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Abstract

Resolution trees with lemmas (RTL) are a resolution-based proposi-

tional proof system that is related to the DPLL algorithm with clause

learning. Its fragments RTL(k) are related to clause learning algorithms

where the width of learned clauses is bounded by k.

For every k up to O(logn), an exponential separation between the

proof systems RTL(k) and RTL(k + 1) is shown.

1 Introduction

In the past decades, a considerable amount of research has been devoted to

algorithms and lower bounds for the satis�ability problem for classical proposi-

tional logic (SAT). Besides its central role in computational complexity theory,

programs for this problem, so-called SAT solvers, are of increasing importance

for practical applications in many domains.

Many of the most e�cient contemporary SAT solvers belong to the class

of con
ict-driven clause learning (CDCL) solvers. Historically, these solvers

developed as extensions of the basic backtracking procedure known as the DPLL

algorithm [9, 8], even though their most recent versions use more general forms

of backtracking.

This recursive DPLL procedure is called for a formula F in conjunctive nor-

mal form and a partial assignment α (which is empty in the outermost call). If

α satis�es F, then it is returned, and if α causes a con
ict, i.e., falsi�es a clause

in F, then the call fails. Otherwise a variable x not set by α is chosen, and the

procedure is called recursively twice, with α extended by x := 1 and by x := 0.

If one of the recursive calls returns a satisfying assignment, then it is returned,

otherwise the call fails.

The �rst generations of CDCL solvers employed several re�nements and
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extensions of the basic DPLL algorithm, including clause learning [14], non-

chronological backtracking [1] and restarts [10]. Crucial for their success is

the technique of clause learning [14]: when the procedure �nds a con
ict, a

sub-assignment α ′ of the current assignment α is computed such that α ′ su�ces

to cause this con
ict. This sub-assignment α ′, the reason for the con
ict, can

then be stored in form of a new clause added to the formula, viz. the unique

largest clause Cα ′ falsi�ed by α ′. This way, when in a later branch of the search

another partial assignment extending α ′ occurs, earlier backtracking is possible

since then the added clause Cα ′ causes a con
ict.

When clause learning is implemented, a strategy is needed to decide which

learnable clauses to keep in memory, because learning too many clauses leads

to excessive memory consumption. Early learning strategies were such that

the width, i.e., the number of literals, of learned clauses was restricted (see

e.g. [14, Sec. 3.2]). Experience has shown that such learning strategies are

not very helpful, i.e., learning only short clauses does not signi�cantly improve

the performance of a DPLL algorithm for hard formulas. This experience is

supported by several lower bound theorems.

Contemporary CDCL solvers use more general forms of backtracking, which

are not represented by the recursive DPLL algorithm scheme above, since it

may be the case that branches in the search tree pruned in backtracking con-

tain satisfying assignments. Therefore, in the following we speak about DPLL

algorithms with clause learning instead of CDCL algorithms, to make it clear

that our results apply to these earlier class of algorithms, where it is enforced

that no satisfying branches are pruned. It remains to be investigated whether

the results carry over to more contemporary CDCL algorithms.

The �rst lower bound for width-restricted clause learning was shown [6] for

the well-known pigeonhole principle clauses PHPn. These formulas require time

2Ω(n logn) to solve when learning clauses of width up to n/2 only, whereas they

can be solved in time 2O(n) when learning arbitrary clauses. Another lower

bound was shown [13] for a a set of clauses Ordn based on the principle that

every �nite ordering has a maximal element. These formulas can be solved in

polynomial time when learning arbitrary clauses, but require exponential time

to solve when learning clauses of size up to n/4 only. This lower bound was

generalized [4] to a lower bound exponential in w for all formulas for which a

lower bound w on the width of resolution refutations holds.

All these lower bounds are shown by proving the same lower bounds on the

length of refutations in a certain resolution based propositional proof system

RTL. The relationship of this proof system to the DPLL algorithm with clause

learning was established in several earlier works [6, 12]. The learned clauses

correspond to so-called lemmas in the proof systems, so the mentioned lower

bounds were shown for a restricted version RTL(k) of RTL which allows only

lemmas of width k, for the respective values of k.
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In this work, we show that the restricted systems RTL(k) form a strict

hierarchy: for every k, we prove an exponential separation of RTL(k+ 1) from

RTL(k). In other words, increasing the width of lemmas that can be used by

one can give an exponential speed-up.

