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Abstract

We initiate a study of non-interactive proofs of proximity. These proof-systems
consist of a verifier that wishes to ascertain the validity of a given statement, using a
short (sublinear length) explicitly given proof, and a sublinear number of queries to its
input. Since the verifier cannot even read the entire input, we only require it to reject
inputs that are far from being valid. Thus, the verifier is only assured of the proximity
of the statement to a correct one. Such proof-systems can be viewed as the NP (or
more accurately MA) analogue of property testing.

We explore both the power and limitations of non-interactive proofs of proximity.
We show that such proof-systems can be exponentially stronger than property testers,
but are exponentially weaker than the interactive proofs of proximity studied by Roth-
blum, Vadhan and Wigderson (STOC 2013). In addition, we show a natural problem
that has a full and (almost) tight multiplicative trade-off between the length of the
proof and the verifier’s query complexity.
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1 Introduction

Understanding the power and limitations of sublinear algorithms is a central question in
complexity theory. The study of property testing, initiated by Rubinfeld and Sudan [RS96]
and Goldreich, Goldwasser and Ron [GGR98], aims to address this question by considering
highly-efficient randomized algorithms that solve approximate decision problems, while only
inspecting a small fraction of the input. Such algorithms, commonly referred to as property
testers, are given oracle access to some object, and are required to determine whether the
object has some predetermined property, or is far (say, in Hamming distance) from every
object that has the property. Remarkably, it turns out that many natural properties can be
tested by making relatively few queries to the object.

Once a model of computation has been established, a fundamental question that arises is
to understand the power of proof-systems in this model. Recall that a proof-system consists
of a powerful prover that wishes to convince a weak verifier, which does not trust the prover,
of the validity of some statement. Since verifying is usually easier than computing, using the
power of proofs, it is often possible to overcome limitations of the basic model of computation.
In this paper we study proof-systems in the context of property testing, with the hope that
using proofs, we can indeed overcome inherent limitations of property testing.

Thus, we are interested in proof-systems in which the verifier reads only a small fraction
of the input. Of course we cannot hope for such a verifier to reject every false statement.
Instead, as is the case in property testing, we relax the soundness condition and only re-
quire that it be impossible to convince the verifier to accept statements that are far from
true statements. Such proof-systems were first introduced by Ergün, Kumar and Rubinfeld
[EKR04] and were recently further studied by Rothblum, Vadhan and Wigderson [RVW13]
who were motivated by applications to delegation of computation in sublinear time. Roth-
blum et al. [RVW13] showed that by allowing a property tester to interact with an untrusted
prover (who can read the entire input), sublinear time verification is indeed possible for a
wide class of properties. As in the property testing framework, the tester is only assured of
the proximity of the input to the property and hence such protocols are called interactive
proofs of proximity (IPPs).

1.1 The Notion of MAP

In this work, we also consider proofs of proximity, but we restrict the verification process to
be non-interactive. In other words, we augment the property testing framework by allowing
the tester full and free access to an (alleged) proof. Such a proof-aided tester for a property
Π, is given oracle access to an input x and free access to a proof string w, and should
distinguish between the case that x ∈ Π and the case that x is far from Π while using a
sublinear number of queries. We require that for inputs x ∈ Π, there exist a proof that the
tester accepts with high probability, and for inputs x that are far from Π no proof will make
the tester accept, except with some small probability of error.
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This type of proof-system can be viewed as the property testing analogue of an NP
proof-system (whereas IPP is the property testing analogue of IP). However, in contrast
to polynomial-time algorithms, sublinear time algorithms inherently rely on randomization.1

Since an NP proof-system in which the verifier is randomized is known as a Merlin-Arthur
(MA) proof-system, we call these sublinear non-interactive proof-systems Merlin-Arthur
proofs of proximity or simply MAPs.

Following the property testing literature, we consider the number of queries that the
tester makes as the main computational resource. We ask whether non-interactive proofs
can reduce the number of queries that property testers make, and if so by how much. (We
note that [RVW13] showed that it is possible to significantly reduce the query complexity of
property testers using interactive proofs, but their solutions rely fundamentally on two-way
interaction.)

Given the (widely believed) power of proofs in the context of polynomial-time computa-
tion, one would hope that proofs can help decrease the number of queries that is needed to
test various properties. This is indeed the case. In fact, for every property Π, consider a
proof-system for the statement x ∈ Π, wherein the proof w is simply equal to x. In order to
verify the statement, the tester need only verify that indeed w ∈ Π and that w is close to x
(i.e., that the relative Hamming distance between w and x is a small constant). The former
test can be carried out without any queries to x, whereas for the latter a constant number
of queries suffice. Thus, using a proof of length linear in the input size, any property can
be tested using a constant number of queries (furthermore, the tester has one-sided error).
In contrast, there exist properties for which linear lower bounds on the query complexity of
standard property testers are known (cf. [GGR98]).

The foregoing discussion leads us to view the proof length, in addition to the number of
queries, as a central computational resource, which we should try to minimize. Thus, we
measure the complexity of an MAP by the total amount of information available to the
tester, namely, the sum of the MAPs query complexity (i.e., the number of queries that
the tester makes) and proof complexity (i.e., the length of the proof). In this work we study
the complexity of MAPs in comparison to property testers and to the recently introduced
IPPs.

A Concrete Motivation. We note that the non-interactive nature of such proof-systems
may have significant importance to applications such as delegation of computation. Specif-
ically, consider a scenario wherein a computationally weak client has reliable query access
to a massive dataset x. The client wishes to compute a function f on x, but its limited
power, along with the massive size of the dataset, prevents it from doing so. In this case,
the client can use a powerful server (e.g., a cloud computing provider) to compute f(x) for
it. However, the client may be distrustful of the server’s answer (as it might cheat or make
a mistake). Thus, an MAP for f can be used to verify the correctness of the computation

1It is not difficult to see that the sublinear time deterministic computation or even verification is limited
to trivial properties (cf. [GS10b]).
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delegated to the server: Given access to x, the server can send the value y = f(x), together
with a proof of proximity that ascertains that x is close to a dataset x′ for which f(x′) = y.
The latter can be verified using anMAP verifier that makes only a small number of queries
to x.

We emphasize that the advantage in using non-interactive proofs of proximity (rather
than interactive ones) is not only in removing the need for two-way communication, but also:
(1) the proof can be “annotated” to the dataset by the server in a cheap off-line phase; and
(2) the proof can be re-used for multiple clients.

The Computational Complexity of Generating and Verifying the Proof. As noted
above, we view the number of queries and proof length as the main computational resources.
It is natural to also consider the computational complexity of generating and verifying the
proof. However, in this work our main focus is on the query and proof complexities. Still,
we note that unless stated otherwise, our protocols can be implemented efficiently (i.e., in
polynomial-time).

Comparison with PCPs of Proximity. PCPs of proximity (PCPPs), studied by Ben-
Sasson et al. [BSGH+06] and by Dinur and Reingold [DR06] (called assignment testers
therein) are also non-interactive proof-systems in which the verifier has oracle access to
an object, and needs to decide whether the object is close to having a predetermined prop-
erty. However, PCPPs differ from MAPs in that the verifier is only given implicit (i.e.,
oracle) access to the proof, whereas in MAPs, the verifier has free (explicit) access to the
proof. Indeed, in contrast to MAPs, the proof string in PCPPs is typically of super-linear
length (but only a small fraction of it is actually read). Thus, PCPPs may be thought of
as the PCP analogue of property testing, whereasMAPs are the NP analogue of property
testing.

In fact, considering a variety of non-interactive proof-systems that differ in whether the
main input and the proof are given explicitly or implicitly, leads to the taxonomy depicted
in Table 1.1. Interestingly, the three other variants, corresponding to NP ,PCP and PCPP ,
have all been well studied. Thus, we view the notion ofMAPs as completing this taxonomy
of non-interactive proof-systems.

Access to Proof

Access to Main Input Explicit Implicit (Oracle)

Explicit NP or MA PCP

Implicit (Oracle) MAP (this work) PCPP

Table 1: Taxonomy of non-interactive proof-systems.
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1.2 The Power of MAP

The first question that one might ask about the model of MAPs is whether proofs give
a significant savings in the query complexity of property testers (indeed, such savings are
the main reason to introduce a proof-system in the first place). Given the above discussion
on the importance of bounding the proof length, we seek a savings in the query complexity
while using only a relatively short proof. Our first result shows that indeed there exists a
property for which a dramatic saving is indeed possible:

Informal Theorem 1 (see Theorem 3.1). There exists a property that has an MAP that
uses a logarithmic-length proof and only a constant number of queries, but requires n0.999

queries for every property tester.

Here and throughout this work, n denotes the length of the object being tested.

Having established an exponential separation between property testers and MAPs we
continue our study ofMAPs by asking how many queries can be saved by slightly increasing
the length of the proof. The following result shows a property for which an (almost) tight
full multiplicative trade-off exists between the number of queries and length of the proof:

Informal Theorem 2 (see Theorem 3.16). There exists a property Π such that for every
p ≥ 1, there is an MAP for Π that uses a proof of length p and makes n0.999

p
queries.

We remark that the trade-off in Informal Theorem 2 is (almost) tight, see Informal Theo-
rem 5.

Recall that for property testers huge gaps may exist between the query complexity of
testers that have one-sided error and the query complexity of testers that have two-sided
error (where a one-sided tester is one that accepts every object that has the property with
probability 1). Notable examples for properties for which such gaps are known are Cycle-
Freeness in the bounded degree graph model (see [CGR+12]) and ρ-Clique in the dense graph
model (see [GGR98]). In contrast, we observe that such gaps can not exist in the case of
MAPs.

Informal Theorem 3 (see Theorem 4.3). Any two-sided error MAP can be converted to
have one-sided error with only a poly-logarithmic overhead to the query and proof complexi-
ties.

Since every property tester can be viewed as an MAP that uses an empty proof, as
an immediate corollary, we obtain a transformation from every two-sided error property
tester into a one sidedMAP that uses a proof of only poly-logarithmic length (with only a
poly-logarithmic increase in the query complexity). Moreover, since (as noted above) there
are well known properties for which one-sided error property testing is exponentially harder
than two-sided error property testing, Informal Theorem 3 implies an exponential separation
betweenMAPs (with poly-logarithmically long proofs) and one-sided error property testing.
We note that Informal Theorem 1 shows such a separation for the more general case of two-
sided error.
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Properties with/without distance. Many of the results discussed so far are based on
properties “with distance”, that is, properties for which every two objects that have the
property are far apart. In other words, the set of objects forms an error-correcting code.
This distance, along with a form of local self-correction, is a crucial ingredient of the foregoing
MAPs. To show that the power of MAPs is not limited to such problems, we also show
an efficient MAP for approximating the Hamming weight of a given string — a property
“without distance”. We also give a lower bound on the MAP complexity of the problem.
For more details, see Section 5.

MAPs for graph properties. To see thatMAPs are also useful for testing graph prop-
erties, we note that testing bipartiteness (or more generally k-colorability) in the dense graph
model can be tested using only O(1/ε) queries (where ε represents the desired proximity to
the object) provided a proof that is simply the k-coloring of the graph (which can be repre-
sented by N log2 k bits where N is the number of vertices and k is the number of colors).2 In
contrast, for standard property testers such query complexity is impossible (see [BT04]). We
note that a similar protocol (described as a PCPP) was suggested in [EKR04, BSGH+06].

MAPs for sparse properties. If a property is relatively sparse, in the sense that it
contains only t objects, then a proof of length log2 t (which fully describes the object) can
be used, and only O(1/ε) queries suffice to verify the proof’s consistency with the object.
Using this observation we note that testing k-juntas and k-linearity can be verified using
only O(1/ε) queries and a proof of length O(k log n), whereas a lower bound of Ω(k) queries
is well-known for standard property testers (cf. [Bla10]).

1.3 The Limitations of MAP

In the previous section, we described results that exhibit the power of MAPs. But what
are the limitations of MAPs? We already described how long proofs (of size linear in the
input-size) make MAPs all powerful. Furthermore, Informal Theorem 1 shows that even
a logarithmically long proof can be extremely useful. One might ask whether shorter, even
constant-size proofs can be of use. Unfortunately, the answer is negative since an MAP
with query complexity q and proof complexity p can be emulated by a property tester that
enumerates all possible proofs and makes a total of Õ(2p · q) queries. Still, are there any
further limits to how proofs can help a tester?

We first note that the ability to query the object in a way that depends on the proof is
essential to the power ofMAP . In contrast, consider proof-oblivious queries MAPs, which
are MAPs in which the distribution of queries is independent of the tested object. Such
MAPs can be viewed as a two step process in which the tester first (adaptively) queries the

2Note that the size of the tested object is N2, and so N log2 k is sublinear in the input size. In order to
verify this proof, the verifier chooses O(1/ε) edges at random and accepts if all are properly colored.
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object and only then it receives the proof and decides whether to accept or reject based on
both the answers and the proof. We say that such MAPs have proof oblivious queries.

Interestingly, the following result shows that MAPs with proof-oblivious queries can
provide at most a quadratic improvement over standard property testers.

Informal Theorem 4 (see Theorem 4.2). If a property Π has anMAP that makes q proof
oblivious queries and uses a proof of length p, then Π has a property tester that makes O(q ·p)
queries.

By Informal Theorem 1, the restriction to proof oblivious queries is a necessary precon-
dition for Informal Theorem 4 (and indeed, the MAP verifier of Informal Theorem 1 must
make proof-dependent queries).

Recall that, on the one hand, by Informal Theorem 1 we know that MAPs can be
exponentially stronger than property testers, and, on the other hand, Informal Theorem 4
tells us thatMAPs that make proof oblivious queries can be at most quadratically stronger
than property testers — we may be left with the hope that using MAPs that make proof
dependent queries it is always possible to obtain a super-quadratic (possibly even an expo-
nential) improvement over property testers. Unfortunately, this is not the case: The following
theorem (which complements Informal Theorem 2) shows a property that has a (roughly)
quadratic lower bound on its MAP complexity, even if the queries are proof dependent.

Informal Theorem 5 (see Theorem 3.16). Any MAP for the property Π of Informal
Theorem 2, which uses a proof of length p ≥ 1, must make Ω̃(n0.999/p) queries. (In particular,
every property tester for Π must make Ω̃(n0.99) queries.)

Having inspected the relationship between MAPs and property testing, we proceed to
consider the relationship between MAPs and IPPs. Recall that MAPs are actually a
special case of IPPs in which the interaction is limited to a single message sent from the
prover to the verifier. When comparing MAPs and IPPs it is natural to compare both
the query complexity and the total amount of communication with the prover (which in the
case of MAPs is simply the length of the proof).

The following theorem shows that IPPs are stronger thanMAPs not only syntactically
but also in essence. We show that even 3-message IPPs may have exponentially better
query complexity thanMAPs (while using the same amount of communication). Moreover,
we show that IPPs with poly-logarithmically many messages (of poly-logarithmic length)
can also have exponentially better communication.

Informal Theorem 6 (see Theorem 3.23 and Theorem 3.25). There exists a property that
has Θ

(
n0.499±o(1)

)
MAP complexity but has:

1. A 3-message IPP that makes polylog(n) queries while using a total of n0.499+o(1) com-
munication.

2. An IPP with only polylog(n) query and communication complexities but using a poly-
logarithmic number of messages.
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1.4 Techniques

Many of our results (in particular Informal Theorems 2, 5 and 6) are based on a specific
algebraic property, which we call Sub-Tensor Sum and denote by TensorSum. Let F be a
finite field and let H ⊂ F. We consider m-variate polynomials over F that have individual
degree d. The TensorSum property contains all such polynomials whose sum on Hm equals
0.3 That is, TensorSum contains all polynomials P : Fm → F of individual degree d such that∑

x∈Hm

P (x) = 0.

Selecting |F|,m, d and |H| suitably (as poly-logarithmic functions in the input size n = |F|m),
we obtain the following roughly stated upper and lower bounds for TensorSum (for the formal
statements, see the technical sections):

1. PT : The query complexity of testing TensorSum (without a proof) is Θ(n0.999±o(1))
queries.

2. MAP : The MAP complexity of TensorSum is Θ
(
n0.499±o(1)

)
. Moreover, for every

p ≥ 1, the MAP query complexity of TensorSum with respect to proofs of length p is

Θ
(
n0.999±o(1)

p

)
.

3. IPP[3]: TensorSum has a 3-message IPP with query complexity polylog(n) and
communication complexity O

(
n0.499+o(1)

)
.

4. IPP : TensorSum has an IPP with query and communication complexities polylog(n).
However, in contrast to Item 3, this IPP uses poly-logarithmically many messages.

To get a taste of our proofs, consider the (relatively) simple case wherein we restrict the
TensorSum property to dimension m = 2 and a field F of size

√
n (i.e., bivariate polynomials

over a field of size
√
n). Naturally, we call this variant the Sub-Matrix Sum property and

denote it by MatrixSum. Note that MatrixSum contains all polynomials P : F2 → F of
individual degree d = |F|/10 such that∑

x,y∈H

P (x, y) = 0.

As an MAP proof to the claim that the polynomial P is in MatrixSum, consider the

univariate polynomial Q(x)
def
=
∑

y∈H P (x, y). To verify that P is indeed in MatrixSum the
verifier acts as follows:

1. If
∑

x∈H Q(x) 6= 0, then reject.

3The choice of the constant 0 is arbitrary.
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2. Verify that P is (close to) a low degree polynomial and reject if not. This can be done
with O(d) queries via the classical low degree test (see Theorem A.8).

3. Verify that Q is consistent with P . Since both are low degree polynomials, it suffices
for the verifier to check that Q(r) =

∑
y∈H P (r, h) for a random r ∈ F.

Actually, a technical difficulty arises from the fact that P can only be verified to be
close to a low degree polynomial. The naive solution of reading every point via self-
correction is too expensive in the case of MatrixSum. While it is possible to overcome
this difficulty using a slightly more sophisticated technique (to appear in a forthcoming
revision), the naive solution suffices for our actual setting of parameters (for TensorSum)
and so we ignore this difficulty here.

By setting |H| = O(|F|) we obtain an MAP with proof and query complexity O(
√
n)

(since n = |F|2). Using more sophisticated techniques in the same spirit, we obtain both
MAP and IPP upper bounds for the TensorSum problem.4

In order to show an efficientMAP for properties that do not rely on such robust structure
(which allows self-correction), we study the problem of approximating the Hamming weight
of a given string. We design an MAP that allows the verifier to reduce the Hamming
weight approximation problem to a concatenation-problem of properties that are easier to
test (see [Gol13] for an extensive study of such problems). Then, we use a technique known
as precision sampling (originally due to Levin [Lev85], see also [Gol13, Appendix A.2]), in
order to solve the problem efficiently.

As for our property testing lower bounds, we base these on the recently introduced tech-
nique of Blais, Brody and Metulef [BBM11]. The [BBM11] methodology enables one to
obtain property testing lower bounds from communication complexity lower bounds.

To obtainMAP lower bounds, we extend the [BBM11] framework. We show that lower
bounds on the MA communication complexity of a communication complexity problem
related to a property Π can be used to derive lower bounds on the MAP complexity of Π.

