently biased
Long Codes, unlike the construction in [8]. The different biases are derived from the LP solution
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to the integrality gap of [1], in such a way that the gap obtained in the gadget corresponds to the
value of the integrality gap.

For our analysis, we use structural properties of a cross-intersecting collection of set families.
A collection of set families is cross-intersecting if any intersection of subsets – each chosen from
a different family – is large. Variants of this notion have previously been studied in extremal set
theory, see for example [2]. We prove an upper bound on the measure of the smallest family in such
a collection. This enables a small vertex cover (in the hypergraph of our reduction) to be decoded
into a good labeling to the Multi-Layered PCP.

Optimal UGC Based Hardness

As mentioned above, the techniques for the UGC based hardness result are based on the work of
Kumar et al. [22], which shows that for a large class of monotone constraint problems – including
hypergraph vertex cover – integrality gaps for a natural LP relaxation can be transformed into
corresponding hardness of approximation results based on UGC.

The reduction given in (an earlier version of) [22] is analyzed using the general bounds on noise
correlation of functions proved by Mossel [24]. For this purpose, the reduction perturbs a “good”
solution, say x∗, to the LP relaxation for the integrality gap GI = (VI , EI), so that x∗ satisfies the
property that all variables are integer multiples of some ε > 0. Therefore, the number of distinct
values in x∗ is m ≈ 1/ε. The reduction is based on a dictatorship test over the set [m]×{0, 1}r (for
some parameter r) and the hardness of approximation obtained is related to the performance of a
certain (efficient) rounding algorithm on x∗, which returns a solution no smaller than the optimum
on GI . As described in (the earlier version of) [22] the reduction is not guaranteed to preserve
structural properties of the integrality gap instance GI , such as k-partiteness.

We make the simple observation that the dictatorship test in the above reduction can anal-
ogously be defined over VI × {0, 1}r which then preserves the partiteness properties of GI into
the final instance. The gap obtained depends directly on the optimum in GI . This observation,
combined with the results of [22] and the integrality gap for k-HypVC-Partite stated in Theorem
1.2 yields Theorem 1.5. We do not give a full proof of the above theorem; instead we describe the
dictatorship test over VI×{0, 1}r in Section 7 and refer the reader to [22] for the proof. This builds
upon two equivalent linear programming relaxations for k-HypVC-Partite given in Section 6,
and the corresponding integrality gap example [1]. The latter of these relaxations, LP, given in
Figure 2, is used to construct the dictatorship test. The integrality gap given in [1] satisfies the
property that every value is an integral multiple of a certain ε > 0, which enables us to skip the
perturbation step in the construction of the dictatorship test.

Organization of the Paper. The next section proves Theorem 1.3. Section 5 gives the hardness
reduction and proof of Theorem 1.4, using the extremal set-theoretic results proved in Section 3
and the Multi-Layered PCP defined in Section 4. Building upon a simple equivalence of certain
LP relaxations for minimum vertex cover proved in Section 6 and Theorem 1.2, Section 7 gives the
dictatorship test used to prove Theorem 1.5. The hardness reduction from Unique Games and its
analysis directly follow from the work of Kumar et al. [22] to which we refer the reader.
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2 Reduction from k-HypVC to k-HypVC-Partite

Let k and m be positive integers such that m ≥ k ≥ 2. In this section, we first give a reduction
from an instance of k-HypVC to a m-partite k-uniform hypergraph, and then a reduction from the
latter to k-HypVC-Partite in Section 2.3 proving Theorem 1.3. Note that the parameter k has
different connotations in each of these steps.

2.1 Reduction to m-partite k-uniform hypergraph

Let H = (U,F ) be an instance of k-HypVC, i.e. H is a k-uniform hypergraph with vertex set U ,
and F as the set of hyperedges. The reduction constructs an instance G = (V,E), where G is a
k-uniform, m-partite hypergraph, i.e. V = ∪mi=1Vi, where Vi are m disjoint subsets (color classes)
such that every hyperedge in E has at most one vertex from each subset. The main idea of the
reduction is to let the new vertex set V be the disjoint union of m copies of U , and for every
hyperedge e′ ∈ F , add all hyperedges which contain exactly one copy (in V ) of every vertex in e′,
and at most one vertex from any of the m copies of U (in V ). Clearly every hyperedge ‘hits’ any of
the m copies of U in V at most once, naturally giving an m-partition of V . It also ensures that if
there is a vertex cover in G which is the union of a subset of the copies of U , then it must contain
at least m− k + 1 of the copies. Our analysis will essentially build upon this idea.

To formalize the reduction, we define some notation.

Definition 2.1. Given a hyperedge e′ = {u1, . . . , uk} in F , and a subset I ⊆ [m] where |I| = k, a
mapping σ : I 7→ {u1, . . . , uk} is said to be a “(I, e′)-matching” if σ is a one-to-one map. Let ΓI,e′

be the set of all (I, e′)-matchings. Clearly, |ΓI,e′ | = k! , for all I ⊆ [m], |I| = k, and e′ ∈ F .

The steps of the reduction are as follows:

1. For i = 1, . . . ,m, let Vi = U × {i}.

2. For every hyperedge e′ in F , for every subset I ⊆ [m] such that |I| = k , for every (I, e′)-
matching σ ∈ ΓI,e′ , we add the hyperedge e = e(e′, I, σ) defined as follows.

∀i ∈ [m], Vi ∩ e =

{
(σ(i), i) if i ∈ I,
∅ otherwise.

(1)

The above reduction outputs the instance G = (V,E), which is m-partite and k-uniform. Note that
the vertex set V is of size m|U | and for every hyperedge e′ ∈ F the number of hyperedges added
in E is

(
m
k

)
· k!. Therefore the reduction is polynomial time. In the next section, we analyze this

reduction.

2.2 Analyzing the reduction

We prove the following theorem.
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Theorem 2.2. Let C be the size of the optimal vertex cover in H = (U,F ), and let C ′ be the size
of the optimal vertex cover in G = (V,E). Then,

(m− (k − 1))C ≤ C ′ ≤ mC

The above theorem combined with the k − 1 − ε inapproximability for k-HypVC given by [8]
implies the following hardness factor for minimum vertex cover in G:

(m− (k − 1))C1

mC2
,

for some integers C1, C2 (depending on H) such that C1 ≥ C2(k− 1− ε) for some ε > 0. It is easy
to see that the above expression can be now be simplified to yield the following inapproximability.

Theorem 2.3. For all m ≥ k ≥ 2 and ε′ > 0, it is NP-hard to approximate the minimum size of
a vertex cover on m-partite k-uniform hypergraphs to within a factor of

(m− (k − 1))(k − 1)

m
− ε′.

Proof. (of Theorem 2.2) We first show that there is a vertex cover of size at most mC in G, where
C is the size of an optimal vertex cover U∗ in H. To see this consider the set V ∗ ⊆ V , where
V ∗ = U∗ × [m]. For every hyperedge e′ ∈ F , e′ ∩ U∗ 6= ∅, and therefore e ∩ U∗ × {i} 6= ∅, for some
i ∈ [m], for all e = e(e′, I, σ). Therefore, V ∗ ∩ e 6= ∅ for all e ∈ E. The size of V ∗ is mC, which
proves the upper bound in Theorem 2.2. In the rest of the proof, we shall prove the lower bound
in Theorem 2.2.

