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Abstract

The unique shortest vector problem on a rational lattice is the problem of finding the shortest
non-zero vector under the promise that it is unique (up to multiplication by −1). We give
several incremental improvements on the known hardness of the unique shortest vector problem
(uSVP) using standard techniques. This includes a deterministic reduction from the shortest

vector problem to the uSVP, the NP-hardness of uSVP on
(

1 + 1
poly(n)

)
-unique lattices, and

a proof that the decision version of uSVP defined by Cai [Cai98] is in co-NP for n1/4-unique
lattices.

1 Introduction

Despite its simple grid like structure, lattices have wide and varied applications in many areas of
mathematics and after the discovery of LLL algorithm [LLL82] also in computer science. The scope
of the application was furthered by the breakthrough result of Ajtai [Ajt04], who showed that lattice
problems have a very desirable property for cryptography: a worst case to average case reduction.
This property yields one-way functions and collision resistant hash functions, based on the worst
case hardness of lattice problems. This is in a stark contrast to the traditional number theoretic
constructions which are based on the average-case hardness e.g., factoring, discrete logarithms.

A lattice L is the set of all integer combinations of n linearly independent vectors b1,b2, . . . ,bn
in Rm. These vectors are referred to as a basis of the lattice and n is called the rank of the lattice.
The successive minima λi(L) (where i = 1, . . . , n) of the lattice L are among the most fundamental
parameters associated to a lattice. The λi(L) is defined as the smallest value such that a sphere of
radius λi(L) centered around the origin contains at least i linearly independent lattice vectors.

The shortest vector problem (SVP) is arguably the most important problem on rational lattices.
Given a lattice L, the problem asks for a shortest non-zero vector of length λ1(L). A generalization
of the decision version of the SVP leads to the GapSVP problem. The GapSVPγ can be seen as
a promise problem, which given a lattice L and an integer d, asks to distinguish between the case
λ1(L) ≤ d and λ1(L) > γd.

A lattice L is called γ unique if λ2(L) > γλ1(L). In this work, we will be concerned with
the unique shortest vector problem (uSVP for short). For a parameter γ, the uSVPγ is defined
as follows. Given a γ-unique lattice L; find the shortest non-zero vector in L. Notice that for
uSVP, γ can be interpreted both as a uniqueness factor, and approximation factor. The two
resulting problems are equivalent. This justifies the uSVPγ notation. The security of the first
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lattice based public-key cryptosystem by Ajtai-Dwork [AD97] was based on the worst-case hardness
of uSVPO(n8). In a series of papers [GGH97, Reg04], the uniqueness factor was reduced to O(n1.5).

Our understanding of the hardness of uSVP is far from satisfactory. The uSVP problem was
proved equivalent to the GapSVP problem upto an approximation factor of

√
n [LM09]. Unfor-

tunately, the reduction from GapSVP to uSVP does not imply hardness because of a loss of
√
n

factor [LM09]. Kumar-Sivakumar [KS01], via a randomized reduction from SVP, show that uSVPγ
is NP-hard for γ = 1 + 2−n

c
, for some constant c. We improve this result by giving a deterministic

reduction from SVP to uSVP. We also give a randomized reduction which shows that uSVP is
NP-hard for γ = 1 + 1/ poly(n) under randomized reductions.

There are two versions of the decision uSVP in the literature: one given by Cai [Cai98] (denoted,
duSVP) and another by Regev [Reg04] (denoted, duSVP′). Unlike the duSVP′ defined by Regev, a
search to decision reduction is not known for the duSVP. Cai also shows that duSVP is in co-AM
for n1/4-unique lattices. We give three results here, all concerning duSVP.

(i). We show that the search uSVPγ can be solved in polynomial time given an oracle for the
duSVPγ/2.

(ii). The duSVP problem is in co-AM on
(

n
logn

)1/4
-unique lattices and is in co-NP for n1/4-unique

lattices.

(iii). The duSVP problem is NP-hard on (1 + 2−n
c
)-unique lattices, for some constant c.