MA communication complexity, introduced by Babai, Frankl and Simon [BFS86], extends
standard communication complexity by adding a third player, Merlin, who sees both the
input x of Alice and y of Bob and attempts to convince them that f(x, y) = 1 where f is the
function that they are trying to compute. We require that if f(x, y) indeed equals 1, then
there exist a proof for which Alice and Bob output the correct value (with high probability),
but if f(x, y) = 0, then no proof will cause them to output a wrong value (except with some
small error probability).

In order to show lower bounds forMAP we are thus left with the task of showing lower
bounds for related MA communication complexity problems. Fortunately, Klauck [Kla03]
showed a strong lower bound for the set-disjointness problem, which we use in our reductions.

4We use TensorSum rather than MatrixSum because we do not know how to obtain an IPP nor a full
trade-off between proof and query complexities for MatrixSum.
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Additionally, in order to obtain another lower bound (specifically for the Hamming weight
property), we extend a recent result of Gur and Raz [GR13] who give anMA communication
complexity lower bound on the classical problem of Gap Hamming Distance.

1.5 Related Works

The notion of interactive proofs of proximity was first considered by Ergün, Kumar and
Rubinfeld [EKR04] (where it was called approximate interactive proofs). More relevant to
our work is the recent work of Rothblum, Vadhan and Wigderson [RVW13] who initiated a
systematic study of the power of this notion. Their main result is that all languages in NC
have interactive proofs of proximity with query and communication complexities roughly

√
n,

and polylog(n) communication rounds. On the negative side, [RVW13] show that there exists
a language in NC1 for which the sum of queries and communication in any constant-round
interactive proof of proximity must be polynomially related to n.

The study of interactive proofs-systems (in the polynomial-time setting), of which the
class MA is a special case, was initiated in the seminal works of Goldwasser, Micali and
Rackoff [GMR89] and Babai [Bab85]. In the last decade, MA proof-systems were intro-
duced for various computational models. There is a rich body of work in the literature
addressing MA communication complexity protocols (e.g., [Kla03, GS10a, Kla11, She12]).
Aaronson and Wigderson [AW09] used MA communication complexity lower bounds to
show that, for many fundamental questions in complexity theory, any solution will require
“non-algebraizing” techniques. In addition, in a recent line of research, the data stream
model was extended to support several interactive and non-interactive proof systems. The
model of streaming algorithms with non-interactive proofs was first introduced in [CCM09]
and extended in [CMT13, GR13, CCGT13]. Moreover, Cormode et al. [CMT12] have made
a significant step toward a practical implementation of the generic interactive proof-system
of Goldwasser et al. [GKR08] for delegation of data stream computation.

Last, we note that Lovász and Vesztergombi [LV12] recently introduced a model of non-
deterministic property testing of graphs. Their model is a form of PCP of proximity in which
both the proof and verification procedure are restricted to be of a particular form.

1.6 Organization

This paper’s organization differs from the order in which our results were reviewed in the in-
troduction, so that technically related results are grouped together. In Section 2 we formally
define MAPs and property testers (which are essentially MAPs with an empty string).
In Section 3 we formally state and prove all of our separation results, whereas in Section 4
we prove our general transformation results. Finally, in Section 5 we show MAP results
for some properties without distance. Important background material is provided in Ap-
pendix A.

11



2 Definitions

In this section we formally define Merlin-Arthur proofs of proximity. We start by introducing
some relevant notations and standard definitions.

A property may be defined as a set of strings. However, since we mostly consider prop-
erties that consist of (non-Boolean) functions, it will be useful for us to use the following
(also commonly used) equivalent definition.

For every n ∈ N, let Dn and Rn be sets. For simplicity we use the convention that
Dn = [n] (and Rn will usually be of size much smaller than n). Let Fn be the set of all
functions from Dn to Rn. A property is an ensemble Π = ∪n∈N Πn, where Πn ⊆ Fn. In the
(rare) case that we test properties of strings (rather than functions), we view the n-bit string
x as a function Ix : [n] → {0, 1} where Ix(i) = xi for all i ∈ [n]. For the rest of this work,
it will sometimes be convenient for us to refer to Π as a problem (rather than a property),
where we actually refer to the testing problems that are associated with Π (and are defined
in the following subsections).

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alphabet Σ. We define the

(absolute) distance of x and y as ∆ (x, y)
def
= |{xi 6= yi : i ∈ [n]}|. If ∆ (x, y) ≤ ε ·n, then we

say that x is ε-close to y, and otherwise we say that x is ε-far from y. We define the distance

of x from a set S ⊆ Σn as ∆ (x, S)
def
= miny∈S ∆ (x, y). If ∆ (x, S) ≤ ε · n, then we say that

x is ε-close to S and otherwise we say that x is ε-far from S. We extend these definitions
from strings to functions, while identifying a function with its truth table.

Notation. For a finite set S, we denote by x ∈R S a random variable x that is uniformly
distributed in S. We denote by Af (x) the output of algorithm A given an explicit input x
and implicit (i.e., oracle) access to the function f . Last, given a binary string s, we denote
its Hamming weight by wt(x).

Integrality Issues. Throughout this work, for simplicity of notation, we use the conven-
tion that all (relevant) integer parameters that are stated as real numbers are implicitly
rounded to the nearest integer.

2.1 Merlin-Arthur Proofs of Proximity

We are now ready to define Merlin-Arthur proofs of proximity.

Definition 2.1. A Merlin-Arthur proof of proximity (MAP) for a property Π = ∪i∈NΠn

consists of a probabilistic algorithm V , called the verifier, that is given as explicit inputs an
integer n ∈ N, a proximity parameter ε > 0, and a proof string w ∈ {0, 1}∗; in addition, it is
given oracle access to a function f ∈ Fn. The verifier satisfies the following two conditions:
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1. Completeness: For every n ∈ N and f ∈ Πn, there exists a string w (referred to as a
proof or witness) such that for every proximity parameter ε > 0:

Pr
[
V f (n, ε, w) = 1

]
≥ 2/3.

where the probability is over the random coin tosses of the verifier V .

2. Soundness: For every n ∈ N, function f ∈ Fn, string w, and proximity parameter
ε > 0, if f is ε-far from Πn, then:

Pr
[
V f (n, ε, w) = 1

]
≤ 1/3.

where the probability is over the random coin tosses of the verifier V .

If the completeness condition holds with probability 1, then we say that the MAP has a
one-sided error and otherwise we say that it has two-sided error.

We note that MAPs can be viewed as a restricted form of the interactive proofs of
proximity, studied by [RVW13] (see Appendix A.1 for the definition of IPP).

An MAP is said to have query complexity q : N × R+ → N if for every n ∈ N, ε > 0,
f ∈ Fn and any w ∈ {0, 1}∗, the verifier makes at most q(n, ε) queries to f . TheMAP is said
to have proof complexity p : N→ N if for every n ∈ N and f ∈ Πn there exists w ∈ {0, 1}p(n)

for which the completeness condition holds.5 If theMAP has query complexity q and proof

complexity p, we say that it has complexity t(n, ε)
def
= q(n, ε) + p(n).

For every pair of functions q : N × R+ → N and p : N → N, we denote by MAP2(p, q)
(resp., MAP1(p, q)) the complexity class of all properties that have an MAP with proof
complexity O(p), query complexity O(q) and two-sided error (resp., one-sided error). We
also use MAP as a shorthand for the class MAP2.

Note that we defined MAPs such that the proofs do not depend on the proximity
parameter ε. Since our focus is on demonstrating the power of MAPs (and our lower
bounds refer to fixed valued of the proximity parameter), this makes our results stronger.
Nevertheless, see Appendix C for a discussion of the alternate notion, in which the proof
may depend on the proximity parameter.

Proof oblivious queries. An aspect ofMAP proof-systems, which turns out to be very
important, is whether the queries that the verifier makes depend on the proof. AnMAP in
which the queries do not depend on the proof may be thought of as the following two step
process:

5Without loss of generality, using adequate padding, we assume that there is a fixed proof length p(n)
for objects of size n. The latter can be complemented by restricting the soundness condition to hold only
for strings of length p(n) (rather than strings of arbitrary length), since the verifier can immediately reject
proofs that have length that is not p(n).
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1. The verifier is given oracle access to the object being tested. The verifier’s queries may
be adaptively generated (based on answers to previous queries).

2. After getting answers to all of its queries, the verifier is given explicit and free access
to the proof string (which is chosen obliviously of the verifier’s queries). Based on the
queries, answers and the proof, the verifier decides whether to accept or reject.

The foregoing discussion gives rise to the following definition.

Definition 2.2. An MAP verifier for a property Π ⊆ {Fn}n is said to make proof oblivious
queries if for every n ∈ N, function f ∈ Fn, proximity parameter ε > 0, random string r and
two proof string w,w′ ∈ {0, 1}∗, the MAP verifier, given oracle access to f , the random
string r and explicit access to n, ε, and given either the proof string w or w′, makes the same
sequence of queries.

MA proximity-oblivious testing. We also present anMA version of proximity-oblivious
testing (defined in [GR11]). Loosely speaking, a proximity-oblivious tester (POT) is a testing
algorithm that satisfies the following conditions: (1) it is oblivious of the proximity parameter
ε (i.e., it does not get ε as part of its input) and (2) it rejects statements that are ε-far from
true statements with probability that is some increasing function of ε. A standard property
tester can be obtained by repeating the POT sufficiently many times.

We give a definition of one-sided error MA proximity-oblivious testers, and note that a
two-sided error variant ofMA proximity-oblivious testers can be defined similarly to [GS12].

Definition 2.3. Let ρ : (0, 1] → (0, 1] be some increasing function. A (one-sided error)
MA proximity-oblivious tester for a property Π = ∪i∈NΠn with detection probability ρ consists
of a probabilistic verifier V that is given as explicit inputs an integer n ∈ N and a proof
string w ∈ {0, 1}∗, and is given oracle access to a function f ∈ Fn. The verifier satisfies the
following two conditions:

1. Completeness: For every n ∈ N and f ∈ Πn, there exists a proof w such that:

Pr
[
V f (n,w) = 1

]
= 1.

2. Soundness: For every n ∈ N, function f ∈ Fn, and proof w, if f is ε-far from Πn,
then:

Pr
[
V f (n,w) = 0

]
≥ ρ(ε).

(In both conditions the probability is over the random coin tosses of the verifier V .)

We remark that a few of the MAPs presented in this work are based on corresponding
MA proximity-oblivious testers. The most notable example is the MAP in Theorem 3.3.
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2.2 Useful Conventions

The proximity parameter. We view the proximity parameter as a function ε = ε(n).
For simplicity we assume that ε(n) is a non-increasing function.

Our definition of MAPs requires that soundness hold with respect to every value of
ε > 0. However, throughout this work we sometimes find it convenient to restrict the
proximity to ε ∈ (0, ε0) for some constant ε0 ∈ (0, 1). We note that latter type of MAPs
can be extended to the more general form by simply running the base tester with respect to
proximity ε′ = min(ε, ε0) (incurring only a constant overhead).

Implicit input length and proximity parameter. Throughout this work, for simplicity
of notation, we use the convention that the input length n and proximity parameter ε are
given implicitly to all testers and verifiers (e.g., when we write T f we actually mean T f (n, ε)).

2.3 Property Testing

The standard definition of property testing may be derived from Definition 2.1 by restricting
both the completeness and soundness conditions to hold when the proof length is fixed to 0.
Hence,MAPs are a strict syntactic generalization of property testers. We will always refer
to a tester that uses a proof as an “MAP verifier” and reserve “tester” solely for (standard)
property testers that do not use a proof.

For a property Π and a proximity parameter ε > 0, we denote by PTε(Π) the minimum,
over all testers T for Π, of the query complexity of T with respect to proximity ε. For every
function q : N×R+ → N, we denote by PT 2(q) (resp., PT 1(q)) the classMAP2(0, q) (resp.,
MAP1(0, q)). We also use PT as a shorthand for the class PT 2.

For a detailed introduction to property testing, see the surveys [Ron08, Ron09] and the
collection [Gol10a].

3 Separation Results

In this section we explore the power ofMAP verifiers in comparison to other types of testers,
such as property testers and IPP verifiers and present properties that exhibit a separation
between these different types of testers.

In Section 3.1 we show an exponential gap between the complexity of PT andMAP . In
Section 3.2 we show a problem that has anMAP with an (almost) tight multiplicative trade-
off between the proof length and number of queries. In Section 3.3 we consider 3-message
IPP verifiers and show that they may have exponentially smaller query complexity than
MAP verifiers (when using a proof of similar length). Finally, in Section 3.4 we also show
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an exponential gap between the total complexity (i.e., query plus proof/communication com-
plexities) of MAP and general IPP (which uses a poly-logarithmic number of messages).

3.1 Exponential Separation between PT and MAP

In this section we show an exponential separation between the power of property testing
and MAP . Roughly speaking, we show a property that requires roughly n0.999 queries for
every property tester but has anMAP that, while using a proof of only logarithmic length,
requires only a constant number of queries. We prove three incomparable variants of this
result.

Theorem 3.1. For every constant α > 0, there exists a property Πα that has an MAP that
uses a proof of length O(log n) and makes poly(1/ε) queries for every ε > 1/polylog(n), but
for which every property tester must make Ω(n1−α) queries. Furthermore, the MAP has
one-sided error.

A limitation of the foregoing theorem is that the proximity parameter is required to be
larger than 1/polylog(n). We also consider two incomparable variants of Theorem 3.1 that
let us handle general values of ε. In Theorem 3.2 we do so but at the cost of increasing the
MAP query complexity to depend poly-logarithmically on n. In Theorem 3.3 we maintain
the poly(1/ε) query complexity, at the cost of having a smaller (yet still exponential) gap
between the power of property testers and MAPs.

Theorem 3.2. For every constant α > 0, there exists a property Πα that has an MAP
that uses a proof of length O(log n) and makes poly(log n, 1/ε) queries, but for which every
property tester must make Ω(n1−α) queries. Furthermore, the MAP has one-sided error.

Theorem 3.3. There exists a universal constant c ∈ (0, 1) and a property Π that has an
MAP that uses a proof of length O(log n) and makes poly(1/ε) queries (without limitation
on ε), but for which every property tester must make nc queries. Furthermore, the MAP
has one-sided error.6

Note that all of the above separation results refer to the general (i.e., two-sided error)
classes PT 2 and MAP2. As noted in the introduction, a more restricted separation be-
tween the one-sided error classes (i.e., between PT 1 andMAP1) can be obtained by using
Theorem 4.3.

3.1.1 Our Approach

The proof of Theorem 3.1 is heavily based on error correcting codes. Recall that a code is
an injective function C : Σk → Σn over an alphabet Σ. The relative distance of the code

6We remark that the proof of Theorem 3.3 can be adapted to yield an MA proximity-oblivious tester
(see Definition 2.3) for Π.
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is the minimal relative distance between every two (distinct) codewords, and the stretch of
the code is n when viewed as a function of k. Further necessary background is provided in
Appendix A.4.

As discussed in the introduction, the complexities of property testers andMAP verifiers
with proof oblivious queries are polynomially related (see Theorem 4.2). Thus, in order
to show an exponential separation between PT and MAP , one has to use an MAP for
which the queries inherently depend on the proof. That is, the property Π should satisfy the
following:

1. Π can be efficiently verified by an MAP in which the queries are “strongly affected”
by the proof;

2. Π is hard for property testers (and hence for MAPs with proof oblivious queries).

Thus, intuitively, we seek a property that is based on a “hidden structure” that can be
tested locally if one knows where to look but cannot be tested locally otherwise.

As a first (naive) candidate, consider the property containing the set of all non-zero
strings. A short proof for this property could direct us to the exact location of a non-zero
bit, which can then be verified by a single query. However, the aforementioned property is
(almost) trivial — as all strings are close to a string with a non-zero bit. Hence, we seek a
robust version of this property.

This naturally leads us to consider an encoded version of the foregoing naive property. Fix
an error-correcting code C and consider the property that contains all codewords that encode
non-zero strings. Assuming that the code is both locally testable and locally decodable (i.e.,
both an LTC and an LDC, see Appendix A.4), it is easy to test this property using anMAP
that simply specifies a non-zero coordinate of the encoded message. However, this property
may also be easy to test without a proof since all one needs to do is test that the string is
not the (single) encoding of the zero message but is (close to) a codeword.

To overcome this difficulty, we consider a “twist” of the foregoing property in which we
consider two codewords that must be non-zero on the same coordinate. That is, for every
code C, we define the encoded intersecting messages property, denoted by EIMC as:

EIMC
def
=
{(
C(x), C(y)

)
: x, y ∈ Σk, k ∈ N and ∃i ∈ [k] s.t. xi 6= 0 and yi 6= 0

}
,

where we assume that 0 ∈ Σ. We note that we could have slightly modified our definition by
requiring that xi = yi = 1 (where the choice of 1 is arbitrary) rather than xi, yi 6= 0. Another
notable variant is obtained by requiring that Σ = {0, 1}; then the property EIMC contains
all pairs of codewords whose corresponding encoded messages (viewed as sets) intersect (i.e.,
are not disjoint).

For the lower bound, we only require that C have constant relative distance and the
quality of the lower bound is directly related to the stretch of the code. For the upper
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bound, in addition to the constant relative distance, we need C to be both an LTC and an
LDC with small query complexities. Indeed, the query complexity of the MAP that we
construct is proportional to the number of queries required by the LTC and LDC procedures.

It is well known that (a proper instantiation of) the Reed-Muller code is both an LTC
and LDC with polylog(n) query complexities, and almost linear stretch. By instantiating
EIM with this code, we can obtain Theorem 3.2; namely, a property that has anMAP with
a proof of length O(log n) and polylog(n) query complexity, but requires an almost linear
number of queries by any (standard) property tester.

In order to obtain a result with constant MAP query complexity (as in Theorem 3.1),
we need a code that is both an LTC and an LDC, with constant query complexities. While
LTCs with constant query complexity (and almost linear stretch) are known, constructing
LDCs with constant query complexity (and polynomial stretch) is a major open problem in
the theory of computation. However, we observe that for our construction it actually suffices
that C be a relaxed-LDC. Relaxed-LDCs, introduced by Ben-Sasson et al. [BSGH+06], are a
weaker form of LDCs in which the decoder is allowed to output a special abort symbol ⊥
in case it is unable to decode a corrupt codeword. However, the decoder is not allowed to
abort when given as input a correct codeword. We refer the reader to Definition A.5 for the
formal definition.

Ben-Sasson et al. [BSGH+06] used PCPPs to construct an O(1)-relaxed-LDC with almost
linear stretch. Furthermore, [BSGH+06] argue that their relaxed-LDC is also a poly(1/ε)-
LTC. However, the LTC property only holds for proximity parameter ε > 1/polylog(n).
Thus, using the [BSGH+06] code, we (only) obtain Theorem 3.1. In addition, by combining
ideas and results of [BSGH+06] and [GS06] we construct an O(1)-relaxed-LDC that is also
a poly(1/ε)-LTC for general values of ε > 0, albeit with polynomial (rather than almost
linear) stretch. Using the latter result, which may be of independent interest, we obtain
Theorem 3.3.