Let S be the optimal vertex cover in G. Our analysis shall prove a lower bound on the size
of S in terms of the size of the optimal vertex cover in H. Let Si := Vi ∩ S for i ∈ [m]. Before
proceeding, we introduce the following definition. For every Y ⊆ [m], we let AY ⊆ U be the set of
all vertices which have a copy in Si for some i ∈ Y . Formally,

AY := {u ∈ U | ∃i ∈ Y s.t. (u, i) ∈ Si}.

The following simple lemma follows from the construction of the edges E in G.

Lemma 2.4. Let I ⊆ [m] be any subset such that |I| = k. Then AI , is a vertex cover of the
hypergraph H.

Proof. Fix any subset I as in the statement of the lemma. Let e′ ∈ F be any hyperedge in H. For
a contradiction, assume that AI ∩ e′ = ∅. This implies that the sets Si (i ∈ I) do not have a copy
of any vertex in e′. Now choose any σ ∈ ΓI,e′ and consider the edge e(e′, I, σ) ∈ E. This edge can
be covered only by vertices in Vi for i ∈ I. However, since Si does not contain a copy of any vertex
in e′ for i ∈ I, the edge e(e′, I, σ) is not covered by S which is a contradiction. This completes the
proof.

The next lemma combines the previous lemma with the minimality of S to show a strong
structural statement for S, that any Si is “contained” in the union of any other k sets Sj . It will
enable us to prove that most of the sets Si are large.

7



Lemma 2.5. Let I ⊆ [m] be any set of indices such that |I| = k. Then, for any j′ ∈ [m],
Sj′ ⊆ AI × {j′}.

Proof. Let I be any choice of a set of k indices in [m] as in the statement of the lemma. From
Lemma 2.4 we know that AI is a vertex cover in H and is therefore non-empty. Let j′ ∈ [m] be an
arbitrary index for which we shall verify the lemma for the above choice of I. If j′ ∈ I, then the
lemma is trivially true. Therefore, we may assume that j′ 6∈ I. For a contradiction, assume that

(u, j′) ∈ Sj′ \ (AI × {j′}) (2)

From the minimality of S, we deduce that there must be a hyperedge, say e ∈ E such that e is
covered by (u, j′) and by no other vertex in S; otherwise S \ {(u, j′)} would be a smaller vertex
cover in G. Now, e = e(e′, I ′, σ) for some e′ ∈ F , I ′ ⊆ [m] (|I ′| = k), and σ ∈ ΓI′,e′ . Since (u, j′)
covers e, we obtain that j′ ∈ I ′ and σ(j′) = u ∈ e′. Combining this with the fact that j′ 6∈ I, and
that |I| = |I ′| = k, we obtain that I \ I ′ 6= ∅.

Let j ∈ I \ I ′. We claim that (u, j) 6∈ Sj . To see this, observe that if (u, j) ∈ Sj then u ∈ AI ,
which would contradict our assumption in Equation (2).

We now consider the following hyperedge ẽ = ẽ(e′, Ĩ, σ̃) ∈ E where the quantities are defined
as follows. The set Ĩ simply replaces the index j′ in I ′ with the index j, i.e.

Ĩ = (I ′ \ {j′}) ∪ {j}. (3)

Analogously, σ̃ ∈ ΓĨ,e′ is identical to σ except that it is defined on j instead of j′ where σ̃(j) =
σ(j′) = u. Formally,

σ̃(i) =

{
σ(i) if i ∈ Ĩ \ {j},
u if i = j.

(4)

Equations (3) and (4) imply the following,

Vi ∩ ẽ = Vi ∩ e ∀i ∈ [m] \ {j, j′}, (5)

Vj ∩ ẽ = (u, j), (6)

Vj′ ∩ ẽ = ∅. (7)

Since (u, j′) ∈ S uniquely covers e, Equation (5) implies that ẽ is not covered by any vertex in
Si for all i ∈ [m] \ {j, j′}. Moreover, since j′ 6∈ Ĩ , no vertex in Sj′ covers ẽ. On the other hand,
by our assumption in Equation (2), (u, j) 6∈ Sj , which, along with Equation (6), implies that no
vertex in Sj covers ẽ. Therefore, ẽ is not covered by S. This is a contradiction to the fact that S is
a vertex cover in G, and therefore our assumption in Equation (2) is incorrect. This implies that
Sj′ ⊆ AI × {j′}. This holds for every j′, thus proving the lemma.

Note that the above lemma immediately implies the following corollary.

Corollary 2.6. For every I ⊆ [m], |I| = k, we have A[m] = AI .

It is easy to see the following simple lemma.

Lemma 2.7. For any vertex u ∈ A[m], let Iu ⊆ [m] be the largest set such that u 6∈ AIu. Then,
|Iu| < k.
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Proof. Suppose the above does not hold. Then Iu (or any subset of Iu of size k) would violate
Corollary 2.6, which is a contradiction. This completes the proof.

The above lemma immediately implies the desired lower bound on the size of S.

Lemma 2.8. Let C be the size of the optimal vertex cover in H. Then,

|S| ≥ (m− (k − 1))C.

Proof. For convenience, let q = |A[m]|. Note that, by Lemma 2.4 A[m] is a vertex cover in H.
Therefore, q ≥ C. From Lemma 2.7 we deduce that every vertex u ∈ A[m] has a copy (u, i) in at
least m − (k − 1) of the sets Si. Therefore, S contains m − (k − 1) copies of every vertex in A[m]

which yields,
|S| ≥ (m− (k − 1))q ≥ (m− (k − 1))C,

thus completing the proof.

The above also completes the proof of the lower bound of Theorem 2.2.

2.3 Proof of Theorem 1.3

We prove Theorem 1.3 by giving a simple reduction from an instance G = (V,E) of minimum vertex
cover on k-partite k′-uniform hypergraphs to an instanceG′ = (V ′, E′) of k-HypVC-Partite where
the parameter k′ will be chosen later.

Given G = (V,E), construct V ′ by adding k “dummy” vertices b1, . . . , bk to V , i.e. V ′ =
V ∪ {b1, . . . , bk}. Let V1, . . . , Vk be the k color classes of V . For any hyperedge e ∈ E, construct a
corresponding hyperedge e′ ∈ E′ which contains all the vertices in e in addition to bi if e ∩ Vi = ∅,
for all i ∈ [k]. It is easy to see that G′ is a k-partite k-uniform hypergraph, with the k-partition
given by the subsets Vi∪{bi}. As a final step, set the weight of the dummy vertices b1, . . . , bk to be
much larger than |V ′| so that no dummy vertex is chosen in any optimal vertex cover in G′. This is
because V is always a vertex cover in G. Note that the hypergraph can be made unweighted by the
(standard) technique of replicating each dummy vertex many times and multiplying the hyperedges
appropriately.

Since no optimal vertex cover in G′ contains a dummy vertex, we deduce that an optimal vertex
cover in G′ is an optimal vertex cover in G and vice versa. From Theorem 2.3, for any ε > 0, we
obtain a hardness factor of,

(k − (k′ − 1))(k′ − 1)

k
− ε,

for approximating k-HypVC-Partite. Let α := (k′−1)
k . The above expression is maximized in

terms of k when (1−α)α
2 attains a maximum where α ∈ [0, 1]. Clearly, the maximum is obtained

when α = (k′−1)
k = 1

2 . Choosing k′ − 1 = bk2c yields the hardness of approximation factor:

1

k

(⌈
k

2

⌉⌊
k

2

⌋)
− ε,

which proves Theorem 1.3.
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3 Cross-Intersecting Set Families

We use the notation [n] = {1, . . . , n} and 2[n] = {F | F ⊆ [n]}. A subset of 2[n] is called a set
family. We begin by defining cross-intersecting set families:

Definition 3.1. A collection of k families F1, . . . ,Fk ⊆ 2[n], is called k-wise t-cross-intersecting if
for every choice of sets Fi ∈ Fi for i = 1, . . . , k, we have |F1 ∩ . . . ∩ Fk| ≥ t.

