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Abstract. We present logspace algorithms for the canonical labeling
problem and the representation problem of Helly circular-arc (HCA)
graphs. The first step is a reduction to canonical labeling and represen-
tation of interval intersection matrices. In a second step, the Δ trees
employed in McConnell’s linear time representation algorithm for interval
matrices are adapted to the logspace setting and endowed with additional
information to allow canonization. As a consequence, the isomorphism and
recognition problems for HCA graphs turn out to be logspace complete.

1 Introduction

A graph G is circular-arc if each vertex v ∈ V (G) can be assigned an arc ρ(v) on
a circle such that two vertices are adjacent if and only if their arcs intersect. We
call any such assignment ρ a circular-arc representation of G and the arc system
ρ(G) = {ρ(v) | v ∈ V (G)} a circular-arc model ofG.G is Helly circular-arc (HCA)
if G has a representation ρ such that the arcs of the vertices in every clique C
of G have non-empty intersection. We call such a ρ an HCA representation and
ρ(G) an HCA model of G. In this article, we solve the canonical representation
problem for HCA graphs in logspace. That is, we give a logspace algorithm that
computes for any given HCA graph G an HCA representation ρG such that
isomorphic HCA graphs G and H receive identical HCA models ρG(G) = ρH(H).
If the input graph G is not HCA, the algorithm will detect this.

Previous results. HCA graphs were introduced by Gavril under the name of
Θ circular-arc graphs [Gav74]. Gavril gave an O(n3) time representation algorithm
for HCA graphs. Hsu improved this to O(n·m) [Hsu95]. Recently, Joeris et al. gave
a linear time representation algorithm for this class [JLM+11]. Chen gave a parallel
AC2 representation algorithm [Che96]. The fastest known isomorphism algorithm
for HCA graphs is due to Curtis et al. and works in linear time [CLM+13]. Note
that, though a logspace algorithm can take time bounded by a polynomial of
high degree, the logspace solvability implies that the problem can be solved even
in logarithmic time by a CRCW PRAM with polynomially many processors.
∗ Supported by DFG grant KO 1053/7–1.
† Supported by DFG grant VE 652/1–1. On leave from the Institute for Applied
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For the special case of interval graphs (which are easily seen to be HCA),
the linear time algorithms by Booth and Lueker for recognition [BL76] and
isomorphism [LB79] have been known for many decades. Recently, these have
been supplemented with a logspace algorithm for canonical representation of
interval graphs [KKL+11].

Generalizing these results to the class of all circular-arc graphs remains a
challenging problem. While the representation problem for this class is solved in
linear time by McConnell’s algorithm [McC03], no polynomial-time isomorphism
test for circular-arc graphs is currently known (see the discussion in [CLM+13],
where a counterexample to the correctness of Hsu’s O(nm) time isomorphism
algorithm [Hsu95] is given). The history of the isomorphism problem for circular-
arc graphs is surveyed in more detail by Uehara [Ueh13].

This motivates the persistent interest in isomorphism algorithms for subclasses
of circular-arc graphs. Besides HCA graphs, mainly proper circular-arc graphs and
concave-round graphs have been studied. The isomorphism problem for these two
classes can be solved in linear time [LSS08; CLM+13] and in logspace [KKV12].

Overview of our results. Our logspace algorithm for canonical representation of
HCA graphs proceeds in several steps; see Fig. 1 for an overview.

Hsu observed that the structure of certain circular-arc graphs G allows
to prescribe the intersection structure of each pair of arcs in a circular-arc
representation of G as di (disjoint), cd (contained), cs (contains), cc (circle
cover), and ov (overlap) [Hsu95]. We store this information in the neighborhood
matrix λG of G (for more details see Section 2).

The motivation for switching to the matrix λG is that flipping the arc of a
vertex (i.e., exchanging its two start and end points) can be mimicked in λG by
substituting some of its entries (details are given in Section 3). In fact, we show
how to identify a subset X ⊆ V (G) such that flipping the arcs of all vertices
in X results in a matrix λ(X)

G that corresponds to an arc system which does not
cover the whole circle. We choose X as an inclusion-maximal clique of G that
is the common neighborhood of two vertices, and prove that at least one such
clique can be found in logspace.

In order to compute an HCA representation for G from the matrix λ(X)
G we

give a logspace algorithm solving the representation problem of interval matrices.
Let an intersection matrix be a quadratic matrix µ = (µi,j)i 6=j∈V with entries

GHCA graph

λGHCA matrix

λinterval matrix

Δ(λ)colored Δ tree Δ̂(λ) canonical Δ treetree
canonization
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Fig. 1. Overview of the canonical representation algorithm for HCA graphs
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di, cs, cd, cc, ov. We call the elements of V the vertices of µ and we assume
that V is linearly ordered. An intersection matrix µ is called CA matrix if it
is possible to assign to each vertex i ∈ V an arc ρ(i) on a circle such that for
any pair of vertices i 6= j ∈ V the arcs ρ(i) and ρ(j) intersect in accordance
with the entry µi,j . A CA matrix µ is called an HCA matrix (interval matrix) if
the arc system ρ(V ) = {ρ(i) | i ∈ V } is Helly (does not cover the whole circle,
respectively).