Organization. In Section 3.1.2 we show that for every code C : Σk → Σn that is a t1-
relaxed-LDC and a t2-LTC, it holds that EIMC ∈ MAP

(
log k, t1(n/2) + t2(n/2, ε/2)

)
. In

Section 3.1.3 we show an Ω(k/ log |Σ|) lower bound on the query complexity of testing EIMC

(without a proof of proximity). In Section 3.1.4 we state the result of [BSGH+06] and derive
Theorem 3.1, and in Section 3.1.5 we prove Theorem 3.2 using an appropriate instantiation
of the Reed-Muller code. Lastly, in Section 3.1.6 we construct a poly(1/ε)-LTC, which is also
an O(1)-relaxed-LDC (with polynomial stretch), and prove Theorem 3.3.

3.1.2 An MAP Upper Bound for EIM

Lemma 3.4. Let C : Σk → Σn be a code with constant relative distance that is a t1-
relaxed-LDC and also a t2-LTC. Then, EIMC ∈MAP1

(
log k, t1(n/2) + t2(n/2, ε/2)

)
.

Proof. We prove Lemma 3.4 by showing an MAP proof-system for proving proximity to
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EIMC . The proof of proximity for the statement (C(x), C(y)) ∈ EIMC is simply a coordinate
i ∈ [k] such that the messages x and y are non-zero i (i.e., xi, yi 6= 0). Given the proof i and
oracle access to a pair of strings (α, β), it suffices for the verifier to check that both α and
β are close to codewords (using the LTC property) and if so to reconstruct the ith symbol
of the underlying messages (using the relaxed-LDC property). (Lastly, it verifies that both
symbols are non zero.)

The full protocol is described in Figure 1, where δ0 ∈ (0, 1) denotes the relative distance
of C, and δ ∈ (0, δ0/2) denotes the decoding radius of C (i.e., strings that are δ-close to
codewords are correctly decoded by the relaxed-LDC procedure).

MAP for EIMC (where C : Σk → Σn is a t1-relaxed-LDC and a t2-LTC)

Input: a proximity parameter ε ∈ (0, 2δ) (where δ is the decoding radius) and oracle access to a
pair (α, β) ∈ Σn+n.

The Proof:

• Let x, y ∈ Σk be the unique messages encoded in α and β, respectively; that is, C(x) = α
and C(y) = β. Denote the ith symbol of x by xi, and the ith symbol of y by yi.

• The proof consists of a coordinate i ∈ [k] such that xi 6= 0 and yi 6= 0 (which exists, for
(α, β) ∈ EIMC).

The Verifier:

1. Run the local testing algorithm of C on α and on β with respect to proximity parameter
ε/2 and reject if either test rejects.

2. Run the (relaxed) local decoding algorithm of C to obtain the ith message symbol of α,
denoted σ, and the ith message symbol of β, denoted τ .

3. Accept if both σ 6= 0 and τ 6= 0, and reject otherwise.

Figure 1: MAP for EIMC

Since the code is a t1-relaxed-LDC and a 2t-LTC, the query complexity of the MAP is
2t1(n/2) + 2t2(n/2, ε/2), and the proof complexity is log2 k. We proceed to show that both
completeness and soundness hold.

Completeness. If (α, β) ∈ EIMc, then there exist x, y ∈ Σk such that α = C(x) and β =
C(y), and therefore the local testing algorithm succeeds. Since the proof consists of a
coordinate i for which xi, yi 6= 0, and the local decoding algorithm always succeeds, the
MAP verifier always accepts.
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Soundness. Suppose that (α, β) is ε-far from EIMC and let i ∈ [k] be some alleged proof to
the false statement (α, β) ∈ EIMC . There are two possible scenarios to consider:

1. either α or β are ε/2-far from C; or

2. both α and β are ε/2-close to C.

In the first case, with probability at least 1/2, the local testing algorithm will fail and
therefore the MAP verifier rejects with probability at least 1/2. We proceed to the second
case.

Suppose that both α and β are ε/2-close to the code. Then, there exist unique x, y ∈ Σk

s.t. α is ε/2-close to C(x) and β is ε/2-close to C(y), where uniqueness holds since ε/2 <
δ < δ0/2. However, since (α, β) is ε-far from having the property EIMC , this implies that
either xi = 0 or yi = 0 (where i is the alleged proof). Thus, when running the relaxed local
decoding algorithm (since ε/2 < δ), with probability at least 2/3, the decoder will output
either 0 or ⊥ on one of the two codewords (with respect to coordinate i), in which case the
verifier rejects. We conclude that in both scenarios the verifier rejects with probability at
least 1/2.

3.1.3 A PT Lower Bound for EIM

Next, we show a that the query complexity of property testing the EIM property must be
linear in k.

Lemma 3.5. Let C : Σk → Σn be an error-correcting code with relative distance at least
δ0 ∈ (0, 1). Then, for any ε ∈ (0, δ0/2) it holds that:

PTε
(
EIMC

)
= Ω(k/ log |Σ|)

The proof of Lemma 3.5 uses the framework of [BBM11] for showing property testing
lower bounds via communication complexity lower bounds. The necessary background on
communication complexity is provided in Appendix A.2 (for a comprehensive introduction
to communication complexity, see [KN97]).

The basic approach of [BBM11] is to reduce a hard communication complexity problem
to the property testing problem for which we want to show a lower bound. We follow
[BBM11] by showing a reduction from the well-known communication complexity problem
of set-disjointness. The aforementioned framework allows us to obtain a lower bound on the
query complexity of testing the encoded intersecting messages property.

For sake of self containment, we state the relevant definitions and lemmas that we need
from [BBM11].

Definition 3.6 (Combining operators). A combining operator is an operator ψ that takes
as input two functions f, g : D → R (where D and R are some finite sets) and returns
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a function hf,g. We denote by |ψ| def
= log2 |R|. The combining operator is called simple if

hf,g(x) can be computed from x, f(x) and g(x) (i.e., without requiring access to f and g).

Let Π be a property, and let ψ be a combining operator. For every integer n ∈ N
and proximity parameter ε > 0, we denote by CΠ

ψ,ε the communication complexity problem
wherein Alice gets a function f , and Bob gets a function g,7 and their goal is to decide
whether ψ(f, g) ∈ Π or ψ(f, g) is ε-far from Π.8 Next, we state the main lemma from
[BBM11].

Lemma 3.7. For any simple combining operator ψ, any property Π and any proximity
parameter ε > 0, we have that:

PTε(Π) ≥
CC(CΠ

ψ,ε)

2|ψ|
where PTε(Π) refers to the query complexity of the property Π with respect to proximity ε
and CC(C) refers to the communication complexity of C (see Appendix A.2).

Recall that the set-disjointness problem is the communication complexity problem wherein
Alice gets an n-bit string x, Bob gets an n-bit string y, and their goal is to decide whether
there exists i ∈ [n] such that xi = yi = 1. Equivalently, Alice and Bob’s inputs can be viewed
as indicator vectors of sets A,B ⊆ [n]. In this case, the goal of the players is to decide if the
sets corresponding to their inputs intersect or not. Following many works in the literature
we consider the promise problem (sometimes also called unique disjointness) in which the
intersection is of size at most 1. That is, the two parties need to distinguish between the
case that their intersection is empty, and the case that it is of size exactly 1. We denote the
latter problem by DISJn.

It is well known (see Appendix A.2) that the randomized communication complexity of
the set-disjointness problem is linear in the size of the inputs, even under the promise that
A and B intersect in at most one element.

Theorem 3.8 ([KS92]). For every n ∈ N,

CC(DISJn) = Ω(n).

Using the aforementioned results, we are ready to prove Lemma 3.5.

Proof of Lemma 3.5. Let C : Σk → Σn be an error-correcting code with relative distance
δ0 ∈ (0, 1) where we assume without loss of generality that {0, 1} ⊆ Σ. Denote by Pair the
operator that takes two strings x, y ∈ Σk and returns a function z : [k] → Σ that outputs

7More formally, the parties get as input strings that represent the truth table of the functions.
8Due to the symmetrical definition of the communication complexity model, it is unimportant which

of these cases (i.e., ψ ∈ Π or ψ that is ε-far from Π) is viewed as a YES-instance of Π. In contrast, see
Footnote 12.
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(xi, yi) on input i ∈ [k]. Consider CEIMC
Pair,ε , the communication complexity problem wherein

Alice gets a string x ∈ Σk, Bob gets a string y ∈ Σk, and their goal is to decide whether
(x, y) ∈ EIMC or (x, y) is ε-far from EIMC . Using the results of [BBM11] (see Lemma 3.7)
we have,

PTε(EIMC) ≥ 1

2 log |Σ|
CC
(
CEIMC
Pair,ε

)
. (3.1)

Since by Theorem 3.8 we have CC(DISJk) = Ω(k), then it suffices to show that

CC
(
CEIMC
Pair,ε

)
≥ CC(DISJk). (3.2)

Toward this end, we show a reduction from the communication complexity problem DISJk
to the communication complexity problem CEIMC

Pair,ε . We note that, under the natural associ-
ation of EIMC with YES-instances and “far from EIMC” with NO-instances, our reduction
maps YES (resp., NO) instances of DISJk to NO (resp., YES) instances of EIMC . Let π be
a protocol for CEIMC

Pair,ε with communication complexity c. Consider the following protocol for
DISJk.

Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively) for DISJk. Alice computes
α = C(x). Bob computes β = C(y). The players then run π on (α, β) and return the negation
of its output.

Indeed, if (x, y) ∈ DISJk (i.e., their intersection is empty), then for every i ∈ [k], either
xi = 0 or yi = 0. Since the relative distance of C is at least δ0, it holds that (α, β) is
(δ0/2)-far from EIMc. On the other hand, if (x, y) 6∈ DISJk (i.e., their intersection is of size
1), then there exists i ∈ [k] such that xi = yi = 1. Hence,

(
α, β

)
∈ EIMc. Moreover, note

that the total number of bits that were communicated is exactly c.

Using Eq. (3.1) and Eq. (3.2), together with Theorem 3.8, we conclude that for every
ε > 0,

PTε(EIMc) ≥
1

2 log |Σ|
CC
(
CEIMC
Pair,ε

)
≥ 1

2 log |Σ|
CC(DISJk) = Ω(k).

3.1.4 Proof of Theorem 3.1

In order to obtain anO(1)-relaxed-LDC that is also a poly(1/ε)-LTC, we shall use the following
construction of Ben-Sasson et al. [BSGH+06].

Theorem 3.9 ([BSGH+06, Remark 4.6]). For every α > 0, there exists a binary code that
is an O(1)-relaxed-LDC and a t-LTC with constant relative distance and stretch n = k1+α,
where for ε > 1/polylog(n) it holds that t(n, ε) = poly

(
1
αε

)
.

Theorem 3.1 follows by combining Theorem 3.9 with Lemma 3.4 and Lemma 3.5.
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3.1.5 Proof of Theorem 3.2

In this section we show that a well-known variant of the Reed-Muller error-correcting code is
an polylog(n)-LDC (and in particular a polylog(n)-relaxed-LDC) and a poly(log n, 1/ε)-LTC.
Combining the latter with Lemma 3.4 and Lemma 3.5, we prove Theorem 3.2.

Lemma 3.10. For every constant α > 0, there exists a polylog(n)-LDC that is also a
poly(log n, 1/ε)-LTC with stretch n = k1+α and relative distance 1− o(1).

Proof. We construct a code C : Σk → Σn as follows. Fix a finite field F and an integer m
such that |F|m = n. The alphabet of the code is Σ = F. Consider an arbitrary subset H ⊂ F
of size k1/m. We view a message x ∈ Fk as a function x : Hm → F by identifying Hm and [k]
in some canonical way. The encoding C(x) is the low degree extension x̂ of x with respect
to the field F. Namely, the (unique) m-variate polynomial of individual degree |H| − 1 that
agrees with x on Hm.

The code stretches k = |H|m symbols to n = |F|m symbols, and by the Schwartz-Zippel

Lemma it has relative distance at least 1− m|H|
|F| . Furthermore, the code can be locally tested

using O(m|H| · poly(1/ε)) queries (see Theorem A.9), and locally decoded using O(m|H|)
queries (see Theorem A.7). Thus, to obtain our result we need to set our parameters as to
maximize the ratio |H|/|F|, while minimizing m · |H| and keeping |F| > m · |H|.

For every constant α > 0 and every integer n ∈ N, we let F be a finite field of size
(log n)1/α, let m = α · logn

log log(n)
and let H be some fixed (arbitrary) subset of F of size |F|1−α.

Hence, m·|H|
|F| = α · logn

log logn
· |F|−α = o(1). The code has relative distance 1 − (|H|−1)·m

|F| =

1− o(1), stretch n = |F|m = |H|m/(1−α) = k1/(1−α). In addition, it can be locally tested using
poly(log n, 1/ε) queries, and locally decoded using polylog(n) queries.

A natural property. We remark that when the encoded intersecting messages property is
instantiated with the foregoing variant of the Reed-Muller code, we obtain a natural property
that consists of pairs (P,Q) of low-degree polynomials, whose product P ·Q is non-zero on
a given subset of its domain. That is, the property is

ΠF,d,m,H =

{
(P,Q) : P,Q : Fm → F have individual degree d and

∑
x∈Hm

(P ·Q)(x) 6= 0

}
.

3.1.6 Proof of Theorem 3.3

In this section we prove Theorem 3.3 by showing anO(1)-relaxed-LDC that is also a poly(1/ε)-
LTC, for general values of ε, but with a polynomial stretch. We believe that the following
theorem may be of independent interest.

Theorem 3.11. There exists a binary code that is an O(1)-relaxed-LDC and a poly(1/ε)-LTC
with constant relative distance and stretch n = poly(k).
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Indeed, Theorem 3.3 follows by combining Theorem 3.11 with Lemma 3.4 and Lemma 3.5.

Proof of Theorem 3.11. Our approach is to show that the [BSGH+06] relaxed-LDC can
actually be modified to also be an LTC. Since we only show a code with polynomial
(rather than “almost linear”) stretch, it suffices to consider the simpler quadratic stretch
relaxed-LDC of [BSGH+06]. Recall that the construction in [BSGH+06] has the form C ′(x) =(
xt, C(x)t

′
, π(x)

)
, where C is a code with constant relative distance and constant rate,

whereas t and t′ are integers set such that the three parts of C ′(x) have equal length, and
π(x) = π1(x), . . . , πk(x) is a sequence of k PCPPs. The ith PCPP (i.e., πi(x)) refers to a
statement of the form (z1, z2) ∈ {0, 1}|C(x)|+|C(x)|, and asserts that there exists x ∈ {0, 1}k
such that z1 = x

|C(x)|
i and z2 = C(x) (see [BSGH+06, Section 4.2] for further details).

Ben-Sasson et al. showed that the code C ′ is indeed a relaxed-LDC. The main problem
that we encounter in turning C ′ into an LTC is that there is no apparent way for an LTC
tester to detect errors (i.e., flipped bits) in the PCPP part of the codeword. Indeed, merely
verifying that the statement holds using the PCPP proof string will not do, since in the
case that all the errors are on the PCPP part, the statement is in fact correct and only the
proof string contains errors. In such case there is no guarantee on the output of the PCPP
verifier.

One possible way to overcome this difficulty is to use the strong PCPPs of Goldreich and
Sudan [GS06, Definition 5.7 (see revision dated May 2013)]. Recall that strong PCPPs are
PCPPs in which every statement has a unique canonical proof such that a statement-proof
pair is rejected with probability that is proportional to its distance from a true statement
and corresponding canonical proof. Thus, even a true statement may be rejected when given
a non-canonical proof.

Unfortunately, there is no known construction of general strong PCPPs (e.g., for a P-
complete language). However, [GS06] constructed a special-purpose strong PCPP for a
particular task. Using these special-purpose PCPPs (and additional ideas from [BSGH+06]
and [GS06]), we construct a strong PCPP for the particular statements in the [BSGH+06]
relaxed-LDC. We remark that the strong PCPP that we use has polynomial length, which
results in our code having polynomial stretch.

While the previous description provides the high-level view of our construction, we cau-
tion that the actual details are slightly more complex. The result stated in following lemma
forms the core of our construction.

Lemma 3.12. There exists constants c1, c2, c3 > 1, a polynomial n = poly(k), and a code
C : {0, 1}k → {0, 1}c2n with constant relative distance such that for every i ∈ [k], there exists
a function πi : {0, 1}k → {0, 1}c3n such that the code Ci : {0, 1}k → {0, 1}c1n+c2n+c3n defined
as Ci(x) = (xc1ni , C(x), πi(x)) is a poly(1/ε)-LTC.

Lemma 3.12 is proved in Appendix B.2. The proof uses an extension of [GS06, Theorem
5.20] that was communicated to us by Oded Goldreich and appears in Appendix B.1.
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Intuitively, Lemma 3.12 provides an LTC in which the ith bit can be recovered (in the
relaxed-LDC sense).9 Using the particular form of the codes {Ci }i∈[k] of Lemma 3.12, we

show that that the code C ′(x)
def
= C1(x), . . . , Ck(x) (which has constant relative distance) is

an LTC in which each one of the bits can be recovered (again, in the relaxed-LDC sense).

Proposition 3.13. C ′ is an O(1)-relaxed-LDC.

Proof. Observe that, up to a permutation of the indices, C ′ has the form

C ′(x) =
(
xc1n, C(x)k, π(x)

)
where π(x) = π1(x), . . . , πk(x). We proceed to show that the code C ′ has the same form
as the quadratic relaxed-LDC code in [BSGH+06, Section 4.2], and therefore, is an O(1)-
relaxed-LDC.

We first note that in contrast to the [BSGH+06] construction, the three parts of C ′ do not
have the exact same length. However, their lengths are proportional (by a constant factor)
and that the proof of [BSGH+06] can be easily extended to this case.

The key observation is that each πi(x) is actually a PCPP proof of membership to the
set

Si =
{

(z1, z2) ∈ {0, 1}c1n+c2n : z1 = xc1ni and z2 = C(x)
}

(as in [BSGH+06]). To see that the latter holds, consider the following PCPP verifier for
membership in Si. The PCPP verifier is given oracle access to a pair (z1, z2) ∈ {0, 1}c1n+c2n

and a proof string π. The verifier simply invokes the LTC procedure of Ci on the string
(z1, z2, π), and outputs its result.

If (z1, z2) ∈ Si, then there exists x ∈ {0, 1}k such that z1 = xc1ni and z2 = C(x). Letting
the proof string π equal πi(x), the string (z1, z2, π) is identical to C ′(x), and so, the LTC
tester accepts with probability 1.

On the other hand, if (z1, z2) has constant distance from Si, then for every string π, the
string (z1, z2, π) has constant distance from the code C ′, and the LTC tester rejects with
probability at least 1/2. This ends the proof of Proposition 3.13.

Proposition 3.14. C ′ is a poly(1/ε)-LTC.

Here we provide a sketch of the proof. The full proof, which follows ideas from [GS06],
is deferred to Appendix B.3.