It is unlikely that GapSVPγ is NP-hard for γ =
(

n
logn

)1/2
, as otherwise the polynomial hierarchy

collapses [GG00, CN00]. The same conclusion does not follows from item (ii) in case of duSVP.
The decision uSVP is a promise problem (as opposed to a total problem) and, unlike GapSVP, we
do not know how to handle the queries which do not satisfy the promise.

The results on duSVP can be interpreted as follows. Item (i)+(iii) indicate that duSVP is likely
to be a difficult problem, especially if we assume that uSVP is a hard problem. On the other hand,

item (ii) points out that duSVP perhaps is not so hard on
(

n
logn

)1/4
-unique lattices. Showing that

the polynomial hierarchy collapses if duSVP is NP-hard on
(

n
logn

)1/4
-unique lattices is an open

problem.

2 Preliminaries

For a positive integer k we use the notation [k] to denote the set {1, . . . , k}.
A lattice basis is a set of linearly independent vectors b1, . . . ,bn ∈ Rm. It is sometimes conve-

nient to think of the basis as an m×n matrix B, whose n columns are the vectors b1, . . . ,bn. The
lattice generated by the basis B will be written as L(B) and is defined as L(B) = {Bx|x ∈ Zn}. A
vector v ∈ L is called a primitive vector of the lattice L if it is not an integer multiple of another
lattice vector except ±v. We will assume that the lattice is over integers, i.e., b1, . . . ,bn ∈ Zm.
The restriction to integers instead of arbitrary real vectors is important for making the input
representable in a finite number of bits.

The successive minima λi(L) (where i = 1, . . . , n) of the lattice L is defined as the smallest
value such that a sphere of radius λi(L) centered around the origin contains at least i linearly
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independent lattice vectors. A lattice L is called γ-unique if λ2(L) > γλ1(L). In this paper we are
concerned with the following variants of the unique shortest vector problem.

uSVPγ: Given a γ-unique lattice basis B, find a vector v ∈ L(B) such that ‖v‖ = λ1(L(B)).

duSVPγ: Given a γ-unique lattice basis B, and an integer d, say “YES” if d ≤ λ1(B) and “NO”
otherwise.

duSVP′γ: Given a γ-unique lattice basis B = [b1, · · · ,bn], a prime p > 2 and an integer d, say
“YES” if p divides the coefficient of b1 in the shortest vector of the lattice L(B) and say
“NO” otherwise.

There are two decision variants of the uSVP problem. Chronologically, the first one i.e., duSVP
was defined implicitly in [Cai98] and explicitly in [CN00]. The second one i.e., duSVP′, is given
in [Reg04] and has the desirable property that uSVPγ can be solved using an oracle that solves
duSVP′γ .

We now prove a few useful results on lattices. The following lemma is taken from [KS01]. A
proof is provided for completeness.

Lemma 1. Let B = (b1, . . . ,bn) be a basis of a lattice L. For any two vectors u =
∑n

i=1 αibi,v =∑n
i=1 βibi ∈ L such that u 6= ±v and ‖u‖ = ‖v‖ = λ1(L), there exists j ∈ [n] such that αj 6≡ βj

(mod 2).

Proof. For the sake of contradiction, assume that there exists a lattice vector u =
∑n

i=1 αibi and
a lattice vector v =

∑n
i=1 βibi such that ‖u‖ = ‖v‖ = λ1(L) and αj ≡ βj (mod 2) for all j ∈ [n].

But then, u+v
2 ∈ L and u−v

2 ∈ L. Since u 6= ±v, both these vectors are non-zero. Also,∥∥∥∥u + v

2

∥∥∥∥2 +

∥∥∥∥u− v

2

∥∥∥∥2 =
‖u‖2 + ‖v‖2

2
= (λ1(L))2 .

But this implies that 0 < ‖u+v
2 ‖, ‖

u−v
2 ‖ < λ1(L) , a contradiction.

We next define the LLL reduced basis [LLL82].

Definition 1. Given a basis B = [b1 b2 . . . bn], the Gram-Schmidt orthogonalization of B is

defined by b̃i = bi −
i−1∑
j=1

µi,jb̃j, where µij =
〈bi,b̃j〉
〈b̃j ,b̃j〉

.

Note that the Gram-Schmidt orthogonal basis satisfies 〈b̃i, b̃j〉 = 0, for all i 6= j.