In this section, we prove that if a collection of k families F1, . . . ,Fk ⊆ 2[n] is k-wise t-cross-
intersecting, then at least one of the families is small in size, under an appropriately picked measure.
Before we formally state the claim in Lemma 3.3, we define a family of p-biased measures on subsets
of [n] that we shall work with.

Definition 3.2. Given a bias parameter 0 < p < 1, we define the measure µp on subsets of [n] as:
µp(F ) := p|F | · (1− p)n−|F | . The measure of a family F is defined as µp(F) =

∑
F∈F µp(F ).

We can now state the main result of this section.

Lemma 3.3. For arbitrary ε, δ > 0, there exists some t = O
(

1
δ2

(
log 1

ε + log
(
1 + 1

2δ2

)))
such that

the following holds: Given k numbers 0 < qi < 1 such that
∑

i qi ≥ 1 and k families, F1, . . . ,Fk ⊆
2[n], that are k-wise t-cross-intersecting, there exists a j such that µ1−qj−δ(Fj) < ε.

Proof. Let F1, . . . ,Fk ⊆ 2[n] be a collection of k-wise t-cross-intersecting families. We will specify
our choice of t(ε, δ) at the end of the proof.

For the proof, we introduce an important technique for analyzing cross-intersecting families –
the shift operation (see Def 4.1, pg. 1298 [12]). Given a family F , define the (i, j)-shift as follows:

SFij (F ) =

{
(F ∪ {i}\{j}) if j ∈ F, i /∈ F and (F ∪ {i}\{j}) /∈ F
F otherwise.

Let the (i, j)-shift of a family F be defined as Sij(F) = {SFij (F ) | F ∈ F}. Given a family F ⊆ 2[n],
we repeatedly apply (i, j)-shift for 1 ≤ i < j ≤ n to F until we obtain a family that is invariant
under these shifts. Such a family is called a left-shifted family and we will denote it by S(F).

The following lemma, whose proof is included later in the section, shows that the cross-
intersecting property is preserved under left-shifting.

Lemma 3.4. Consider families F1, . . . ,Fk ⊆ 2[n] that are k-wise t-cross-intersecting. Then, the
families S(F1), . . . , S(Fk) are also k-wise t-cross-intersecting.

Moreover, by definition, there is a bijection between the sets in F and S(F) that preserves the
size of the set. Thus, for any fixed p, the measures of F and S(F) are the same under µp, i.e.,
µp(F) = µp(S(F)). Combining this observation with Lemma 3.4, it suffices to prove that there
exists a j such that µ1−qj−δ(S(Fj)) < ε. Thus, we can assume that the families F1, . . . ,Fk are
left-shifted (if not, we can replace then with S(F1), . . . , S(Fk)).

Next, we prove a key structural property about left-shifted cross-intersecting families which
states that for at least one of the families, all of its subsets have a dense prefix. A similar fact for
a single left-shifted family was shown in [12] (pg. 1311, Lemma 8.3), which was reproved and used
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in [8]. However, our case of multiple families with varying biases is different for which we need to
prove the following combinatorial lemma.

Lemma 3.5. Let q1, . . . , qk ∈ (0, 1) be k numbers such that
∑

i qi ≥ 1 and let F1, . . . ,Fk ⊆ 2[n]

be left-shifted families that are k-wise t-cross-intersecting for some t ≥ 1. Then, there exists
a j ∈ [k] such that for all sets F ∈ Fj, there exists a positive integer rF ≤ n − t such that
|F ∩ [t+ rF ]| > (1− qj)(t+ rF ).

We defer the proof of this lemma to the end of this section. Assuming this lemma for now,
we conclude that there must exist a j such that for all sets F ∈ Fj , there exists an rF such
that |F ∩ [t + rF ]| > (1 − qj)(t + rF ). We now apply a Chernoff bound argument to deduce that
µ1−qj−δ(Fj) must be small.

Note that µ1−qj−δ(Fj) is equal to the probability that a random set F chosen according to
µ1−qj−δ lies in Fj . Thus, µ1−qj−δ(Fj) is bounded by the probability that for a random set F
chosen according to µ1−qj−δ, there exists an rF that satisfies |F ∩ [t+ rF ]| ≥ (1− qj)(t+ rF ).

Chernoff bound states that for a set of m independent Bernoulli random variables Xi, with
Pr[Xi = 1] = 1− qj − τ ,

Pr

[
m∑
i=1

Xi ≥ (1− qj)m

]
≤ e−2mτ2

Thus, we get that for any r ≥ 0, Pr[|F ∩ [t+ r]| ≥ (1− qj)(t+ r)] ≤ e−2(t+r)δ
2
. Summing over

all r, we get that,

µ1−qj−δ(Fj) ≤
∑
r≥0

e−2(t+r)δ
2 ≤ e−2tδ

2

1− e−2δ2
≤ e−2tδ2

(
1 +

1

2δ2

)
.

Thus, if t is large enough (t = Ω
(

1
δ2

(
log 1

ε + log
(
1 + 1

2δ2

)))
suffices), then µ1−qj−δ(F) must be

smaller than ε. This completes the proof of Lemma 3.3.

We now give a proof of Lemma 3.4 that shows that left-shifting preserves the cross-intersecting
property.

Proof. (of Lemma 3.4) Given the assumption, we will prove that Sij(F1), . . . , Sij(Fk) are k-wise
t-cross-intersecting. A simple induction then implies the statement of the lemma.

Consider arbitrary sets Fi ∈ Fi. By our assumption, |F1 ∩ . . . ∩ Fk| ≥ t. It suffices to prove
that |SF1

ij (F1) ∩ . . . ∩ SFk
ij (Fk)| ≥ t. If j /∈ F1 ∩ . . . ∩ Fk, the claim is true since the only element

being removed is j. Thus, for all l ∈ [k], j ∈ Fk. If for all l ∈ [k], SFl
ij (Fl) = Fl, the claim is trivial.

Thus, let us assume WLOG that SF1
ij (F1) 6= F1. Thus, i /∈ F1 and hence i /∈ F1 ∩ . . . ∩ Fk. Now,

if i ∈ SF1
ij (F1) ∩ . . . ∩ SFk

ij (Fk), we get that j is replaced by i in the intersection and we are done.

Thus, we can assume WLOG that i /∈ SF2
ij (F2). This implies that i /∈ F2 and F2 ∪ {i}\{j} ∈ F2.

Now consider F1 ∩ (F2 ∪ {i}\{j}) ∩ F3 ∩ . . . ∩ Fk. Since we are picking one set from each Fi, it
must have at least t elements, but this intersection does not contain j and hence it is a subset of
SF1
ij (F1) ∩ . . . ∩ SFk

ij (Fk), implying that |SF1
ij (F1) ∩ . . . ∩ SFk

ij (Fk)| ≥ t.

11



Finally, we give a proof of Lemma 3.5 that gives a structural property of cross-intersecting
families.

Proof. (of Lemma 3.5) Let us assume to the contrary that for every i ∈ [k], there exists a set
Fi ∈ Fi such that for all r ≥ 0, |Fi∩ [t+ r]| ≤ (1− qi)(t+ r). The following combinatorial argument
shows that the families Fi cannot be k-wise t-cross-intersecting.

