Circuit Lower Bounds in Bounded Arithmetics

Ján Pich ${ }^{1}$
Department of Algebra
Faculty of Mathematics and Physics
Charles University in Prague

Abstract

We prove that $T_{N C^{1}}$, the true universal first-order theory in the language containing names for all uniform $N C^{1}$ algorithms, cannot prove that for sufficiently large n, SAT is not computable by circuits of size $n^{2 k c}$ where $k \geq 1, c \geq 4$ unless each function $f \in S I Z E\left(n^{k}\right)$ can be approximated by formulas $\left\{F_{n}\right\}_{n=1}^{\infty}$ of subexponential size $2^{O\left(n^{2 / c}\right)}$ with subexponenital advantage: $P_{x \in\{0,1\}^{n}}\left[F_{n}(x)=f(x)\right] \geq 1 / 2+1 / 2^{O\left(n^{2 / c}\right)}$. Unconditionally, V^{0} cannot prove that for sufficiently large n SAT does not have circuits of size $n^{\log n}$. The proof is based on an interpretation of Krajíček's proof (2011 [14]) that certain NW-generators are hard for $T_{P V}$, the true universal theory in the language containing names for all p-time algorithms.

1. Introduction

We investigate the provability of polynomial circuit lower bounds in weak fragments of arithmetic like S_{2}^{1} (bit) or $A P C_{1}$. These theories are sufficiently strong to prove many important results in Complexity Theory. In fact, they can be considered as formalizations of feasible mathematics. Our motivation behind the investigation of these theories is the general question whether existential quantifiers in complexity-theoretic statements can be witnessed feasibly.

[^0]Intuitively, if the statement expressing n^{k}-size circuit lower bounds for SAT was such a feasibly witnessed statement, for any n^{k}-size circuit with n inputs we could efficiently find a formula of size n on which the circuit fails to decide SAT. We present a natural formalization of n^{k}-size circuit lower bounds for SAT denoted $L B\left(S A T, n^{k}\right)$ and observe that its provability in $S_{2}^{1}(b i t)$ gives us such error witnessing. One could hope to use the witnessing algorithm to derive a contradiction with some established hardness assumption, however, Atserias and Krajíček (private communication) noticed that certain cryptographic conjectures imply the same form of witnessing, see Proposition 4.2.

We do not know how to obtain the unprovability of SAT circuit lower bounds in S_{2}^{1} (bit) but we can do it basically for any weaker theory with stronger witnessing properties.

In weaker theories the situation is less natural because they cannot fully reason about p-time concepts. In particular, $L B\left(S A T, n^{k}\right)$ is equivalent to a formula $L B_{2}\left(S A T, n^{k}\right)$ (defined in Section 5) in $S_{2}^{1}($ bit) but not necessarily in weaker theories. Therefore, we need to consider these two formalizations separately. We present it in the case of theory $T_{N C^{1}}$ which is the true universal first-order theory in the language containing names for all uniform $N C^{1}$ algorithms.

If $T_{N C^{1}}$ proves $L B_{2}\left(S A T, n^{k}\right)$, there are uniform $N C^{1}$ circuits which for each n^{k}-size circuit C with large enough n find a formula y of size n and computation of C on y witnessing that C decides SAT incorrectly on y. It is easy to show that in such case nonuniform $N C^{1}$ circuits could simulate $\operatorname{SIZE}\left(n^{k}\right)$, see Proposition 6.1. Thus, a conditional unprovability of $L B_{2}\left(S A T, n^{k}\right)$ in $T_{N C^{1}}$ follows easily.

To prove $L B\left(S A T, n^{k}\right)$ in $T_{N C^{1}}$, the resulting uniform $N C^{1}$ circuits would need to output for each n^{k}-size circuit C with large enough n an error y but they would not need to witness the computation of C on y. In this sense, for $T_{N C^{1}}$ it is easier to reason about formalization $L B\left(S A T, n^{k}\right)$. We show that even $L B\left(S A T, n^{2 k c}\right)$ for $k \geq 1, c \geq 4$ is unprovable in $T_{N C^{1}}$ unless each $f \in S I Z E\left(n^{k}\right)$ can be approximate by formulas F_{n} of size $2^{O\left(n^{2 / c}\right)}$ with subexponential advantage: $P_{x\{0,1\}^{n}}\left[F_{n}(x)=f(x)\right] \geq 1 / 2+1 / 2^{O\left(n^{2 / c}\right)}$. The proof will be quite generic so, in particular, using known lower bounds on PARITY function, we will obtain that, unconditionally, V^{0} cannot prove quasi polynomial ($n^{\log n}$-size) circuit lower bounds on SAT. Here, V^{0} is a second-order theory used frequently in Bounded Arithmetic, see Section 5.

To prove our main claim we firstly observe that by the KPT theorem [15] the provability of $L B\left(S A T, n^{k}\right)$ in universal theories like $T_{N C^{1}}$ gives us an $O(1)$-round Student-Teacher (S-T) protocol finding errors of $n^{2 k c}$-size circuits attempting to compute SAT. Then, in particular, it works for $n^{2 k c}$-size circuits encoding Nisan-Wigderson (NW) generators based on any functions $f \in S I Z E\left(n^{k}\right)$ and suitable design matrices [16]. The interpretation of NWgenerators as p-size circuits comes from Razborov [19]. In this situation we apply Krajíček's proof that certain NW-generators are hard for $T_{P V}$ [14] which is the main technique we use. We show that it works in our context as well and allows us to use the S-T protocol to compute f by subexponential formulas with a subexponential advantage.

Perhaps the most significant earlier result of this kind was obtained by Razborov [18]. Using natural proofs he showed that theory $S_{2}^{2}(\alpha)$ cannot prove polynomial circuit lower bounds on SAT unless strong pseudorandom generators do not exist. The second-order theory $S_{2}^{2}(\alpha)$ is however quite weak with respect to the formalization Razborov used. As far as we know his technique does not imply the unprovability of circuit lower bounds (formalized as here, see Section 2) even for Robinson's Arithmetic Q. In this respect, our proof applies to much stronger theories, basically to any theory weaker than $S_{2}^{1}(b i t)$.

The paper is organized as follows. In Section 2 we formalize circuit lower bounds in the language of bounded arithmetic. In Section 3 we define theory S_{2}^{1} (bit), state its properties and in Section 4 discuss the provability of circuit lower bounds in $S_{2}^{1}(b i t)$. Section 5 defines subtheories of $S_{2}^{1}(b i t)$ for which we prove our main unprovability results in Section 6.

2. Formalization

The usual language of arithmetic contains well known symbols: $0, S,+, \cdot,=$,\leq. To encode reasoning about computation it is natural to consider also symbols $\left\lfloor\frac{x}{2}\right\rfloor,|x|$ for the length of binary representation of x and \# with the intended meaning $x \# y=2^{|x| \cdot|y|}$. Theories of bounded arithmetic are defined using language $L=\{0, S,+, \cdot,=, \leq,\lfloor x / 2\rfloor,|x|, \#\}$. We will consider also language $L_{b i t}$ which contains in addition symbol x_{i} for the i-th bit of the binary representation of x. The basic properties of symbols from $L_{b i t}$ are captured by a set of basic axioms $B A S I C(b i t)$ which we will not spell out, cf. [2, 12].
Σ_{0}^{b} denotes the set of all formulas in the language L with all quantifiers sharply bounded: $\exists x, x \leq|t|, \forall x, x \leq|t|$ where t is a term not containing x. All relations defined by Σ_{0}^{b} formulas are p-time computable. Σ_{i}^{b} resp. Π_{i}^{b} for $i>0$ are sets of formulas constructed from sharply bounded formulas by means of \wedge, \vee, sharply bounded, and existential bounded quantifiers: $\exists y y \leq t$ resp. universal bounded quantifiers: $\forall y y \leq t$ for x not occurring in t. All NP resp. coNP are representable by Σ_{1}^{b} resp. Π_{1}^{b} formulas, cf. [10, 20, 21].

Define $\Sigma_{i}^{b}(b i t), \Pi_{i}^{b}(b i t)$ for $i \geq 0$ as above but in the language $L_{b i t}$. For $i \geq 1, \Sigma_{i}^{b}$ (bit)-formulas are actually equivalent to Σ_{i}^{b}-formulas in theory $P V_{1}$, cf. [4, 12], see also Section 3. Analogously, for Π_{i}^{b}-formulas with $i \geq 1$.

We will now express circuit lower bounds in $L_{b i t}$.
Firstly, denote by $\operatorname{Comp}(C, y, w)$ a $\Sigma_{0}^{b}(b i t)$-formula saying that w is a computation of circuit C on input y. Such a formula can be constructed in many ways and our results work for any $\Sigma_{0}^{b}(b i t)$ formalization. For simplicity, we present here a less efficient one where C represents a directed graph on $|w|$ vertices.