Definition 2. A basis B = [b1 . . . bn] with Gram-Schmidt orthogonal basis [b̃1 . . . b̃n] is LLL

reduced if for all 1 ≤ i < n, ‖b̃i‖2 ≤ 2‖b̃i+1‖2 and for all 1 ≤ j < i ≤ n, µij =
〈bi,b̃j〉
〈b̃j ,b̃j〉

≤ 1
2 .

The LLL reduced basis property can be interpreted as “b̃i+1 is not much shorter than b̃i”. It
is possible to LLL reduce any basis in polynomial time [LLL82].
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3 Deterministic reductions

In this section, we give two deterministic reductions. The first is a way to make any lattice unique
while the second is to solve uSVP using a duSVP oracle. We first give an overview of the techniques
used in each reduction.

In the first reduction, we transform a lattice into a unique lattice. The idea is to introduce
errors in the basis such that shortest vectors of the same length map to vectors of different lengths
in the lattice with errors. A similar idea was used by Kannan [Kan87] to reduce the search SVP to
decision SVP for the exact case. Kannan’s idea was to scale the co-ordinate system, each with a
different multiple, such that the co-ordinate of a shortest vector can be recovered from its length.
The downside of Kannan’s reduction is that it needs to call the decision SVP oracle polynomially
many times to recover the signs of the shortest vector entries. Hu-Pan [HP14] fixed this problem
by using a combination of scaling and then introducing appropriate additive errors in the first co-
ordinate of the basis vectors. For appropriately chosen ε1, · · · , εn+1, the transformation of Hu-Pan
can be described as follows.

B→ εn+1B +


ε1 ε2 . . . εn
0 0 . . . 0
...

...
...

...
0 0 . . . 0


Our reduction is different from theirs in the following way. Instead of scaling the original lattice,

we embed it into a space with dimensions 2n, where n is the dimension of the original lattice. At the
same time, we also introduce systematic errors in a unique dimension for each basis vector. This is
possible because the number of dimensions has doubled from before. Succinctly, for appropriately
chosen errors ε1, · · · , εn, the transformation can be described as follows.

[b1, · · · ,bn]→


b1 b2 . . . bn
ε1 0 . . . 0
0 ε2 . . . 0
...

...
...

...
0 0 . . . εn


The second reduction is from uSVPγ to duSVPγ/2. This reduction borrows heavily from the

uSVPγ to GapSVPγ reduction given by Lyubashevsky-Micciancio [LM09]. Our modification is to
replace the GapSVPγ oracle by duSVPγ/2 oracle as follows. For computing the unique shortest
vector, we split the original lattice into three sparser lattices, all containing a vector which is two
times the shortest vector. We can then replace the GapSVPγ oracle and use the duSVPγ/2 oracle
to find the sub-lattice which also contains the shortest vector.

3.1 Making a lattice unique

If a basis is LLL reduced then the coefficients of the basis vectors in any shortest vector of the
lattice, can be bounded by 23(n−1)/2. This result might have been implicitly used in the literature
before, but we are not aware of any explicit formalizations.
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Lemma 2. Let B = [b1 · · · bn] be a LLL reduced basis and u =
n∑
i=1

αibi be a shortest vector of

the lattice. Then, for all i ∈ [n], |αi| ≤ 23(n−1)/2.

Proof. Let us suppose that [b̃1 · · · b̃n] be the Gram-Schmidt orthogonal basis corresponding to B
and L = L(B). For proving the lemma, it suffices to prove that for 0 ≤ j < n, |αn−j | ≤ 2(n−1)/2+j .
We use induction on j to prove this claim.

Consider the base case of j = 0. From the property of the Gram-Schmidt orthogonalization,
b̃1 = b1 and the projection of the vector u =

∑
i αibi in the direction of b̃n is αnb̃n. But then,

the following inequality shows that |αn| ≤ 2(n−1)/2.