Let us construct an arrangement of balls and bins where each ball is colored with one of k
colors. Create n bins labeled 1, . . . , n. For each i and for every x ∈ [n]\Fi, we place a ball with
color i in the bin labeled x. Note that a bin can have several balls, but they must have distinct
colors. Given such an arrangement, we can recover the sets it represents by defining F ci to be the
set of bins that contain a ball with color i.

For all r, our initial assumption implies that |F ci ∩ [t+ r]| ≥ qi(t+ r). Thus, there are at least
d qi(t+ r) e balls with color i in bins labeled 1, . . . , t+ r. The total number of balls in bins labeled
1, . . . , t+ r is,

k∑
i=1

|F ci ∩ [t+ r]| ≥
k∑
i=1

d qi(t+ r) e ≥
k∑
i=1

qi(t+ r) ≥ t+ r ≥ r + 1,

where the last two inequalities follow using
∑

i qi ≥ 1 and t ≥ 1.

Next, we describe a procedure to manipulate the above arrangement of balls.

for r := 0 to n− t
if bin t+ r is empty
then if a bin labeled from 1 to t− 1 contains a ball then move it to bin t+ r

else if a bin labeled from t to t+ r − 1 contains two balls then move one of them to bin t+ r
else output “error”

We need the following lemma.

Lemma 3.6. The above procedure satisfies the following properties:
1. The procedure never outputs error.
2. At every step, any two balls in the same bin have different colors.

3. At step r, define G
(r)
i to be the set of labels of the bins that do not contain a ball of color i.

Then, for all i ∈ [k], G
(r)
i ∈ Fi.

4. After step r, the bins t to t+ r have at least one ball each.

Proof. 1. If it outputs error at step r, there must be at most r balls in bins 1 to t+ r. At the start
of the procedure, there are at least r+ 1 balls in these bins and during the first r steps, the number
of balls in these bins remain unchanged. This is a contradiction.
2. Note that this is true at r = 0 and a ball is only moved to an empty bin, which proves the claim.

3. We first note that for all i ∈ [k], G
(0)
i ∈ Fi. Next, observe that for any left-shifted family F ⊆ 2[n],

and F ∈ F such that i /∈ F and j ∈ F where i < j, the set (F ∪ {i}\{j}) must be in F . Whenever
we move a ball from bin i to j, we have i < j. Since Fi are left-shifted, by repeated application of

the above observation, we get that at step r, G
(r)
i ∈ Fi.

4. Since the procedure never outputs error, at step r, if the bin t+ r is empty, the procedure places
a ball in it while not emptying any bin labeled between [t, t+ r − 1]. This proves the claim.
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The above lemma implies that at the end of the procedure (after r = n − t), there is a ball in

each of the bins labeled from [t, n]. Thus, the sets Gi = G
(n−t)
i satisfy ∩iGi ⊆ [t − 1] and hence

| ∩i Gi| ≤ t − 1. Also, we know that Gi ∈ Fi. Thus, the families Fi cannot be k-wise t-cross-
intersecting. This completes the proof of Lemma 3.5.

4 Multi-Layered PCP

In this section, we describe the Multi-Layered PCP constructed in [8] and its useful properties. An
instance Φ of the Multi-Layered PCP is parametrized by integers L,R > 1. The PCP consists of L
sets of variables X1, . . . , XL. The label set (or range) of the variables in the lth set Xl is a set RXl

,
where |RXl

| = RO(L). For any two integers 1 ≤ l < l′ ≤ L, the PCP has a set of constraints Φl,l′ in
which each constraint depends on one variable x ∈ Xl, and one variable x′ ∈ Xl′ . The constraint
(if it exists) between x ∈ Xl and x′ ∈ Xl′ (l < l′) is denoted and characterized by a projection
πx→x′ : RXl

→ RXl′ . A labeling to x and x′ satisfies the constraint πx→x′ if the projection (via
πx→x′) of the label assigned to x coincides with the label assigned to x′.

The following useful ‘weak-density’ property of the Multi-Layered PCP was defined in [8].

Definition 4.1. An instance Φ of the Multi-Layered PCP with L layers is weakly-dense if for any
δ > 0, given m ≥ d2δ e layers l1 < l2 < · · · < lm and given any sets Si ⊆ Xli, for i ∈ [m] such that
|Si| ≥ δ|Xli |; there always exist two layers li′ and li′′ such that the constraints between the variables

in the sets Si′ and Si′′ is at least δ2

4 fraction of the constraints between the sets Xli′ and Xll′′ .

The following inapproximability of the Multi-Layered PCP was proven by Dinur et al. [8] based
on the PCP Theorem ([4], [3]) and Raz’s Parallel Repetition Theorem [26].

Theorem 4.2. There exists a universal constant γ > 0 such that, for any integer parameters
L,R > 1, there is a weakly-dense L-layered PCP Φ =

⋃
Φl,l′ such that it is NP-hard to distinguish

between the following two cases:

• YES Case: There exists an assignment of labels to the variables of Φ that satisfies all the
constraints.

• NO Case: For every 1 ≤ l < l′ ≤ L, not more that 1/Rγ fraction of the constraints in Φl,l′

can be satisfied by any assignment.

5 Hardness Reduction for HypVC-Partite

5.1 Construction of the Hypergraph

Fix an integer k ≥ 3, an arbitrarily small parameter ε > 0, and let r = d10ε−2e. We shall construct
a (k + 1)-uniform (k + 1)-partite hypergraph as an instance of (k + 1)-HypVC-Partite. Our
construction will be a reduction from an instance Φ of the Multi-Layered PCP with number of
layers L = 32ε−2, and parameter R which shall be chosen later to be large enough. It involves
creating, for each variable of the PCP, several copies of the Long Code endowed with different
biased measures as explained below.
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Over any domain T , a Long Code H is a collection of all subsets of T , i.e., H = 2T . A bias
p ∈ [0, 1] defines a measure µp on H such that µp(v) = p|v|(1 − p)|T\v| for any v ∈ H. In our
construction, we need several different biased measures defined as follows. For all j = 1, . . . , r,
define qj := 2j

rk , and biases pj := 1− qj − ε. Each pj defines a biased measure µpj over a Long Code
over any domain. Next, we define the vertices of the hypergraph.

Vertices. We shall denote the set of vertices by V . Consider a variable x in the layer Xl of
the PCP. For i ∈ [k+ 1] and j ∈ [r], let Hxij be a Long Code on the domain RXl

endowed with the

bias µpj , i.e., µpj (v) = pj
|v|(1− pj)|RXl

\v| for all v ∈ Hxij = 2RXl . The set of vertices corresponding

to x is V [x] :=
⋃k+1
i=1

⋃r
j=1Hxij . We define the weights on vertices to be proportional to its biased

measure in the corresponding Long Code. Formally, for any v ∈ Hxij ,

wt(v) :=
µpj (v)

L|Xl|r(k + 1)
. (8)

The above conveniently ensures that for any l ∈ [L],∑
x∈Xl

wt(V [x]) = 1/L , and
∑
l∈[L]

∑
x∈Xl

wt(V [x]) = 1 .