Our logspace algorithm for computing a representation of a given interval
matrix is described in Section 4. McConnell gave a linear time algorithm for this
problem as part of his representation algorithm for circular-arc graphs [McC03].
He introduced the Δ tree of an interval matrix to capture the different possible
interval representations. Our key contribution here is to compute the Δ tree in
logspace.

In Section 5, we show how to compute canonical representations of interval
matrices. This is a significant extension of McConnell’s algorithm, which only
deals with representation. We implement this step as a reduction to colored tree
canonization, which can be solved in logspace using Lindell’s algorithm [Lin92].

2 Preliminaries

A circular-arc system A is a set of non-empty arcs on a circle. An interval
system I is a set of non-empty intervals on a line. Equivalently, we can define
an interval system as a circular-arc system I having the special property that
there is at least one point on the circle that is not covered by any arc of I. A
set system S has the Helly property if every subsystem S ′ ⊆ S with non-empty
pairwise intersections has a non-empty overall intersection, i.e., (∀A,B ∈ S ′ :
A ∩ B 6= ∅) ⇒

⋂
A∈S′ A 6= ∅. It is easy to see that every interval system

has the Helly property, but that there are non-Helly circular-arc systems; see
Figure 2 (a) for an example. To keep notation concise, we use CA as a shorthand
for circular-arc and HCA as an abbreviation of Helly circular-arc.

Two sets A and B intersect if A ∩ B 6= ∅. They overlap (written A G B) if
additionally A \B 6= ∅ and B \A 6= ∅.

Given a set system S, its intersection graph I(S) has one vertex for each
set A ∈ S, and two nodes A,B ∈ S are adjacent if and only if A ∩ B 6= ∅. A
graph G is a CA graph if there is a CA system A such that G ∼= I(A). In this
case, A is called a CA model of G, and an isomorphism ρ : V (G)→ A from G
to I(A) is called a CA representation of G. HCA graphs and interval graphs are
defined analogously, and so are their respective models and representations.

Given a graph G and a vertex v ∈ V (G), let NG[v] denote the closed neigh-
borhood of v in G, i.e., the set of vertices with distance at most 1 from v. If G is
understood from the context, the index will be omitted. A vertex v ∈ V (G) is
universal if N [v] = V (G). Two vertices u, v ∈ V (G) are twins if N [u] = N [v]. A
twin class is an inclusion-maximal set U ⊆ V (G) such that all pairs of vertices
in U are twins.
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(a) (b) (c)

Fig. 2. (a) A non-HCA model of the HCA graph K3. (b) Let Gn denote the split graph
on n + n vertices consisting of an n-clique C and a set S of n independent vertices,
which are connected by the bipartite complement of a perfect matching between C
and S. Every Gn is HCA; the figure shows an HCA model of G4. Note that Gn has
exactly n + 1 maxcliques, each of size n, and the maxclique C cannot be described
as the common neighborhood of less than n vertices. (c) The complement graph Hn
of n independent edges is CA. It has 2n maxcliques Ci, each containing exactly one
endpoint of each edge in Hn. Since the common neighborhood of fewer than n vertices
of Hn contains both endpoints of at least one edge in Hn, no maxclique Ci can be
described in this way. The figure shows a CA model of H4.

Let µ = (µi,j)i 6=j∈V be a quadratic matrix. We call the elements of V the
vertices of µ and we assume that V is linearly ordered. Another quadratic
matrix λ = (λi,j)i6=j∈U is isomorphic to µ (written λ ∼= µ) if there is a bijection
σ : U → V such that λi,j = µσ(i),σ(j) for all i 6= j ∈ U . Note that two graphs are
isomorphic if and only if their adjacency matrices are isomorphic.

An intersection matrix is a matrix µ = (µu,v)u 6=v∈V with entries µu,v ∈
{di, cs, cd, cc, ov}. Our interest is in intersection matrices that describe the
intersection types between the arcs of a CA system.

Definition 2.1. Let A be a CA system such that no single arc C ∈ A covers
the whole circle and the endpoints of all arcs C ∈ A are pairwise distinct. The
intersection matrix µA = (µA,B)A 6=B∈A of A is defined by the entries

µA,B :=



di if A ∩B = ∅;
cd if A ( B;
cs if A ) B;
cc if A G B and A and B jointly cover the circle;
ov if A G B but A and B do not jointly cover the circle.

The intersection matrix µI of an interval system I with pairwise distinct endpoints
is defined similarly, using only the entries di, cd, cs and ov (for A G B). A
matrix µ is a CA matrix if there is a CA system A such that µ ∼= µA. HCA
matrices and interval matrices are defined analogously.