2 Preliminaries

A literal is a variable x or a negated variable �x. A clause is a disjunction

C = a1 ∨ . . . ∨ ak of literals ai. The width of C is k, the number of literals in

C. We identify a clause with the set of literals occurring in it, even though for

clarity we still write it as a disjunction.

A formula in conjunctive normal form (CNF) is a conjunction F = C1 ∧

. . .∧Cm of clauses, it is usually identi�ed with the set of clauses
{
C1, . . . , Cm

}
.

A formula F in CNF is in k-CNF if every clause C in F is of width w(C) ≤ k.
We consider resolution-based refutation systems for formulas in CNF, which

are strongly related to DPLL algorithms. These proof systems have as their

only inference rule the resolution rule, which allows to infer the clause C ∨D

from the two clauses C ∨ x and D ∨ �x, provided that the variable x does not

occur in either C or D, pictorially:

C ∨ x D ∨ �x

C ∨D

We say that the variable x is eliminated in this inference.

A more general form of resolution inference is w-resolution, which allows to

perform the inference even if the eliminated variable does not occur in one (or

both) of the premises. More precisely, let C and D be clauses such C does not

contain �x and D does not contain x, then the w-resolution inference eliminating

x allows to infer the clause (C \ {x}) ∪ (D \ {�x}) from these.

The w-resolution rule can be simulated by the usual resolution rule together

with the rule of weakening { which allows to conclude from a clause C any

super-clause D ⊇ C { as follows: infer C ∨ x and D ∨ �x by (possibly empty)

weakenings, then apply resolution.

An ordered binary tree is a rooted tree in which every inner node has two

children, a distinguished left and right child. The post-ordering ≺ of an ordered

binary tree is the order in which its nodes are visited by a post-order traversal,

i.e., u ≺ v holds for nodes u, v if u is a descendant of v, or if there is a common

ancestor w of u and v such that u is a descendant of the left child of w and v

is a descendant of the right child of w.

An RTL-derivation of a clause C from a CNF-formula F is an ordered binary

tree, in which every node v is labeled with a clause Cv such that:

1. The root is labeled with C.
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2. If v is an inner node with children u1, u2, then Cv follows from Cu1
and

Cu2
by the resolution rule.

3. A leaf v is labeled by a clause D in F, or by a clause C labeling some node

u ≺ v. In the latter case we call C a lemma.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of widthw(C) ≤
k. An RTL-refutation of F is an RTL-derivation of the empty clause from F.

A tree-like resolution derivation is an RTL-derivation that does not use any

lemmas. An RTL-derivation is called regular if on every path, no variable

is eliminated twice. This condition is inessential for tree-like resolution since

minimal tree-like refutations are always regular [15]. It is not known whether

RTL-refutations can be simulated by regular RTL-refutations without increasing

the size super-polynomially.

Let V be a set of variables. A restriction ρ of V is a partial assignment

V → {0, 1}. A restriction ρ is extended to literals by setting

ρ(�x) :=

{
1 if ρ(x) = 0

0 if ρ(x) = 1

For a clause C in variables V, we de�ne

Cdρ :=


1 if ρ(a) = 1 for some a ∈ C∨
a∈C,ρ(a) 6=0

a otherwise,

where the empty disjunction is identi�ed with the constant 0. For a CNF-

formula F over V, we de�ne

Fdρ :=


0 if Cdρ = 0 for some C ∈ F∧
C∈F,Cdρ 6=1

Cdρ otherwise,

where the empty conjunction is identi�ed with 1.

Proposition 1. Let R be a tree-like resolution derivation of C from F of

size s, and ρ a restriction. Then there is a tree-like resolution derivation

R ′ of Cdρ from Fdρ of size at most s.

In particular, if Cdρ = 0 then R ′ is a tree-like resolution refutation of Fdρ.
As usual, we denote the derivation R ′ by Rdρ.

Tree-like resolution exactly corresponds to the DPLL algorithm by the fol-

lowing well-known correspondence: the search tree produced by the run of a

DPLL algorithm on an unsatis�able formula F forms a tree-like resolution refu-

tation of F, and from a given tree-like regular resolution refutation of F one
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can construct a run of a DPLL algorithm showing the unsatis�ability of F that

produces essentially the given search tree.