Proof Sketch for Proposition 3.14. Consider the following codeword tester for C ′. The
tester is given oracle access to a string

(
(w1, y1, z1), . . . , (wk, yk, zk)

)
, where each (wi, yi, zi) ∈

{0, 1}c1n+c2n+c3n, and operates as follows:

1. Selects at random i ∈R [k] and runs the LTC tester of Ci on (wi, yi, zi).

9Recall that a formal definition of relaxed-LDCs can be found in Appendix A.4.
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2. Selects at random i1, i2 ∈R [k] and j ∈R [c2n] and checks that the jth bit of yi1 and yi2
agree.

Intuitively, the first part of the test guarantees that most of the triplets (wi, yi, zi) have the

form
(
x

(i)
i , C(x(i)), πi(x

(i))
)

for some x(i) ∈ {0, 1}k, and the second part guarantees that all

of the x(i)’s are the same. For the detailed proof, see Appendix B.3.

This completes the proof of Theorem 3.11.

Remark 3.15. The construction of Theorem 3.11 can be adapted to be an MA proximity-
oblivious tester (see Definition 2.3) by observing that the LTC tester can be adapted to be a
strong-LTC10 tester.

3.2 Tradeoff between Query and Proof Complexity

In this section we show a property that has a multiplicative trade-off between proof and
query complexities for MAP testing. We show a property that can be tested with a nearly
smooth tradeoff between the proof and query complexities.

Theorem 3.16. For every constant α > 0, there exists a property Πα such that for every
sublinear function p : N → N, the query complexity of Π for MAP verifiers, which use

proofs of length p, is upper bounded by n1−α+o(1)

p
· poly(1/ε) and lower bounded by Ω̃

(
n1−α

p

)
.

Our proof is heavily based on multivariate polynomials, and we refer the reader to Ap-
pendix A.5 for the necessary background (e.g., the Schwartz-Zippel lemma and low degree
testing). In fact, the proof of Theorem 3.16 is based on a specific algebraic property that
we call Sub-Tensor Sum. We note that this property will also be used in Section 3.3 and
Section 3.4.

We proceed to describe the sub-tensor sum problem. Let F be a finite field, let m, d ∈ N
such that d ·m < |F|/10 and let H ⊂ F. Consider the following property.

Definition 3.17. The Sub-Tensor Sum property, denoted TensorSumF,m,d,H , is parameterized
by a field F, a dimension m ∈ N, a degree d ∈ N and a subset H ⊂ F, and contains all
polynomials P : Fm → F of individual degree d, such that∑

x∈Hm

P (x) = 0

where the arithmetic is over F.

10A strong-LTC tester is not given the proximity parameter as input and is only required to reject strings
that are ε-far from the code with probability Ω(1/ε) (see [GS06, Definition 2.2]).
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To obtain a tight trade-off, we shall be using some d = Θ(|H|). To simplify the
notation, when the parameters are clear from the context, we shorthand TensorSum for
TensorSumF,m,d,H . Next, we proceed to show the (almost) tight multiplicative trade-off for
TensorSum. In Section 3.2.1 we prove the upper bound and in Section 3.2.2 we prove the
lower bound. Finally, in Section 3.2.3 we set the parameters for proving Theorem 3.16.

3.2.1 MAP Upper Bound for TensorSum

We start by proving the following upper bound.

Lemma 3.18. If dm < |F|/10, then, for every ` ∈ {0, . . . ,m}, the TensorSumF,m,d,H prop-
erty has an MAP with proof complexity (d + 1)` · log(|F |) and query complexity |H|m−` ·
(dm2 log |H|) · poly(1/ε). Furthermore, the MAP has a one-sided error.

We note that the additional parameter ` essentially controls the proof length (and will
be set as roughly the logarithm of the desired proof length). Moreover, d will be set such
that d = Θ(|H|) and therefore d` · |H|m−` ≈ |H|m and so we can set ` to obtain the desired
trade-off between proof and query complexities.

Proof of Lemma 3.18. We prove the lemma by showing anMAP protocol for the state-
ment P ∈ TensorSum. The main idea is to partition Hm into |H|` sub-tensors of the form
(x1, . . . , x`, ∗, ∗, . . . , ∗) for every x1, . . . , x` ∈ H, and use a low degree `-variate polynomial Q
such that Q(x1, . . . , x`) equals the sum of the (x1, . . . , x`)

th tensor over Hm−`. Specifically,
we refer to the polynomial:

Q(x1, . . . , x`) =
∑

x`+1,...,xm∈H

P (x1, . . . , xm).

Thus, the MAP proof for the statement P ∈ TensorSum, consists of the polynomial Q.
The verifier checks that (1) P is (close to) a low degree polynomial, (2) the sum of Q on H`

is 0, and (3) that Q is consistent with P . The last step uses the fact that both Q and P are
low degree polynomials and so it suffices to verify consistency of a random point in Q by
reading the entire corresponding sub-tensor (i.e., |H|m−` points) from P . Actually, since P
can only be verified to be close to a low degree polynomial, the |H|m−` points are read via
self-correction. The detailed protocol is presented in Figure 2 (where all arithmetic is over
F).

Note that the proof of proximity consists of |Q| = O((d + 1)` log |F|) bits and that the
total number of queries to the oracle is dominated by the |H|m−` invocations of the self-
correction algorithm (which requires (m log(|H|) · dm · poly(1/ε) queries for each invocation
to obtain the desired soundness level). We proceed to show that completeness and soundness
hold.
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MAP for TensorSum with parameter ` ≤ m

Parameters: F (field), m (dimension), d (individual degree) and H ⊂ F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

The Proof:

• The proof consists of a multivariate polynomial Q̃ : F` → F of individual degree d (specified
by its (d+ 1)` coefficients), which allegedly equals

Q(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P (x1, . . . , xm).

The Verifier:

1. If
∑

x1,...,x`∈H Q̃(x1, . . . , x`) 6= 0, then reject.

2. Run the low individual d-degree test (see Theorem A.9) on P with respect to the proximity
parameter ε. If the test fails, then reject.

3. Select uniformly at random r1, . . . , r` ∈R F.

4. For every x`+1, . . . , xm ∈ H, read the value of P (r1, . . . , r`, x`+1, . . . , xm) using self correc-
tion (see Theorem A.7) repeated O(m log(|H|)) times (to reduce the error probability to

1
10|H|m for each point). Denote the value read by zr1,...,r`,x`+1,...,xm .

5. Accept if Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm and otherwise reject.

Figure 2: MAP for TensorSum

Completeness. If P ∈ TensorSum, then
∑

x1,...,x`∈H Q(x1, . . . , x`) = 0 and P has individual

degree d (and so the individual degree test passes). Moreover, in this case Q̃ = Q and

Q(r1, . . . , r`) =
∑

x`+1,...,xm∈H

P (r1, . . . , r`, x`+1, . . . , xm).

By the zero-error feature of the self-correction procedure, with probability 1,

zr1,...,r`,x`+1,...,xm = P (r1, . . . , r`, x`+1, . . . , xm),

and therefore
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm = Q̃(r1, . . . , r`). Hence, in this case, the verifier
accepts with probability 1.

Soundness. Let ε > 0 and let P : Fm → F be a polynomial that is ε-far from TensorSum.
Let Q̃ be an alleged proof (to the false statement P ∈ TensorSum).
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Consider first the case that P is ε-far from having individual degree d. In this case, by
the individual degree test (Theorem A.9), the verifier rejects with probability at least 1/2.
Thus, we focus on the case that P is ε-close to a polynomial P ′ of individual degree d. We
may also assume that

∑
x1,...,x`∈H Q̃(x1, . . . , x`) = 0 (since otherwise the verifier rejects with

probability 1). Define

Q′(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P ′(x1, . . . , xm).

Clearly
∑

x1,...,x`
Q′(x1, . . . , x`) 6= 0 (since otherwise P is ε-close to P ′ ∈ TensorSum). Thus,

the individual degree d polynomials Q′ and Q̃ differ, and so, by the Schwartz-Zippel Lemma
they can agree on at most a d`

F fraction of their domain F`.

To complete the argument note that the self-correction algorithm guarantees that ev-
ery zr1,...,r`,x`+1,...,xm is equal to P ′(r1, . . . , r`, x`+1, . . . , xm), with probability 1 − 1

10|H|m (here

we use our assumption that, without loss of generality, ε < 1/3). Therefore, by the
union bound, all points are read correctly with probability at least 0.9, and in this case∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm = Q′(r1, . . . , r`). Thus, with probability 0.9 · (1 − dm
F ) ≥ 2/3,

the verifier rejects when testing that Q̃(r1, . . . , r`) equals
∑

x`+1,...,xm∈H zr1,...,r`,x`+1,...,xm .

3.2.2 MAP Lower Bound for TensorSum

Next, we give an (almost) matching lower bound on the MAP complexity of Sub-Tensor
Sum. Formally, we show

Lemma 3.19. For every ε ∈ (0, 1− dm
|F| ), if d ≥ 2(|H|−1), then every MAP for TensorSum

(with respect to proximity parameter ε) that has proof complexity p ≥ 1 must have query

complexity q = Ω
(
|H|m
p·log |F|

)
.

As an immediate corollary of Lemma 3.19 we obtain the following:11

Corollary 3.20. For every ε ∈ (0, 1− dm
|F| ), if d ≥ 2(|H| − 1),

PT ε(TensorSum) = Ω

(
|H|m

log(|F|)

)
.

In order to prove Lemma 3.19, we first extend the framework of [BBM11] from the
property testing model to the MAP model. More specifically, we show a methodology for
proving lower bounds on MAPs via MA communication complexity lower bounds. We
refer the reader to Appendix A.3 for background on MA communication complexity.

Let Π be a property and let ψ be a simple combining operator (see Definition 3.6). For
every proximity parameter ε > 0, denote by CΠ

ψ,ε the communication complexity problem in

11The corollary can be derived by setting p = 1, and the fact that any property tester is an MAP.
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which Alice gets as input a function f and Bob gets as input a function g and they need to
decide between a YES-instance, wherein ψ(f, g) ∈ Π, and a NO-instance, wherein ψ(f, g) is
ε-far from Π.12 We prove the following lemma.

Lemma 3.21 (MAP lower bounds via MA communication complexity). For any sim-
ple combining operator ψ, any property Π and any proximity parameter ε > 0, if Π ∈
MAP(p, q), then CΠ

ψ,ε has an MA communication complexity protocol with a proof of length
p and total communication 2q|ψ|.

Proof. Let V be an MAP verifier for Π with proof complexity p and query complexity
q. We construct an MA communication complexity protocol for CΠ

ψ,ε. Recall that Alice
and Bob get as input function f and g (respectively) and have free access to a proof string
w ∈ {0, 1}p.

The (honest) proof string for the protocol is simply the proof string w of theMAP with

respect to h
def
= ψ(f, g). As their first step, Alice and Bob emulate the execution of the

MAP protocol with respect to the proof string w using their common random string as the
source of randomness (for the emulated verifier). Whenever the MAP verifier V queries
the input at a point x, Alice and Bob compute f(x) and g(x) (respectively) and send their
values to each other. Since ψ is a simple combining operator, each player can compute h(x)
from x, f(x) and g(x), and feed it as an answer to the emulatedMAP verifier. The players
accept if V accepts, and reject otherwise.

Observe that both players use the same common random string as the source of random-
ness, and forward the same values to the MAP verifier (i.e., both the proof string and the
oracle answers). Therefore, they emulate the verifier identically.

Note that by the definition of the communication complexity problem, if (f, g) ∈ CΠ
ψ,ε,

then h ∈ Π; hence the verifier will accept. On the other hand, if the pair (f, g) /∈ CΠ
ψ,ε, then

h is ε-far from Π, so the verifier will reject.

During the entire reduction, the players communicated 2|ψ| bits for every query of the
verifier. Hence the total number of bits that were communicated is 2|ψ| · q.

We proceed by stating Klauck’s lower bound on the MA communication complexity of
set-disjointness [Kla03], and use Lemma 3.21 to show a lower bound on theMAP complexity
of the Sub-Tensor Sum property.

Theorem 3.22 ([Kla03]). Every MA communication complexity protocol for DISJn with
proof complexity p and communication complexity c satisfies p · c = Ω(n).

12 When proving property testing lower bounds via standard (i.e., non-MA) communication complexity
lower bounds (using [BBM11] framework) one may also map YES-instances (respectively, NO-instances)
of communication complexity problems to NO-instances (respectively, YES-instances) of property testing
problems. This is possible due to the symmetrical definition of standard communication complexity (in fact,
the above was used in the proof of Lemma 3.5). In contrast, the definition ofMA communication complexity
is asymmetrical ; therefore when using our extension of the framework to MA one must map YES-instances
to YES-instances, and NO-instances to NO-instances.

30



Proof of Lemma 3.19. Denote k = |H|m and by f · g the function h(x)
def
= f(x) · g(x). Let

CTensorSum·,ε be the communication complexity problem wherein Alice gets a function f : Fm →
F, Bob gets a function g : Fm → F, and their goal is to decide whether f · g ∈ TensorSum or
f · g is ε-far from TensorSum.

Recall that by Theorem 3.22 we know that everyMA communication complexity protocol
for DISJk with proof complexity p and communication complexity c satisfies p · c = Ω(k). On
the other hand, by Lemma 3.21 we know that if TensorSum ∈MAP(p, q), then CC(CTensorSum·,ε )
has an MA communication complexity protocol with a proof of length p and a total of
2q log |F| communication.

Hence, to prove the lemma, it suffices to reduce DISJk to CTensorSum·,ε (this reduction takes
place entirely within the setting of MA communication complexity). Toward this end,
suppose that π is an MA communication complexity protocol for CTensorSum·,ε with proof
complexity p and communication complexity c. We use π to construct an MA protocol for
DISJk.

Let a ∈ {0, 1}k and b ∈ {0, 1}k be the respective inputs of Alice and Bob for the set-
disjointness problem. Recall that F (a finite field), d (the individual degree), m (the dimen-
sion) and H ⊂ F are parameters of the TensorSum problem. The reduction to TensorSum
proceeds as follows. First, Alice and Bob compute the low degree extension â and b̂ of their
respective inputs with respect to F,m, d and H. Namely, they associate their inputs a and
b with indicator functions a, b : Hm → {0, 1} by mapping [k] to Hm in some canonical way.
Then, they compute the (unique) polynomials â, b̂ : Fm → F of individual degree |H| − 1
that agree with a and b (respectively) on Hm.

Denote by w the proof for the protocol π with respect to the input pair (â, b̂). The proof
for the set disjointness problem is simply w. Alice and Bob proceed by running π on input
(â, b̂), with respect to the proof w and proximity parameter ε and return its output.

Observe that if (a, b) ∈ DISJk, then
∑

i∈[k] aibi = 0 (where the summation is over the

integers). Hence,∑
x1,...,xm∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm) =
∑

x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 0

(where the first summation is over F, and the second summation is over the integers). Thus,
â · b̂ ∈ TensorSumF,m,d,H (here we use the lemma’s hypothesis that d ≥ 2(|H| − 1) since â · b̂
is the product of two polynomials of individual degree |H| − 1 ). We conclude that there
exists a proof w of length p such that theMA communication complexity protocol for DISJk
accepts with high probability.

On the other hand, if (a, b) 6∈ DISJk, then (by the promise of having an intersection of size
at most 1) it holds that

∑
i∈[k] aibi = 1 (where the summation is over the integers). Hence∑

x1,...,∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm) =
∑

x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 1
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(where the first summation is over F, and the second summation is over the integers). Thus,
â · b̂ is an m-variate polynomials of (individual) degree d (≥ 2(|H| − 1)) whose sum over Hm

is non-zero. By the Schwartz-Zippel lemma (see Appendix A.5), and since ε < 1 − dm
|F| , the

function â · b̂ is at least ε-far from TensorSum.

We conclude that every MAP verifier for TensorSum with q queries and p proof length

must satisfy q · p ≥ Ω
(

k
log(|F|)

)
.

3.2.3 Proof of Theorem 3.16

In this section we complete the proof of Theorem 3.16, which states that for every constant
α > 0, there exists a property Πα such that for every sublinear function p : N → N, the
query complexity of Π for MAP verifiers that use proofs of length p is upper bounded by
n1−α+o(1)

p
· poly(1/ε) and lower bounded by Ω̃

(
n1−α

p

)
.

Toward this end, we need to set the parameters of the TensorSum problem. Our param-
eters are governed by n = |F|m (i.e., the size of the object equals n), dm < |F|/10 (so that
we can apply the Schwartz-Zippel lemma) and d = 2(|H| − 1) (see Lemma 3.19). Since
p · q = Ω̃(|H|m), and the object size is |F|m, we need to maximize the ratio |H|/|F| to obtain
a better lower bound (while recalling that |H| ≤ d/2− 1).

For every constant α > 0 and every integer n ∈ N, let F be a finite field of size (log n)1/α,
let m = α · logn

log log(n)
, let H be some fixed (arbitrary) subset of F of size |F|1−α and let

d = 2(|H| − 1). Note that |F|m = n and |H|m = n1−α.

Lemma 3.18 guarantees the existence of an MAP for TensorSumF,m,d,H with proof com-
plexity (d+1)` · log(|F |) and query complexity |H|m−` ·dm2 log(|H|) for every ` ∈ [m]. Thus,
for every parameter p ∈ {(d+ 1)i · log(|F|) : i ∈ N} (which corresponds to the proof length),
we set:

` =
log(p)− log log(|F |)

log(d+ 1)
.

and apply Lemma 3.18. We obtain anMAP protocol for computing TensorSumF,m,d,H with
a proof of length

(d+ 1)` · log(|F |) = p

and query complexity:

|H|m−` · dm2 log(|H|) · poly(1/ε) =
n1−α

|H|`
· polylog(n) · poly(1/ε). (3.3)

By our setting of ` we have:

|H|` = |H|
log p−log log |F|

log(d+1) ≥ 2
log |H|

log(2|H|) ·(log p−log log |F|) =

(
p

log |F|

)1− 1
1+logH

≥ p

no(1)
(3.4)
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where the first inequality follows from d = 2(|H| − 1) ≤ 2|H| − 1 and the second inequality
follows from our setting of |H| and |F| (and since p ≤ n). Combining Eq. (3.3) and Eq. (3.4)

we have that the query complexity of the MAP is n1−α+o(1)

p
· poly(1/ε).

On the other hand, by Lemma 3.19, for everyMAP for TensorSum with proof complexity

p and query complexity q, it holds that p · q ≥ Ω
(
|H|m
log |F|

)
= Ω̃(n1−α). The theorem follows.

3.3 MAP vs. IPP [O(1)]

In this section and the following one, we consider the power of MAP in comparison to the
more general notion of IPP (for a formal definition of IPP , see Appendix A.1.) Roughly
speaking, in this section we show a property that requires

√
n queries by an MAP verifier

that uses a proof of length
√
n but requires only polylog(n) queries by an IPP [3] verifier

(i.e., an IPP with only 3-messages) that also uses a proof of length
√
n.

Theorem 3.23. For every α > 0, there exists a property Πα such that:

1. The MAP complexity of Πα is Ω̃
(
n1/2−α); and

2. There is an IPP [3] for Πα with polylog(n) · poly(1/ε) query complexity and communi-
cation complexity Õ(n1/2−α+o(1)).