Let $E_{C}(i, j)$ be $C_{[i, j]}$ for pairing function $[i, j]=(i+j)(i+j+1) / 2+i$. $E_{C}(i, j)=1, i, j<|w|$ means that there is an edge in circuit C going from the i-th vertex to the j-th vertex. For $k<|w|$, let $N_{C}(k)$ be the tuple of bits $\left(C_{[|w|,|w|]+2 k}, C_{[|w|,|w|]+2 k+1}\right)$ encoding the connective in the k-th node of circuit C, say $(0,1)$ be $\wedge,(1,0)$ be \vee, and $(1,1)$ and $(0,0)$ be \neg. Therefore, $|C|=[|w|,|w|]+2|w|$. Then let $\operatorname{Circ}(C, y, w)$ be the formula stating that C encodes a $|w|$-size circuit with $|y|$ inputs:

$$
\begin{aligned}
& \forall j<|w|, j \geq|y| \\
& \quad\left(N_{C}(j)=(1,0) \vee N_{C}(j)=(0,1) \rightarrow \exists i, k<j i \neq k \forall l<j, l \neq k, l \neq j\right. \\
& \left.\quad\left(E_{C}(i, j)=1 \wedge E_{C}(k, j)=1 \wedge E_{C}(l, j)=0\right)\right) \wedge \\
& \left(N_{C}(j)=(1,1) \vee N_{C}(j)=(0,0) \rightarrow \exists i<j \forall l<j, k \neq i\right. \\
& \left.\quad\left(E_{C}(i, j)=1 \wedge E_{C}(l, j)=0\right)\right)
\end{aligned}
$$

which means that if the j-th node of C is \wedge or \vee, there are exactly two previous nodes i, k of C with edges going from i and k to j, if the j-th node of C is \neg, there is exactly one previous node i with an edge going from i to j.
$\operatorname{Comp}(C, y, w)$ says that for each $i<|y|$ the value of w_{i} is the value of the i-th input bit of y and each w_{j} is an evaluation of the j-th node of circuit C given w_{k} 's evaluating nodes connected to the j-th node:

$$
\begin{aligned}
& \quad \operatorname{Circ}(C, y, w) \wedge \forall i<|y| y_{i}=w_{i} \wedge \forall j, k, l<|w|[\\
& \left(N_{C}(j)=(1,0) \wedge E_{C}(k, j)=1 \wedge E_{C}(l, j)=1 \rightarrow\left(w_{j}=1 \leftrightarrow w_{k}=1 \wedge w_{l}=1\right)\right) \wedge \\
& \left(N_{C}(j)=(0,1) \wedge E_{C}(k, j)=1 \wedge E_{C}(l, j)=1 \rightarrow\left(w_{j}=1 \leftrightarrow w_{k}=1 \vee w_{l}=1\right)\right) \wedge \\
& \left.\left(\left(N_{C}(j)=(0,0) \vee N_{C}(j)=(1,1)\right) \wedge E_{C}(k, j)=1 \rightarrow\left(w_{j}=1 \leftrightarrow w_{k}=0\right)\right)\right]
\end{aligned}
$$

Formula $C(y ; w)=1$ stating that w is accepting computation of circuit C on input y will be $\operatorname{Comp}(C, y, w) \wedge w_{|w|-1}=1$. Similarly for $C(y ; w)=0$.

Next, let $S A T(y, z)$ be a $\Sigma_{0}^{b}(b i t)$-formula saying that z is a satisfying assignment to the propositional 3 -CNF formula y.

To define it explicitly for each $i, j, k<2 m$ we let $y_{[i, j, k]}=1$ if and only if the 3-CNF encoded in y contains a clause of variables $v_{i}^{p}, v_{j}^{p}, v_{k}^{p}$ where v_{i}^{p} is v_{i} if $i<m$ and $\neg v_{i-m}$ if $i \geq m$. Here also $[i, j, k]=[i,[j, k]]$. Hence, the 3-CNF encoded in y has m variables v_{0}, \ldots, v_{m-1} and $|y|=[2 m-1,2 m-1,2 m-1]+1$. We use m implicitly given by y in the formula $\operatorname{SAT}(y, z)$:

$$
\begin{aligned}
& \forall i, j, k<2 m\left[y_{i, j, k}=1 \rightarrow\right. \\
& \quad\left(i, j, k<m \rightarrow z_{i}=1 \vee z_{j}=1 \vee z_{k}=1\right) \wedge \\
& \quad\left(i, j<m \wedge k \geq m \rightarrow z_{i}=1 \vee z_{j}=1 \vee z_{k-m}=0\right) \wedge \\
& \quad \ldots \\
& \left.\quad\left(i, j, k \geq m \rightarrow z_{i-m}=0 \vee z_{j-m}=0 \vee z_{k-m}=0\right)\right]
\end{aligned}
$$

Finally, for any k, a hardness of SAT for n^{k}-size circuits can be expressed as
$L B\left(S A T, n^{k}\right)$
$\forall 1^{n}>n_{0} \forall C \exists y, a|a|<|y|=n \forall w, z|w| \leq n^{k},|z|<|y|[\operatorname{Comp}(C, y, w) \rightarrow$ $(C(y ; w)=1 \wedge \neg S A T(y, z)) \vee(C(y ; w)=0 \wedge S A T(y, a))]$

Here n_{0} is a fixed constant which is not indicated in $L B\left(S A T, n^{k}\right)$. This should not cause any confusion. Whenever we say that $L B\left(S A T, n^{k}\right)$ is provable in a theory T we mean that it is provable in T for some n_{0}. Further, $\forall 1^{n}>n_{0}$ is a shortcut for $\forall m, n$ such that $|m|=n \wedge m>n_{0}$. Therefore, y is feasible in m and for each n_{0} and $k, L B\left(S A T, n^{k}\right)$ is universal closure of a $\Sigma_{2}^{b}(b i t)$ formula.

3. Feasible Mathematics

If we obtain n^{k}-size circuit lower bounds for SAT but do not find any efficient method how to witness errors of potential n^{k}-size circuits for SAT, some of these circuits might work in practice like correct ones. We will now define theories of feasible mathematics where provability of n^{k}-size circuit lower bound for SAT implies the existence of such an error witnessing.

Perhaps, the most prominent one is S_{2}^{1} introduced by Buss [2]. We will use its conservative extension $S_{2}^{1}(b i t)$ which consists of $B A S I C$ (bit) and polynomial induction for $\Sigma_{1}^{b}(b i t)$-formulas A :

$$
A(0) \wedge \forall x(A(\lfloor x / 2\rfloor) \rightarrow A(x)) \rightarrow \forall x A(x)
$$

An important property of $S_{2}^{1}(b i t)$ is Buss's witnessing theorem:
Theorem 3.1 (Buss [2]). If $S_{2}^{1}(b i t) \vdash \exists y A(x, y)$ for $\Sigma_{0}^{b}(b i t)$-formula A, then there is a p-time functions f such that $A(x, f(x))$ holds for any x.
$S_{2}^{1}(b i t)$ admits also a useful kind of witnessing for $\Sigma_{2}^{b}(b i t)$-formulas.
Theorem 3.2 (Krajíček [11]). If $S_{2}^{1}(b i t) \vdash \exists y \forall z \leq t A(x, y, z)$ for $\Sigma_{0}^{b}(b i t)-$ formula A and term t depending only on x, y, then there is p-time algorithm S such that for any x either $\forall z \leq t A(x, S(x), z)$ or for some z_{1}, $\neg A\left(x, S(x), z_{1}\right)$. In the latter case, either $\forall z \leq t A\left(x, S\left(x, z_{1}\right), z\right)$ or there is z_{2} such that $\neg A\left(x, S\left(x, z_{1}\right), z_{2}\right)$. However after $k \leq \operatorname{poly}(|x|)$ rounds of this kind, $\forall z \leq t A\left(x, S\left(x, z_{1}, \ldots, z_{k}\right), z\right)$ holds for any x.

Another theory with similar witnessing properties is $P V_{1}$ which is an extension of a theory $P V$ defined by Cook [4], see also [12]. The language of $P V_{1}$ consist of symbols for all functions given by a Cobham-like inductive definition of p-time functions (hence it contains $L_{b i t}$). $P V_{1}$ defined in [15] is then a first-order theory axiomatized by equations defining all the function symbols and a derivation rule similar to polynomial induction for open formulas. It is a universal theory, i.e. it has an axiomatization by purely universal sentences, and because all function symbols of $P V_{1}$ have well-behaved Σ_{1}^{b} and Π_{1}^{b} definitions in $S_{2}^{1}(b i t), P V_{1}$ is contained in the extension of $S_{2}^{1}(b i t)$ by these definitions which we denote also $S_{2}^{1}(b i t) . P V_{1}$ proves induction and polynomial induction for $\Sigma_{0}^{b}(P V)$-formulas defined similarly as Σ_{0}^{b}-formulas but in the language of $P V_{1}$. There is also an interesting theory $A P C_{1}$ introduced by Jeřábek [9] which is an extension of $S_{2}^{1}(b i t)$ capturing a subclass of BPP similarly as $S_{2}^{1}(b i t)$ captures P.