Buss et al. [6] de�ne a variant WRTI of RTL which exactly corresponds

to a general formulation of the DPLL algorithm with clause learning. Proofs

in WRTI are regular resolution trees with lemmas using the w-resolution rule,

but in which a clause can only be used as a lemma if it was derived by input

resolution. An input resolution derivation is one in which in every inference

step, one of the children is a leaf, i.e., labeled by a clause from the input formula

or a lemma derived earlier.

The size of a refutation of an unsatis�able formula F in WRTI has been shown

[6] to be polynomially related to the run-time of a schematic algorithm DLL-

L-UP on F. This schema DLL-L-UP subsumes many clause learning strategies

commonly used in practice [6]. It follows from these results that if an unsat-

is�able formula F can be solved by a DPLL algorithm with clause learning in

time t, then it has an WRTI-refutation, and hence an RTL-refutation of size

polynomial in t. Moreover, if the algorithm learns only clauses of width at most

k, then the refutation is in RTL(k).

3 The Result

Our main result is an exponential separation between the systems RTL with

lemmas restricted to be of width k, for every k:

Theorem 2. For every k, there is a family of formulas F
(k)
n such that

� F
(k)
n have RTL(k+ 1)-refutations of polynomial size nO(1).

� F
(k)
n requires RTL(k)-refutations of exponential size 2Ω(n/ logn),

This even holds for k = k(n) depending on n when k(n) = O(logn).

The lower bound also holds for a stronger system that also includes a weak-

ening rule, the proof requires little to no modi�cation. Therefore, it also applies

for the systems with the w-resolution rule of Buss et al. [6].

On the other hand, the upper bound is shown for the weaker system with

only the usual resolution rule, and the refutations given are regular.

4 Graph Pebbling

Let G = (V, E) be a pointed dag, i.e., a directed acyclic graph having exactly

one sink t, such that every vertex has either in-degree 0 or 2, and let S, T ⊆ V.
The pebble game on (G, S, T) is played by placing pebbles onto the vertices

of G according to the rules below until a pebble is placed onto a vertex in T .
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Formally, a pebbling of (G, S, T) is a sequence C0, C1, . . . , C` of subsets Ci ⊆ V,
where Ci should be pictured as the set of vertices carrying pebbles at time i,

with C0 = ∅ and C`∩T 6= ∅ such that for all i < ` one of the following properties

holds:

1. Ci+1 = Ci ∪ {u} for some u ∈ S, i.e., a pebble can be put onto a vertex in

S.

2. Ci+1 = Ci ∪ {u} for some u such that all immediate predecessors of u are

in Ci, i.e., if all predecessors of u are pebbled, then u can be pebbled.

3. Ci+1 ⊂ Ci, i.e., pebbles can be removed from vertices.

By (2), a source vertex can be pebbled at any time, so we can always assume

that S contains all sources of G.

The complexity of a pebbling is maxi≤` |Ci|, i.e., the maximal number of

pebbles used. The pebbling number peb(G, S, T) is the minimal complexity of

a pebbling of (G, S, T). The pebbling number peb(G) of G is peb(G, ∅, {t}).
We shall need the following well-known property of the pebbling number [3].

Lemma 3. For every pointed dag G = (V, E), disjoint subsets S, T ⊆ V and

v ∈ V\S∪T , we have peb(G, S, T) ≤ max(peb(G, S∪{v}, T),peb(G, S, T∪{v}))+1.

Graphs with a maximally large pebbling number were constructed by Celoni

et al. [7]:

Theorem 4. There are pointed graphs Gn with n vertices such that peb(Gn) ≥
Ω(n/ logn).

5 Pebbling Formulas

For a pointed dag G = (V, E), the pebbling formula Peb(G) is the unsatis�able

formula in variables xv for v ∈ V consisting of the following clauses:

� xs for every source s

� �xu ∨ �xv ∨ xw for every inner vertex w with predecessors u and v

� �xt for the sink t

The formula Peb(G) has a short tree-like resolution refutation of linear size,

since it is a Horn formula. Ben-Sasson et al. [3] construct harder to refute

formulas from them by replacing every variable x with the disjunction of two new

variables x1 ∨ x2. For the resulting formulas Peb
2(G) they show a lower bound

for tree-like resolution that is exponential in the pebbling number peb(G).
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6 Generalized Xorification

A di�erent way to make a boolean formula harder is xori�cation, i.e., replacing

every variable by the XOR of two or more variables. This technique has been

used in proof complexity so far mainly for space lower bounds [2, 5]. It also has

been applied in circuit complexity, e.g. to obtain cubic lower bounds on formula

size1 [11].