In addition to the vertices for each variable of the PCP, the instance also contains k + 1 dummy
vertices d1, . . . , dk+1, each with a very large weight given by wt(di) := 2 for i ∈ [k + 1]. Clearly,
this ensures that the total weight of all the vertices in the hypergraph is 2(k + 1) + 1. As we shall
see later, the edges shall be defined in such a way that, together with vertex weights, we would be
guaranteed that the maximum weight independent set will contain all the dummy vertices. Before
defining the edges we define the (k + 1) partition (V1, . . . , Vk+1) of V to be:

Vi =

( L⋃
l=1

⋃
x∈Xl

r⋃
j=1

Hxij
)⋃{

di
}
, (9)

for all i = 1, . . . , k + 1. We now define the hyperedges of the instance. In the rest of the section,
we shall think of the vertices of the long codes as subsets of their respective domains.

Hyperedges. For every pair of variables x and y of the PCP such that there is a constraint
πx→y, we construct edges as follows.

(1.) Consider all permutations σ : [k + 1] → [k + 1] and sequences (j1, . . . , jk, jk+1) such that,
j1, . . . , jk ∈ [r] ∪ {0} and jk+1 ∈ [r] such that:

∑k
i=1 1{ji 6=0} qji ≥ 1.

(2.) Add all possible hyperedges e such that for all i ∈ [k]:

(2.a) If ji 6= 0 then e ∩ Vσ(i) =: vσ(i) ∈ Hxσ(i),ji , and,

(2.b) If ji = 0 then e ∩ Vσ(i) = dσ(i) and,

(2.c) e ∩ Vσ(k+1) =: uσ(k+1) ∈ H
y
σ(k+1),jk+1

,

which satisfy,

πx→y

( ⋂
i: i∈[k]
ji 6=0

vσ(i)

)⋂
uσ(k+1) = ∅. (10)
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Let us denote the hypergraph constructed above by G(Φ). From the construction it is clear that
G(Φ) is (k + 1)-partite with partition V = ∪i∈[k+1]Vi.

The role of the dummy vertices {d1, . . . , dk+1} is to ensure that each hyperedge contains exactly
k+ 1 vertices – without them we would have hyperedges with fewer than k+ 1 vertices. Also note
that the hyperedges are defined in such a way that the set {d1, . . . , dk+1} is an independent set in
the hypergraph. Moreover, since the weight of each dummy vertex di is 2, while the total weight
of all except the dummy vertices is 1, this implies that any maximum independent set I contains
all the dummy vertices. Thus, V \ I is a minimum vertex cover that does not contain any dummy
vertices. For convenience, the analysis of our reduction, presented in the rest of this section, shall
focus on the weight of (I ∩ V ) \ {d1, . . . , dk+1}.

The rest of this section is devoted to proving the following theorem which, together with The-
orem 4.2, implies Theorem 1.4.

Theorem 5.1. Let Φ be the instance of Multi-Layered PCP from which the hypergraph G(Φ) is
derived as an instance of (k + 1)-HypVC-Partite. Then,

• Completeness: If Φ is a YES instance, then there is an independent set I∗ in G(Φ) such that,

wt (I∗ ∩ (V \ {d1, . . . , dk+1})) ≥ 1− 1

k
− 2ε.

• Soundness: If Φ is a NO instance, then for all independent sets I in G(Φ),

wt (I ∩ (V \ {d1, . . . , dk+1})) ≤ 1− k

2(k + 1)
+ ε.

The completeness case of the above theorem is proved in Section 5.2, and the soundness case
in Section 5.3.

5.2 Completeness

In the completeness case, the instance Φ is a YES instance, i.e., there is a labeling A which maps
each variable x in layer Xl to an assignment in RXl

for all l = 1, . . . , L, such that all the constraints
of Φ are satisfied.

Consider the set of vertices I∗ which satisfies the following properties:
(1) di ∈ I∗ for all i = 1, . . . , k + 1.
(2) For all l ∈ [L], x ∈ Xl, i ∈ [k + 1], j ∈ [r],

I∗ ∩Hxij = {v ∈ Hxij : A(x) ∈ v}. (11)

Suppose x and y are two variables in Φ with a constraint πx→y between them. Consider any
v ∈ I∗∩V [x] and u ∈ I∗∩V [y]. The above construction of I∗ along with the fact that the labeling
A satisfies the constraint πx→y implies that A(x) ∈ v and A(y) ∈ u and A(y) ∈ πx→y(v) ∩ u.
Therefore, Equation (10) of the construction is not satisfied by the vertices in I∗, and so I∗ is an
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independent set in the hypergraph. By Equation (11), the fraction of the weight of the Long Code
Hxij which lies in I∗ is pj , for any variable x, i ∈ [k + 1] and j ∈ [r]. Therefore,

wt(I∗ ∩ V [x])

wt(V [x])
=

1

r

r∑
j=1

pj = 1− 1

k

(
1 +

1

r

)
− ε, (12)

by our setting of pj in Section 5.1. The above yields that

wt (I∗ ∩ (V \ {d1, . . . , dk+1})) = 1− 1

k

(
1 +

1

r

)
− ε ≥ 1− 1

k
− 2ε, (13)

for a small enough value of ε > 0, and our setting of the parameter r.

5.3 Soundness

For the soundness analysis we have that Φ is a NO instance as given in Theorem 4.2, and we wish
to prove that the size of the maximum weight independent set in G(Φ) is appropriately small. For
a contradiction, we assume that there is a maximum independent set I in G(Φ) such that,

wt(I ∩ (V \ {d1, . . . , dk+1})) ≥ 1− k

2(k + 1)
+ ε. (14)

Define the set of variables X ′ to be as follows:

X ′ :=

{
x a variable in Φ :

wt(I ∩ V [x])

wt(V [x])
≥ 1− k

2(k + 1)
+
ε

2

}
. (15)

An averaging argument shows that wt(
⋃
x∈X′ V [x]) ≥ ε/2. A further averaging implies that there

are ε
4L = 8

ε layers of Φ such that ε
4 fraction of the variables in each of these layers belong to X ′.

Applying the Weak Density property of Φ given by Definition 4.1 and Theorem 4.2 yields two layers
Xl′ and Xl′′ (l′ < l′′) such that ε2

64 fraction of the constraints between them are between variables
in X ′. The rest of the analysis shall focus on these two layers and for convenience we shall denote
X ′ ∩Xl′ by X and X ′ ∩Xl′′ by Y , and denote the respective label sets by RX and RY .

Consider any variable x ∈ X. For any i ∈ [k + 1], j ∈ [r], call a Long Code Hxij significant if
µpj (I ∩ Hxij) ≥ ε

2 . From Equation (15) and an averaging argument we obtain that,

∣∣{(i, j) ∈ [k + 1]× [r] : Hxij is significant.}
∣∣ ≥ (1− k

2(k + 1)

)
(r(k + 1)) =

rk

2
+ r. (16)

Using an analogous argument we obtain a similar statement for every variable y ∈ Y and corre-
sponding Long Codes Hyij . The following structural lemma follows from the above bound.

Lemma 5.2. Consider any variable x ∈ X. Then there exists a sequence (j1, . . . , jk+1) with
ji ∈ [r] ∪ {0} for i ∈ [k + 1]; such that the Long Codes {Hxi,ji | i ∈ [k + 1] where ji 6= 0}, are all
significant. Moreover,

k+1∑
i=1

ji ≥
rk

2
+ r . (17)
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Proof. For all i ∈ [k+1] choose ji as follows: if none of the Long Codes Hxij for j ∈ [r] are significant
then let ji := 0, otherwise let ji := max{j ∈ [r] : Hxij is significant}. It is easy to see that ji is an
upper bound on the number of significant Long Codes in {Hxij}j . Therefore,

k+1∑
i=1

ji ≥
∣∣{(i, j) ∈ [k + 1]× [r] : Hxij is significant.}

∣∣ ≥ rk

2
+ r (From Equation (16)) (18)

which proves the lemma.