The property that we use is the TensorSum property (introduced in Section 3.2). Note
that the first part of Theorem 3.23 was already shown in Theorem 3.16, and so, to prove
Theorem 3.23, what remains to be shown is that TensorSum can be tested by a 3-message
IPP verifier that uses roughly

√
n communication and polylog(n) queries.

Lemma 3.24. If dm < |F|/10, then there is a 3-message IPP for TensorSumF,d,m,H (where
F is a finite field, m is the dimension, d is the degree and H ⊂ F) with communication
complexity O

(
(d+ 1)m/2 log(|F|)

)
and query complexity O (dm · poly(1/ε)).

We note that Theorem 3.23 follows from Lemma 3.24 (and Lemma 3.19) by setting the
parameters F,m, d,H as in Section 3.2.3. Namely, fix a finite field F of size (log n)1/α, a
dimension m = α · logn

log log(n)
, an arbitrary subset H ⊂ F of size |F |1−α and set d = 2(|H| − 1).

We proceed to prove Lemma 3.24

Proof of Lemma 3.24. The first part of the protocol closely resembles the MAP that
was presented in Lemma 3.18. Indeed, the first message from the prover to the verifier is the
polynomial Q that is (allegedly) the sum of P on H` sub-tensors of Hm, each of dimension
m − `. The verifier checks that P is close to a low degree polynomial and that Q sums to
0, but the consistency check of P and Q is different. Recall that in Lemma 3.18, the verifier
chose a random sub-tensor and checked the consistency of Q and P by reading all points in
the sub-tensor. Using two additional messages we replace these queries by having the prover
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provide them. That is, after the prover “commits” to the sum of all sub-tensors, the verifier
chooses one of them at random and sends its choice to the prover. Then, the prover provides
the value of all points in that sub-tensor via a polynomial W : Fm−` → F of individual
degree |H| − 1. The verifier can readily check the that the two polynomials Q and W sent
by the prover are consistent with each other (using no queries to P ), and that the second
polynomial (i.e., W ) is consistent with P using only a constant number of queries.

Similarly to the protocol of Section 3.2, the protocol uses a parameter ` except that in
this case, an optimal result is obtained by fixing ` = m/2 (but for simplicity of notations we
keep ` as a parameter). The IPP [3] protocol, in which the prover is denoted by P and the
verifier is denoted by V , is described in Figure 3.3. It can be readily verified that by setting
` = m/2, the query and communication complexities are as stated. We proceed to prove
that completeness and soundness hold.

Completeness. If P ∈ TensorSum, then P has individual degree d and the low degree tests
passes. In this case Q̃ = Q and W̃ = W and therefore all the verifier’s tests pass (since∑

x1,...,x`∈H Q(x1, . . . , x`) = 0 holds as well).

Soundness. Let ε > 0 and let P : Fm → F be ε-far from TensorSum. If P is ε-far from
having individual degree d, then the low degree test rejects with probability at least 1/2
and so we assume that P is ε-close to an individual degree d polynomial P ′. The (cheating)
prover sends two polynomials Q̃ and an W̃ . We proceed to prove two claims regarding these
polynomials.

Claim 3.24.1. If Q̃(x1, . . . , x`) ≡
∑

x`+1,...,xm∈H P
′(x1, . . . , xm) (as formal polynomials over

x1, . . . , x`), then the verifier rejects with probability 1.

Proof. Observe that
∑

x1,...,xm∈H P
′(x1, . . . , xm) 6= 0, as otherwise P is ε-close to TensorSum.

Therefore, if the polynomials Q̃(x1, . . . , x`) and
∑

x`+1,...,xm∈H P
′(x1, . . . , xm) are equal, then

the verifier rejects when testing whether
∑

x1,...,x`∈H Q̃(x1, . . . , x`) = 0.

Claim 3.24.2. For every value of r1, . . . , r` ∈ F, if the prover sends an individual-degree d
polynomial W̃ (x`+1, . . . , xm) (which depends on r1, . . . , r`) that differs from the polynomial
P ′(r1, . . . , r`, x`+1, . . . , xm) (as formal polynomials in x`+1, . . . , xm), then the verifier rejects
with probability at least 2/3.

Proof. Assume that W̃ (x`+1, . . . , xm) 6≡ P ′(r1, . . . , r`, x`+1, . . . , xm). Thus, the polynomials
W̃ (x`+1, . . . , xm) and P ′(r1, . . . , r`, x`+1, . . . , xm) are two different (m−`)-variate polynomials
of individual degree d and, by the Schwartz-Zippel Lemma, they can agree on at most a
d(m−`)
|F| < 0.1 fraction of their domain. Therefore, with probability 0.9 over the verifier’s

choice of s`+1, . . . , sm ∈ F, it holds that

W̃ (s`+1, . . . , sm) 6= P ′(r1, . . . , r`, s`+1, . . . , sm).
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IPP[3] for TensorSum

Parameters: F (field), m (dimension), d (individual degree), H ⊂ F and ` = m/2.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

1. V runs the low individual d-degree test (see Theorem A.9) on P with respect to the proximity
parameter ε. If the test fails then V rejects.

2. P sends to V an individual degree d multivariate polynomial Q̃ : F` → F of individual degree
d (by specifying its (d+ 1)` coefficients), which allegedly equals

Q(x1, . . . , x`)
def
=

∑
x`+1,...,xm∈H

P (x1, . . . , xm).

3. If
∑

x1,...,x`∈H Q̃(x1, . . . , x`) 6= 0, then V rejects.

4. V selects uniformly at random r1, . . . , r` ∈R F and sends r1, . . . , r` to P.

5. P sends to V an individual degree d multivariate polynomial W̃ : Fm−` → F of individual
degree d (by specifying its (d+ 1)m−` coefficients), which allegedly equals

W (x`+1, . . . , xm)
def
= P (r1, . . . , r`, x`+1, . . . , xm).

6. V selects at random s`+1, . . . , sm ∈R F, reads the value zr1,...,r`,s`+1,...,sm of the polyno-
mial P (r1, . . . , r`, s`+1, . . . , sm) using the self-correction algorithm (see Theorem A.7) with
soundness error 1/10 and rejects if zr1,...,r`,s`+1,...,m 6= W (s`+1, . . . , sm).

7. V accepts if Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈H W̃ (x`+1, . . . , xm) and rejects otherwise.

Figure 3: IPP [3] for TensorSum

Using the self-correction procedure, with probability at least 0.9, the verifier correctly
obtains the value zr1,...,r`,s`+1,...,sm = P ′(r1, . . . , r`, s`+1, . . . , sm). Hence, with probability at

least 0.92 > 2/3, the verifier rejects when testing whether zr1,...,r`,s`+1,...,sm = W̃ (s`+1, . . . , sm).

By Claim 3.24.2, we can assume that

W̃ (x`+1, . . . , xm) ≡ P ′(r1, . . . , r`, x`+1, . . . , xm) (3.5)

(since otherwise the verifier rejects). On the other hand, by Claim 3.24.1 and using the
Schwartz-Zippel Lemma, with probability at least 1− d`

|F| over the choice of r1, . . . , r` ∈R F,
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it holds that

Q̃(r1, . . . , r`) 6=
∑

x`+1,...,xm∈H

P ′(r1, . . . , r`, x`+1, . . . , xm) =
∑

x`+1,...,xm∈H

W̃ (x`+1, . . . , xm)

where the last equality is due to Eq. (3.5). Hence, the verifier rejects with probability
1 − d`

|F| > 0.9 when testing whether Q̃(r1, . . . , r`) =
∑

x`+1,...,xm∈HW (x`+1, . . . , xm). This
completes the proof of Lemma 3.24.

3.4 Exponential Separation between MAP and IPP

In this section we show an exponential separation betweenMAP and general IPP . Namely,
we show a property that has MAP complexity roughly

√
n but has IPP complexity

polylog(n). In contrast to the IPP of Section 3.3 (which used O(1) messages) here we
use an IPP with poly-logarithmically many messages.

Theorem 3.25. For every α > 0, there exists a property Πα such that:

1. The MAP complexity of Πα is Ω̃
(
n1/2−α · poly(1/ε)

)
; and

2. Πα has an IPP with query complexity polylog(n) · poly(1/ε) and communication com-
plexity polylog(n).

Moreover, the PT complexity of Πα is Θ̃(n1−α).

To prove Theorem 3.25, we yet again use the TensorSum problem. The first part of the
theorem follows directly from Theorem 3.16 and the query complexity of property testers
(without a proof) is implied by Corollary 3.20.13 Thus, to prove the theorem, all that remains
is to show an IPP protocol for TensorSum.

Lemma 3.26. If d ·m < F/10, then there exists an m-round IPP for TensorSumF,m,d,H with
communication complexity O(dm log |F |), and query complexity O(dm · poly(1/ε)).

Proof. The proof of Lemma 3.26 follows by adapting the well-known sum-check protocol
of Lund et al. [LFKN92] to the settings of interactive proofs of proximity. Recall that the
sum-check protocol is an interactive protocol that enables verification of the a claim of the
form: ∑

x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a low-degree polynomial. The difference between our setting and the classical
setting of the sum-check protocol of [LFKN92] is that in the latter the verifier has explicit

13We note that the property testing upper bound of Õ(n1−α) can be obtained by a verifier that tests for
low degree and reads all points in Hm using self correction.
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and direct access to P .14 In our setting the verifier only has oracle access to a function
that is allegedly a low-degree polynomial. However, we observe that the sum-check protocol
can be extended to this setting by having the verifier (1) test that the function is close to a
low-degree polynomial P , (2) obtain values from P via self-correction, and (3) run the sum-
check protocol as-is with respect to the self-corrected P . The IPP protocol is described in
Figure 4, where the prover is denoted by P , the verifier is denoted by V and all arithmetic is
over the field F. (For a high level description of the sum-check protocol, see Appendix A.6.)

IPP for TensorSum

Parameters: F (field), m (dimension), d (individual degree) and H ⊂ F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a function P : Fm → F.

1. V runs the individual degree d test (see Theorem A.9) on P with respect to proximity
parameter ε, and rejects if the test fails.

2. Let ν0
def
= 0.

3. For i← 1, . . . ,m:

(a) P sends to V a degree d univariate polynomial P̃i : F → F (by specifying its d + 1
coefficients), which allegedly equals:

Pi(z)
def
=

∑
xi+1,...,xm∈H

P (r1, . . . , ri−1, z, xi+1, . . . , xm).

(b) V verifies that
∑

z∈H P̃i(z) = νi−1.

(c) V selects uniformly at random ri ∈R F and sets νi
def
= P̃i(ri).

(d) If i 6= m, then V sends ri to P.

4. V obtains the value of z∗ of P (r1, . . . , rm) via self-correction (see Theorem A.7) with sound-
ness error 0.1.

5. V verifies that z∗ = νm.

Figure 4: IPP for TensorSumm,d,F,S,c

We note that during the run of the IPP the prover sends m degree d univariate polyno-
mial, and the verifier sends m elements in F. Thus, the total communication complexity of
the IPP is O(dm log |F |). The only queries that the verifier performs are for the low degree
test and the self-correction, which total in O(dm · poly(1/ε)) queries.

14An additional minor difference is that in the [LFKN92] protocol the set H is fixed to {0, 1}, but this is
common in the PCP literature (most notably in [BFLS91]).
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Completeness. If P ∈ TensorSum, then the low degree test always passes, and since we have∑
x∈Hm P (x) = 0, and the prover supplies the correct polynomials (i.e., P̃i = Pi for every

i ∈ [m]), the verifier always accepts.

Soundness. Suppose that P : Fm → F is ε-far from TensorSum. Let P∗ be a cheating prover
that attempts to convince the verifier of the false statement P ∈ TensorSum. If P is ε-far
from having individual degree d, then the verifier rejects with probability 1/2. Thus, we
focus on the case that P is ε-close to a polynomial P ′ of individual degree d.

For every i ∈ [m], let:

P ′i (z)
def
=

∑
xi+1,...,xm∈H

P ′(r1, . . . , ri−1, z, xi+1, . . . , xm)

(where the values ri are those sent from the verifier to the prover). The next two claims
relate the polynomials P ′i to the polynomials P̃i sent by the prover P∗. Recall that both
polynomials depend only on r1, . . . , ri−1.

Claim 3.26.1. If P̃1 ≡ P ′1, then the verifier rejects with probability 1.

Proof. Observe that
∑

x∈Hm P ′(x) 6= 0 must hold, since otherwise P ∈ TensorSum. There-

fore
∑

z∈H P
′
1(z) = 0, and so, if P̃1 ≡ P ′1, then the verifier rejects when testing that∑

z∈H P̃1(z) = 0.

Claim 3.26.2. For every i ∈ [m − 1] and every r1, . . . , ri−1 ∈ F, if P̃i 6≡ P ′i then, with
probability at least 1− d/|F| over the choice of ri, if P̃i+1 ≡ P ′i+1 then the verifier rejects.

Proof. If P̃i+1 ≡ P ′i+1 then
∑

z∈H P̃i+1(z) =
∑

z∈H P
′
i+1(z) = P ′i (ri). Thus, since the poly-

nomials P̃i and P ′i differ, with probability at least 1 − d/|F| over the choice of ri ∈R F it
holds that P̃i(ri) 6= P ′i (ri), and in this case the verifier will reject when testing whether∑

z∈H P̃i+1(z) = νi, since νi = P̃i(ri).

By Claim 3.26.3 and an application of the union bound, with probability 1− dm/|F|, if
there exists an i ∈ [m − 1] such that P̃i 6≡ P ′i but P̃i+1 ≡ P ′i+1 then the verifier rejects. By

Claim 3.26.1, we can assume that P̃1 6≡ P ′1 and so we need only consider the case that for
every i ∈ [m] it holds that P̃i 6≡ P ′i . The following claim shows that also in this case the
verifier rejects with probability at least 2/3. The theorem follows.

Claim 3.26.3. For every r1, . . . , rm−1 ∈ F, if P̃m 6≡ P ′m, then the verifier rejects with
probability at least 2/3 (over the choice of rm and the self-correction procedure).

Proof. If P̃m 6≡ P ′m then these are two distinct degree d polynomials, which can agree on at
most d points. Thus, with probability 1 − d/|F|, it holds that P̃m(rm) 6= P ′m(rm) (over the
choice of rm ∈R F). Now, the self-correction algorithm guarantees that the verifier computes
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z∗ = P ′(r1, . . . , rm) = P ′m(rm) correctly with probability 0.9. In such case, the verifier rejects
with probability 1− d/|F| when testing that z∗ = P̃m(rm). It follows that the verifier rejects
with probability 0.9 · (1− d/|F|) > 2/3.

This completes the proof of Lemma 3.26.

4 General Transformations

In this section we show general transformations on MAP proof-systems. In Section 4.1 we
show general transformations from MAPs with restricted proofs into PT . In Section 4.2
we show a general transformation from MAPs that have two-sided error into MAPs that
have one-sided error.

4.1 From MAP to PT

In this section we show that MAPs with restricted proofs can be emulated by property
testers. We show two such results. Theorem 4.1 shows that every MAP that uses a very
short proof can be emulated by a property tester, and Theorem 4.2 shows that evenMAPs
with long proofs in which the verifier’s queries are proof oblivious (see Definition 2.2) can
also be emulated. We note that in both constructions the tester may be inefficient in terms of
computational complexity (even if the originalMAP tester can be implemented efficiently).

Theorem 4.1. If the property Π has an MAP tester that makes q queries and uses a proof
of length p, then Π has a property tester that makes Õ(2p ·q) queries. Moreover, if theMAP
tester has one-sided error, then the resulting property tester has one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity q and proof complexity p.
We start by running the verifier O(p) times using fresh (independent) randomness, but the
same proof string, and ruling by majority vote. We obtain an MAP verifier V ′ for Π that

has soundness error 2−(p+2), uses q′
def
= O(p · q) queries and a proof of length p.

We use V ′ to construct a property tester T for Π. The tester T , given oracle access to a
function f , simply enumerates over all possible 2p proof strings for V ′. For each proof string
w ∈ {0, 1}p, the tester T emulates V ′ (using fresh randomness) while feeding it the proof
string w, and forwarding its oracle queries to f . If for some string w the verifier accepts,
then T accepts. Otherwise, it rejects. Clearly, T has query complexity 2p · q′.

If f ∈ Π, then there exists a proof string w that will make V ′ accept, with probability at
least 1−2−(p+2). Therefore, T accepts in this case with probability at least 2/3. On the other
hand, if f is ε-far from Π, then no string w will make V ′ accept with probability greater than
2−(p+2). Thus, by the union bound, T will accept with probability at most 2p ·2−(p+2) < 1/3.
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The furthermore clause of Theorem 4.1, follows by noting that both the parallel repetition
and proof enumeration steps preserve one-sided error.

The tester of Theorem 4.1 makes O(p · q) queries for every one of the possible 2p proof
strings. However, the fact that these queries were chosen independently (i.e., based on fresh
randomness) is not used in the soundness argument. Indeed, for soundness we simply applied
a union bound, which would have worked just as well if the queries were not independent
(i.e., were determined based on the same randomness). This leads us to consider using the
same sequence of queries for all of the proofs in the emulation step. The problem that we run
into is in the completeness condition. Namely, a sequence of queries that was generated with
respect to a particular proof may not be “good” for a different proof. More precisely, if the
distribution of queries that theMAP verifier generates (heavily) depends on the proof, then
the only guarantee that we have is that the MAP verifier will be correct when emulated
with a distribution of queries that matches the specific good proof.15 Hence, we may indeed
have to generate a different sequence of queries for every possible proof string.

However, as proved in the following theorem, if the tester makes proof oblivious queries
(see Definition 2.2), then the foregoing problem can be avoided and indeed it suffices to make
only one sequence of queries, and reuse this sequence for all the 2p emulations.

Theorem 4.2. If the property Π has an MAP verifier that makes q proof oblivious queries
and uses a proof of length p, then Π has a property tester that makes O(p · q) queries.
Moreover, if the MAP verifier has one-sided error, then the resulting property tester has
one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity q and proof complexity
p, and let V ′ be exactly as in the proof of Theorem 4.1 (i.e., an MAP verifier for Π with
soundness error 2−(p+2), using q′ = O(p · q) queries and a proof of length p).

As hinted above, the construction of the property tester T differs from that in Theo-
rem 4.1. The tester T is given oracle access to f . It first emulates V ′ using an arbitrary
(dummy) proof string, denoted w0, a random string r, and by forwarding V ′’s queries to f .
The key observation here is that the distribution of the queries does not depend on the proof
at all, and so an arbitrary proof would suffice for our needs. Thus, T obtains a sequence
āfr = (a1, . . . , aq′) of answers (corresponding to queries specified by r and the previous an-
swers). Now, T enumerates over all possible 2p proof strings for V ′, and for each proof string
w ∈ {0, 1}p it emulates V ′ while feeding it the proof string w, the random string r, and the
answer sequence āfr . If for some string w the verifier accepts, then T accepts. Otherwise, it
rejects.