Theories S_{2}^{1} (bit), $P V_{1}$ and $A P C_{1}$ are weak fragments of arithmetic but they are sufficiently strong to prove many important things. In [12, chap. 15] it is shown how to prove PARITY $\notin A C^{0}$ in $A P C_{1}$. Razborov[17] argued that $S_{2}^{1}(b i t)$ is the right theory capturing techniques from circuit complexity in 1995 . We expect that $A P C_{1}$ captures feasible reasoning so well that any provable statement about feasible concepts is provable in $A P C_{1}$ assuming that feasible concepts intuitively correspond to BPP concepts. Of course, this does not contain, for instance, Shannon's argument if it is formalized so that it manipulates with exponentially big objects.

3.1. Equivalent formalizations of $L B\left(S A T, n^{k}\right)$

There are more possible formalizations of circuit lower bounds that are essentially equivalent to $L B\left(S A T, n^{k}\right)$. For example, $S C E\left(S A T, n^{k}\right)$ meaning that for each n^{k}-size circuit there is a satisfiable formula of size n such that the circuit will not find its satisfying assignment.

$$
\begin{aligned}
& S C E\left(S A T, n^{k}\right) \\
& \forall 1^{n}>n_{0} \forall C \exists y, a|a|<|y|=n \forall w, z|w| \leq n^{k},|z|<|y| \\
& \quad[S A T(y, a) \wedge(C(y ; w)=z \rightarrow \neg S A T(y, z))]
\end{aligned}
$$

where $C(y ; w)=z$ means that w is a computation of circuit C on input y with output bits z. Formally, $\operatorname{Comp}(C, y, w) \wedge \forall i<|z|\left(w_{|w|-i-1}=1 \leftrightarrow z_{i}=\right.$ 1). SCE in $S C E\left(S A T, n^{k}\right)$ refers to "search SAT counter example".

Another formalization of circuit lower bounds is given by the following formula $D C E\left(S A T, n^{k}\right)$ where DCE refers to "decision SAT counter example". Now circuits C have again just one output but using self-reducibility they can be used to search for satisfying assignments of propositional formulas: If C says that formula y is satisfiable, we can set the first free variable in y firstly to 1 and then to 0 , and use C to decide in which of these cases the resulting formula is satisfiable, then in the same manner continue searching for the full satisfying assignment. If no such C can be used to find satisfying assignments of satisfiable propositional formulas, for each such C there is a formula y and a possibly partial assignment to its variables a such that either $S A T(y, a)$ and C says that y is unsatisfiable or $\neg S A T(y, a)$ for full assignment a of y and C says that a satisfies y or it happens that C gets into a local inconsistency: for a partial assignment a of y it claims that y assigned by a is satisfiable but when we extend a by setting the first of the remaining
free variables by 1 and 0 in both cases C claims that the resulting formula is unsatisfiable. Formally:

$$
\begin{aligned}
& D C E\left(S A T, n^{k}\right) \\
& \forall 1^{n}>n_{0} \forall C \exists y, a|a|<|y|=n \forall w^{0}, \ldots, w^{4}\left|w^{0}\right|, \ldots,\left|w^{4}\right| \leq n^{k}[\\
& \begin{array}{l}
\left(\operatorname{Comp}\left(C, y, w^{0}\right) \rightarrow\left(C\left(y ; w^{0}\right)=0 \wedge S A T(y, a)\right)\right) \vee \\
\left(\operatorname{Comp}\left(C, y(a), w^{1}\right) \rightarrow\left(C\left(y(a) ; w^{1}\right)=1 \wedge F A(a, y) \wedge \neg S A T(y, a)\right)\right) \vee \\
\left(\operatorname { C o m p } (C , y (a) , w ^ { 2 }) \rightarrow \left(C\left(y(a) ; w^{2}\right)=1 \wedge P A(a, y) \wedge\right.\right.
\end{array} \\
& \quad\left(\operatorname{Comp}\left(C, y(a 1), w^{3}\right) \rightarrow C\left(y(a 1) ; w^{3}\right)=0\right) \wedge \\
& \left.\left.\left.\quad\left(\operatorname{Comp}\left(C, y(a 0), w^{4}\right) \rightarrow C\left(y(a 0) ; w^{4}\right)=0\right)\right)\right)\right]
\end{aligned}
$$

where $y(a)$ encodes formula y assigned by $a, F A(a, y)$ resp. $P A(a, y)$ means that a is full resp. partial assignment to variables in y and $y(a 1)$ resp. $y(a 0)$ is y assigned by extension of a which set the first unassigned variable in y by 1 resp. by 0 . We leave details of these encodings to kind reader.
$L B\left(S A T, n^{k}\right), S C E\left(S A T, n^{k}\right), D C E\left(S A T, n^{k}\right)$ are basically equivalent. We claim that this is provable already in $P V_{1}$ and hence also in $S_{2}^{1}(b i t)$.

Proposition 3.1. $P V_{1}$ proves the following implications

$$
\begin{aligned}
& S C E\left(S A T, n^{2 k}\right) \rightarrow L B\left(S A T, n^{k}\right) \\
& L B\left(S A T, n^{2 k}\right) \rightarrow S C E\left(S A T, n^{k}\right) \\
& L B\left(S A T, n^{k}\right) \rightarrow D C E\left(S A T, n^{k}\right) \\
& D C E\left(S A T, n^{k}\right) \rightarrow L B\left(S A T, n^{k}\right)
\end{aligned}
$$

where n_{0} arbitrary but the same constant in the assumption and the conclusion of each implication.

Proof: The first implication was observed in [5]: Assume $\neg L B\left(S A T, n^{k}\right)$, i.e. for a big enough n there is an n^{k}-size circuit C deciding SAT on instances of size n. Then there is a p-time function which given a circuit C witnessing $\neg L B\left(S A T, n^{k}\right)$ produces an $n^{2 k}$-size circuit $s C$ which outputs a satisfying assignment $s C(y)$ for every satisfiable formula y of size n. For each i, the circuit $s C$ finds the i-th bit of the satisfying assignment by asking C whether y remains satisfiable if the i-th variable is set to 1 , given the values it has previously found for the first $i-1$ variables. Then (assuming $\neg L B\left(S A T, n^{k}\right)$ and $S A T(y, a)) P V_{1}$ proves by $\Sigma_{0}^{b}(P V)$ induction on i that y instantiated by the first i truth values is satisfiable according to C and hence $\neg S C E\left(S A T, n^{2 k}\right)$.

Concerning the second implication: If $\neg S C E\left(S A T, n^{k}\right)$, i.e. for a big enough n there is an n^{k}-size circuit C which outputs a satisfying assignment $C(y)$ for every satisfiable formula of size n, then there is a p-time function which given any such circuit C produces an $n^{2 k}$-size circuit $d C$ which decides SAT on instances of size n. Given a formula $y, d C$ outputs 1 if and only if $C(y)$ satisfies y. Assuming $\neg S C E\left(S A T, n^{k}\right)$ it follows in $P V_{1}$ that $(S A T(y, a) \rightarrow d C(y ; w)=1) \wedge(d C(y ; w)=1 \rightarrow S A T(y, C(y)))$ for any y, a of size $|a|<|y|=n$, hence $\neg L B\left(S A T, n^{2 k}\right)$.

Next, in $P V_{1}$, if circuit C witnesses $\neg D C E\left(S A T, n^{k}\right)$, it witnesses also $\neg L B\left(S A T, n^{k}\right)$: for any y, a of size $|a|<|y|=n$ for a big enough $n, C(y ; w)=$ $0 \rightarrow \neg S A T(y, a)$ and if $C(y ; w)=1$ then by $\Sigma_{0}^{b}(P V)$-induction $C(y(b) ; w)=$ 1 for a full assignment b of y for which $S A T(y, b)$ holds.

Finally, in $P V_{1}$, if C witnesses $\neg L B\left(S A T, n^{k}\right)$, it witnesses $\neg D C E\left(S A T, n^{k}\right)$: for any y, a of size $|a|<|y|=n$ for a big enough $n,(C(y ; w)=0 \rightarrow$ $\neg S A T(y, a)), C(y(a) ; w)=1 \wedge F A(a, y) \rightarrow S A T(y, a)$ and if $C(y(a) ; w)=$ $1 \wedge P A(a, y)$ then for some b extending $a S A T(y, b)$ and thus $C(y(a 1) ; w)=$ $1 \vee C(y(a 0) ; w)=1$.

3.2. Witnessing errors of p-size circuits

Using $L B\left(S A T, n^{k}\right), S C E\left(S A T, n^{k}\right)$ and $D C E\left(S A T, n^{k}\right)$ we can define several types of error witnessing of p-size circuits claiming to solve SAT.

We say somewhat informally that $L B\left(S A T, n^{k}\right) \in \mathrm{P}$ if there is a p-time algorithm A which for any sufficiently large n and n^{k}-size circuit C with n inputs finds out y, a such that $L B(C, y, a): C(y)=1 \wedge S A T(y, a)$ or $C(y)=0 \wedge \forall z \neg S A T(y, z)$. Intuitively, A witnesses the important existential quantifiers in $L B\left(S A T, n^{k}\right)$.