This notation was introduced in [LS09].
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Definition 2.2. Given a graph G, its neighborhood matrix λG = (λu,v)u 6=v∈V (G)
is defined by the entries

λu,v :=



di if {u, v} /∈ E(G);
cd if N [u] ( N [v];
cs if N [u] ) N [v];
cc if N [u] G N [v], N [u] ∪N [v] = V,

and ∀w ∈ N [u] \N [v] : N [w] ⊂ N [u],
and ∀w ∈ N [v] \N [u] : N [w] ⊂ N [v];

ov otherwise.

Note that λG can be viewed as an augmented adjacency matrix, as 0 entries
correspond to di and 1 entries are subdivided into four different categories.
Following Hsu, we call a CA representation ρ : V (G) → A of G normalized if
ρ is an isomorphism between the neighborhood matrix λG of G and the CA ma-
trix µA [Hsu95]. Hsu provides an algorithm that transforms any CA representation
of a CA graph with certain properties into a normalized representation, obtaining
the following result.

Lemma 2.3 ([Hsu95]). Any CA graph G without twins and universal vertices
has a normalized CA representation.

All normalized CA representations have a property that is called stable by Joeris
et al. who prove that every stable CA representation of an HCA graph G yields
an HCA model [JLM+11, Theorem 4.1]. This implies the following.

Lemma 2.4 ([cf. JLM+11]). Any normalized CA representation of an HCA
graph G without twins and universal vertices provides an HCA model for G.

3 Transforming HCA matrices into interval matrices

In this section we describe a logspace reduction of the (canonical) representation
problem for HCA graphs to that of interval matrices.

It can be assumed that the input graph G contains no twins and no universal
vertices, as the following operations are possible in logspace: Find and remove
all universal vertices, and find and remove all but one vertex from each twin
class, obtaining a vertex-colored graph G′, where each vertex is colored with the
number of twins it stands for. Also, any (H)CA representation ρ′ of G′ can be
extended to a (H)CA representation ρ of G by mapping each deleted twin to the
same arc as the vertex from its twin class that was kept, and by adding for each
universal vertex in G an arc that covers the circle. Because of the colors, the
resulting model depends only on the colored model ρ′(G′) and on the number of
universal vertices, and thus is canonical for G provided that ρ′(G′) is canonical
for G′.

So let G be a twin-free HCA graph with no universal vertex, and let λG be
its neighborhood matrix (cf. Definition 2.2). Further, let ρ : V (G) → A be a
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normalized CA representation of G; such a representation exists by Lemma 2.3
and it is Helly by Lemma 2.4.

Following McConnell we can transform A into an interval system A(X) =
{C ∈ A | x 6∈ C} ∪ {C̃ | C ∈ A, x ∈ C} by choosing any point x on the circle
that is different from all endpoints of A and flipping all the arcs in the set
X = {C ∈ A | x ∈ C}. Flipping an arc C just means that we replace it with the
arc C̃ having the same endpoints as C but covering the opposite part of the circle.
McConnell observed that flipping arcs of A corresponds to the replacements in
the CA matrix µA (cf. Definition 2.1) that are given in Table 1. Denote the
result of flipping a subset X of the vertices of a CA matrix µ as µ(X). Note that
µ(X) will become an interval matrix (without cc entries) if exactly the arcs that
contain a point x are flipped.

µA,B di cd cs cc ov
µA,B̃ cs cc di cd ov
µÃ,B cd di cc cs ov
µÃ,B̃ cc cs cd di ov

Table 1. The effect of flipping arcs of a CA system on the entries of its CA matrix
µA = (µA,B)A 6=B∈A

The rules described in Table 1 can also be applied to the neighborhood
matrix λG of a CA graph G. To ensure that the resulting matrix λ(X)

G is interval, a
suitable vertex set X ⊆ V (G) has to be used. If we don’t have a CA representation
of G, the set X has to be identified only from the structure of G. The following
fact implies that if G is an HCA graph, any inclusion-maximal clique (maxclique
for short) C of G can be used as X.

Fact 3.1 Let ρ : V (G)→ A be any normalized HCA representation of a graph G
and let C be any maxclique of G. Then there is a point x in the HCA model A
such that no arc has x as its endpoint and {ρ(v) | v ∈ C} = {A ∈ A | x ∈ A}.

Proof. As C is a clique, the arcs in ρ(C) = {ρ(v) | v ∈ C} intersect pairwise.
As A is Helly,

⋂
v∈C ρ(v) is non-empty. By maximality of C, no further arc can

contain any point x in this intersection. ut

In an interval graph, all maxcliques can be characterized as the common
neighborhood of two vertices. This property was used in [KKL+11] to reduce
the canonical representation problem of interval graphs to that of interval hy-
pergraphs. The same approach is not possible for HCA graphs, as they may
contain maxcliques that cannot be characterized as the common neighborhood
of constantly many vertices; see Fig. 2 (b) for an example. However, at least one
maxclique can be found in this way.
Theorem 3.2. Let G be an HCA graph. Then there are u, v ∈ V (G) (possibly
u = v) such that N [u, v] is a maxclique.
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We remark that general CA graphs do not necessarily have such a maxclique, see
Fig. 2 (c) for an example.