If f ∈ Π, then there exists a proof string w that will make V ′ accept with probability at
least 2/3. The key point is that since the distribution of the queries does not depend on w.
Hence, the queries actually made by T (using the dummy proof w0) are identical to those

15For an example of such MAPs, see Theorem 3.1 and Theorem 4.3.
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V ′ would have made using the proof w (and the same randomness as T ). Hence, T accepts
in this case with probability at least 2/3 (and in case V ′ has one-sided error, then T accepts
with probability 1). On the other hand, similarly to the proof of Theorem 4.1, if f is ε-far
from Π then no string w will make V ′ accept with probability greater than 2−(p+2). Thus, by
the union bound, T will accept in this case with probability at most 2p · 2−(p+2) < 1/3.

4.2 From Two-Sided Error MAP to One-Sided Error MAP

In this section we show a general result transforming anyMAP (which may have two-sided
error) into anMAP with one-sided error, while incurring only a poly-logarithmic overhead
to the query and proof complexities. The construction is based on the ideas introduced in
Lautemann’s [Lau83] proof that BPP is contained the polynomial hierarchy coupled with the
observation thatMAPs may have very low randomness complexity (adapted from [GS10b],
which in turns follows an idea of Newman [New91]). We note that both the verifier and
the proof generation algorithm in this construction may be inefficient in the computational
complexity sense. (This is a consequence of each one of the two parts of the transformation).

Theorem 4.3. Let Π be a property of functions fn : Dn → Rn, where |Rn| ≤ exp
(
poly(n)

)
.

If Π has a two-sided error MAP with q queries and a proof of length p, then Π has a
one-sided error MAP with O(q · polylog(n)) queries and a proof of length O(p+ polylog(n)).

We note that typically |Rn| ≤ n and that properties for which |Rn| > exp(poly(n)) seem
quite pathological. Before proceeding to the proof of Theorem 4.3, we note that as a direct
application of the theorem we obtain the following relation between two-sided error property
testers and one-sided error MAP (denoted MAP1).

Corollary 4.4. For every function q : N× R+ → N it holds that:

PT (q) ⊆MAP1(polylog(n), q · polylog(n)).

The proof of Theorem 4.3 is based on two lemmas. The first, Lemma 4.5, shows that
a two-sided error MAP verifier that has low randomness complexity, can be transformed
into a one-sided error MAP . The proof of this lemma is based on the technique of Laute-
mann [Lau83]. The second lemma (Lemma 4.6) shows that the Goldreich-Sheffet [GS10b]
technique for reducing the randomness of property testers can also be used to reduce the
randomness of MAP verifiers.

Lemma 4.5. If the property Π has a two-sided MAP verifier that makes q queries, uses a
proof of length p, and has randomness complexity r, then Π has a one-sided MAP verifier
that makes O(q · r log r) queries and uses a proof of length O(p+ r2 log r).

Proof. Following [Lau83], the construction involves two main steps. The first step is a
parallel repetition step that significantly reduces both the completeness and soundness errors
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of theMAP . At this point, almost the entire set of possible random strings lead to accepting
inputs that have the property and rejecting inputs that are far from the property. The main
observation is that there must exist relatively few “shifts” s1, . . . , st such that for an input
that has the property, for every random string r there exists a shift si such that r⊕ si leads
to accepting, whereas if the input is far from the property, then with high probability over
the choice of r, no shift will result in accepting. Details follow.

Let V(2) be a two-sided error MAP verifier for a property Π with query complexity

q
def
= q(n, ε), proof complexity p

def
= p(n) and randomness complexity r

def
= r(n, ε). To prove

the theorem we construct a one-sided error MAP verifier V(1) for Π.

Let V(2)′ be the two-sided error MAP obtained by taking the majority of m = Θ(log r)
repetitions of V(2) using fresh random coins but using the same proof string for all repetitions.
By the Chernoff bound, this amplification yields both completeness and soundness errors that

are at most δ
def
= 2−Ω(m), which may be made smaller than 1

c·rm for any desired constant c > 0.

Note that V(2)′ has query complexity q′
def
= qm, proof complexity p′

def
= p, and randomness

complexity r′
def
= rm.

Denote by V f
(2)′(w; s) the (deterministic) output of V f

(2)′(w) when invoked with the random
string s. We construct the one-sided errorMAP verifier V(1) as follows. The proof string for
V(1) consists of the original proof string w for V(2) as well as a sequence of strings (s1, . . . , st)
each of length r′, where t = Θ(r) such that δt < 2−r

′
and δt < 1

3
. Given the proof string

(w, s1, . . . , st), the verifier V(1) chooses a random string s ∈R {0, 1}r
′

and runs V f
(2)′(w; s⊕ si)

for each i ∈ [t]. If for some i ∈ [t] the test accepts, then V(1) accepts; otherwise it rejects.
The proof and query complexities can be readily verified, and so we proceed to prove the
completeness and soundness of V(1).

Completeness. Let f ∈ Π of size n and let ε > 0. Then, by the completeness of V(2)′ , there

exists a proof string w such that Prs∈{0,1}r′ [V
f

(2)′(w; s) = 1] ≥ 1 − δ. We show that there

exists a sequence (s1, . . . , st) such that Prs∈{0,1}r′ [V
f

(1)(w, s1, . . . , st; s) = 1] = 1.

To show that such a sequence (s1, . . . , st) exists we use the probabilistic method. Specifi-
cally, we consider a sequence that is chosen uniformly at random, that is, each si ∈R {0, 1}r

′
.

By the union bound,

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
≤
∑
s

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
,

(4.1)
but since the si’s are independent, for every s ∈ {0, 1}r′ ,

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]

=
t∏
i=1

Pr
si

[
V f

(2)′(w; s⊕ si) = 0
]
≤ δt. (4.2)
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Combining Equations (4.1) and (4.2) we obtain that:

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s⊕ si) = 0
]
≤ 2r

′ · δt < 1.

and (zero-error) completeness follows.

Soundness. Let f of size n be ε-far from having the property Π for ε > 0. Then, by the
soundness of V(2)′ , for every proof string w, the verifier V(2)′ accepts f with probability at
most δ. Hence, by the union bound,

Pr
s

[
∃i ∈ [t] s.t. V f

(2)′(w; s⊕ si) = 1
]
≤
∑
i∈[t]

Pr
s

[
V f

(2)′(w; s⊕ si) = 1
]
≤ t · δ < 1/3

and the lemma follows.

Lemma 4.6. Let Π be a property of functions fn : Dn → Rn, where |Rn| ≤ exp
(
poly(n)

)
. If

Π has an MAP verifier that makes q queries, uses a proof of length p, and has randomness
complexity r, then Π has an MAP verifier that makes q queries, uses a proof of length p
and has randomness complexity O(log n).

Proof. The proof follows the proof of [GS10b] with a minor modification to handle the
dependence of the verifier on the proof. Namely, using the probabilistic method, we show
the existence of a small subset of the random strings that behaves similarly to the entire set.

Let Π be a property of functions fn : Dn → Rn, where |Rn| = exp
(
poly(n)

)
(and where

Dn = [n], cf. Section 2), and let V be the MAP verifier of the lemma statement. Fix

an input length n and let D
def
= Dn, R

def
= Rn and p

def
= p(n). Consider a 2r × |R||D| · 2p

matrix where the rows correspond to all possible random strings γ used by the verifier
and the columns correspond to pairs (f, w) of functions f : Dn → Rn and possible proofs
w ∈ {0, 1}p. The entry (γ, (f, w)) of the matrix corresponds to the output of V f (w; γ), that
is, the output of the verifier when given oracle access to f , the proof string w and random
coins γ.

Note that for every function f ∈ Π, by the completeness of V , there exists a proof string
w such that the average of the (f, w) column is at least 2/3. Similarly, by the soundness
of V , for functions that are ε-far from Π and every proof string w the average of the (f, w)
column is at most 1/3.

We show that there exists a multi-set, S, of size poly(n) of the rows such that the average
of every column when taken over the rows of S is at most 1/7-far from the average taken
over all rows. Thus, we obtain an MAP verifier that uses only log2 |S| = O(log n) random
coins, by simply running the original tester V but with respect to random coins selected
uniformly from S (rather than from {0, 1}r). To obtain soundness and completeness error
1/3 we use O(1) parallel repetitions.
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We use the probabilistic method to show the existence of a small multi-set S as above.
Consider a multi-set S of the rows, of size t, chosen uniformly at random and fix some
function f and proof string w. By the Chernoff bound, with probability 2−Ω(t) over the
choice of S, the average over the rows in S of the (f, w)-column is 1/7-close to the average
over all rows. Thus, by setting t = log(|R||D| · 2p) and applying the union bound, we obtain
that there exists a multi-set S as desired.

Since the new verifier selects at random from S, it can be implemented using log2 t
random coins. We complete the proof by noting that the proof length p can always be made
to satisfy p ≤ n (since a proof of length n suffices to test any property using only O(1/ε)
queries, see discussion in Section 1.2), that the domain size is n and that |R| ≤ exp(poly(n))
(by the hypothesis).

Theorem 4.3 follows by applying the randomness reducing transformation of Lemma 4.6,
and then applying Lemma 4.5 to the resulting MAP verifier.

5 MAPs for Properties without Distance

All of the properties studied in this work so far are properties of low-degree polynomials and
error-correcting codes. TheMAPs that we have shown crucially relied on the fact that these
properties have distance (i.e., properties wherein each two objects that have the property
are far from each other), and moreover, they allow for a local form of self-correction.16

To show that the usefulness of MAPs is not limited to properties with distance, we
consider a property without distance (and therefore also “without self-correctability”), and
show that one can design an efficientMAP for it, which surpasses the limitations of standard
property testers. Specifically, we consider the problem of approximating the Hamming weight
of a given string. This property is without distance since, for example, there are pairs of
strings at distance 2 that have the exact same Hamming weight. We complement ourMAP
for the approximate Hamming weight problem with a (non-tight) lower bound on itsMAP
complexity. We leave the question of resolving the gap between the upper and lower bounds
to future work.

5.1 Approximate Hamming Weight

We consider the problem of deciding whether a given string x ∈ {0, 1}n has Hamming weight
approximately w. That is, for a function w : N→ N, we are interested in testing proximity
to the property Hammingw that contains all n-bit strings x of Hamming weight w(n). Thus,
given x ∈ {0, 1}n and a proximity parameter ε > 0, the tester should accept if wt(x) = w
and reject if wt(x) /∈ [w − εn, w + εn].

16An important natural subset of this type of properties with distance is the set of properties of algebraic
objects; see [KS08] for an extensive study of algebraic properties.
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We first note that by well-known sampling lower bounds (see, e.g., [Gol11, Theorem 2.1]
or [BYKS01, Theorem 15]), the query complexity of any property tester (which does not use
a proof) is Ω (min (n, ε−2)). Hence, our goal is to use MAPs in order to bypass this lower
bound. We remark that Hammingw was already studied by [RVW13] who showed a multiple-

message IPP with complexity Õ (ε−1) and a 2-message IPP with complexity Õ
(
n

1
3 · ε− 2

3

)
.

For ε = 1/
√
n, this gives sublinear complexity of Õ

(
n2/3

)
, whereas property testing requires

Ω(n) queries. Using a technique known as precision sampling (originating in Levin [Lev85,
last paragraph of Section 9], see also [Gol13, Appendix A.2]), we show that the [RVW13]
2-message IPP can be transformed into anMAP (i.e., a 1-message IPP), while essentially
preserving its complexity.17 Thus, we show that even a non-interactive proof suffices to
bypass the property testing lower bound.

More generally, for every constant parameter α ∈ (0, 1), we show that there exists
an explicit MAP for Hamming that uses a proof of length Õ(nα), and makes at most

Õ
(√

n1−α · ε−1
)

queries to the input string. For every value of α ∈ (0, 1), there is a range

of ε for which theMAP is more efficient than the best possible property tester (which does
not use a proof) for Hamming. A comparison of the efficiency of ourMAP versus standard
property testers, for different values of α, is provided in Table 2.

MAP

Parameters Property Testing Proof Complexity Query Complexity

General

α ∈ (0, 1)
Θ (min (n, ε−2)) Õ(nα)

Õ
(√

n1−α · ε−1
)

Improves for n−
1
2−

α
2 < ε < n− 1

2+
α
2

α = 0.02 Θ (min (n, ε−2)) Õ (n0.02)
Õ (n0.49 · ε−1)

Improves for n−0.51 < ε < n−0.49

α = 2/3 Θ (min (n, ε−2)) Õ
(
n2/3

) Õ
(
n1/6 · ε−1

)
Improves for n−5/6 < ε < n−1/6

α = 0.98 Θ (min (n, ε−2)) Õ (n0.98)
Õ (n0.01 · ε−1)

Improves for n−0.99 < ε < n−0.01

Table 2: The complexity of testing Hamming for different values of α.

Before we proceed, we note that we actually prove a stronger result. Namely, we show
that for every k ∈ N there is an MAP for Hamming that uses a proof of length k · log n,

and makes at most Õ
(√

n/k · ε−1
)

queries (where the more restricted statement above is

17We note that a similar MAP protocol for approximating the Hamming distance was also discovered
independently by (Guy) Rothblum et al. following the initial publication of [RVW13].
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obtained by setting k = nα). In order to minimize the total complexity (i.e., the sum of the
proof complexity and the query complexity) of theMAP , we consider a slight relaxation of
our definition ofMAP (Definition 2.1) by allowing the proof of proximity to depend on the
proximity parameter. Thus, we define an MAP ′ as an MAP wherein both the contents of
the proof of proximity, and its length may depend on the proximity parameter. With this

relaxation, we can set k = n
1
3 ·ε− 2

3 to obtain anMAP ′ with (total) complexity Õ
(
n

1
3 · ε− 2

3

)
.

See Appendix C for further discussion of MAP ′.
We complement the foregoing upper bound by showing a lower bound on the MAP

complexity of Hamming. Specifically, we show that every MAP for Hamming that uses a

proof of length p ≥ 1 must use Ω
(

min(n,ε−2)
p

)
queries. As noted above, the two bounds do

not match (e.g., for ε = 1/
√
n and p = n2/3, the upper bound is Õ

(
n2/3

)
and the lower

bound is Ω(n1/3)). We leave the question of closing this gap for future work.

Relation to TensorSum. The Hamming problem is loosely related to the Sub-Tensor Sum
problem (see Section 3.2), since in both problems we want to compute the sum of the entries
of a given input string. In the Sub-Tensor Problem we want an exact answer but are given
the string in an error-corrected format (where we think of the input as f : Hm → F which is
encoded by a low degree polynomial f̂ : Fm → F that agrees with f on Hm). In the Hamming
problem we do not have the benefit of an error-correcting code but allow an approximate
answer.

5.1.1 Upper Bound

The followingMAP for Hamming depends on a parameter k that offers a trade-off between
the proof and the query complexities.

Theorem 5.1. For every k
def
= k(n, ε) and proximity parameter ε

def
= ε(n) > 0, the property

Hammingw has a (two-sided error) MAP ′ verifier that uses a proof of length k · log n and

Õ
(

min
(√

n/k · ε−1, n
))

queries. Furthermore, if k does not depend on ε, then the protocol

is an MAP (rather than an MAP ′).

We remark that by applying Theorem 4.3 we can (somewhat surprisingly) construct a
one-sided error MAP with proof complexity O(k log n + polylogn) and query complexity

Õ
(

min
(√

n/k · ε−1, n
))

. In contrast, the query complexity of every one-sided error prop-

erty tester for Hammingw (without a proof) is linear in the input size.

Proof of Theorem 5.1. The key idea is to use the proof in order to reduce the problem of
verifying the Hamming weight of a string x, to the concatenation problem of verifying the
Hamming weight of numerous “short” substrings of x. The proof will (allegedly) provide the
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Hamming weight of each of the k substrings, and the verification will amount to checking
that x is close to a string having substrings that fit the provided weights.

More specifically, we view the string x as a k × ` matrix (where `
def
= n/k), and set the

proof to be the Hamming weight of each one of the k rows. The verifier, given this alleged
proof, checks that indeed the sum of the provided weights equals w, and is then left with
the task of ascertaining that the claimed Hamming weights of the rows is (approximately)
consistent with x.

Toward this end, we note that given an input that is far from having the claimed Ham-
ming weight, the difference in the weight can be either “spread” between all of the rows, or
“concentrated” on a few rows (or anything in between). The main idea is that if the ex-
cess/deficiency of weight is “concentrated”, then the deviation in these rows must be large,
and so, we can detect the deviation in a particular row by sampling only relatively few bits
from that row. Since we only read a few bits for this test, we can afford to run it on many
rows (thereby increasing our chance of catching a “heavy” row). On the other hand, if the
excess/deficiency of weight is “spread” among the rows, then it suffices to examine only a
few rows, but for each such row to look at many of its bits. In the latter case, it is actually
beneficial to read each such row entirely, rather than to use naive sampling. Indeed, if the
excess/deficiency is well-spread, the accuracy that we require of every row test is below 1/

√
`,

in which case it is cheaper to simply read the entire row.

Since the tester does not know whether it is in one of the extreme situations or anywhere
in between, ideally we would have liked to consider all of the possible distributions of the
excess/deficiency. However, since the former is too costly, we use the precision sampling tech-
nique, which allows us to deal with all of the possible distributions of the excess/deficiency
economically (specifically, by considering only a logarithmic number of representative distri-
butions). The protocol is formally described in Figure 5.

For every iteration i ∈ [log n], the number of queries made in the ith iteration is at most:

k

2i
·min

(
`,

(
2i+1 log(εn)

εk

)2

· log n

)
= min

(
n

2i
, O

(
2i log3 n

ε2k

))
.

Thus, by a straightforward calculation, if k = Ω
(

1
ε2n
· log3 n

)
, then the total number of

queries is at most O
(√

n/k · ε−1 · log5/2 n
)

. Otherwise (i.e., if k is very small), the total

number of queries is exactly n (since the verifier simply reads the entire string).

Completeness. Suppose that wt(x) = w. Then, the tests that reads the entire row (i.e.,
step 2(b)) passes with probability 1, whereas for each one of the second type of tests (i.e.,
step 2(c)), the test passes with probability at least 1−1/poly(n). Thus, by the union bound,
the verifier accepts with probability at least 2/3.
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MAP for Hammingw parameterized by k

Input: a proximity parameter ε > 0, and oracle access to a string x ∈ {0, 1}n

The Proof:

• The string x is interpreted as a k × ` matrix where `
def
= n

k . We denote by xi,j the (i, j)th

entry of x, viewed as such a matrix.

• The proof consists of the sums of the weights of each of the rows of the matrix; namely, the

values (w1, . . . , wk), where wi
def
=
∑`

j=1 xi,j for every i ∈ [k].

The Verifier:

1. If
∑k

i=1wi 6= w, then reject.

2. For each i ∈ {1, . . . , log n}, repeat the following test O(k/2i) times:

(a) Let δi
def
= εk

2i+1 log εn
.

(b) If δi < 1/
√
`, then read the entire ith row and reject if wi 6=

∑`
j=1 xi,j ;

(c) Otherwise, read O
(

1
δ2i
· log n

)
random points from the jth row and reject if their

average is not in the range (
wj
` −

δi
2 ,

wj
` + δi

2 ).