Next, we define the decoding procedure to define a label for any given variable x ∈ X.

5.3.1 Labeling for variable x ∈ X

The label A(x) for each variable x ∈ X is chosen independently via the following three step
(randomized) procedure.

Step 1. Choose a sequence (j1, . . . , jk+1) yielded by Lemma 5.2 applied to x.

Step 2. Choose an element i0 uniformly at random from [k + 1].

Before describing the third step of the procedure, we require the following lemma.

Lemma 5.3. There exist vertices vi ∈ I ∩Hxiji for every i : i ∈ [k+ 1] \ {i0}, ji 6= 0, and an integer
t := t(ε) satisfying: ∣∣∣∣ ⋂

i:i∈[k+1]\{i0},
ji 6=0

vi

∣∣∣∣ < t . (19)

Proof. Since ji0 ≤ r it is easy to see,∑
i∈[k+1]\{i0}

ji ≥
rk

2
⇒

∑
i:i∈[k+1]\{i0},

ji 6=0

qji ≥ 1. (20)

Moreover, since the sequence (j1, . . . , jk+1) was obtained by Lemma 5.2 applied to x, we know that
µpji (I ∩H

x
iji

) ≥ ε
2 , ∀i : i ∈ [k+ 1] \ {i0}, ji 6= 0. Combining this with Equation (20) and Lemma 3.3

we obtain that for some integer t := t(ε) the collection of set families {Hxiji : i ∈ [k+1]\{i0}, ji 6= 0}
is not k′-wise t-cross-intersecting, where k′ = |{i ∈ [k + 1] \ {i0} : ji 6= 0}|. This proves the lemma.

The third step of the labeling procedure is as follows:

Step 3. Apply Lemma 5.3 to obtain the vertices vi ∈ I∩Hxiji for every i : i ∈ [k+1]\{i0}, ji 6= 0
satisfying Equation (19). Define B(x) as,

B(x) :=
⋂

i:i∈[k+1]\{i0},
ji 6=0

vi, (21)

noting that |B(x)| < t. Assign a random label from B(x) to the variable x and call the assigned
label A(x).
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5.3.2 Labeling for variable y ∈ Y

After labeling the variables x ∈ X via the procedure above, we construct a labeling A(y) for any
variable y ∈ Y by defining,

A(y) := argmaxa∈RY
|{x ∈ X ∩N(y) | a ∈ πx→y(B(x))}| , (22)

where N(y) is the set of all variables that have a constraint with y. The above process selects a
label for y which lies in maximum number of projections of B(x) for variables x ∈ X which have a
constraint with y.

The rest of this section is devoted to lower bounding the number of constraints satisfied by the
labeling process, and thus obtaining a contradiction to the fact that Φ is a NO instance.

5.3.3 Lower bounding the number of satisfied constraints

Fix a variable y ∈ Y . Let U(y) := X ∩N(y), i.e., the variables in X which have a constraint with
y. Further, define the set P (y) ⊆ [k + 1] as follows,

P (y) = {i ∈ [k + 1] | ∃j ∈ [r] such that µpj (I ∩ H
y
ij) ≥ ε/2}. (23)

In other words, P (y) is the set of all those indices in [k+1] such that there is a significant Long Code

corresponding to each of them. Applying Equation (16) to y we obtain that there at least r(k+2)
2

significant Long Codes corresponding to y, and therefore |P (y)| ≥ k+2
2 ≥ 1. Next we define subsets

of U(y) depending on the outcome of Step 2 in the labeling procedure for variables x ∈ U(y). For
i ∈ [k + 1] define,

U(i, y) := {x ∈ U(y) | i was chosen in Step 2 of the labeling procedure for x}, (24)

and,

U∗(y) :=
⋃

i∈P (y)

U(i, y). (25)

Note that {U(i, y)}i∈[k+1] is a partition of U(y). Also, since |P (y)| ≥ k+1
2 , and the labeling proce-

dure for each variable x chooses the index in Step 2 uniformly and independently at random, we
have,

E[|U∗(y)|] ≥ |U(y)|
2

, (26)

where the expectation is over the random choice of the indices in Step 2 of the labeling procedure
for all x ∈ U(y). Before continuing, we need the following simple lemma (proved as Claim 5.4 in
[8]).

Lemma 5.4. Let A1, . . . , AN be a collection of N sets, each of size at most T ≥ 1. If there are not
more than D pairwise disjoint sets in the collection, then there is an element that is contained in
at least N

TD sets.

Now consider any i′ ∈ P (y) such that U(i′, y) 6= ∅, and a variable x ∈ U(i′, y). Since i′ ∈ P (y),
there is a significant Long Code Hyi′j′ for some j′ ∈ [r]. Furthermore, since I is an independent set

18



there cannot be a u ∈ I ∩Hyi′,j′ such that πx→y(B(x))∩ u = ∅, otherwise the following set of k+ 1
vertices,

{vi | i ∈ [k + 1] \ {i′}, ji 6= 0} ∪ {di | i ∈ [k + 1] \ {i′}, ji = 0} ∪ {u}

form an edge in I, where vi, ji (i ∈ [k + 1]) are as constructed in the labeling procedure for x.

Consider the collection of sets πx→y(B(x)) for all x ∈ U(i′, y). Clearly, each set is of size less
than t. Let D be the maximum number of pairwise disjoint sets in this collection. Each disjoint
set independently reduces the measure of I ∩ Hyi′,j′ by a factor of (1 − (1 − pj′)t). However, since

µpj′ (I∩H
y
i′,j′) is at least ε

2 , this implies that D is at most log( ε2)/ log(1−(2/rk)t), since pj′ ≤ 1− 2
rk .

Moreover, since t and r depends only on ε, the upper bound on D also depends only on ε.

Therefore by Lemma 5.4, there is an element a ∈ RY such that a ∈ πx→y(B(x)) for at least
1
Dt fraction of x ∈ U(i′, y). Noting that this bound is independent of j′ and that {U(i′, y)}i′∈P (y)

is a partition of U∗(y), we obtain that there is an element a ∈ RY such that a ∈ πx→y(B(x))
for at least 1

(k+1)Dt fraction of x ∈ U∗(y). Therefore, in Step 3 of the labeling procedure when a

label A(x) is chosen uniformly at random from B(x), in expectation, a = πx→y(A(x)) for at least
1

(k+1)Dt2
fraction of x ∈ U∗(y). Combining this with Equation (26) gives us that there is a labeling

to the variables in X and Y, which satisfies at least 1
2(k+1)Dt2

fraction of the constraints between

variables in X and Y which is in turn at least ε2

64 fraction of the constraints between the layers Xl′

and Xl′′ . Since D and t depend only on ε, choosing the parameter R of Φ to be large enough we
obtain a contradiction to our assumed lower bound on the size of the independent set. Therefore
in the Soundness case, for any independent set I,

wt(I ∩ (V \ {d1, . . . , dk+1})) ≤ 1− k

2(k + 1)
+ ε.

Combining the above with Equation (13) of the analysis in the Completeness case yields a factor
k2

2(k+1) − δ (for any δ > 0) hardness for approximating (k + 1)-HypVC-Partite .

Thus, we obtain a factor k
2 − 1 + 1

2k − δ hardness for approximating k-HypVC-Partite.