Proof. Let λG = (λu,v)u6=v∈V (G) be the neighborhood matrix and let ρ : V (G)→
A be a normalized HCA representation of G. In order to find two vertices
u, v ∈ V (G) such that N [u, v] is a maxclique, we start with an arbitrary vertex v
such that there is no vertex u with λu,v = cd (i.e., 6 ∃u : N [u] ( N [v]). Note that
there cannot be a vertex w with λv,w = cc, since this would imply that there is
a vertex u ∈ N [v] \N [w] (because N [w] G N [v]) with N [u] ( N [v] (we can rule
out equality because w ∈ N [v] \N [u]).

In case there is no vertex w with λv,w = ov, N [v] is a maxclique. This follows
since λv,w = cd for all w ∈ N(v) and hence, for all w,w′ ∈ N [v] it holds that
w ∈ N [v] ⊆ N [w′].

Otherwise, we choose a vertex u ∈ N [v] with λv,u = ov, such that N [u, v]
is minimal w.r.t. inclusion and claim that N [u, v] is a maxclique. In order
to derive a contradiction assume that there exist w,w′ ∈ N [u, v] such that
w /∈ N [w′]. If λv,w = cd (or λv,w′ = cd) then it follows that w′ ∈ N [v] ⊆ N [w]
(or w ∈ N [v] ⊆ N [w′]), a contradiction.

If λv,w = λv,w′ = ov then ρ(w) ∩ ρ(w′) = ∅ and ρ(w) G ρ(v) G ρ(w′).
Since ρ(u) G ρ(v) it follows that ρ(u) overlaps ρ(v) from the same side as one
of ρ(w) and ρ(w′), say ρ(w). Because of w′ ∈ N [u, v] \ N [w] and the Helly
property, it follows that ρ(u) ∩ ρ(v) ∩ ρ(w′) 6= ∅ but ρ(w) ∩ ρ(v) ∩ ρ(w′) = ∅,
implying that ρ(v) ∩ ρ(w) ⊆ ρ(v) ∩ ρ(u). Using again the Helly property, it now
follows for any x ∈ N [w, v] that ρ(v) ∩ ρ(w) ∩ ρ(x) 6= ∅ which in turn implies
that ρ(v) ∩ ρ(u) ∩ ρ(x) 6= ∅. Hence, we get the inclusion N [w, v] ⊆ N [u, v],
contradicting the choice of u, since w′ ∈ N [u, v] \N [w, v]. ut

Theorem 3.3. The (canonical) representation problem for HCA graphs can be
reduced in logspace to the (canonical) representation problem for interval matrices.

Proof. On input an HCA graph G, the algorithm works as follows.
1. Compute the neighborhood matrix λG.
2. Find all pairs u, v ∈ V (G) such that N [u, v] is a maxclique (allowing u = v).

By Theorem 3.2 at least one such pair exists. Denote the set of all maxcliques
that are found in this way byM.

3. For each M ∈M: Compute the interval matrix λ(M)
G and mark the flipped

vertices with a new color. Compute a (canonical) interval representation
of λ(M)

G and flip back all colored arcs, obtaining a CA representation ρG,M
of λG and thus of G, which is Helly by Lemma 2.4.

4. Among the ρG,M computed in the previous step, choose ρG as one that results
in a minimal HCA model ρG,M (G). Output ρG.

From the above observations it is clear that ρG is an HCA representation of G. To
see that it is canonical if the interval representation of λ(M)

G is canonical, consider
any isomorphic copy G′ = ϕ(G). Clearly, M = NG[u, v] is a maxclique of G if
and only if M ′ = NG′ [ϕ(u), ϕ(v)] = ϕ(M) is a maxclique of G′. Note that ϕ is
also an isomorphism between the matrices λG and λG′ and between the matrices
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λ
(M)
G and λ(M ′)

G′ . Thus the latter two receive the same colored canonical interval
model I. As the HCA models ρG,M (G) and ρG′,M ′(G′) are both obtained from I
by flipping back the colored arcs, it follows that ρG,M (G) = ρG′,M ′(G′). Hence,
G and G′ receive the same HCA model ρG(G) = min{ρG,M (G) |M ∈ M} =
min{ρG′,ϕ(M)(G′) |M ∈M} = ρG′(G′). ut

4 Finding representations of interval matrices in logspace

McConnell [McC03] showed how to find interval representations of interval
matrices in linear time. In this section, we apply some of his techniques to solve
this task in logspace.

Given an intersection matrix λ = (λu,v)u 6=v∈V , define Gov,di as the undirected
graph on the vertex set V with edges {u, v} for each pair with λu,v ∈ {ov, di}.
Similarly, define Dcd (resp. Dcs) as the directed graph on V with arrows (u, v)
for each pair with λu,v = cd (resp. λu,v = cs).