The formulas that witness the separations in Theorem 2 are obtained by

xori�cation from the pebbling formulas Peb(G). In the lower bound argument,

restrictions will be applied to these formulas, and in order to understand and

analyze the restricted formulas, we introduce a generalized form of xori�cation.

We generalize xori�cation in two ways: �rst, some variables are replaced

by the XOR of k variables, whereas some other variables are replaced by the

negation of the XOR of k variables. Second, some designated variables are

not replaced at all, but remain a single variable or its negation. Thus, for every

variable two bits β0 and β1 specify how it occurs in the xori�cation: β0 controls

whether it is replaced by an XOR or not, and β1 speci�es whether it is negated

or not. This is made precise in the following de�nition:

Let F be a formula in variables from a set V. Recall that ¬x is equivalent to

x⊕1. For k ∈ N and a function β : V → {0, 1}2, where we denote the components

of β by β(x) = (β0(x), β1(x)), the generalized xori�cation X(F, k, β) is de�ned

by:

� X(x, k, β) = x1 ⊕ . . .⊕ xk ⊕ β1(x) for a variable x ∈ V with β0(x) = 0.

� X(x, k, β) = x1 ⊕ β1(x) for a variable x ∈ V with β0(x) = 1.

� X(�x, k, β) = X(x, k, β)⊕ 1 for a negated variable x ∈ V.

� X(C, k, β) =
∨
a∈C X(a, k, β) expanded into CNF, for a clause C.

� X(F, k, β) =
∧
C∈F X(C, k, β) for a CNF formula F.

For the pebbling formulas Peb(G), we use the abbreviation Peb⊕kβ (G) for

X(Peb(G), k, β), and we omit the lower index if β is the constant function

β ≡ (0, 0). More generally, for a clause C we write C⊕k for X(C, k, β) when

β ≡ (0, 0). Also we abbreviate β(xv) by β(v), i.e., we identify the vertices of G

with the variables of Peb(G).

We picture the variables of Peb⊕k(G) as a rectangular matrix, with a column

for every vertex v of G and a row for every index 1 ≤ i ≤ k.
1I am grateful to Ryan Williams for providing this reference on

cstheory.stackexchange.com
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The following lower bound for tree-like resolution is a generalization of the

result of Ben-Sasson et al. [3], the proof is an adaptation2 of their proof.

Theorem 5. For every pointed dag G = (V, E) and every β : V → {0, 1}2,

tree-like resolution refutations of Peb⊕2β (G) require size 2Ω(peb(G)−b), where

b is the number of v ∈ V with β0(v) = 1.

Proof. Let R be a tree-like resolution refutation of Peb⊕2β (G), we show that

|R| ≥ 2peb(G)−b−2 − 1.

To that end, we de�ne a sequence C0, C1, . . . , Ch of clauses in R, with C0 = 0

and Ci+1 one of the predecessors of Ci for every i < h, and Ch a leaf, i.e.,

an axiom from Peb⊕2β (G), together with an increasing sequence of restrictions

ρ0 ⊆ ρ1 ⊆ . . . ⊆ ρh such that Cidρi = 0 for every i ≤ h, and sets S0, S1, . . . , Sh
and T0, T1, . . . , Th with Si ∩ Ti = ∅.

We let S0 be the set of sources in G and T0 = {t} where t is the sink of

G, and ρ0 = ∅. Now assume Ci, ρi, Si and Ti are de�ned, and assume that Ci
is derived from Di ∨ x and D ′i ∨ �x, where x is a variable xv,ε for v ∈ V and

ε ∈ {1, 2}. Let �ε := 3− ε so that xv,�ε is the other variable in column v.

We de�ne Ci+1, ρi+1, Si+1 and Ti+1 by distinguishing cases, where in each

case, ρi+1 is obtained from ρi by specifying the value for the variable xv,ε.

� Case 1a: v ∈ Ti, and β0(v) = 1 or xv,�ε /∈ dom ρi.

Set ρi+1(xv,ε) = β1(v), Si+1 = Si and Ti+1 = Ti.

� Case 1b: v ∈ Ti and xv,�ε ∈ dom ρi.

Set ρi+1(xv,ε) = ρi(xv,�ε)⊕ β1(v), Si+1 = Si and Ti+1 = Ti.