We say that $L B\left(S A T, n^{k}\right)$ has an S-T protocol with l rounds if there is a p-time algorithm S such that for any function T and any sufficiently large n, whenever S is given n^{k}-size circuit $C, \mathrm{~S}$ outputs y_{1}, a_{1} such that either $L B\left(C, y_{1}, a_{1}\right)$ or otherwise T sends to $\mathrm{S} w_{1}, z_{1}$ certifying $\neg L B\left(C, y_{1}, a_{1}\right)$. Then S uses C, w_{1}, z_{1} to produce y_{2}, a_{2} and the protocol continues in the same way, S possibly using all counter-examples T sent in earlier rounds. But after at most l rounds S outputs y, a such that $L B(C, y, a)$.

Analogously, $D C E\left(S A T, n^{k}\right) \in \mathrm{P}$ if there is a p-time algorithm A which for any n^{k}-size circuit C with n inputs finds out y, a such that $D C E(C, y, a)$:

$$
C(y)=0 \wedge S A T(y, a) \text { or } C(y(a))=1 \wedge F A(a, y) \wedge \neg S A T(y, a) \text { or }
$$

$C(y(a))=1 \wedge P A(a, y) \wedge(C(y(a 0))=0 \vee C(y(a 1))=0)$
$S C E\left(S A T, n^{k}\right) \in \mathrm{P}$ if there is a p-time algorithm A which for any n^{k}-size circuit C with n inputs and n outputs finds out y, a such that $S A T(y, a) \wedge$ $\neg S A T(y, C(y))$.

The phrase that $D C E\left(S A T, n^{k}\right)$ resp. $S C E\left(S A T, n^{k}\right)$ has an S-T protocol with l rounds could be defined similarly but notice that in this case T's advise would consist only of computations w of given circuit C which can be produced by S itself as it has C as input.

In practice, if we want to witness that no small circuit solves SAT, it does not seem sufficient to have a p-time algorithm for $L B\left(S A T, n^{k}\right)$ because such an algorithm could output a tautology but we would not have an apriori way to certify that it is indeed a tautology and hence a correctly witnessed error. Therefore, it seems that practically more appropriate error witnessing is defined by $D C E\left(S A T, n^{k}\right)$ or $S C E\left(S A T, n^{k}\right)$ in which we actually force given circuits to claim inconsistent statements. We discuss it in more details in the next section.

4. Circuit Lower Bounds in S_{2}^{1} (bit)

The provability of circuit lower bounds in $S_{2}^{1}(b i t)$ gives us an efficient witnessing errors of p-size circuits for SAT described in the previous section.

Proposition 4.1. If $S_{2}^{1}(b i t) \vdash L B\left(S A T, n^{k}\right)$, then $L B\left(S A T, n^{k}\right)$ has an $S-T$ protocol with poly (n) rounds. If $S_{2}^{1}(b i t) \vdash S C E\left(S A T, n^{k}\right)$, then $S C E\left(S A T, n^{k}\right) \in$ P. If $S_{2}^{1}(b i t) \vdash D C E\left(S A T, n^{k}\right)$, then $D C E\left(S A T, n^{k}\right) \in P$.

Proof: $L B\left(S A T, n^{k}\right), D C E\left(S A T, n^{k}\right)$ and $S C E\left(S A T, n^{k}\right)$ are universal closures of $\Sigma_{2}^{b}($ bit $)$-formulas so the first implication follows directly from Krajíček's witnessing theorem. In case of $S C E\left(S A T, n^{k}\right)$ and $D C E\left(S A T, n^{k}\right)$ T's advise in the resulting S-T protocol consist just of computations of given circuit C. This can be, however, produced by S itself as it has C as input.

An efficient witnessing errors of p-time SAT algorithms follows also from instance checkers for SAT, see [1 , chap. 8]. If we want to check only n^{k}-time algorithms, the instance checker is p-time itself:

Theorem 4.1. There is a p-time algorithm that given any n^{k}-time algorithm M and a formula y of size n accepts if M solves $S A T$ on all instances, and
rejects with probability $\geq 1-1 / 2^{n}$ if M does not decide satisfiability of y correctly.

Therefore, any n^{k}-time algorithm M claiming to solve SAT can be tested by checking it on formula $F_{M}(y, a)$ encoding the statement " a satisfies formula y but M fails to find a satisfying assignment of y (in the same way as C fails to find it in $\operatorname{DCE}\left(S A T, n^{k}\right)$)". If $M\left(F_{m}(y, a)\right)=1$, by self-reducibility M will be forced to find a satisfying assignment of F_{M} which is an error of M or it will end up in a local inconsistency which is also error. If $F_{M}(y, a)$ is unsatisfiable, the checker will use an interactive protocol with M as a Prover to verify that.

In practice, we can test whether a given algorithm M proves theorems efficiently also by taking a statement we consider hard to prove and refute it instead of F_{M}.

Furthermore, if f is one-way function, we can also secretly produce $a \in$ $\{0,1\}^{n}$ and ask the algorithm whether the statement $f(a)=f(x)$ encoded as a poly $(|a|)$-size formula with free variables $x=x_{1}, \ldots, x_{n}$ is satisfiable, see [6]. In this case, we do not need to use interactive protocols because the algorithm is forced to say that the formula is satisfiable and by the choice of f, with high probability it will not find its satisfying assignment. Atserias (private communication) suggested to derandomize this construction and Krajíček made the following observation.

Proposition 4.2. If there exists one-way permutation f secure against p size circuits, i.e. for any p-size circuits C_{n} there is a function $\epsilon(n)=n^{-\omega(1)}$ such that for large enough n,

$$
P_{x \in\{0,1\}^{n}}\left[C_{n}(f(x))=x\right] \leq \epsilon(n)
$$

and if there exists $h \in E$ hard on average for subexponential circuits, i.e. there is $\delta>0$ such that for all circuits C_{n} of size $\leq 2^{\delta n}$ and large enough n,

$$
P_{x \in\{0,1\}^{n}}\left[C_{n}(x)=h(x)\right] \leq 1 / 2+1 / 2^{\delta n}
$$

then for each $k, S C E\left(S A T, n^{k}\right) \in P$.
Proof: If there is $h \in E$ hard on average for subexponential circuits, by [16] for each l there is c and NW-generator $g:\{0,1\}^{c \log n} \mapsto\{0,1\}^{n}$ such that g is $\operatorname{poly}(n)$-time computable and for any n^{l}-size circuits D_{n},

$$
\left|P_{x \in\{0,1\}^{c \log n}}\left[D_{n}(g(x))=1\right]-P_{x \in\{0,1\}^{n}}\left[D_{n}(x)=1\right]\right| \leq 1 / n
$$

This generator allows us to derandomize the construction above: Let f be one-way permutation secure against p-size circuits. Take l such that for each n^{k}-size circuits C_{n} predicate $C_{n}(f(x)) \neq x$ for $x \in\{0,1\}^{n}$ can be computed by n^{l}-size circuits. Now, for any n^{k}-size circuit C_{n} with sufficiently big n, for each $x \in\{0,1\}^{c \log n}$ find out whether $C_{n}(f(g(x))) \neq g(x)$ holds. This can be done in $\operatorname{poly}(n)$-time. If we did not succeed at least once, $P_{x \in\{0,1\}^{c \log n}}\left[C_{n}(f(g(x)))=g(x)\right]=1$, and that would break g.

In [13] Krajíček also observed that in order to show $S C E\left(S A T, n^{k}\right) \in$ $P /$ poly, it suffices to assume that $\operatorname{SAT} \notin S I Z E\left(n^{2 k}\right)$. It uses a well known combinatorial principle: Let $E \subseteq X \times Y$ be a bipartite graph, $|X|=$ $2^{n^{k}},|Y|=2^{n}$. Then

$$
\begin{aligned}
& \forall x_{1}, \ldots, x_{n} \in X \exists y \in Y \bigwedge_{i=1, \ldots, n} E\left(x_{i}, y\right) \Rightarrow \\
& \exists y_{1}, \ldots, y_{n^{k}} \in Y \quad \forall x \in X \bigvee_{i=1, \ldots, n^{k}} E\left(x, y_{i}\right)
\end{aligned}
$$

Now take as X the set of all $n^{k / 2}$-size circuits and interpret $E(x, y)$ as "if y is a satisfiable formula of size n, circuit x does not find a satisfying assignment of $y "$. If SAT restricted to instances of size n does not have n^{k}-size circuits then for every n circuits C_{1}, \ldots, C_{n} of size $n^{k / 2}$ there is y such that $\bigwedge_{i=1, \ldots, n} E\left(C_{i}, y\right)$. Else, for any satisfiable y at least one of the n fixed circuits would find a satisfying assignment of y. By the principle above, there are then $y_{1}, \ldots, y_{n^{k}}$ such that for each $n^{k / 2}$-size circuit $C, \bigvee_{i=1, \ldots, n^{k}} E\left(C, y_{i}\right)$. Therefore there is an $n^{2 k}$-size circuit which for each $x \in X$ finds y such that $E(x, y)$ by trying $E\left(x, y_{i}\right)$ for $i=1, \ldots, n^{k}$ and thus using additional satisfying assignments $a_{1}, \ldots, a_{n^{k}}$ of respective y 's as advice solves $S C E\left(S A T, n^{k}\right)$.