‖b̃1‖ ≥ ‖u‖ ≥ |αn|‖b̃n‖ ≥ 2−(n−1)/2|αn|‖b̃1‖

By induction hypothesis, one assumes that |αn−s| ≤ 2(n−1)/2+s for 0 ≤ s < k.
To complete the proof by induction, it suffices to show that |αn−k| ≤ 2(n−1)/2+k. By the

property of Gram-Schmidt orthogonalization, the projection of u in the direction of b̃n−k is(
αn−k +

(
n∑

i=n−k+1

µi,n−kαi

))
b̃n−k, where µi,n−k =

〈bi, b̃n−k〉
〈b̃n−k, b̃n−k〉

(1)

Also, by Definition 2, |µi,n−k| ≤ 1/2 for all n− k + 1 ≤ i ≤ n and ‖b̃1‖ ≤ 2(i−1)/2‖b̃i‖. Hence,

‖b̃1‖ ≥ ‖u‖
(1)

≥

∣∣∣∣∣
(
αn−k + (

n∑
i=n−k+1

µi,n−kαi)

)∣∣∣∣∣ ‖b̃n−k‖
Def. 2
≥ 2−(n−k−1)/2

∣∣∣∣∣
(
αn−k + (

n∑
i=n−k+1

µi,n−kαi)

)∣∣∣∣∣ ‖b̃1‖

But then,

|αn−k| ≤ 2(n−k−1)/2 +

n∑
i=n−k+1

|µi,n−kαi|
Def. 2
≤ 2(n−k−1)/2 +

1

2

k−1∑
i=0

|αn−i|

≤ 2(n−k−1)/2 +
1

2

k−1∑
i=0

2(n−1)/2+i ≤ 2(n−1)/2+k .

Theorem 1. Let L be an integer lattice with LLL reduced basis B = [b1 · · · bn]. Then, the lattice
spanned by the following basis is (1 + 2−n

c
)-unique for some constant c > 0.

b1 b2 . . . bn
ε1 0 . . . 0
0 ε2 . . . 0
...

...
...

...
0 0 . . . εn

 where εi =
22(i−1)n

22n2
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Proof. For technical convenience, we denote the transformed basis as τB = [τb1 · · · τbn] and the
new lattice by τL. If v =

∑
i βibi ∈ L then we define τv =

∑
βiτbi and by definition, τv ∈ τL.

By construction, λ1(L) < λ1(τL).

(a). Our first step is to show that λ1(τL) < λ1(L)+2−n. Consider the shortest vector u =
∑

i αibi ∈
L and the corresponding transformed vector τu ∈ τL. Then, the following inequality proves
this claim.

‖τu‖2 = λ21(L) +
n∑
i=1

α2
i

24(i−1)n

24n2

Lemma 2
≤ λ21(L) + 23(n−1)

24n
2 − 1

(24n − 1)24n2 < λ21(L) + 2−n

(b). Next, we show that if u1 6= ±u2 are two vectors of the same length λ1(L), then τu1 and τu2

have different lengths. In particular, the difference in the square-lengths of τu1 and τu2 is at
least 2−4n

2
. Let u1 =

∑
i xibi and u2 =

∑
i yibi. By Lemma 1, there exists an index j ∈ [n]

such that xj 6= ±yj . Let k be the largest such index. Then,

∣∣‖τu1‖2 − ‖τu2‖2
∣∣ =

∣∣∣∣∣
n∑
i=1

(x2i − y2i )

(
24(i−1)n

24n2

)∣∣∣∣∣
(Lem. 2)
>

24(k−1)n

24n2 − 23(n−1)
k−1∑
i=1

24(i−1)n

24n2 =
24(k−1)n

24n2 − 23n−2
24(k−1)n − 1

24n2(24n − 1)
>

1

24n2

(c). Finally, if v ∈ L is such that ‖v‖ > λ1(L), then because L is an integer lattice, ‖v‖ ≥√
λ1(L)2 + 1. By construction, ‖τv‖ > ‖v‖ ≥

√
λ1(L)2 + 1.

Together, items (a-c) imply that the lattice τL is unique. Also, from item (b), we conclude that

λ2(τL)

λ1(τL)
>

√
1 +

2−4n2

λ1(L)2
≥ 1 +

2−4n
2

3λ1(L)2

The input lattice L is an integer lattice. It follows that λ1(L) is bounded by 2O(n) times the
input size. This concludes the proof of this theorem.

The NP-hardness of duSVP under randomized reductions, is a direct corollary of Theorem 1.