A transitive orientation of an undirected graph gives directions to all edges
such that the resulting set of arrows is transitive. An interval orientation of an
intersection matrix λ is a transitive orientation Dov,di of Gov,di that remains
transitive when restricted to Gdi and that satisfies

λu,v = di ∧ λu,w = λv,w = ov⇒ either (u,w) ∈ Dov,di or (v, w) ∈ Dov,di (1)

The last condition requires that if w stays in overlap relation with two disjoint
vertices u, v, then w has to be arranged in between u and v. Any interval
representation ρ of λ induces an interval orientation of λ: An edge {u, v} of Gov,di
is oriented as (u, v) if and only if ρ(u) < ρ(v), i.e., if the interval ρ(u) starts left of
the interval ρ(v). The following lemma shows the converse, implying that interval
orientations are in 1-1 correspondence with interval representations (provided
that we fix the set of endpoints as {0, . . . , 2n− 1}).

Lemma 4.1. Let λ be an interval matrix, and let Dov,di be an interval orientation
of it. Then there exists an interval representation ρ of λ that induces the interval
orientation Dov,di. Moreover, ρ is computable in logspace on input λ and Dov,di.

Proof sketch. Let λ = (λu,v)u 6=v∈V . The idea is to order the left endpoints
according to Dov,di ∪Dcs and the right endpoints according to Dov,di ∪Dcd, and
to interleave these two linear orders such that the relationships in λ are obeyed.
Formally, define ρ(v) = [lv, rv], where

lv = |{u | λu,v = cs ∨ (u, v) ∈ Dov,di}|+ |{u | λu,v = di ∧ (u, v) ∈ Dov,di}|
rv = lv + 1 + |{u | λu,v = ov}|+ 2 · |{u | λu,v = cd}| ut

By Lemma 4.1 it suffices to compute an interval orientation Dov,di of a given
interval matrix λ to get an interval representation of λ.

Definition 4.2 ([cf. McC03, Definition 6.3]). Let λ be an intersection ma-
trix, and let {u, v} and {u,w} be edges in Gov,di. The binary relation Δ contains
the entries (u, v)Δ(u,w) and (v, u)Δ(w, u) if one of the following holds:
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(a)
ρ(u)

ρ(v)

ρ(w)

(b)
ρ(u)

ρ(v)

ρ(w)

(c)
ρ(u)

ρ(v)

ρ(w)

Fig. 3. In all three cases of Definition 4.2 there is no way to place ρ(u) between ρ(v)
and ρ(w).

(a) λu,v = λu,w = di and λv,w 6= di
(b) λu,v, λu,w ∈ {ov, di} and λv,w ∈ {cd, cs}
(c) λu,v = di and λu,w = λv,w = ov

If any of these three condition holds true, then in any interval representation ρ
of λ, the intervals ρ(v) and ρ(w) must be on the same side of ρ(u); see Fig. 3.
In other words, any interval orientation Dov,di of λ must contain (u, v) if and
only if it contains (u,w). This is the rationale to define Δ implication classes as
the equivalence classes of the symmetric transitive closure of Δ. The union of a
Δ implication class and its transpose is called Δ color class and can be viewed
as a set of (undirected) edges in Gov,di.

Lemma 4.3 ([McC03, Theorem 6.4]). Each interval orientation of λ con-
tains exactly one Δ implication class from each Δ color class.

This implies that (u, v) and (v, u) cannot be in the same Δ implication class.
However, not any selection of a Δ implication class from any Δ color class yields
an interval orientation of λ. To find a valid selection, we need to consider the
Δ tree of λ.

A module of a matrix λ = (λu,v)u 6=v∈V is a subset U ⊆ V that is not
distinguished by any vertex outside U , i.e., for any u 6= v ∈ U and w ∈ V \ U
it holds λu,w = λv,w and λw,u = λw,v. McConnell [McC03] calls a module U
of an intersection matrix λ a Δ module, if it is a clique in the corresponding
intersection graph (i.e., λu,v 6= di for all u 6= v ∈ U) or if there is no v ∈ V \ U
such that λv,u = ov for all u ∈ U . The Δ modules of an intersection matrix form
a tree decomposable family [McC03, Theorem 6.9]. The resulting decomposition
tree, i.e., the transitive reduction of the containment relation among strong
Δ modules U (i.e., U does not overlap any other Δ module), is called Δ tree of λ.
The leaves of the Δ tree are trivial modules consisting of single vertices. An inner
node in the Δ tree is called degenerate if taking the union of any of its children
gives a Δ module, and prime otherwise. If U is an inner node in the Δ tree and
W1, . . . ,Wk are its children, the quotient of λ at U is the submatrix λ[U ] of λ on
the vertices W = {w1, . . . , wk} with wi ∈ Wi. As the Wi are disjoint modules,
λ[U ] does not depend on the actual choice of the wi. In the quotient matrix of
a degenerate node, its children are either in pairwise ov, in pairwise di, or in
pairwise cd/cs relation [McC03, p. 110]. Hence, the inner nodes of the Δ tree
can be classified as prime, disjoint, overlap or containment nodes.

The following results from [McC03] show that the Δ tree provides a compact
representation of all possible interval orientations of λ.
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Lemma 4.4 ([McC03, Lemma 6.14]). The set of vertices spanned by a
Δ color class in an interval intersection matrix λ is a Δ module of λ.