3. If all the previous tests passed, then accept.

Figure 5: MAP for Hammingw

Soundness. Let ε > 0 and suppose that wt(x) /∈ [w − εn, w + εn]. Let w1, . . . , wk be an
alleged proof for the false statement wt(x) = w. Recall that w1, . . . , wk refer to the weights
of the rows of x when interpreted as a k × ` matrix. We assume that

∑k
i=1 wi = w since

otherwise the verifier rejects with probability 1.

Claim 5.1.1 (Precision Sampling (cf. [Lev85, last paragraph of Section 9] or [Gol13, Ap-
pendix A.2])). There exists i ∈ [log εn] such that 2i of the rows j of x have weight at least
wj + εn

2i+1 log εn
or at most wj − εn

2i+1 log(εn)
.

Proof. Let d
def
= εn. For i ∈ [log d], let

Ai
def
=

{
j ∈ [k] : |wt(xj)− wj| ≥

d

2i+1 log d

}
where xj denotes the jth row of x, and let B = [k]\(∪i∈[log d]Ai). Notice that the sets
B,A1, A2\A1, . . . , Ad\Ad−1 form a partition of the k rows. Also note that for j ∈ B, it holds
that wt(xj) = wj (since |wt(xj)− wj| < 2/ log d < 1).
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Suppose toward a contradiction that for every i ∈ [log d] it holds that |Ai| < 2i. Using
the fact for j ∈ Ai\Ai−1 it holds that |wt(xj)− wj| < d

2i log d
, we get

|wt(x)− w| ≤
k∑
j=1

|wt(xj)− wj|

=
∑

i∈[log d]

∑
j∈Ai\Ai−1

|wt(xj)− wj|

≤
∑

i∈[log d]

|Ai\Ai−1| ·
d

2i log d

<
∑

i∈[log d]

2i · d

2i log d

= εn,

in contradiction to our assumption that wt(x) /∈ [w − εn, w + εn].

Consider the execution of iteration i, where i is the index guaranteed by Claim 5.1.1. In
this iteration, since the verifier selects O(k/2i) rows at random, with probability at least 0.9
it selects at least one row j ∈ [k] such that |wt(xj)− wj| ≥ εn

2i+1 log(εn)
. Suppose that such a

row j is indeed selected. We consider two cases:

1. If ` < 1
δ2i

, then the verifier reads the entire row and rejects, since the row’s sum does

not equal wj.

2. If ` ≥ 1
δ2i

, then, since the row j has an average of at least wj/`+δi (or at most wj/`−δi),
when the verifier samples from this row, the average of the samples will be greater than
wi/`+ δi

2
(resp., smaller than wi/`− δi

2
) with probability at least 1−1/poly(n), in which

case the verifier rejects.

Thus, with probability at least 2/3, the verifier rejects and soundness follows.

As corollaries of Theorem 5.1, we obtain

1. an MAP for every selection of k = k(n), and

2. an MAP ′ (in which we allow k to depend on ε, and set it to k = n
1
3 · ε− 2

3 ) with
total complexity (i.e., the sum of the query complexity and the proof complexity)

Õ
(
n

1
3 · ε− 2

3

)
.
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5.1.2 Lower Bound

In this section we show a lower bound on theMAP complexity of the property Hammingn/2
(the set of all strings of Hamming weight exactly n/2, where n is the length of the string).
We note that the lower bound can be extended to Hammingw for more general functions
w by reducing to Hammingn/2 using adequate padding (while taking care of the integrality
issues that arise). We also note that the lower bound only holds for reasonable complexity
measures (which are specified formally below).

The lower bound is proved using our extension of the [BBM11] framework to the MAP
model that was established in Section 3.2.2. Recall that this extension allows us to prove
lower bounds on the complexity ofMAPs viaMA communication complexity lower bounds.
We note that since an MAP lower bound refers to a particular value of ε, it immediately
implies a lower bound also on MAP ′.

One natural candidate for a communication complexity problem on which we can base
our Hamming lower bound is the Hamming Distance communication problem, wherein Alice
and Bob need to decide whether the Hamming distance of their input strings is equal to
a predetermined number. However, as opposed to the MAP lower bounds that we have
shown before (e.g., for TensorSum, and EIM), Hamming is a property of non-robust objects;
i.e., there is no significant distance between every pair of valid objects. In order to overcome
the lack of distance between valid objects in Hamming, we wish to reduce Hamming to an
MA communication complexity gap-problem wherein the YES-instances and NO-instances
are far apart. Indeed, the Gap Hamming Distance problem, described next, serves this
purpose.

Let n ∈ N, and let t, g > 0. The Gap Hamming Distance problem, denoted by GHDn,t,g,
is the promise problem wherein Alice gets as input an n-bit string x, Bob gets as input
an n-bit string y, and the players need to decide whether the Hamming distance of their
strings is greater than t + g (considered a YES-instance), or smaller than t − g (considered
a NO-instance). See Appendix D for formal definitions and background. By extending a
recent result of Gur and Raz [GR13], we show

Lemma 5.2. Let g, n ∈ N such that g ≤ n and t = α ·n for some constant α ∈ (0, 1). Then,
everyMA communication complexity protocol for GHDn,t,g, with proof complexity p ≥ 1, has

communication complexity at least Ω

(
min(n,(n/g)2)

p

)
.

The proof of Lemma 5.2, which is by a reduction to the result of [GR13], is presented in
Appendix D (see Corollary D.3). Equipped with Lemma 5.2, we proceed to prove the lower
bound for Hammingw.

Theorem 5.3. For every n ∈ N and ε
def
= ε(n) ∈ (0, 1/2), if Hammingn/2 has an MAP with

respect to proximity parameter ε, with proof complexity p = Ω(log n) and query complexity q
such that p(O(n)) = O(p(n)) and q(O(n)) = O(q(n)), then p · q = Ω (min (n, ε−2)).
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We note that our restriction on the form of p and q is satisfied by reasonable functions
such as f(n) = a · nb for any a, b ≥ 0 as well as for f(n) = a · polylog(n).

Proof of Theorem 5.3. Throughout the proof we fix the function w as w(m)
def
= m/2. By

Lemma 3.21, if Hammingw ∈ MAP(p, q), then the communication complexity (promise)

problem CHammingw
⊕,ε has an MA communication complexity protocol with a proof of length

p and total communication 2q, where (following [BBM11]) CHammingw
⊕,ε refers to the communi-

cation complexity (promise) problem, in which Alice and Bob need to decide whether their
inputs have Hamming distance exactly n/2 or are ε-far from having such distance. Thus, by

Lemma 5.2, the theorem follows by reducing GHDn,n/2−εn,εn to CHammingw
⊕,ε , which we proceed to

do. (We stress that this reduction takes place entirely in the context ofMA communication
complexity.)

We note that both GHDn,n/2−εn,εn and CHammingw
⊕,ε are communication complexity (promise)

problems that refer to the Hamming distance ∆ (x, y) between the inputs x and y (of Alice
and Bob, respectively). In GHDn,n/2−εn,εn the YES-instances correspond to ∆ (x, y) ≥ n/2

and the NO-instances correspond to ∆ (x, y) ≤ n/2 − 2εn, whereas in CHammingw
⊕,ε the YES-

instances correspond to ∆ (x, y) = n/2 and the NO-instances correspond to ∆ (x, y) /∈ [n/2−
εn, n/2 + εn].

We proceed to show a reduction from GHDn,n/2−εn,εn to CHammingw
⊕,ε . Since the reduction

is between two MA communication complexity problems, we may allow the reduction to
make use of a proof string. Specifically, the reduction is given as a proof string an integer
d̃ ∈ {0, . . . , n} that allegedly equals ∆ (x, y), and maps a pair (x, y) ∈ {0, 1}n+n to a pair
(x′, y′) ∈ {0, 1}2n+2n such that a YES (resp., NO) instance of GHDn,n/2−εn,εn is mapped to a

YES (resp., NO) instance of CHammingw
⊕,ε .

The reduction, given input d̃ and (x, y), first checks that d̃ ≥ n/2 and rejects otherwise
(since ∆ (x, y) < n/2 does not correspond to a YES instance of GHDn,n/2−ε,εn). Then,
the reduction maps the pair (x, y) ∈ {0, 1}n+n to the pair (x′, y′) ∈ {0, 1}2n+2n by setting

x′ = x ◦ 0n and y′ = y ◦ 0d̃1n−d̃. That is, Alice (resp., Bob), given input x (resp., y) and the
alleged proof d̃, first checks that d̃ ≥ n/2 and then computes x′ (resp., y′). The parties then

run the CHammingw
⊕,ε MA communication complexity protocol on input (x′, y′).

If (x, y) is a YES-instance of GHDn,n/2−εn,εn (i.e., ∆ (x, y) ≥ n/2 ) and d̃ = ∆ (x, y) (i.e.,
the provided proof is correct), then

∆ (x′, y′) = ∆ (x, y) + n− d̃ = n,

and so (x′, y′) is a YES-instance of CHammingw
⊕,ε . On the other hand, if (x, y) is a NO-instance

of GHDn,n/2−εn,εn (i.e., ∆ (x, y) ≤ n/2− 2εn), then for every d̃ ≥ n/2

∆ (x′, y′) = ∆ (x, y) + n− d̃ ≤ n− 2εn

and so (x′, y′) is a NO-instance of CHammingw
⊕,ε .
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Let us spell out how the reduction is used to prove the theorem. Suppose that Hammingw ∈
MAP(p, q) where p and q are as in the hypothesis. Then, by Lemma 3.21, the CHammingw

⊕,ε
problem has anMA communication complexity protocol with proof complexity p and com-
munication complexity 2q. Our reduction maps inputs of length n (of GHDn,n/2−εn,εn) to

inputs of length 2n (of CHammingw
⊕,ε ), while using an additional proof of length log2 n. Thus,

the reduction implies an MA communication complexity protocol for GHDn,n/2−εn,εn with
proof complexity p(2n)+log2 n = O(p(n)) and communication complexity 2q(2n) = O(q(n)).
Hence, by Lemma 5.2, it holds that p · q = Ω (min(n, ε−2)).
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A Background

A.1 Interactive Proofs of Proximity

In this section we define interactive proofs of proximity, following Rothblum et al. [RVW13].18

For two interactive algorithms A and B, we denote by (Af , Bf )(x) the output of (say) A
when interacting with B when both algorithms are given x as an explicit input and implicit
(i.e., oracle) access to the function f .

Definition A.1. An interactive proof of proximity system (IPP) for a property Π is an
interactive protocol with two parties: a (computationally unbounded) prover P and a verifier
V, which is a probabilistic algorithm. The parties send messages to each other, and at the
end of the communication, the following two conditions are satisfied:

1. Completeness: For every ε > 0, n ∈ N, and f ∈ Πn it holds that,

Pr
[
(Vf ,Pf )(n, ε) = 1

]
≥ 2/3.

where the probability is over the coin tosses of V.

2. Soundness: For every ε > 0, n ∈ N, f ∈ Fn that is ε-far from Πn and for every
computationally unbounded (cheating) prover P∗ it holds that

Pr
[
(Vf ,P∗)(n, ε) = 1

]
≤ 1/3.

where the probability is over the coin tosses of V.

18Our definition of IPP slightly differs from that of [RVW13] in that they consider the absolute distance
of objects from the property rather relative distance. (Needless to say, we take this into account when
discussing their results.)
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If the completeness condition holds with probability 1, then we say that the IPP has a one-
sided error and otherwise the IPP is said to have a two-sided error.

An IPP is said to have query complexity q : N × R+ → N if for every n ∈ N, ε > 0,
f ∈ Fn and any prover strategy P∗, the verifier makes at most q(n, ε) queries to f when
interacting with P∗. The IPP is said to have communication complexity c : N× R+ → N if
for every n ∈ N, ε > 0 and f ∈ Πn the communication between V and P consists of at most
c(n, ε) bits. If the IPP has query complexity q and communication complexity c, we say
that it has IPP complexity q + c.

For every pair of functions c, q : N×R+ → N, we denote by IPP2(c, q) (resp., IPP1(c, q))
the complexity class of all properties that have an IPP with communication complexity
O(c), query complexity O(q) and two-sided error (resp., one-sided error). We also use IPP
as a shorthand for the class IPP2.

An important parameter of an IPP is the number of messages m sent between the
two parties. We denote by IPP [m](c, q) the set of properties that have m-message IPP
protocols in which the verifier uses at most O(c) bits of communication, and makes at most
O(q) oracles queries.

A.2 Communication Complexity

Let X and Y be finite sets, and let f : X × Y → {0, 1} be a function. In the two-
party probabilistic communication complexity model we have two computationally unbounded
players, traditionally referred to as Alice and Bob. Both players share a random string. Alice
gets as an input x ∈ X. Bob gets as an input y ∈ Y . At the beginning, neither one of the
players has any information regarding the input of the other player. Their common goal
is to compute the value of f(x, y), while minimizing the communication between them. In
each step of the protocol, one of the players sends one bit to the other player. This bit may
depend on the player’s input, the common random string, as well as on all previous bits
communicated between the two players. At the end of the protocol, both players output
f(x, y) with high probability.

We say that a given protocol π computes a (possibly partial) function f : X×Y → {0, 1}
if for every x ∈ X and y ∈ Y with probability at least 2/3 Alice outputs f(x, y) after
interacting with Bob.19 We define the communication complexity of the protocol CC(π) to
be the maximum number of communicated bits in the protocol π when Alice and Bob are
given inputs from X and Y respectively. The communication complexity of a function f is
defined as:

CC(f) = min
π that compute f

CC(π).

For a family of functions F = {fn : Xn → Yn}n∈N we define the communication complex-

19In the case of a partial function, we consider only relevant x and y’s.
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ity of F as CCn(F) = CC(fn).

Set-Disjointness. The (unique) set-disjointness problem is the classical communication
complexity problem wherein Alice gets an n-bit string x, Bob gets an n-bit string y, and
their goal is to decide whether there exists i ∈ [n] such that xi = yi = 1. Formally,

Definition A.2. For every n ∈ N, DISJn : {0, 1}n × {0, 1}n → {0, 1} is the communication
complexity predicate given by the partial function

DISJn(x, y) =

{
1 if

∑
i∈[n] xiyi = 0

0 if
∑

i∈[n] xiyi = 1

(where the arithmetic is over the integers).

It is well-known (see [KS92]) that the communication complexity of the set-disjointness
problem is linear in the size of the inputs.

A.3 MA Communication Complexity

In MA communication complexity protocols, we have a function f : X × Y → {0, 1} (for
some finite sets X, Y ), and three computationally unbounded parties: Merlin, Alice, and
Bob. The function f is known to all parties. Alice gets as an input x ∈ X. Bob gets as an
input y ∈ Y . Merlin sees both x, y but Alice and Bob share a private random string that
Merlin cannot see.

At the beginning of an MA communication complexity protocol, Merlin, who sees both
inputs x and y, sends a proof string w = w(x, y) that asserts that f(x, y) = 1 to Alice
and Bob. The two players exchanges messages and at the end of the protocol, (say) Alice
outputs an answer z ∈ {0, 1}. Note that the answer may depend on the proof w as well
as the input (x, y). For a protocol π, denote by π

(
(x, y), w

)
the probabilistically generated

answer z ∈ {0, 1} given by Alice on input (x, y) and proof w.

We define MA communication complexity protocol as follows.

Definition A.3. AnMA(c, p)-communication complexity protocol for f is probabilistic com-
munication complexity protocol π between Alice and Bob in which they both get as input a
p-bit proof, they can communicate at most c bits, and the protocol satisfies the following two
conditions:

1. Completeness: for all (x, y) ∈ f−1(1), there exists a string w ∈ {0, 1}p such that

Pr
[
π
(
(x, y), w

)
= 1
]
≥ 2/3

(where the probability is over the common random string).
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2. Soundness: for all (x, y) ∈ f−1(0) and for any string w ∈ {0, 1}p we have

Pr
[
π
(
(x, y), w

)
= 1
]
≤ 1/3

(where the probability is over the common random string).

The MA Communication Complexity of Set-Disjointness. Recall that there is a
well-known linear lower bound on the communication complexity of the the set-disjointness
problem (DISJ) (see Section 3.1.3 for formal definitions and statement of the lower bound).
A decade after the communication complexity of DISJ was settled, Klauck [Kla03, Kla11]
showed the following lower bound on theMA communication complexity of set-disjointness
(later proved to be tight, by Aaronson and Wigderson [AW09]).

Theorem A.4. Every MA communication complexity protocol for DISJn with proof com-
plexity p and communication complexity c satisfies p · c = Ω(n).

A.4 Error Correcting Codes

We first introduce codes as objects of fixed length and then give asymptotic variants of the
definitions. Let Σ be a finite alphabet. An error-correcting code (over Σ) is an injective
function C : Σk → Σn where k, n ∈ N and k < n. Every element in the range of C is called
a codeword. The stretch of the code is n (viewed as a function of k) and the relative distance
is defined as d/n, where d is the minimal distance between two (distinct) codewords.

We say that the code C is a t-locally testable code (LTC), where t : [0, 1]→ N, if there exists
a probabilistic algorithm T that given oracle access to w ∈ Σn and a proximity parameter
ε > 0 makes at most t(ε) queries. The algorithm accepts every codeword with probability 1,
and rejects every string that is ε-far from the code with probability at least 1/2. For further
details on LTCs, see [GS06, Gol10b].

We say that the code C, with relative distance δ0, is a t-locally decodable code (t-LDC),
where t ∈ N, if there exists a constant δ ∈ (0, δ0/2) called the decoding radius, and a
probabilistic algorithm D that given i ∈ [k] and oracle access to a string w ∈ {0, 1}n that
is δ-close to a codeword w′ = C(m) for some m ∈ {0, 1}k, makes at most t queries to the
oracle and outputs mi (i.e., the ith bit of m) with probability at least 2/3. Moreover, if w is
a codeword, then the algorithm outputs mi with probability 1. For further details on LDCs,
see [KT00].

An important parameter of both LTCs and LDCs are their query complexities; that is,
the number of queries t made to the string w. In both cases we are interested in codes for
which the number of queries t is significantly smaller than n. While there are known LTCs
with (almost) linear stretch and constant query complexity (i.e., t does not depend on n),
obtaining an LDC with constant query complexity and polynomial stretch is a major open
problem in coding theory.
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We will also consider a relaxation of LDCs, introduced by Ben-Sasson et al. [BSGH+06],
known as relaxed-LDC. In this variant, the decoder is allowed to abort on corrupted code-
words. Indeed, the main advantage of relaxed-LDCs over standard LDCs is that there are
known constructions (see [BSGH+06]) of relaxed-LDCs with constant query complexity and
almost linear stretch.

Definition A.5 (relaxed-LDC, adapted from [BSGH+06, Definition 4.5]). We say that the
code C : Σk → Σn with relative distance δ0 is a t-relaxed-LDC if there exists a constant
δ ∈ (0, δ0/2) and a probabilistic algorithm D that, given an integer i ∈ [k] and oracle access
to a string w ∈ Σn, makes at most t queries and satisfies the following two conditions:

1. If w = C(m) is a codeword that encodes the message m ∈ {0, 1}k, then D outputs mi

with probability 1.