� Case 2a: v ∈ Si, and β0(v) = 1 or xv,�ε /∈ dom ρi.

Set ρi+1(xv,ε) = β1(v)⊕ 1, Si+1 = Si and Ti+1 = Ti.

� Case 2b: v ∈ Si and xv,�ε ∈ dom ρi.

Set ρi+1(xv,ε) = ρi(xv,�ε)⊕ β1(v)⊕ 1, Si+1 = Si and Ti+1 = Ti.

� Case 3: v /∈ Si ∪ Ti and peb(G, Si, Ti ∪ {v}) = peb(G, Si, Ti).

Set ρi+1(xv,ε) = β1(v), Si+1 = Si and Ti+1 = Ti ∪ {v}.

� Case 4a: v /∈ Si∪Ti and peb(G, Si, Ti∪{v}) < peb(G, Si, Ti) and β0(v) = 1.

Set ρi+1(xv,ε) = β1(v)⊕ 1, Si+1 = Si ∪ {v} and Ti+1 = Ti.

In all these cases 1a - 4a, de�ne Ci+1 to be the parent clause of Ci that is

falsi�ed by ρi+1.

2Urquhart [16] claims that a lower bound for tree-like resolution refutations of Peb⊕2(G)
can be obtained by imitating the proof of Ben-Sasson et al. [3] \almost word for word". We
found however that it requires some subtle modi�cations even for the non-generalized case.
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� Case 4b: v /∈ Si∪Ti and peb(G, Si, Ti∪{v}) < peb(G, Si, Ti) and β0(v) = 0.

Choose Ci+1 as that parent clause of Ci s.t. the subtree rooted at Ci+1 is

the smaller among the two, and set a value of ρi+1(xv,ε) such that Ci+1
is falsi�ed by ρi+1. Moreover, let Si+1 = Si ∪ {v} and Ti+1 = Ti.

In the following, we denote X(xv, 2, β) by x
⊕
v , i.e., x

⊕
v = xv,1 ⊕ xv,2 ⊕ β1(v)

if β0(v) = 0 and x
⊕
v = xv,1 ⊕ β1(v) if β0(v) = 1.

Claim. If ρi(x
⊕
v ) = 0, then v ∈ Ti.

If the assumption of the claim holds, then in the case β0(v) = 1, the value

of xv,1 must have been set in case 1a or in case 3. In either case v ∈ Ti.
In the case β0(v) = 0, the variable among xv,ε and xv,�ε whose value was set

later, must have been set by Case 1b, and hence v ∈ Ti.

Claim. If ρi(x
⊕
v ) = 1, then v ∈ Si.

The proof is similar to that of the previous claim.

It follows that Ch is not a clause from a target axiom X(�xt, k, β). If this

were the case, then ρh(x
⊕
t ) = 1, and hence t ∈ Sh by the claim above, whereas

we have t ∈ T0 ⊆ Th and Sh ∩ Th = ∅. By analogous reasoning, Ch cannot be a

clause from a source axiom X(xs, k, β) for a source s of G.

For i ≤ h, let bi be the number of v ∈ V with β0(v) = 1 such that xv,1 ∈
dom ρi.

Claim. For every i ≤ h, the size si of the subtree of R rooted at Ci is at

least si ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1.

The claim is proven by induction on i, downward from h to 0.

By the considerations above, Ch must be a clause from X(�xu ∨ �xv ∨xw, 2, β)

for some w ∈ V with predecessors u and v. Therefore ρh(x
⊕
u ) = ρh(x

⊕
v ) = 1,

so u, v ∈ Sh by the claim above, and ρh(x
⊕
w) = 0, and thus w ∈ Th. We get

peb(G, Sh, Th) = 3, and hence sh = 1 = 2peb(G,Sh,Th)−bh+bh−2−1, which shows

the induction base for i = h.

Assume the claimed lower bound holds for si+1. Since si is the size of the

tree rooted at Ci, which contains the subtree rooted at Ci+1 of size si+1, we

obviously have si ≥ si+1.
If Ci+1 is de�ned by one of the cases 1a through 3, then peb(G, Si+1, Ti+1) =

peb(G, Si, Ti) and bi+1 ≥ bi , and thus

si ≥ si+1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1 ,

which shows the claim for si.