6 LP Relaxations for Hypergraph Vertex Cover

In this section, we give two natural linear programming (LP) relaxations for Hypergraph Vertex
Cover and show that they are equivalent. The first one, LP0, is the natural linear programming
relaxation for vertex cover, while the second relaxation, LP, was used in [22] to convert integrality
gaps for it into corresponding UGC based hardness of approximation results. On the other hand,
Aharoni et al. [1] give integrality gaps for LP0 applied to instances of different variants of the
hypergraph vertex cover problem. This motivates us to present a fairly simple argument that the
two relaxations are indeed equivalent, and the integrality gaps for LP0 hold for LP as well. Note
that the relaxations are oblivious to the structure of the hypergraph.

Let G = (V,E) be a k-uniform hypergraph. Let xv be a real variable for every vertex v ∈ V .
The first relaxation, LP0, the natural relaxation for vertex cover in hypergraphs and is given in
Figure 1. Before proceeding, let us define the set Q(k) := {σ ∈ {0, 1}k | σ 6= 0}. Informally
speaking, Q(k) is the set of all valid assignments to the k vertices of any hyperedge in E in any
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min
∑
v∈V

xv (27)

subject to,

∀e = {v1, . . . , vk} ∈ E,
∑

vi∈e xvi ≥ 1 (28)

∀v ∈ V, 1 ≥ xv ≥ 0. (29)

Figure 1: Relaxation LP0.

integral solution to the LP for G = (V,E). For the relaxation, we can constrain the k-tuple of
variables for every hyperedge to lie inside the convex hull of Q(k). Keeping this in mind we write
the relaxation LP which is given in Figure 2. We now prove the equivalence of the above relaxations.

min
∑
v∈V

xv (30)

subject to,

∀e = {v1, . . . , vk} ∈ E, (xv1 , . . . , xvk) =
∑

σ∈Q(k) λ
e
σσ (31)

∀e ∈ E,
∑

σ∈Q(k) λ
e
σ = 1 (32)

∀e ∈, σ ∈ Q(k), 1 ≥ λeσ ≥ 0 (33)

∀v ∈ V, 1 ≥ xv ≥ 0. (34)

Figure 2: Relaxation LP.

Lemma 6.1. The relaxations LP0 and LP are equivalent.

Proof. We observe the constraints (31)-(34) are equivalent to (xv1 , . . . , xvk) ∈ conv(Q(k)), where
conv(A) is the convex hull of a set A of vectors.

Furthermore, the set {0, 1}k ∩ {(y1, . . . , yk) ∈ Rk |
∑

i∈[k] yi = 1} consists of exactly the k

unit coordinate vectors. Therefore, the corner points of the (bounded) polyhedron conv({0, 1}k) ∩
{(y1, . . . , yk) ∈ Rk |

∑
i∈[k] yi ≥ 1} are exactly the elements of Q(k). This implies,

conv(Q(k)) = conv({0, 1}k) ∩ {(y1, . . . , yk) ∈ Rk |
∑

i∈[k] yi ≥ 1}.
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Observing that the constraints (28) and (29) are equivalent to

(xv1 , . . . , xvk) ∈ conv({0, 1}k) ∩ {(y1, . . . , yk) ∈ Rk |
∑

i∈[r] yi ≥ 1},

we obtain that the two relaxations LP0 and LP are equivalent, thus proving Lemma 6.1.

We now restate the integrality gap of [1], augmenting Theorem 1.2 with the fact that the lower
bound holds also for the relaxation LP.

Theorem 6.2 (Aharoni et al. [1]). The integrality gap of LP0 and of LP for an instance of
k-HypVC-Partite is at least k/2− o(1).

7 Construction of the Dictatorship Test for k-HypVC-Partite

Before we begin, let us restate a more detailed version of Theorem 6.2 which abstracts out some
useful properties of the integrality gap instance. The construction of the integrality gap is included
in Appendix A.

Theorem 7.1. For any positive integers k,m (k ≥ 2), there is an instance Gk = (Vk, Ek) of
k-HypVC-Partite on O(mk2) vertices such that there exists a solution {x∗v}v∈Vk to LP applied to
Gk such that,

OPTVC(Gk)

VALLP({x∗v}v∈Vk , Gk)
≥ k

2
−O

(
1

m

)
, (35)

where OPTVC(Gk) is the optimal size of the vertex cover in Gk, and VALLP({x∗v}v∈Vk , Gk) is the
value of the solution {x∗v}v∈Vk for the relaxation LP on the instance Gk. Moreover, the value of any
x∗v (v ∈ Vk) is an integral multiple of ε := 1

mk .

For convenience, we drop the subscript and denote as G = (V,E) the integrality gap instance
of k-HypVC-Partite, which we shall utilize for the rest of the reduction along with the solution
{x∗v}v∈V given in Theorem 7.1 to the relaxation LP for the minimum vertex cover in G. Before
proceeding to the reduction we need the following definitions.

Definition 7.2. For every hyperedge e ∈ E, let P x
∗

e be the distribution induced on Q(k) by choosing
σ ∈ Q(k) with probability λeσ, where the values {λeσ}e∈E,σ∈Q(k) are obtained along with x∗ as the

solution to the relaxation LP. Let Mδ(P
x∗
e ) be a distribution over {0, 1}k obtained by sampling

z ∈ {0, 1}k from P x
∗

e and then independently letting every coordinate zi remain unchanged with
probability 1− δ and setting it to be 1 with probability δ.

Note that the support of P x
∗

e is a subset of Q(k). Since Q(k) is a monotone set, the support of
Mδ(P

x∗
e ) is also a subset of Q(k).

The following lemma were proved in [22].

Lemma 7.3 ([22]). Since x∗ satisfies the property that every x∗v is an integral multiple of ε = 1
mk ,

there exists a set of values {λek}e∈E which along with x∗ forms a solution to the relaxation LP for
G, with the property that for every e ∈ E, the minimum probability of any atom in P x

∗
e is at least

ε
(2k)!

.
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For the rest of this section, we assume that the property given by the above lemma is satisfied
by the values {λeσ}e∈E,σ∈Q(k) associated with the solution x∗. The following lemma is a simple
consequence which we state without proof.

Lemma 7.4 ([22]). For any hyperedge e ∈ E, the minimum probability of any atom in the distri-

bution Mx∗
e is at least εδk

(2k)!
.

For a given parameter r, the construction of a dictatorship test shall use the integrality gap
G = (V,E) of k-HypVC-Partite along with the solution x∗ for the relaxation LP given by Theorem
7.1, to output an instance D of k-HypVC-Partite consisting of a weighted k-uniform k-partite
hypergraph GD = (VD, ED) where every vertex in VD is indexed by V × {0, 1}r.

Informally, the instance D serves as a dictatorship test in the following manner:

• (Completeness) Every dictator boolean function on {0, 1}r gives a vertex cover in GD of weight
≈ (VALLP(x

∗, G))/(|V |).

• (Soundness) Every vertex cover of weight substantially smaller than
(OPTVC(Gk))/(|V |) is “close to a dictator”.

7.1 Construction of GD = (VD, ED) as an instance of k-HypVC-Partite

The integrality gap instance G = (V,E) and the solution x∗ are fixed along with the parameter m
to depend only on k. Additionally, δ > 0 is a small enough constant and r is a parameter to the
procedure and is the size of the domain of the dictatorship test. It corresponds to the size of the
label set in the eventual reduction from Unique Games. We use the distributions P x

∗
e and Mδ(P

x∗
e )

over {0, 1}k as given in Definition 7.2. The following steps describe the construction of the instance
D.