Lemma 4.5 ([McC03, Theorem 6.15]). A set of edges of Gov,di is a Δ color
class if and only if it is the set of edges of Gov,di connecting all children of a
prime node or a pair of children of a degenerate node in the Δ tree.

Lemma 4.6 ([McC03, Theorem 6.19]). Any acyclic union of Δ implication
classes gives an interval orientation of λ.

The next lemma reduces the problem of computing an interval orientation
of λ to the problem of computing interval orientations of the quotient matrices
of the inner nodes of the Δ tree.

Lemma 4.7. Let λ be an intersection matrix, and let U1, . . . , Uc be the inner
nodes of its Δ tree. Any sequence of interval orientations D1, . . . , Dc for the
quotient matrices λ[U1], . . . , λ[Uc] induces an interval orientation D of λ, which
can be computed in logspace.

Proof. By Lemma 4.5, there is a one-one correspondence between the Δ color
classes and certain subsets of children of the nodes U1, . . . , Uc (more precisely,
any pair of children if Ua is degenerate and all children if Ua is prime). For
each node Ua, the interval orientation Da of λ[Ua] picks exactly one of the two
Δ implication classes in all the color classes associated with its children. Define D
as the union of these implication classes; this construction is clearly possible
in logspace. By Lemma 4.6 it suffices to show that D is acyclic. This can be
seen as follows: By Lemma 4.1, the interval orientations Da induce interval
representations ρa of the quotient matrices. For each directed edge (u, v) ∈ D,
let Ua(u,v) denote the Δ tree node that has u and v in different children. Then
(u, v) ∈ Da(u,v) and thus ρa(u,v)(u) < ρa(u,v)(v). Hence, any edge (u, v) leads
further right in the smallest Δ tree node that contains it. This implies that D is
acyclic. ut

As soon as we have the Δ tree, it’s very easy to compute interval orientations
for the quotient matrices corresponding to its inner nodes U . If U is prime, we
can take any of the two implication classes of the color class connecting all its
children. If U is degenerate of type overlap or disjoint, any linear ordering of its
children provides an interval orientation for its quotient matrix. Finally, if U is
of type containment, no edges have to be oriented.

Theorem 4.8. Given an intersection matrix λ, its Δ implication classes, its
Δ color classes, and its Δ tree can be computed in logspace.

Proof. The Δ implication classes (and thus the Δ color classes) can be found in
logspace using Reingold’s reachability algorithm on an auxiliary graph that has
the pairs (u, v) with λu,v ∈ {ov, di} as vertices and the symmetric closure of the
Δ relation (Definition 4.2) as edges.

To compute the Δ tree, consider the overlap graph O having as its nodes the
vertex sets spanned by the Δ color classes and the overlap relation on these nodes
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as its edge set. By Lemma 4.4, the nodes of O are Δ modules. Also, the connected
components of O correspond to Δ modules, as these form a tree decomposable
family.

The prime Δ modules and the degenerate Δ modules of type overlap and
disjoint correspond to the connected components of O as they are not overlapped
by another Δ module and hence form strong Δ modules. Note that the prime
Δ modules and the degenerate Δ modules of type overlap and disjoint having
only two children appear as isolated nodes in O. The leaf nodes of the Δ tree are
just the vertices of λ.

It remains to compute the degenerate nodes of type containment. We first
argue that every containment node is the union of certain non-containment
nodes (which are already computed). Indeed, consider any containment node U
in the Δ tree. The containment structure of U induces a linear order on its
children U1, . . . , Uc, i.e., for all ua ∈ Ua and ub ∈ Ub with a < b it holds that
λua,ub

= cd (and λub,ua = cs). Notice that no Ua can be a containment node:
Otherwise, let U ′1 . . . , U ′c′ be the children of Ua, again ordered by containment.
Consider the sequence U1, . . . , Ua−1, U

′
1, . . . , U

′
c′ , Ua+1, . . . , Uc. It is not hard to

see that the union of the sets in any consecutive subsequence is a Δ module, and
some of these would overlap Ua, a contradiction.

To compute the containment nodes of the Δ tree, define an auxiliary graph C
with all non-containment nodes as vertices, putting edges between two nodes
U1, U2 if

∀u1 ∈ U1, u2 ∈ U2, u3 /∈ U1 ∪ U2 : λu1,u2 ∈ {cd, cs} ∧ λu1,u3 = λu2,u3 .

This results in edges between children of containment nodes that are adjacent
in the sequence mentioned above. The connected components of C (which are
paths) correspond to the containment nodes, which can thus be computed in
logspace.

Finally, compute the edges of the Δ tree as the transitive reduction of the
containment relation among the nodes. ut

By combining Theorem 4.8 with Lemma 4.1 we obtain the following result.

Corollary 4.9. Given an intersection matrix λ, an interval representation for
it can be computed in logspace.