Similarly, it works for $D C E\left(S A T, n^{k}\right)$ because checking $E(x, y)$, i.e. whether circuit x (with one output) can be used to find the satisfying assignment, is efficient. For $L B\left(S A T, n^{k}\right)$ it could however happen that the search for the satisfying assignment ends in a local inconsistency.
Proposition 4.3 (Krajíček [13]). If $S A T \notin S I Z E\left(n^{2 k}\right)$, then $S C E\left(S A T, n^{k}\right)$ and $D C E\left(S A T, n^{k}\right)$ are in $P /$ poly.

Proposition 4.2 seems to imply that for proving $S_{2}^{1}(b i t) \nvdash S C E\left(S A T, n^{k}\right)$ we need to use other properties than $S C E\left(S A T, n^{k}\right) \in \mathrm{P}$. Moreover, assumptions of Proposition 4.2 give us an S-T protocol for $L B\left(S A T, n^{k}\right)$ too. Informally, any n^{k}-size circuit C claiming to decide SAT can be used to search for
satisfying assignments of propositional formulas. Using the algorithm from Proposition 4.2, S can produce y, a, such that $\operatorname{SAT}(y, a)$ but C will not find any satisfying assignment of y. This means that either C claims that y is unsatisfiable or the assignment it finds does not satisfy y or while searching for a satisfying assignment it gets into a local inconsistency which is the only case when S needs to ask for an advice of T , a satisfying assignment of y extending the partial assignment found by C.

Proposition 4.4. If the same hardness assumption as in Proposition 4.2 holds, then $L B\left(S A T, n^{k}\right)$ has an S-T protocol with poly (n) rounds where S is in uniform $A C^{0}$, and it has also an S - T protocol with 1 round (i.e. 1 advice of T) where S is a p-time algorithm.

Proof:
By Proposition 4.2 we have a p-time algorithm A solving $S C E\left(S A T, n^{2 k}\right)$. Firstly, we show that $L B\left(S A T, n^{k}\right)$ has an S-T protocol with 1 round and p-time S.

For each n^{k}-size circuit C with one output bit, there is a circuit $s C$ of size $\leq n^{2 k}$ searching for satisfying assignments of given formulas: For each formula y, let a be a partial assignment of y produced by $s C$ so far (empty at the beginning) and denote by $y(a)$ the formula y assigned by a. If $C(y(a))=0, s C$ outputs an assignment of y full of zeros. If $C(y(a))=1$, it assigns y_{a}^{1}, the first free variable in $y(a)$, firstly by 1 and then by 0 . Denote the resulting formula $y(a 1)$ resp. $y(a 0)$. If $C(y(a 1))=C(y(a 0))=1, s C$ sets $y_{a}^{1}=1$. If $C(y(a 1))=C(y(a 0))=0, s C$ outputs an assignment of y full of zeros. If $C(y(a 1))=1$ and $C(y(a 0))=0, s C$ sets $y_{a}^{1}=1$. If $C(y(a 1))=0$ and $C(y(a 0))=1$, it sets $y_{a}^{1}=0$. In this way $s C$ sets all variables in y.

Given $C, \mathrm{~S}$ can produce $s C$ in p-time and use A to find y, a_{1} such that $S A T\left(y, a_{1}\right)$ but $\neg S A T(y, s C(y))$.

If $C(y)=0, \mathrm{~S}$ outputs y, a_{1}. Else, S simulates $s C$. If it never happens that $C(y(a 1))=C(y(a 0))=0$ for any partial assignment a produced by $s C, \mathrm{~S}$ outputs $y, s C(y)$. Otherwise, for some partial assignment a of $y, C(y(a))=1$ and $C(y(a 0))=C(y(a 0))=0$. In such case S outputs y, a_{2} where a_{2} is a full assignment of y extending a with all zeros. If this is not a correct answer, T replies with a_{3} extending a and satisfying y. Then S outputs $y(a b), a_{3}$ where $b \in\{0,1\}$ such that $a b$ is consistent with a_{3}.

In all cases S succeeds after asking for at most 1 advice of T.

To get S in uniform $A C^{0}$ note that A actually produces a set B of $\leq n^{c}$ elements such that each $n^{2 k}$-size circuit fails on at least one of them. It suffices to use instead of A the set B, i.e. to try all elements from B in place of a_{1}. Moreover, whenever S needs to simulate circuit C on input y it can output y with an arbitrary assignment c of y. If this is not a correct answer, T will reply either with a satisfying assignment d of y or with the computation of C on y which can be verified by a uniform constant-depth formula. In the former case S outputs y, d and this time it gets what it wants.

This also shows that if $S C E\left(S A T, n^{k}\right) \in \mathrm{P}$, then $D C E\left(S A T, n^{k}\right) \in \mathrm{P}$. All in all, Buss's witnessing does not seem to help us to obtain the unprovability of $L B\left(S A T, n^{k}\right)$ in $P V_{1}$ or $S_{2}^{1}(b i t)$. Maybe it could work for intuitionistic S_{2}^{1} where the witnessing holds for arbitrarily complex formulas, cf. [3]. The situation is different in case of weaker theories where we have more efficient witnessing. This will allow us to reduce to some hardness assumptions.

5. Theories weaker than $P V_{1}$

In this section we consider some theories weaker than $P V_{1}$ like $T_{N C^{1}}$ for which we will show the unprovability of circuit lower bounds. We could however similarly define a general theory T_{C} corresponding to a standard complexity class C and our results would work analogously.

Definition 5.1. $T_{N C^{1}}$ is the first-order theory of all universal $L_{N C^{1}}$ statements true in the standard model of natural numbers where $L_{N C^{1}}$ is the language containing names for all uniform $N C^{1}$ algorithms. Analogously, $T_{P V}$ resp. $T_{A C^{0}}$ is the true universal theory in the language $L_{P V}$ resp. $L_{A C^{0}}$ containing names for all p-time algorithms resp. uniform families of $A C^{0}$ circuits.

These theories are universal so they admit the KPT theorem from [15]:
Theorem 5.1 ([15]). If $T_{N C^{1}} \vdash \exists y A(x, y)$ for open formula A, then there is a function f in uniform $N C^{1}$ such that $A(x, f(x))$ holds for any x.

If $T_{N C^{1}} \vdash \exists y \forall z A(x, y, z)$ for open formula A, there are finitely many functions f_{1}, \ldots, f_{k} in uniform $N C^{1}$ such that

$$
T_{N C^{1}} \vdash A\left(x, f_{1}(x), z_{1}\right) \vee A\left(x, f_{2}\left(x, z_{1}\right), z_{2}\right) \vee \ldots \vee A\left(x, f\left(x, z_{1}, \ldots, z_{k-1}\right), z_{k}\right)
$$

Analogously for $T_{A C^{0}}$ and $T_{P V}$ for which the resulting functions are in uniform $A C^{0}$ resp. in P.

In the field of Bounded Arithmetic there are also standard theories corresponding to uniform $A C^{0}, N C^{1}$ and other complexity classes, cf. [7]. Typically, they are presented as two-sorted theories having one sort of variables representing numbers and the second sort of variables representing bounded sets of numbers. The first-sort (number) variables are denoted by lower case letters x, y, z, \ldots and the second-sort (set) variables by capital letters X, Y, Z, \ldots The underlying language includes the symbols $+, \cdot,=, \leq, 0,1$ of first-order arithmetic. In addition it contains symbol $={ }_{2}$ interpreted as equality between bounded sets of numbers, $|X|$ for the function mapping an element X of the set sort to the largest number in X plus one, and \in for the relation which holds for a number n and set X if and only if n is an element of X.

Bounded quantifiers for sets have the form $\exists X \leq t \phi$ which stands for $\exists X(|X| \leq t \wedge \phi)$ or $\forall X \leq t \phi$ for $\forall X(|X| \leq t \rightarrow \phi)$. Here t is number term which does not involve $X . \Sigma_{0}^{B}$ formulas are formulas without bounded quantifiers for sets but may have bounded number quantifiers. Each bounded set $X \leq t$ can be seen also as a finite binary string of size $\leq t$ which has 1 in the i-th position iff $i \in X$. When we say that a function $f(x, X)$ mapping bounded sets and numbers to bounded sets is in $A C^{0}$ or $N C^{1}$ we mean that the corresponding function on finite binary strings and unary representation of x is in $A C^{0}$ or $N C^{1}$.

The base theory we will consider is V^{0} consisting of a set of basic axioms capturing the properties of symbols in the two-sorted language and a comprehension axiom schema for Σ_{0}^{B}-formulas stating that for any Σ_{0}^{B} formula there exists a set containing exactly the elements that satisfy the formula, cf. [7]. Further, Cook and Nguyen define theory $V N C^{1}$ as V^{0} extended by the axiom that every monotone formula has an evaluation, see [7].

Theorem 5.2 (Cook-Nguyen [7]). If $V N C^{1} \vdash \forall x \forall X \exists Y A(x, X, Y)$ for $\Sigma_{0}^{B}-$ formula A, there is a function f in uniform $N C^{1}$ such that $A(x, X, f(x, X))$ holds for any x, X.