1. The set of vertices VD = V ×{0, 1}r. Each vertex in VD is of the form (v, y) where v ∈ V and
y ∈ {0, 1}r.

2. Let av := x∗v(1 − δ) + δ, for v ∈ V . Let µa be the a-biased probability measure on {0, 1}r,
where every coordinate is chosen independently to be 1 with probability a. The weight wtD
of any vertex (v, y) ∈ VD is given by,

wtD(v, y) :=
µav(y)

|V |
.

Note that
∑

(v,y)∈VD wtD((v, y)) = 1.

3. The set of hyperedges ED is the union of all the hyperedges output with positive probability
in the following randomized procedure.

a. Pick a random hyperedge e = (v1, . . . , vk) from E.

b. Sample r independent copies (zjv1 , z
j
v2 , . . . , z

j
vk) for j = 1, . . . , r from the distribution

Mδ(P
x∗
e ). Let zvi ∈ {0, 1}r be defined as zvi := (z1vi , z

2
vi , . . . , z

r
vi) for i = 1, . . . , k.
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d. Add the following hyperedge in ED,

((v1, zv1), (v2, zv2), . . . , (vk, zvk)).

4. Output the hypergraph GD = (VD, ED).

We first observe that the hypergraph GD is indeed k-partite. To see this, recall that G is k-
partite. Since VD = V × {0, 1}r, any partition of V extends naturally to a partition of VD. Let
{Vi}ki=1 be the k disjoint subsets of V comprising the k-partition. Then, {Vi×{0, 1}r}ki=1 gives the k-
partition of VD. Moreover, since any hyperedge e′ ∈ ED is of the form ((v1, zv1), (v2, zv2), . . . , (vk, zvk)),
where (v1, . . . , vk) ∈ E, it is easy to see that e′ hits each set Vi × {0, 1}r (1 ≤ i ≤ k) exactly once.
Therefore, GD is k-partite.

Next, we shall formally state the completeness and the soundness of the dictatorship test given
by D. Their proofs are completely analogous to the corresponding ones in [22]. While we shall
present the proof of the completeness, we refer the reader to [22] for a proof of the soundness of
the test. We need the notions of a function being a “dictator” and “far from a dictator”.

Definition 7.5 (Dictator). A subset S ⊆ V × {0, 1}r = VD is said to be a dictator if there is an
index i ∈ [r] such that S = {(v, y) | yi = 1}.

Given a subset S ⊆ V × {0, 1}r, let Sv := S ∩ ({v} × {0, 1}r) the function fSv : {0, 1}r 7→ {0, 1}
be the complement of Sv, i.e. fSv = {y ∈ {0, 1}r | (v, y) 6∈ Sv}. For a given i ∈ [r] and v ∈ V , let
Inf≤di (fSv ) be the degree d influence of the i-th coordinate, with respect to the measure µav . The

quantity Inf≤di (f) for any function f measures the likelihood of the value of the function f changing
if the ith coordinate in the input is changed. We refer the reader to [24] for a formal definition of
Inf≤di (f). Using this we have the following notion of a function being far from a dictator.

Definition 7.6 ((τ, d)-pseudorandom). For τ, d ≥ 0, a subset S ⊆ V × {0, 1}r is said to be (τ, d)-
pseudorandom if for every v ∈ V and i ∈ [r], Inf≤di (fSv ) ≤ τ .

We first prove the completeness of the dictatorship test.

Lemma 7.7. (Completeness) Suppose S ⊆ V × {0, 1}r = VD is a dictator. Then S is a vertex
cover in GD and

wtD(S) ≤ VALLP(x
∗, G)

|V |
+ δ.

Proof. Let i ∈ [r] be such that S = {(v, y) | yi = 1}. Let e ∈ E be any hyperedge, where
e = (v1, . . . , vk). Since the tuple (ziv1 , z

i
v2 , . . . , z

i
vk

) sampled in Step 3b is in the support of Mδ(P
x∗
e )

and therefore an element of Q(k), we deduce that there is some j ∈ [r] such that zivj = 1 i.e.
(vj , zvj ) ∈ S. This implies that S covers all hyperedges obtained after choosing e in Step 3a. As
this holds for any choice of e ∈ E, we obtain that S is a vertex cover in GD. Also,

wtD(S) =

∑
v∈V

∑
y|yi=1 µav(z)

|V |
=

∑
v∈V (x∗v(1− δ) + δ)

|V |
≤ VALLP(x

∗, G)

|V |
+ δ,

which completes the proof of the lemma.
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We state the following theorem regarding the soundness of the dictatorship test and refer the
reader to [22] for the proof and the hardness reduction from Unique Games.

Theorem 7.8 (Soundness). For every δ > 0, there exists d, τ > 0 such that if S ⊆ V × {0, 1}r is
a vertex cover of GD and is (τ, d)-pseudorandom, then,

wtD(S) ≥ OPTV C(G)

|V |
− δ.
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A LP Integrality Gap for k-HypVC-Partite

This section describes the k
2−o(1) integrality gap construction of Aharoni et al. [1] for the standard

LP relaxation for k-HypVC-Partite. The hypergraph that is constructed is unweighted.
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Let r be a (large) positive integer. The vertex set V of the hypergraph is partitioned into
subsets V1, . . . , Vk where, for all i = 1, . . . , k,

Vi = {xij | j = 1, . . . , r} ∪ {yil | l = 1, . . . , rk + 1}. (36)

Before we define the hyperedges, for convenience we shall define the LP solution. The LP values
of the vertices are as given by the function h : V → [0, 1] as follows: for all i = 1, . . . , k,

h(xij) =
2j

rk
, ∀j = 1, . . . , r

h(yil) = 0, ∀l = 1, . . . , rk + 1.

The set of hyperedges is naturally defined to be the set of all possible hyperedges, choosing exactly
one vertex from each Vi such that the sum of the LP values of the corresponding vertices is at least
1. Formally,

E = {e ⊆ V | ∀i ∈ [k], |e ∩ Vi| = 1 and
∑
v∈e

h(v) ≥ 1}. (37)

Clearly the graph is k-uniform and k-partite with {Vi}i∈[k] being the k-partition of V .

The value of the LP solution is∑
v∈V

h(v) = k
∑
j∈[r]

2j

rk
= r + 1. (38)

Now let V ′ be a minimum vertex cover in the hypergraph. To lower bound the size of the
minimum vertex cover, we first note that the set {v ∈ V | h(v) > 0} is a vertex cover of size rk,
and therefore |V ′| ≤ rk. Also, for any i ∈ [k] the vertices {yil}l∈[rk+1] have the same neighborhood.
Therefore, we can assume that V ′ has no vertex yil, otherwise it will contain at least rk + 1 such
vertices.

For all i ∈ [k] let define indices ji ∈ [r] ∪ {0} as follows:

ji =

{
0 if: ∀j ∈ [r], xij ∈ V ′,
max {j ∈ [r] | xij 6∈ V ′} otherwise.

(39)

It is easy to see that since V ′ is a vertex cover,∑
i∈[k]

h(xiji) < 1,

which implies, ∑
i∈[k]

ji <
rk

2
.

Also, the size of V ′ is lower bounded by
∑

i∈[k](r − ji). Therefore,

|V ′| ≥
∑
i∈[k]

(r − ji) ≥ rk −
∑
i∈[k]

ji ≥ rk −
rk

2
=
rk

2
. (40)

The above combined with the value of the LP solution yields an integrality gap of rk
2(r+1) ≥

k
2 −o(1)

for large enough r.
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