Theorem 2. The duSVP variant of the decision SVP is NP-hard on (1 + 2−n
c
)-unique lattices

under randomized reductions, where c is a constant.

Note that there is no obvious way to conclude this NP-hardness result from Kumar-Sivakumar
[KS01]. The reason for this is that in their reduction, given a lattice L, they construct a sequence of
k = poly(n) sublattices L1, . . . ,Lk ⊆ L such that at least one of them (say Li) contains a (1+2−n

c
)-

unique shortest vector and λ1(Li) = λ1(L). Given a (1+2−n
c
)-uSVP oracle, one can easily compute

λ1(L) by calling the oracle on each of L1, . . . ,Lk and outputting the shortest of these vectors that
is in L. However, given a (1 + 2−n

c
)-duSVP oracle, this is not possible because the duSVP oracle

might behave arbitrarily on the sublattices that do not contain a unique shortest vector, and it is
impossible to predict this behavior.
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3.2 Search to decision reduction

The next task is to solve the search uSVP problem using a decision uSVP oracle. The idea is
to replace the GapSVP oracle by a duSVP oracle in the uSVPγ to GapSVPγ reduction given by
Lyubashevsky-Micciancio [LM09]. The proof, given below, shows that this replacement can be
done quite smoothly without any major surprises.

Theorem 3. Let γ ≥ 2 be a number. Then, there exists a deterministic poly(n) algorithm that
solves uSVPγ given a duSVPγ/2 oracle, where n is the dimension of the input lattice.

Proof. Let L be the γ-unique lattice spanned by the input basis B = [b1 · · · bn]. Let u =
∑

i αibi
be the shortest vector in L.

Sparsification. Consider the following three bases and for i ∈ [3], define Li = L(Bi).

B1 = (2b1,b2,b3, . . . ,bn)

B2 = (b1, 2b2,b3, . . . ,bn)

B3 = (b1 + b2, 2b2,b3, . . . ,bn)

Consider the shortest vector u =
∑

i αibi. If α1 is even, then u ∈ L1. If α2 is even then
u ∈ L2. If neither is even then the following way of writing u implies that u ∈ L3.

u = α1(b1 + b2) +
α2 − α1

2
(2b2) + α3b3 + · · ·+ αnbn

By construction, 2u belongs to each of L1 = L(B1), L2 = L(B2), and L3 = L(B3). Also,
since each of these lattices is a sub-lattice of L, for all i ∈ [3], λ2(Li) ≥ λ2(L). But then, for
all i ∈ [3], λ2(Li) >

γ
2λ1(Li). Thus, the duSVPγ/2 oracle can be used to find the basis Bs∈[3]

such that u ∈ Ls. By construction, Bs spans a γ-unique lattice and det(Bs) ≥ 2 det(B).

Projection. One now continues the same process of sparsification i.e., splitting the lattice spanned
by Bs into three sparser lattices. After t > n(n+ log2 n) iterations, suppose we have a basis
S such that det(S) ≥ 2t det(B) and u ∈ L(S).

Consider D, the dual basis of S. By definition of a dual basis det(D) det(S) = 1 and hence,
det(D) ≤ 1

2t det(B) . By Minkowski’s bound [Min68], we have λ1(L(D)) ≤
√
n det(D)1/n. Using

the LLL algorithm [LLL82], one can find a vector v ∈ L(D) such that

‖v‖ ≤ 2nλ1(L(D)) ≤ 2n
√
n

2t/ndet(B)1/n
, and

|〈u,v〉| ≤ ‖u‖‖v‖ ≤
√
n det(B)1/n‖v‖ ≤ n · 2n−t/n < 1

But u ∈ L(S) and v ∈ L(D), and thus |〈u,v〉| is an integer. Thus, 〈u,v〉 = 0, i.e., v is
perpendicular to u. Thus, by taking the projection of L(S) perpendicular to v, we get a
lattice L′ of rank (n− 1) such that u ∈ L′.