5 Finding canonical representations for interval matrices

In this section, we describe a logspace algorithm for computing a canonical
representation of a given interval matrix λ. The main task is to choose between
the different possible interval orientations of the quotient matrices corresponding
to the inner nodes of the Δ tree. By providing the Δ tree with additional
information we can reduce this task to (colored) tree canonization.

Lemma 5.1. Given an interval matrix λ and its Δ tree T ′, for each inner
node U of T ′ the following can be computed in logspace:
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– The quotient λ[U ] of λ at U
– All possible interval models of λ[U ] (either only one, or two that are the
reverse of each other)

– For each interval model MU of λ[U ], the possible correspondences of the
children of U to the intervals in MU . This can either be arbitrary, a fixed
mapping or one of two fixed mappings.

Proof. Computing λ[U ] is clearly possible in logspace.
If U is a prime node, the edges of Gov,di between the children of U are in

the same Δ color class by Lemma 4.5. Thus each of the two corresponding
Δ implication classes, when restricted to edges present in λ[U ], defines an
orientation of all Gov,di edges in λ[U ]. By Lemma 4.3, this must be an interval
orientation if λ is interval. By Lemma 4.1, it can be converted to an interval
representation of λ[U ]. As the two Δ implication classes are the transpose of
each other, the two resulting interval models of λ[U ] are the reverse of each other.
If they are the same, U is called symmetric and two mappings of the children
of U to the intervals in the model are possible; otherwise only one.

If U is a degenerate node, the model of λ[U ] is uniquely determined by the
node type and the number of children. If U is of type overlap or of type disjoint,
the mapping of the children of U to the intervals is arbitrary. If U is of type
containment, the mapping from the children to the intervals is fixed. These
constructions are clearly possible in logspace. ut

Definition 5.2. Given an intersection matrix λ, the colored Δ tree T(λ) has
the same nodes as the Δ tree (i.e., the Δ modules of λ that are not overlapped
by another Δ module), plus three additional nodes loU ,miU ,hiU for each inner
node U that admits exactly two assignments of its children to the interval model
of its quotient matrix (cf. Lemma 5.1); these nodes are inserted between U and
its children. Each Δ tree node U receives a tuple (pU ,MU ) as color, where
MU is the interval model of the quotient λ[U ] given by Lemma 5.1 (if there
are two different models, take the smaller one), and pU is the position of U
among the children of its parent: If U is the root or if the parent of U admits
an arbitrary mapping of its children to its quotient intervals, let pU = 0. If
the parent of U has a fixed assignment of its children to its intervals, let pU
be the position of the interval corresponding to U among the other intervals. If
the parent of U allows two assignments of its children, let pU,1 and pU,2 be the
positions of U under the two assignments, respectively. If pU,1 < pU,2, make U a
child of loU and define pU = (pU,1, pU,2); if pU,1 = pU,2, make U a child of miU
and define pU = (pU,1, pU,2); if pU,1 > pU,2, make U a child of hiU and define
pU = (pU,2, pU,1). Finally, color all loU and hiU nodes with 0 and all miU nodes
with 1.

By Theorem 4.8 and Lemma 5.1, T(λ) can be computed in logspace.

Lemma 5.3. If λ and λ′ are isomorphic interval matrices, then T(λ) ∼= T(λ′).

Proof. Let ϕ be an isomorphism between λ and λ′, i.e., λu,v = λ′ϕ(u),ϕ(v) for
all u and v. Then ϕ induces a bijection between the Δ modules of λ and the
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Δ modules of λ′ that gives an isomorphism between the Δ trees. Additionally,
for each node U in the Δ tree of λ, the quotient matrices are isomorphic, i.e.,
λ[U ] ∼= λ′[ϕ(U)], via the appropriate restriction of ϕ. This implies that the models
chosen as colors are equal, i.e., MU = Mϕ(U). It also implies equal positions
pU = pϕ(U): This is immediate if U is the root, or if its parent is a degenerate
node or a prime node with two different interval models. If the parent of U
is a prime node with a symmetric interval model, the two linear orders on its
children might be exchanged. Depending on whether this is the case, ϕ can
either be extended with loU 7→ loϕ(U),miU 7→ miϕ(U),hiU 7→ hiϕ(U) or with
loU 7→ hiϕ(U),miU 7→ miϕ(U),hiU 7→ loϕ(U) to obtain an isomorphism between
T(λ) and T(λ′). ut

Lemma 5.4. Let λ be an interval matrix. Given an isomorphic copy T ′ of T(λ),
an isomorphic copy λ′ of λ (that depends only on T ′) can be computed in logspace.
When also given an isomorphism ` : T(λ)→ T ′, an isomorphism ϕ : λ→ λ′ can
be computed within the same space bound.

Proof. Let V ′ be the leaves of T ′; take V ′ as the vertices of λ′ in the order they
appear in the given representation of T ′. As the leaves of T(λ) correspond to the
vertices of λ, the tree isomorphism ` defines a mapping of the vertices V of λ
to V ′; take this mapping as ϕ.