If $V N C^{1} \vdash \forall x \forall X \exists Y \forall Z A(x, X, Y, Z)$ for Σ_{0}^{B}-formula A, there are finitely many functions f_{1}, \ldots, f_{k} in uniform $N C^{1}$ such that

$$
\begin{aligned}
A\left(x, X, f_{1}(x, X), Z_{1}\right) \vee A(x, X, & \left.f_{2}\left(x, X, Z_{1}\right), Z_{2}\right) \vee \ldots \\
& \ldots \vee A\left(x, X,, f\left(x, X, Z_{1}, \ldots, Z_{k-1}\right), Z_{k}\right)
\end{aligned}
$$

Analogously for V^{0} with the resulting functions in uniform $A C^{0}$.
$L B\left(S A T, n^{k}\right)$ translates to the two-sorted language as follows

$$
\begin{aligned}
& \forall n>n_{0} \forall C \exists Y \leq n \exists A \leq n \forall W \leq n^{k} \forall Z \leq n[\operatorname{Comp}(C, Y, W) \rightarrow \\
& \quad(C(Y ; W)=1 \wedge \neg \operatorname{SAT}(Y, Z)) \vee(C(Y ; W)=0 \wedge S A T(Y, A))]
\end{aligned}
$$

where k, n_{0} are constants as before and $\operatorname{Comp}(C, Y, W), C(Y ; W)=0 / 1$, $S A T(Y, Z)$ are defined as their first-order counterparts but function x_{i} is replaced by $i \in X$.

Similarly, we obtain the two-sorted $S C E\left(S A T, n^{k}\right), D C E\left(S A T, n^{k}\right)$.
Let us also specify the formalization of $L B\left(S A T, n^{k}\right)$ in $T_{A C^{0}} . L_{A C^{0}}$ contains symbols for $S A T(y, z), \operatorname{Comp}(C, y, w)$ and all the predicates we explicitly defined as $\Sigma_{0}^{b}(b i t)$-formulas because they are not just p-time but in fact constant-depth formulas. Moreover, even if multiplication is not in $L_{A C^{0}}$ (but in $\left.L_{N C^{1}}\right)$ we may assume that the $L_{A C^{0}}$ functions $\operatorname{Comp}(C, y, w), C(y ; w)=$ $1 / 0$ contain the bound $|w| \leq|y|^{k}$. For simplicity, whenever we speak about $L B\left(S A T, n^{k}\right)$ in $T_{A C^{0}}$ we mean its formalization where instead of the $\Sigma_{0}^{b}(b i t)-$ formulas we have the respective symbols of $L_{A C^{0}}$. Similarly for $S C E\left(S A T, n^{k}\right)$, $D C E\left(S A T, n^{k}\right)$ and $T_{N C^{1}}$. Therefore, $L B\left(S A T, n^{k}\right), S C E\left(S A T, n^{k}\right)$ and $D C E\left(S A T, n^{k}\right)$ in $T_{A C^{0}}$ and $T_{N C^{1}}$ have the form $\exists y \forall z A(x, y, z)$ for an open formula A (i.e. A has no quantifiers).

The situation with the provability of polynomial circuit lower bounds in weak theories like $T_{N C^{1}}, V N C^{1}, T_{A C^{0} \ldots}$ is less natural because they cannot fully reason about p-time concepts. In particular, there is a formula $L B_{2}\left(S A T, n^{k}\right)$ which is equivalent to $L B\left(S A T, n^{k}\right)$ in $S_{2}^{1}(b i t)$ but not necessarily in $T_{N C^{1}} . L B_{2}\left(S A T, n^{k}\right)$ is like $L B\left(S A T, n^{k}\right)$ but with $L B(C, y, a)$ expressed positively:

$$
\begin{aligned}
& L B_{2}\left(S A T, n^{k}\right) \\
& \forall 1^{n}>n_{0} \forall C \exists y, a, w|a|<|y|=n,|w| \leq n^{k} \forall z,|z|<|y|[\neg \operatorname{Circ}(C, y, w) \vee \\
& \quad(C(y ; w)=0 \wedge S A T(y, a)) \vee(C(y ; w)=1 \wedge \neg S A T(y, z))
\end{aligned}
$$

Analogously define $D C E_{2}\left(S A T, n^{k}\right), S C E_{2}\left(S A T, n^{k}\right)$ and their two-sorted and $L_{A C^{0}}$ formulations.

By the witnessing theorem above, if $T_{N C^{1}}$ proves $L B\left(S A T, n^{k}\right), L B\left(S A T, n^{k}\right)$ has an $N C^{1}$ S-T protocol with $O(1)$ rounds which is S-T protocol with
$O(1)$ rounds and uniform $N C^{1} \mathrm{~S}$. If $T_{N C^{1}} \vdash L B_{2}\left(S A T, n^{k}\right), L B_{2}\left(S A T, n^{k}\right)$ has an $N C^{1}$ S-T protocol with $O(1)$ rounds which is defined analogously as for $L B\left(S A T, n^{k}\right)$ but with S producing also computations w of given circuits. As $D C E_{2}\left(S A T, n^{k}\right)$ has the form $\exists y A(x, y)$ for an open A in $L_{A C^{0}}$, its provability in $T_{N C^{1}}$ implies $D C E_{2}\left(S A T, n^{k}\right) \in N C^{1}$. Here again, $D C E_{2}\left(S A T, n^{k}\right) \in N C^{1}$ is defined as $D C E\left(S A T, n^{k}\right) \in N C^{1}$ but with the witnessing algorithm producing also computations w of given circuits. Analogously for theories $T_{A C^{0}}, V^{0}, V N C^{1}$.

6. Unprovability of circuit lower bounds in subtheories of $P V_{1}$

To prove that $V N C^{1}$ or $T_{N C^{1}}$ do not prove $L B\left(S A T, n^{k}\right)$ it suffices to show that $L B\left(S A T, n^{k}\right)$ has no S -T protocol with $O(1)$ rounds where S is in uniform $N C^{1}$. For the unprovability of $L B_{2}\left(S A T, n^{k}\right)$ it however suffices to refute the existence of S-T protocols with $O(1)$ rounds where $\mathrm{S} \in N C^{1}$ produces w 's (computations of given circuits) itself. This is quite simple:

Proposition 6.1. $L B\left(S A T, n^{k+1}\right) \notin N C^{1}, D C E_{2}\left(S A T, n^{k+1}\right) \notin N C^{1}$ and $L B_{2}\left(S A T, n^{k+1}\right)$ has no $N C^{1} S$-T protocol with poly (n) rounds unless $S I Z E\left(n^{k}\right) \subseteq N C^{1}$. Unconditionally, for any sufficiently big $k, L B\left(S A T, n^{k}\right) \notin$ $A C^{0}, D C E_{2}\left(S A T, n^{k}\right) \notin N C^{1}$ and $L B_{2}\left(S A T, n^{k}\right)$ has no $A C^{0} S$ - T protocol with poly (n) rounds.

Proof: Assume first that $L B\left(S A T, n^{k+1}\right) \in N C^{1}$, i.e. there are $N C^{1}$ circuits $D_{m}(x)$ such that for sufficiently big n whenever $x \in\{0,1\}^{m}$ for $m=\operatorname{poly}(n)$ encodes an n^{k+1}-size circuit C_{n} with n inputs, $D_{m}(x)$ outputs y, a such that

$$
C_{n}(y)=0 \wedge S A T(y, a) \quad \text { or } \quad C_{n}(x)=1 \wedge \forall z \neg S A T(y, z)
$$

Now any n^{k}-size circuits B_{n} with n inputs can be simulated by $N C^{1}$ circuits: For $b \in\{0,1\}^{n}$ and $z=\left(z_{1}, \ldots, z_{n}\right)$ denote $R\left[B_{n}, b, z\right]$ the circuit with n inputs z but computing as B_{n} on b, i.e. it does not use inputs z at all. The size of $R\left[B_{n}, b, z\right]$ is $\left(n^{k}+n\right)$. Let $E_{n}(b)$ be an $A C^{0}$ circuit which uses description of B_{n} 's as advice and maps $b \in\{0,1\}^{n}$ to $x \in\{0,1\}^{m}$ encoding $R\left[B_{n}, b, z\right]$.

For each $b \in\{0,1\}^{n}$, use $D_{m}\left(E_{n}(b)\right)$ to find y, a and output 0 iff $S A T(y, a)$.

Deciding $S A T(y, a)$ is by our formalization doable by constant-depth formulas. Therefore, for each b, we predict $B_{n}(b)$ with an $N C^{1}$ circuit.

If $L B\left(S A T, n^{k}\right) \in A C^{0}$, we would obtain $A C^{0}$ circuits for PARITY, which is impossible.

This construction works analogously for $D C E_{2}\left(S A T, n^{k}\right)$ and as well for $L B_{2}\left(S A T, n^{k}\right)$ because if there was some $N C^{1}$ S-T protocol for $L B_{2}\left(S A T, n^{k}\right)$ S would be forced to produce computations w of given circuits.