If Ci+1 was de�ned using case 4a, then we have

peb(G, Si+1, Ti+1) ≥ peb(G, Si, Ti) − 1
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by Lemma 3, and bi+1 = bi + 1, thus we get

si ≥ si+1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−1−bh+bi+1−2 − 1 ,

which shows the claim for si.

If Ci+1 was de�ned using case 4b, then we have

peb(G, Si+1, Ti+1) ≥ peb(G, Si, Ti) − 1

by Lemma 3 again, and bi+1 = bi, therefore we obtain

si ≥ 2si+1 + 1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1 ,

which shows the claim for si.

The theorem follows, since we have |R| = s0, and b0 = 0, and bh ≤ b, and
peb(G, S0, T0) = peb(G).

7 The Lower Bound

We will now prove one half of our main result, a lower bound on the size of

RTL(k)-refutation of the (k+ 1)-fold xori�cation of the pebbling formulas.

Theorem 6. For a pointed dag G, every RTL(k)-refutation of Peb⊕(k+1)(G)

requires size 2Ω(peb(G)).

Proof. Let R be an RTL(k)-refutation of F := Peb⊕(k+1)(G). Note that every

clause in F is of width at least k+1. Let C be the �rst clause in R with w(C) ≤ k,
so that C could possibly be used as a lemma. Then the subtree RC of R rooted

at C is a tree-like resolution derivation of C from F.

Let ρ be the smallest restriction with Cdρ = 0, and note that |ρ| ≤ k. Recall
that we picture the variables of Peb⊕k(G) as arranged in a rectangular matrix,

with a column for every vertex v of G and a row for every index 1 ≤ i ≤ k.
There are two cases: either the variables set by ρ are all in the same column,

or ρ sets variables from at least two di�erent columns.

In the latter case, there are at most k− 1 rows set in every column, thus for

each column v there are two rows i(v) and i ′(v) such that xv,i(v) and xv,i ′(v)
are not set by ρ. In this case, we can set all but these two rows in every column,

i.e., extend ρ to a restriction ρ∗ by setting ρ∗(xv,j) = 0 for every variable

xv,j /∈ dom ρ with j /∈ {i(v), i ′(v)}. De�ne β0(v) = 0 for every v ∈ V, and
β1(v) :=

⊕
j/∈{i(v),i ′(v)} ρ

∗(xv,j).

In the �rst case, let v be the column containing all variables set by ρ. If

there are fewer than k variables set, then we can proceed as in the other case.

Otherwise, there is one row i such that xv,j is set by ρ for all j 6= i. In this

case, we set all but two rows in every other column, and in column v only one
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variable remains. Thus we pick a row i ′ with i ′ 6= i arbitrarily, and extend

ρ to a restriction ρ∗ by setting ρ∗(xu,j) = 0 for every column u 6= v and row

j /∈ {i, i ′}. Set β0(v) = 1 and β1(v) =
⊕
j6=i ρ(xv,j) for the vertex v, and for all

other vertices u 6= v, set β0(u) = 0 and β1(u) = 0.
In both cases, for the so de�ned function β we have Fdρ∗ ≡ Peb⊕2β (G) after

a renaming of the variables that changes only the numbering of the rows.

Thus in both cases RCdρ∗ is a tree-like resolution refutation of Peb⊕2β (G), and

the number b of v ∈ V with β0(v) = 1 is at most 1, therefore |RC| ≥ 2Ω(peb(G))

by Theorem 5. The size lower bound for R follows.

8 The Upper Bound

We now prove the remaining half of our result, the upper bound.

Theorem 7. For every pointed dag G with n vertices, the formulas Peb⊕k(G)

have regular RTL(k)-refutations of size O(23kn).

Proof. Fix a topological ordering ≺ of G, and let S be the set of sources of G.

We �rst show the following claim:

Claim. Let w ∈ V with predecessors u and v, where u ≺ v. For every clause
C in x⊕kw , there is a tree-like regular resolution derivation of C from x⊕ku
and x⊕kv and (�xu ∨ �xv ∨ xw)

⊕k of size O(22k). Moreover, in this derivation

only the variables from columns u and v are eliminated, and on every path

from a leaf labeled with a clause from x⊕kv to C, only the variables from

column v are eliminated.

Proof. Take a regular tree-like resolution refutation Rv of x
⊕k
v and �x⊕kv , of size

O(2k). Add the clause C to every clause in Rv except the leaves from x⊕kv . This

yields a derivation R ′v of C from x⊕kv and �x⊕kv ∨ C.