Continuing alternately with Sparsification and Projections steps, we reduce the problem to one
dimension. Note that in either step we do not eliminate the shortest vector of the original lattice
L i.e., u. Thus, when the problem has been reduced to one dimension then the basis has only one
vector and by the invariant, it equals u.
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4 A co-NP reduction

In this section, we give a co-NP reduction from duSVP to GapSVP. Although not common,
co-NP reductions have been used before for studying lattices [GMR05]. The result encompasses
the duSVPn1/4 ∈ co-AM proof by Cai [Cai98].

But first, we prove the following result on γ-unique lattices. The proof of this lemma is implicit
in [Cai98].

Lemma 3. Let L be a γ-unique lattice, v be a primitive vector from L and L′ be the lattice obtained
by projecting L to the space orthogonal to v. Then,

λ1(L
′) ≤ ‖v‖γ if ‖v‖ 6= λ1(L)

λ1(L
′) >

√
γ2 − 1

4‖v‖ otherwise

Proof. Let u be the shortest vector in L and u′ be the projection of u in the space orthogonal to
v. By definition, u′ ∈ L′.

Consider the case of ‖v‖ 6= λ1(L). In this case, ‖v‖ ≥ λ2(L) ≥ γλ1(L) or λ1(L) ≤ ‖v‖
γ .

Projections do not increase the length of vectors, and hence λ1(L
′) ≤ λ1(L) ≤ ‖v‖γ .

Otherwise, ‖v‖ = λ1(L). In this case, assume that w ∈ L is a vector such that w′ i.e.,
the projection of w in the space orthogonal to v, is a shortest vector in L′. By construction,
w = w′ + αv, for some α ∈ R. Note that w − bαev ∈ L is not an integer multiple of v and L is
γ-unique. Hence, ‖w − bαev‖ ≥ λ2(L) > γ‖v‖. But then,

γ‖v‖ < ‖w − bαev‖ ≤ ‖w′ + (α− bαe)v‖ ≤
√
‖w′‖2 +

1

4
‖v‖2, and

λ1(L
′) = ‖w′‖ >

(√
γ2 − 1

4

)
‖v‖

Theorem 4. There is a NP reduction from co-duSVPγ to co-GapSVP
γ
√
γ2− 1

4

.

Proof. Let γ′ = γ
√
γ2 − 1/4.

For simplicity we describe the setting in the prover-verifier language. We are given an NP
proof system for co-GapSVPγ′ which on input (X, t), where X is a basis and t an integer, does the
following.

• If λ1(X) > γ′t then there exists a witness w = w(X, t) such that the verifier accepts.

• If λ1(X) ≤ t then for any witness w, the verifier rejects.

Given this system, we want to design an NP proof system for co-duSVPγ . In particular, on an
input (B, d), where the lattice L(B) is γ-unique and d is an integer, the proof system should do
the following.

• If λ1(B) > d then there exists a witness y = y(B, d) such that the verifier accepts.

• If λ1(B) ≤ d then for any witness y, the verifier rejects.
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We now describe how to design the NP proof system for co-duSVPγ given a NP proof system
for co-GapSVPγ′ .

Let (B, d) be an instance of co-duSVPγ and L = L(B). By the promise of the duSVP problem,
L is γ-unique. Let the proof for co-duSVPγ be of the form y = (w,v) where w is a string and
v ∈ L. Assume that the verifier for co-duSVPγ accepts if and only if v is a primitive vector in L,

‖v‖ > d, and the verifier for co-GapSVPγ′ accepts the proof w for the instance (B′, ‖v‖γ ), where B′

is a basis of the lattice obtained by projecting L to the space orthogonal to v. We now show that
there exists a valid witness y if λ1(L) > d and no witness exists for λ1(L) ≤ d.

• λ1(L) > d. In this case, let v be the shortest vector of L. Then v is a primitive vector of

length greater than d and, by Lemma 3, λ1(L
′) > γ′ ‖v‖γ .

• λ1(L) ≤ d. In this case, for the verifier to accept for some y = (w,v), we have that ‖v‖ > d ≥
λ1(L), and hence by Lemma 3, λ1(L

′) ≤ ‖v‖γ . This implies that the verifier for co-GapSVPγ′

rejects on input (B′, ‖v‖γ ) and any w.

The following are direct corollaries of Theorem 4.