Corollary 6.1. $T_{N C^{1}} \nvdash D C E_{2}\left(S A T, n^{k+1}\right)$ and $T_{N C^{1}} \nvdash L B_{2}\left(S A T, n^{k}\right)$ unless $S I Z E\left(n^{k}\right) \subseteq N C^{1}$. For any sufficiently big $k, V^{0} \nvdash D C E_{2}\left(S A T, n^{k}\right)$ and $V^{0} \nvdash L B_{2}\left(S A T, n^{k}\right)$.

This simple observation does not work if we want to refute that $L B\left(S A T, n^{k}\right)$ has $N C^{1} \mathrm{~S}$-T protocols because T can send to S a computation of the artificially attached circuit. Indeed by Proposition $4.4 L B\left(S A T, n^{k}\right)$ has a uniform $A C^{0} \mathrm{~S}$-T protocol with poly (n) rounds under a plausible assumption.

We can however show that $L B\left(S A T, n^{k}\right)$ has no $N C^{1}$ S-T protocols with $O(1)$ rounds under a hardness assumption. To show this we will use an interpretation of suitable NW-generators as p-size circuits which is due to Razborov [19] and Krajíček's proof of a hardness of certain NW-generators for $T_{P V}$ [14]. It actually seems to be a relatively straightforward modification of the previous simple observation.

Theorem 6.1. If there is $f \in \operatorname{SIZE}\left(n^{k}\right)$ such that for all formulas F_{n} of size $2^{O\left(n^{2 / c}\right)}, P_{x \in\{0,1\}^{n}}\left[F_{n}(x)=f(x)\right]<1 / 2+1 / 2^{O\left(n^{2 / c}\right)}$ for infinitely many n 's, then $L B\left(S A T, n^{2 k c}\right)$ has no $N C^{1} S$ - T protocol with $O(1)$ rounds.

To prove the theorem we will use Nisan-Wigdewrson (NW) generators with specific design properties. Let $A=\left\{a_{i, j}\right\}_{j=1, \ldots, n}^{i=1, \ldots, m}$ be an $m \times n 0-1$ matrix with l ones per row. $J_{i}(A):=\left\{j \in\{1, \ldots, n\} ; a_{i, j}=1\right\}$ and $f:\{0,1\}^{l} \mapsto$ $\{0,1\}$. Then define NW-generator based on f and $A, N W_{f, A}:\{0,1\}^{n} \mapsto$ $\{0,1\}^{m}$ as

$$
\left(N W_{f, A}(x)\right)_{i}=f\left(x \mid J_{i}(A)\right)
$$

where $x \mid J_{i}(A)$ are x_{j} 's such that $j \in J_{i}(A)$.
For any $c \geq 4$, Nisan and Wigderson [16] constructed $2^{n} \times n^{c} 0-1$ matrix A with $n^{c / 2}$ ones per row which is also $\left(n, n^{c / 2}\right)$-design meaning that for each $i \neq j,\left|J_{i}(A) \cap J_{j}(A)\right| \leq n$. Moreover, the matrix A has such a property that there are n^{c}-size circuits which given $i \in\{0,1\}^{n}$ compute the set $J_{i}(A)$. Therefore, as it was observed by Razborov [19], if f is in addition computable
by n^{k}-size circuits, for any $x \in\{0,1\}^{n^{c}},\left(N W_{f, A}(x)\right)_{x}$ is a function on n inputs y computable by circuits of size $n^{2 k c}$.
$\operatorname{Proof}\left(\right.$ of Theorem 6.1): Let $f \in \operatorname{SIZE}\left(n^{k}\right)$ and A be a $2^{n} \times n^{c}\left(n, n^{c / 2}\right)$ design defined above so for any $x,\left(N W_{f, A}(x)\right)_{y}$ can be computed from y by an $n^{2 k c}$-size circuit. Assume that $L B\left(S A T, n^{2 k c}\right)$ has an $N C^{1}$ S-T protocol with $O(1)$ rounds. In particular, for each $n^{2 k c}$-size circuit $C(y)$ computing $\left(N W_{f, A}(x)\right)_{y} \mathrm{~S}$ either finds out the value of $C\left(y_{1}\right)$ by deciding (in $A C^{0}$) $S A T\left(y_{1}, a_{1}\right)$ for y_{1}, a_{1} it produced itself or T will send to $\mathrm{S} w_{1}, b_{1}$ such that

$$
\left(C\left(y_{1} ; w_{1}\right)=0 \vee \neg S A T\left(y_{1}, a_{1}\right)\right) \vee\left(C\left(y_{1} ; w_{1}\right)=1 \vee S A T\left(y_{1}, b_{1}\right)\right)
$$

In the later case, S continues with its second try y_{2}, a_{2}. After at most $t \leq l$ rounds for some fixed constant $l, \mathrm{~S}$ will successfully predict $C\left(y_{t}\right)$.

Let $E_{n^{c}}(x)$ be $A C^{0}$ circuits mapping $x \in\{0,1\}^{n^{c}}$ to a description of an $n^{2 k c}$-size circuit with n inputs y computing the function $\left(N W_{f, A}(x)\right)_{y}$. We will consider our S-T protocol only on inputs of the form $E_{n^{c}}(x)$.

Krajíček [14] showed that if f is in NP $\cap c o N P$ with unique witnesses such S-T protocol allows us to approximate f by a p-size circuit. We will inspect that his proof works also for f in $P /$ poly and $N C^{1} \mathrm{~S}-\mathrm{T}$ protocols. In addition we will assume that T in our S-T protocol operates as follows: whenever S outputs y with some a, T answers with the lexicographically first satisfying assignment b to y and the unique computation w of given circuit y. If there is no such b, T replies with a string of zeros. This should replace the uniqueness property assumed in [14].

For $u \in\{0,1\}^{n^{c / 2}}$ and $v \in\{0,1\}^{n^{c}-n^{c / 2}}$ define $r_{y}(u, v) \in\{0,1\}^{n^{c}}$ by putting bits of u into positions $J_{y}(A)$ and filling the remaining bits by v (in the natural order). For each x there is a trace $\operatorname{tr}(x)=y_{1}, a_{1}, \ldots, y_{t}, a_{t}, t \leq l$ of the S-T communication.

Claim 1. There is a trace $\operatorname{Tr}=y_{1}, a_{1}, \ldots, y_{t}, a_{t}, t \leq l$ and $a \in\{0,1\}^{n^{c}-n^{c / 2}}$ such that $\operatorname{Tr}=\operatorname{tr}\left(r_{y_{t}}(u, a)\right)$ for at least a fraction of $2 /\left(3\left(2^{2 n}\right)\right)^{t}$ of all u 's.
$T r$ and a can be constructed inductively. There are at most $2^{2 n}$ tuples y_{j}, a_{i}, hence there is y_{1}, a_{1} such that at least $1 / 2^{2 n}$ traces begin with it. Either there is $a \in\{0,1\}^{n^{c}-n^{c / 2}}$ such that $y_{1}, a_{1}=\operatorname{tr}\left(r_{y_{1}}(u, a)\right)$ for at least $2 /\left(3\left(2^{2 n}\right)\right)$ of all u 's or we can find y_{2}, a_{2} such that at least $1 /\left(3\left(2^{2 n}\right)\right)^{2}$ traces begin with $y_{1}, a_{1}, y_{2}, a_{2}$. For the induction step assume we have a trace $y_{1}, a_{1}, \ldots, y_{i}, a_{i}$ such that at least $1 /\left(3^{i-1}\left(2^{2 n}\right)^{i}\right)$ traces begin with it. Either there is $a \in$
$\{0,1\}^{n^{c}-n^{c / 2}}$ such that $y_{1}, a_{1}, \ldots, y_{i}, a_{i}=\operatorname{tr}\left(r_{y_{i}}(u, a)\right)$ for at least $2 /\left(3^{i}\left(2^{2 n}\right)^{i}\right)$ of all u 's or we can find y_{i+1}, a_{i+1} such that at least $1 /\left(3^{i}\left(2^{2 n}\right)^{i+1}\right)$ traces begin with $y_{1}, a_{1}, \ldots, y_{i+1}, a_{i+1}$. This proves the claim.

Fix now $T r$ and a from the previous claim.
Because A is $\left(n, n^{c / 2}\right)$-design, for any row $y \neq y_{t}$ at most $n x_{j}$'s with $j \in J_{y}(A)$ are not set by a. Hence there are at most 2^{n} assignments z to x_{j} 's with $j \in J_{y}(A)$ not set by a. For each such z let w_{z}, b_{z} be the T's advice after S outputs y, a_{i} on any x containing the assignment given by z and a. By our choice of T, b_{z} depends only on y and w_{z} is uniquely determined by z (and a which is fixed). Let $Y_{y}, y \neq y_{t}$ be the set of all these witnesses for all possible z 's. The size of each such Y_{y} is $2^{O(n)}$.