Now take a regular tree-like resolution refutation Ru of x⊕ku and �x⊕ku , of size

O(2k). For every clause C ′ in �x⊕kv ∨ C, take a copy of Ru, and add C ′ to every

clause in it except the leaves from x⊕ku . Replace the leaf in R ′v labeled C ′ by

the result. This gives the desired derivation and thus proves the claim.

To prove the theorem, we construct a sequence R1, . . . , R` of partial resolu-

tion trees with lemmas, in which some leaves are labeled by clauses that are not

axioms or lemmas derived earlier, these are called the open leaves. In addition,

we de�ne a sequence U1, . . . , U` of subsets of V \ S, such that the following

invariants hold:

� The open leaves in Ri are all among the clauses from xu,1⊕ . . .⊕ xu,k for
an u ∈ Ui.
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� On the path from an open leaf with a clause from xu,1⊕ . . .⊕ xu,k to the
root, all variables resolved are from a column v ∈ V with u � v.

Let R1 be a tree-like regular resolution refutation of the clauses from �x⊕kt ,

which are axioms of Peb⊕k(G), and those from x⊕kt , which are the open leaves

of R1, and let U1 := {t}. Obviously the invariants hold, and the size of R1 is 2
k.

Assume we have constructed Ri, we show how to construct Ri+1. Let v be

the maximal element of Ui w.r.t. the ordering ≺, and let u1 and u2 be its

predecessors. For each clause C from x⊕kv , replace its �rst occurrence in Ri by

the derivation RC of C from x⊕ku1
and x⊕ku2

given by the claim above. The other

occurrences of C will then become lemmas.

Let the result be Ri+1, then the open leaves of Ri+1 are those of Ri without

the clauses from x⊕kv , plus those leaves of RC labeled by clauses from x⊕ku1
and

x⊕ku2
, except when u1 or u2 are sources. Thus if we de�ne Ui+1 := (Ui \ {v}) ∪

({u1, u2} \ S), then the �rst invariant holds.

Since in a path from an open leaf C of Ri to the root, only variables from

columns w with v � w are eliminated, and in RC only variables from columns

u1 and u2, the second invariant as well as regularity of Ri+1 hold.

For each of the 2k−1 clauses in x⊕kv , we have added one derivation of size

22k, hence the size of Ri+1 is |Ri+1| ≤ |Ri|+ 2
3k.

The process terminates after at most n iterations, since max≺Ui strictly

decreases in every step. Since in R`, there are no open leaves left, it is a regular

RTL-refutation. Since every lemma used is a clause from x⊕kv for some v ∈ V,
they are of size k, hence R` is a regular RTL(k)-refutation of Peb⊕k(G) of size

23k · n.

9 Wrapping Up

Finally, we put everything together to prove the main theorem.

of Theorem 2. Let F
(k)
n be the formula Peb⊕(k+1)(Gn), where Gn are the

graphs given by Theorem 4 with n vertices and pebbling number peb(Gn) =

Ω(n/ logn). For k = O(logn), these formulas are of polynomial size nO(1).

By Theorem 6, the formulas F
(k)
n require RTL(k)-refutations of exponential

size 2Ω(n/ logn), and by Theorem 7, they have regular RTL(k)-refutations of

polynomial size nO(1).

Note that for k larger than O(logn), the formulas Peb⊕(k+1)(Gn) are them-

selves of super-polynomial size in n, and therefore have no proofs of size poly-

nomial in the size of the underlying graph Gn.
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10 Conclusion

We have shown that for resolution trees with lemmas { a resolution-based propo-

sitional proof system that forms the basis of a family of proof systems capturing

the complexity of clause-learning algorithms { an increase of one in the width

of clauses that may be used as lemmas can lead to an exponential speed-up.

The lower bounds hold for the strongest form of these proof systems with no

regularity restrictions, and even with the weakening rule. The upper bounds,

on the other hand, are given for a rather weak variant, the given refutations are

regular and do not use any weakenings.

Unfortunately, we cannot immediately conclude an exponential speed-up of

the DPLL algorithm with clause learning with learned clauses of width k + 1

over the version with learned clauses of width k from this. In order for that

conclusion to hold, the upper bound would have to be given for a still weaker

variant of the system, in which only lemmas derived by input resolution can be

used, i.e. a restricted version of WRTI without use of the w-resolution rule and

with lemmas restricted to width k+ 1.
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