Let U ′ be an inner node of T ′ that does not have color 0 or 1, i.e., that is not
the image of a lo, mi or hi node. Let U = `−1(U ′) be the node of T(λ) that gets
mapped to U ′. The color of U ′ specifies an interval model MU of the quotient
of λ at U . Let λ′[U ′] be the interval intersection matrix of MU ; it can easily be
computed in logspace. By construction, λ′[U ′] is isomorphic to the quotient λ[U ]
of λ at U . It suffices to compute an assignment aU ′ of the children of U ′ to the
intervals in MU (and thus to the vertices of λ′[U ′]), such that for all children
U1, U2 of U it holds that λ[U ]U1,U2 = λ′[U ′]aU′ (`(U1)),aU′ (`(U2)). Then, for any two
leaves u′, v′ ∈ V ′, let U ′(u′, v′) denote the least common ancestor of u′ and v′
in T ′; the matrix entry λ′u′,v′ can be computed as the entry in λ′[U ′(u′, v′)] of
the children of U ′(u′, v′) which are the ancestors of u′ and v′, respectively.

To compute the mapping aU ′ , look at the positions of the children of U ′,
which are available from their colors:
– If the children of U ′ all have position 0, then U is an overlap or disjoint

node, and λ′[U ′] contains pairwise ov or di entries, respectively. This implies
that the assignment aU ′ of the children of U ′ to the intervals in MU can
be arbitrary. Define aU ′ so that it preserves the order of the children, i.e.,
aU ′(U ′1) < aU ′(U ′2) whenever U ′1 < U ′2 in the given representation of T ′.

– If the children of U ′ have pairwise different positions, then U is either a
containment node or an asymmetric prime node. In either case, the positions
allow to reconstruct the unique assignment: Choose aU ′ as the function that
satisfies aU ′(U ′1) < aU ′(U ′2) whenever the positions p1 and p2 of U ′1 and U ′2
satisfy p1 < p2.

– If U ′ has three children, of which two have color 0 and one has color 1, then let
miU ′ be the child with color 1 and let loU ′ and hiU ′ be the children with color 0
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such that loU ′ < hiU ′ in the given representation of T ′. Note that `(miU ) =
miU ′ and `({loU ,hiU}) = {loU ′ ,hiU ′}. For the children of loU ′ and miU ′ , use
the first entry in the position tuple and for the children of hiU ′ use the second
entry in the position tuple and proceed as in the previous case. This results
in one of the two possible assignments. ut

Theorem 5.5. The canonical representation problem for interval matrices can
be solved in logspace.

Proof. The algorithm works as follows:
1. Compute the Δ tree of λ (see Theorem 4.8)
2. Compute interval models of the quotient matrices at the nodes of the Δ tree

to obtain the colored Δ tree T(λ) (see Lemma 5.1 and Definition 5.2)
3. Compute a canonical labeling of T(λ) and use the algorithm of Lemma 5.4

to compute a canonical copy λ′ of λ and a canonical labeling ϕ of λ.
4. Compute the Δ tree of λ′ and interval orderings for the quotient matrices

at its inner nodes (in fact, the information from T(λ) can be reused; only
the assignment of children needs to be revisited). Combine these orientations
into one for the whole matrix (see Lemma 4.7) and convert it into an
interval representation ρ′ of λ′ (see Lemma 4.1). Combined with the canonical
labeling ϕ of λ, this results in an interval representation ρ = ρ′ ◦ ϕ of λ.

Note that λ′ depends only on the canon of T(λ), so λ1 ∼= λ2 implies λ′1 = λ′2. As ρ′
depends only on λ′, the resulting interval model ρ(λ) = ρ′(λ′) is canonical. ut

6 Conclusion

Our algorithms also allow recognition of HCA graphs: If the input graph does
not belong to this class, either one of the steps will fail (e.g. finding a suitable
maxclique M), or the resulting arcs will not be a representation of G (which can
easily be checked), or the resulting arcs are not Helly. The latter can be checked
in logspace using [JLM+11, Theorem 3.1].

We remark that by combining Theorem 3.3 and Corollary 4.9 we already
get a logspace algorithm that computes for any given HCA graph G an HCA
representation of G. Since any HCA representation of G allows to compute all
maxcliques in logspace, we can reduce the canonical representation problem of
HCA graphs to that of HCA hypergraphs HG: the vertex set of HG consists of all
maxcliques ofG and for each vertex v ∈ V (G),HG contains a hyperedge consisting
of all maxcliques that contain v. It is known that a graph G is HCA if and only if
HG is a circular-arc hypergraph [Gav74]. Moreover, the hypergraph HG provides
a canonical HCA model for G, if we order its maxcliques by a canonical circular
ordering. Hence an alternative canonical representation algorithm for HCA graphs
can be obtained by using the algorithm for computing a canonical CA model of
HG given in [KKV12]. However, we believe that finding canonical representations
of interval matrices is of independent interest, as these allow additional constraints
on the structure of the intervals compared to interval graphs. For a different
kind of constraint, namely prescribing the lengths of pairwise intersections (and
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optionally interval lengths), both logspace and O(n ·m) time (resp. linear time)
algorithms are known [KKW12].
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