Now we define a formula F that attempts to compute f and uses as advice Tr, a and some t sets Y_{y}. For each $u \in\{0,1\}^{n^{c / 2}}$ produce $r_{y_{t}}(u, a)$ (this is in $\left.A C^{0}\right)$. Let V be the set of those inputs u for which $\operatorname{tr}\left(r_{y_{t}}(u, a)\right)$ either is Tr or starts as Tr and let U be the complement of V. Define d_{0} to be the majority value of f on U. Then use S to produce $y_{1}^{\prime}, a_{1}^{\prime}$. If $y_{1}^{\prime}, a_{1}^{\prime}$ is different from Tr output d_{0}. Otherwise, find the unique T's advice in $Y_{y_{1}}$. Again, this is doable by a constant depth formula of size 2^{n} which has $\operatorname{poly}(n)$ output bits. It has the form $\bigvee_{z \in\{0,1\}^{n}}\left(z=r_{y_{t}}(u, a) \mid\left(J_{y_{1}}(A) \cap J_{y_{t}}(A)\right) \rightarrow\right.$ output $\left.=w_{z} \in Y_{y_{1}}\right)$. In the same manner continue until S produces $y_{t}^{\prime}, a_{t}^{\prime}$. If $y_{t}^{\prime}, a_{t}^{\prime}$ differs from Tr output d_{0}. Otherwise, output 0 iff $S A T\left(y_{t}, a_{t}\right)$.
F is a formula with $n^{c / 2}$ inputs and size $2^{O(n)}$ because producing $r_{y_{t}}(u, a)$ is in $A C^{0}$, searching for T's advice in Y_{i} 's is doable by constant-depth $2^{O(n)}$ _ size formulas, S is in $N C^{1}$ and the structure of S - T protocol can be described by a constant-depth formula of size $n^{O(1)}$:

$$
\begin{aligned}
& \left(S(x) \notin \operatorname{Tr} \rightarrow \text { output }=d_{0}\right) \wedge(S(x) \in \operatorname{Tr} \rightarrow \\
& \quad\left(\left(S\left(x, w_{z}, b_{z}\right) \notin \operatorname{Tr} \rightarrow \text { output }=d_{0}\right) \wedge(\ldots\right. \\
& \quad\left(S\left(x, w_{1}, b_{1}, \ldots, w_{t}, b_{t}\right) \notin \operatorname{Tr} \rightarrow \text { output }=d_{0}\right) \wedge \\
& \left.\left.\left.\quad\left(S\left(x, w_{1}, b_{1}, \ldots, w_{t}, b_{t}\right) \in \operatorname{Tr} \rightarrow\left(\text { output }=0 \leftrightarrow S A T\left(y_{t}, b_{t}\right)\right)\right) \ldots\right)\right)\right)
\end{aligned}
$$

By the choice of Tr, for at least a fraction $2 /\left(3\left(2^{n}\right)\right)^{t}$ of all $u \in\{0,1\}^{n^{c / 2}}$ F will successfully predict $f(u)$. Moreover, at most $1 /\left(3\left(2^{n}\right)\right)^{t}$ of all traces $\operatorname{tr}\left(r_{y_{t}}(u, a)\right)$ extend $T r$. Because d_{0} is the correct value on at least half of $u \in U, P_{u}[F(u)=f(u)] \geq 1 / 2+1 /\left(3^{t} 2^{n t+1}\right)$

Corollary 6.2. $T_{N C^{1}} \nvdash L B\left(S A T, n^{2 k c}\right)$ and $V N C^{1} \nvdash L B\left(S A T, n^{2 k c}\right)$ for $k \geq$ $1, c \geq 4$ unless for each $f \in S I Z E\left(n^{k}\right)$ there are formulas F_{n} of size $2^{O\left(n^{2 / c}\right)}$ such that for sufficiently big n 's, $P_{x \in\{0,1\}^{n}}\left[F_{n}(x)=f(x)\right] \geq 1 / 2+1 / 2^{O\left(n^{2 / c}\right)}$.

To obtain an unconditional unprovability of circuit lower bounds we can use Hastad's lower bound for constant depth circuits computing the parity function.

Theorem 6.2 (Hastad [8]). For any depth d circuits C_{n} of size $2^{n^{1 /(d+1)}}$ and large enough n, $P_{x \in\{0,1\}^{n}}\left[C_{n}(x)=\operatorname{PARITY}(x)\right] \leq 1 / 2+1 / 2^{n^{1 /(d+1)}}$

If $V^{0} \vdash L B\left(S A T, n^{k}\right), L B\left(S A T, n^{k}\right)$ has an $A C^{0}$ S-T protocol with $O(1)$ rounds so the resulting formula F in the proof of Theorem 6.1 would be actually a constant-depth circuit and PARITY could be approximated by constant depth circuits of size $2^{O\left(n^{2 / c}\right)}$ with advantage $1 / 2^{O\left(n^{2 / c}\right)}$. This is not enough for the contradiction with Hastad's theorem. Nevertheless, it is sufficient if we replace polynomial circuit lower bounds $L B\left(S A T, n^{k}\right)$ by quasi polynomial lower bounds $L B\left(S A T, n^{\log n}\right)$:

$$
\begin{aligned}
& \forall m>n_{0} \forall C \exists y, a|a|<|y|=n \forall w,|w| \leq n^{\log n}=m[\operatorname{Comp}(C, y, w) \rightarrow \\
& \quad(C(y ; w)=0 \wedge S A T(y, a)) \vee(C(y ; w)=1 \wedge \forall z \neg \operatorname{SAT}(y, z))]
\end{aligned}
$$

where n is the number of inputs to C and m represents $n^{\log n}$ (or simply $\left.|m|=|n|^{2}\right)$. Analogously, define the two-sorted and $L_{A C^{0}}$ version of $L B\left(S A T, n^{\log n}\right)$.

Corollary 6.3. $T_{A C^{0}} \nvdash L B\left(S A T, n^{\log n}\right) . V^{0} \nvdash L B\left(S A T, n^{\log n}\right)$

References

[1] Arora S., Barak B.; Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
[2] Buss S.R.; Bounded Arithmetic, Bibliopolis, Naples, 1986.
[3] Buss S.R.; The Polynomial Hierarchy and Intuitionistic Bounded Arithmetic, Structure in Complexity, Lecture Notes in Computer Science \#223, 1986, pp. 77-103.
[4] Cook S.A.; Feasibly constructive proofs and the propositional calculus, Proceedings of the 7th Annual ACM Symposium on Theory of Computing, ACM Press, 1975, pp. 83-97.
[5] Cook S.A., Krajíček J.; Consequences of the Provability of NP \subseteq P/poly, J. of Symbolic Logic, 72 (2007), 1353-1357.
[6] Cook S.A., Mitchell D.G.; Finding Hard Instances of the Satisfiability problem: A survey, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1997.
[7] Cook S.A., Nguyen P.; Logical Foundations of Proof Complexity, Cambridge University Press, 2010.
[8] Hastad J.; Computational limitations for small depth circuits, PhD thesis, M.I.T. press, 1986.
[9] Jeráabek E.; Approximate counting in bounded arithmetic, Journal of Symbolic Logic, 72 (2007), 959-993.
[10] Kent C.F., and Hodgson B.R.; An arithmetic characterization of NP, Theoretical Comput. Sci., 21 (1982), 255-267.
[11] Krajíček J.; Fragments of Bounded Arithmetic and Bounded Query Classes, Transactions of the AMS, 338 (1993), 587-598.
[12] Krajíček J.; Bounded arithmetic, propositional logic, and complexity theory, Cambridge University Press, 1995.
[13] Krajíček J.; Extensions of models of PV, Logic Colloquium '95, ASL Springer Series Lecture Notes in Logic, 11 (1998), 104-114.
[14] Krajíček J.; On the proof complexity of the Nisan-Wigderson generator based on NP^coNP function, J. of Mathematical Logic, 11 (2011), 1127.
[15] Krajíček J., Pudlák P., Takeuti G.; Bounded arithmetic and the polynomial hierarchy, Annals of Pure and Applied Logic, 52 (1991), 143-153.
[16] Nisan N., Wigderson A.; Hardness vs. Randomness, J. Comput. System Sci., 49 (1994), 149-167.
[17] Razborov A.A.; Bounded Arithmetic and Lower Bounds in Boolean Complexity, Feasible Mathematics II, 1995, pp. 344-386.
[18] Razborov A.A; Unprovability of Lower Bounds on the Circuit Size in Certain Fragments of Bounded Arithmetic, Izvestiya of the Russian Academy of Science, 59 (1995), 201-224.
[19] Razborov A.A; Pseudorandom Generators Hard for k-DNF Resolution and Polynomial Calculus, preprint, 2002-2003.
[20] Stockmayer L.J.; The polynomial-time hierarchy, Theoretical Comput. Sci., 3 (1976), 1-22.
[21] Wrathall C.; Complete sets and the polynomial-time hierarchy. Theoretical Comput. Sci., 3 (1976), 23-33.

[^0]: Email address: janpich@yahoo.com (Ján Pich)
 ${ }^{1}$ Supported by grant GAUK 5732/2012 and partially by grants IAA100190902 of GA AV ČR and SVV-2012-267317. A part of this research was done while I was a visiting fellow at the Isaac Newton Institute in Cambridge in Spring 2012 supported by grant N-SPP 2011/2012. I would like to thank Jan Krajíček and Albert Atserias for useful discussions.