Theorem 5. If GapSVP
γ
√
γ2− 1

4

∈ co-AM, then duSVPγ ∈ co-AM. In particular, there exists a

constant c > 0 such that duSVPc( n
logn

)1/4 ∈ NP∩ co-AM.

Proof. The proof follows from the result of [GG00], which says that GapSVP(
n

logn

)1/2 ∈ co-AM.

Theorem 6. If GapSVP
γ
√
γ2− 1

4

∈ co-NP, then duSVPγ ∈ co-NP. In particular, there exists a

constant c > 0 such that duSVPcn1/4 ∈ NP∩ co-NP.

Proof. The proof follows from the result of [AR05], which says that GapSVPc′n1/2 ∈ co-NP for
some constant c′.

5 Improved uSVP hardness under randomized reductions

In this section, we show that the uSVP problem is NP-hard under randomized reductions on
(1 + n−c)-unique lattices, where c is a constant.

The following is a result obtained by Theorem 3.1 and Theorem 5.1 of [Kho05].

Theorem 7. The problem decision SVP (i.e., GapSVP1) is NP-hard under randomized reductions.
The problem remains NP-hard when restricted to instances (B, d), where B is an n-dimensional
integer lattice and d is bounded by a polynomial in n.

We state below a result from [KS01].

Theorem 8. Let B be a basis of an n-dimensional lattice L = L(B). Then there exists a proba-
bilistic polynomial time algorithm that outputs a sequence of lattice basis B1, . . .Bn+1 such that

L ⊇ L(B1) ⊇ · · · ⊇ L(B2n+2) ,

and with probability at least 2
3 − 2−n, one of L(B1), . . . ,L(B2n+2) has exactly two vectors (v and

−v for some v ∈ L) of length λ1(L).

9



Combining Theorem 8 with Theorem 7 immediately gives the NP-hardness of uSVP.

Theorem 9. The problem uSVP(1+ 1
poly(n)

) for n-dimensional lattices is NP-hard under randomized

reductions.

Proof. We give a reduction from decision SVP to uSVP(1+ 1
poly(n)

) where decision SVP is restricted

to instances (B, d) where B is an n-dimensional integer lattice and d is bounded by a polynomial
in n. Consider such an SVP instance. Use the algorithm in Theorem 8 to obtain a sequence of
sublattices L1, . . . , L2n+2, and then compute the length of the vector computed by a uSVP(1+1/d)

oracle on each of L1, . . . , L2n+2 and if the minimum of these lengths is at most d, then return YES,
and NO otherwise. By Theorem 8, with probability 2

3 − 2−n one of them (say Li) is such that
λ1(Li) = λ1(L(B)) and

λ2(Li) ≥
√
λ1(Li)2 + 1 = λ1(Li)

√(
1 +

1

λ1(Li)2

)
≥ λ1(Li) ·

(
1 +

1

3λ1(Li)2

)
.

Thus, if the SVP instance is a YES instance, i.e., if λ1(L(B)) ≤ d, then, with probability 2/3−2−n,
the uSVP(1+ 1

3d2
) oracle computes a vector of length at most d on input Li. On the other hand, if the

SVP instance is a NO instance, then λ1 (L(B)) > d. This implies that the shortest vector of each
of L1, . . . , L2n+2 has length greater than d and hence the algorithm outputs NO with probability
1.

6 Discussion and open problems

Many interesting problems related to uSVP and duSVP remain. The gap between the uniqueness
factor (1 + 2−n

c
), for which we know that the duSVP is hard, and ( n

logn)1/4, for which we know
that the problem is in co-AM is still large. It will be interesting to try to show hardness of duSVP
(or even uSVP) for some constant factor.

The duSVP was not known to be NP-hard, as it does not follow from Kumar-Sivakumar’s
work [KS01]. Our deterministic reduction from SVP succeeds in showing the NP-hardness of the
decision version but this hardness cannot be concluded even for a factor of (1 + 1

poly
) hardness,

which remains an open problem. The search to decision equivalence of duSVP and uSVP upto a
factor of 2, shows that the complexity of the two problems is not too far apart. It is interesting
to try to improve the factor of 2, but this might require substantially new ideas. It is a major
open question whether such a search to decision reduction is possible in the case of approximation
versions of the shortest vector problem and the closest vector problem.
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