2. If w is δ-close to a codeword w′ = C(m), then, with probability at least 2/3, the decoder
D outputs a value σ ∈ {mi,⊥}; that is, Pr[Dw(i) ∈ {mi,⊥}] ≥ 2/3.

We note that our definition differs from the original definition in [BSGH+06] in two ways.
The first difference is that [BSGH+06] require an additional, third, condition that we do not
need. (However, [BSGH+06] show that a code that satisfies conditions 1 and 2 above can be
converted into an “equally good” code that satisfies also the additional third condition.) The
second difference is that [BSGH+06] only require that the decoder succeed in decoding valid
codewords with probability 2/3 whereas we require successful decoding with probability 1.
Fortunately, the constructions of [BSGH+06] actually satisfy the stronger requirement.

The asymptotic variants of the foregoing definitions are obtained in the natural way by
considering families of codes, one for each input length. Let k : N→ N be some (sublinear)
function an let {Σn}n∈N be an ensemble of alphabets. A family of codes is an ensemble
{Cn}n∈N such that Cn : (Σn)k(n) → (Σn)n is a code for every n ∈ N.

We say that the family of codes is a t-LTC for a function t : N × [0, 1] → N if for every
n ∈ N, the code Cn is a t(n, ·)-LTC. Similarly we say that a family of codes is a t-LDC (resp.,
relaxed-LDC) for a function t : N→ N if for every n ∈ N, the code Cn is a t(n)-LDC (resp.,
t(n)-relaxed-LDC). We sometimes abuse notation and refer to a family of codes as a single
code.

A.5 Multivariate Polynomials and Low Degree Testing

In this section we recall some important facts on multivariate polynomials (see [Sud95] for
a far more detailed introduction). In the following we fix a finite field F and a dimension m
and consider m-variate polynomials over F.

Lemma A.6 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of total
degree d. Let S ⊂ F and let r1, . . . , rm be selected uniformly at random in S. Then,

Pr
r1,...,rm∈RS

[P (r1, . . . , rm) = 0] ≤ d

|S|
.
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An immediate corollary of the Schwartz-Zippel Lemma is that two distinct polynomials
P,Q : Fm → F of total degree d may agree on at most a d

|F| -fraction of their domain (i.e.,

Fm).

Theorem A.7 (Self-Correction Procedure (cf., [GS92, Sud95]). Let δ < 1/3, and d,m ∈ N.
There exists an algorithm that, given x ∈ Fm and oracle access to an m-variate function
P : Fm → F that is δ-close to a polynomial P ′ of individual degree d, makes O(d ·m) oracle
queries and outputs P ′(x) with probability 2/3. Furthermore, if P has total degree t, then
given x ∈ Fm, the algorithm outputs P (x) with probability 1.

In Theorem A.7, as well as in the two following theorems, the error probability can be
decreased to be an arbitrarily small constant using standard error reduction (while increasing
the number of queries by a constant factor).

Theorem A.8 (Total Degree Test (a.k.a. Low Degree Test) (see [RS96, Sud95, AS03]). Let
ε ∈ (0, 1/2), t,m ∈ N. There exists an algorithm that, given oracle access to an m-variate
function P : Fm → F, makes O(t · poly(1/ε)) queries and:

1. Accepts every function that is a polynomial of total degree t with probability 1; and

2. Rejects functions that are ε-far from every polynomial of total degree t with probability
at least 1/2.

We will also need a more refined version of the test that tests the individual degree of the
polynomial. Such a test is implicit in [GS06, Section 5.4.2] but for sake of self-containment
we provide a full proof via a reduction to the total degree test.

Theorem A.9 (Individual Degree Test). Let d,m ∈ N such that dm < |F|/10 and ε ∈
(0, 1 − dm

|F| ). There exists an algorithm that, given oracle access to an m-variate polynomial

P : Fm → F, makes O(dm · poly(1/ε)) queries, and:

1. Accepts every function that is a polynomial of individual degree d with probability 1;
and

2. Rejects functions that are ε-far from every polynomial of individual degree d with prob-
ability at least 1/2.

Proof. Given oracle access to the function P , the verifier T first runs the total degree test
on P with respect to proximity ε and total degree dm. If the total degree verifier rejects,
then T rejects.

If the test succeeds, then for every axis i ∈ [m], the verifier T chooses at random

r1, . . . , ri−1, ri+1, . . . , rm ∈R F, and runs a univariate degree d test on the polynomial Qi(z)
def
=

P (r1, . . . , ri−1, z, ri+1, . . . , rm) with soundness error 1/10. If for some axis i the univariate
test rejects, then T rejects, otherwise it accepts.
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Completeness. Completeness follow from the completeness of the total degree test together
with the fact that the restriction of an individual degree d polynomial to any of its axes is
a degree d univariate polynomial.

Soundness. Suppose that P is ε-far from every polynomial of individual degree d. If P is ε-
far from every total degree dm polynomial, then the total degree test rejects with probability
1/2. Thus, we focus on the case that P is ε-close to a total degree dm polynomial P ′. In this
case the polynomials P and P ′ are polynomials of total degree dm and since ε < 1− dm

F , by
the Schwartz-Zippel lemma, they must be identical. Thus, P is a polynomial of total degree
dm.

By the hypothesis, P cannot have individual degree d and therefore, there exists i ∈ [m]
such that P (x1, . . . , xm), as a formal polynomial, has degree d′ > d in xi. Thus, there exist
polynomials P0, . . . , Pd′ each of total degree at most dm such that

P (x1, . . . , xm) =
∑

j∈{0,...,d′}

Pj(x1, . . . , xi−1, xi+1, . . . , xm) · xji

and Pd′ 6≡ 0.

Since Pd′ is a non-zero polynomial of total degree dm, by the Schwartz-Zippel lemma,
it can vanish on only a dm

|F| fraction of its domain. Thus, when testing the ith axis, with

probability 1 − dm
|F| , the verifier selects r1, . . . , ri−1, ri+1, . . . , rm ∈ F such that it guaranties

that Pd′(r1, . . . , ri−1, ri+1, . . . , rm) does not vanish. In this case, the polynomial Q(z)
def
=

P (r1, . . . , ri−1, z, ri+1, . . . , rm) is a degree d′ univariate polynomial and the verifier rejects it
with probability 0.9. Thus, the verifier rejects with probability at least 0.92 > 1/2.

A.6 The Sum-Check Protocol

In this appendix we provide some background on the sum-check protocol that was first
introduced by Lund et al. [LFKN92]. Recall that the sum-check protocol is an interactive
proof for a statement of the form ∑

x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a (relatively) low-degree polynomial over a field F.

In order to verify that the polynomial P sums to 0 over Hm it suffices to verify that
for every h ∈ H, the sum of the sub-tensor (h, ∗, . . . , ∗) equals some value ah ∈ F and that∑

h∈H ah = 0. However, the straightforward recursion (which computes the sum of every
sub-tensor) will yield a total query complexity of Ω(Hm).

The sum-check protocol takes a different approach by having the prover convince the
verifier of the sum of just a single randomly selected sub-tensor (thus, yielding the desired
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efficiency). More specifically, the verifier asks the prover to specify the sum of all sum-tensors
of the form (z, ∗ . . . , ∗) for every z ∈ F (rather than z ∈ H). A key point is that these sums
can be specified by the low-degree polynomial:

P1(z)
def
=

∑
x2,...,xm∈H

P (z, x2, . . . , xm).

Since P1 has low-degree, if the prover provides a different (low-degree) polynomial P̃1, then
these two polynomials must differ on almost all points in F. Thus, it suffices for the ver-
ifier to select at random a point r ∈R F and to have the prover recursively prove that∑

x2,...,xm∈H P (r1, x2, . . . , xm) = P̃1(r1). Hence, we reduced the m-dimensional TensorSum
problem to an (m − 1)-dimensional TensorSum problem using 2 messages and no queries.
The recursion terminates when m = 1 in which case the verifier can verify the claim directly.

We note that when extending the sum-check protocol to be an IPP , we need to take
into account the possibility that P is not low degree but this is handled by using the low
degree test (Theorem A.8) and self-correction (Theorem A.7).

B Missing Proofs from Section 3.1.6

In this section we provide proofs that were omitted from Section 3.1.6. These proofs are
used to establish the existence of an O(1)-relaxed-LDC that is also a poly(1/ε)-LTC (with
polynomial stretch).

B.1 A Generalization of [GS06, Theorem 5.20]

In order to obtain the separation result of Theorem 3.3, we require a generalization of a
theorem from [GS06]. The following was communicated to us by Oded Goldreich. In this
subsection, we fix F = F2 (i.e., {0, 1}, when viewed as a field).

Theorem B.1 (Generalization of [GS06, Theorem 5.20]). Let Σ = F b. There exists n =
poly(k) and a linear code E : Σ→ F n such that the following holds. Suppose that C : ΣK →
ΣN is an F -linear code having a strong-LTC 20 tester of randomness complexity r such that
(w.l.o.g.) 2r is a multiple of N . Furthermore, suppose that this tester is non-adaptive and
queries each location with probability Θ(1/N). Then, there exists ` = poly(k) such that ` is
a multiple of n, and a linear LTC C ′′ : F bk → F 2r+1·` such that the 2r · `-bit long prefix of

C ′′(x) equals
(
E(C(x)1), . . . , E(C(x)N)

)2r`/Nn
, where C(x)i is the ith symbol of C(x).

Alternatively, we can have this prefix take the form
(
E(C(x)1)2r`/Nn, ..., E(C(x)N)2r`/Nn

)
.

20A strong-LTC tester is not given the proximity parameter as input and is only required to reject strings
that are ε-far from the code with probability O(1/ε) (see [GS06, Definition 2.2]).
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Corollary B.2 ([GS06, Theorem 5.20]). For infinitely many k, there exists a locally-testable

binary code of constant relative distance mapping k bits to n
def
= exp

(
Õ
(√

log k
))
· k bits.

Furthermore, the code is linear.

Proof. The claim follows by instantiating Theorem B.1 using the code of Part 1 of [GS06,

Theorem 2.1], taking b = exp
(
Õ
(√

K
))

, N = exp
(
Õ
(√

K
))
· K, and r = Õ

(√
K
)

+

log2K.

Corollary B.3. Let C : F k → F ck be a code of constant relative distance and constant
rate 1/c. Then, for some m,n = poly(k), there exists a strong LTC C ′ : F k → F 2m and a

function E : F k → F n such that the m-bit long prefix of C ′(x) equals
(
E(y1), ..., E(yc)

)m/cn
where yi is the ith block of length k in C(x).

Proof. The claim follows by instantiating Theorem B.1 using the code C : F k → F ck, but
viewing it as a mapping Σ = F k to Σc, which is (trivially) checked by reading all c symbols.
That is, take b = k, K = 1, N = c = O(1), and r = 0.

Proof of Theorem B.1. We follow the proof of [GS06, Theorem 5.20], while using C in-
stead of the third ingredient. In the following all references refer to [GS06].

Recall some basics regarding the terminology used in [GS06]. By Definitions 5.8-5.9, a(
F, (q, b)→ (p, a), δ, γ

)
-LIPS refers to input oracles X1, ..., Xq : [n]→ F a and a proof oracle

Xq+1 : [`] → F a, where the input oracles provide an n-long encoding (over F a) of a single
symbol in the (much) bigger alphabet F b (i.e., this encoding is denoted E : F b → (F a)n).
(In addition δ is the relative distance of the encoding used, and γ is the detection ratio in
strong soundness. In the following, both parameters will be small constants.)

The proof of Theorem 5.20 starts with an overview (p. 79), and then lists three ingredients
(p. 80) that will be used. We shall use the very same first two ingredients, but use C in
place of the third. Specifically, the second paragraph following the ingredients-list asserts, for
any desired p′′ and k′′, an

(
F, (p′′, k′′)→ (p′′+ 13, 1),Ω(1),Ω(1/p′′)2

)
-LIPS with randomness

O(p′′ log k′′) and input/proof lengths that are poly(p′′k′′). We shall use p′′ = O(1) and
k′′ = b, where the O(1) stands for the query complexity of the codeword tester for C, so the
above simplifies to asserting an

(
F, (O(1), b)→ (O(1), 1),Ω(1),Ω(1)

)
-LIPS with randomness

O(log b) and input/proof lengths (i.e., n and `) that are poly(b). Without loss of generality,
we may assume that ` is a multiple of n.

Now we want to compose C with the above LIPS (via Theorem 5.13). It follows that in
Item 1 of Theorem 5.13 we use K,N and r as provided by the hypothesis and q = O(1). For
Item 2, we use b as provided by the hypothesis, (q = O(1) as above), p = O(1) and a = 1,
and n, ` = poly(b) (all fitting the LIPS above). So we have Γ = F , and get a (strong) LTC
mapping F bK to F 2r+1·`. In particular, for t = 2r`/Nn (i.e., tNn = 2r`), as shown on top
of p. 56 (see Eq (32)), the first half of the codewords of the resulting code have the form
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(
E(C(x)1)), ..., E(C(x)N)

)t
, where x ∈ F bK is viewed as an element of ΣK . The theorem

follows.

B.2 Proof of Lemma 3.12

Let C ′ : {0, 1}k → {0, 1}ck be a code with constant relative distance and constant rate
1/c for some constant c > 1. For every j ∈ [c], we denote by (C ′(x))[j] the jth block
of length k of C ′(x). For every i ∈ [k], define the code C ′i : {0, 1}k → {0, 1}(c+1)k as

C ′i(x)
def
=
(
xki , C

′(x)
)

=
(
xki , (C

′(x))[1], . . . , (C ′(x))[c]
)
. Note that C ′i has rate 1/(c + 1) and

constant relative distance.

For every i ∈ [k], we apply Corollary B.3 to C ′i to obtain an LTC C ′′i : {0, 1}k → {0, 1}2m

of the form
C ′′i (x) =

(
E(xki ), E

(
(C(x))[1]

)
, . . . , E

(
(C(x))[c]

)
, πi(x)

)
where n,m = poly(k), the function E : {0, 1}k → {0, 1}n is a linear code, and πi(x) ∈ {0, 1}m

is some string. Note that C(x)
def
= E

((
(C(x))[1]

)
, . . . , E

(
(C(x))[c]

))
is a code with constant

relative distance.

Since E is a linear code with constant relative distance, E(0k) = 0n and wt(E(1k)) ≥ αn
for some constant α ∈ (0, 1). Consider the code C ′′′i (x) =

(
xαni , C ′(x), πi(x)

)
which is

obtained from C ′i by simply removing coordinates on which E(0k) and E(1k) agree. Thus,
C ′′′i (x) is a an LTC of the desired form.

B.3 Proof of Proposition 3.14

We show a procedure that, given oracle access to a binary string
(
(w1, y1, z1), . . . , (wk, yk, zk)

)
,

where (wi, yi, zi) ∈ {0, 1}c1n+c2n+c3n for every i ∈ [k], and a proximity parameter ε > 0,
accepts every codeword of C ′ and rejects strings that are ε-far from C ′, with probability 1/2.
The LTC procedure for C ′ is described in Fig. 6.

Since for every i ∈ [k] the code Ci is a poly(1/ε)-LTC, the tester indeed makes at most
poly(1/ε) queries.

Completeness. If
(
(w1, y1, z1), . . . , (wk, yk, zk)) is equal to C ′(x) for some x ∈ {0, 1}k, then

for every i ∈ [k] it holds that (1) yi = C(x), and so the codeword repetition test (Item 1a)
passes with probability 1 and (2) (wi, yi, zi) is equal to Ci(x), and so, by the zero-error
completeness of the LTC test for Ci, the second test (i.e., Item 1b) also passes with probability
1.

Soundness. Let
(
(w1, y1, z1), . . . , (wk, yk, zk)

)
be ε-far from the code C ′, where (wi, yi, zi) ∈

{0, 1}c1n+c2n+c3n for every i ∈ [k]. Let u ∈ {0, 1}c2n be a string that minimizes the value
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The LTC Procedure for C ′

Input: a string
(
(w1, y1, z1), . . . , (wk, yk, zk)

)
∈ {0, 1}(c1+c2+c3)nk and a proximity parameter ε ∈

(0, c) for some universal constant c ∈ (0, 1) specified below.

1. Repeat O(1/ε) times:

(a) The codeword repetition test: Select at random i1, i2 ∈ [k] and j ∈ [c2n], and
reject if the jth bit of yi1 and yi2 differs.

(b) The LTC test: Select at random i ∈ [k], and run the LTC tester of Ci on (wi, yi, zi)
with respect to proximity parameter ε′ = Θ(ε).

Figure 6: Local tester for C ′

of ∆
(

(y1, . . . , yk), u
k
)

(recall that ∆ refers to the absolute distance between the strings).

Let δ0 ∈ (0, 1) be the relative distance of the code C (recall that δ0 is a constant). We
proceed with a (somewhat tedious) case analysis that uses parameters γ1, . . . , γ5 = Θ(ε).
More specifically, we set:

γ1 =
δ0

12
· ε, γ2 = 3γ1, γ3 = ε/3, γ4 = ε/3, γ5 = 2(γ1 + γ2)/δ0.

• Suppose that (y1, . . . , yk) is γ1-far from uk. In this case, each iteration of the codeword
repetition test (i.e., Item 1a) rejects with probability

Ei1,i2

[
∆ (yi1 , yi2) /c2n

]
= Ei1

[
Ei2

[
∆ (yi1 , yi2)

)
/c2n

]]
≥ Ei1

[
∆ (yi1 , u) /c2n

]
= ∆

(
(y1, . . . , yk), u

k
)
/c2nk

> γ1

and so, since the test is repeated O(1/ε) times, the tester rejects with probability at
least 1/2.

Thus, in the sequel, we assume that (y1, . . . , yk) is γ1-close to uk.

• Suppose that u is γ2-far from the code C. Since (y1, . . . , yk) is γ1-close to uk, at
least half of the yi’s must be 2γ1-close to u. Thus, by the triangle inequality, in each
invocation of the LTC test of Ci (i.e., Item 1b), with probability 1/2, the test is invoked
on a string (wi, yi, zi) such that yi is (γ2 − 2γ1)-far from C, and in particular, (wi, yi, zi)
is Θ(ε)-far from Ci. Hence, in each one of the O(1/ε) iterations, the LTC test rejects
with probability at least 1/2 · 1/2.

Thus, in the sequel, we assume that u is γ2-close to a codeword C(x).

66



• Suppose that for more than a γ3 fraction of i ∈ [k] it holds that (wi, yi, zi) is γ4-far
from Ci. Then, for each invocation of the LTC test (Item 1b), with probability at least
γ3, the LTC test will be run on a string (wi, yi, zi) that is γ4-far from Ci(x). In such a
case, the LTC tester of Ci rejects with probability 1/2.

Thus, in each iteration the tester rejects with probability γ3/2, and since there are
O(1/ε) iterations, the tester rejects with probability at least 1/2. Hence, in the sequel
we assume that for at most a γ3 fraction of i ∈ [k] it holds that (wi, yi, zi) is γ4-far
from Ci.

By the triangle inequality, the string (y1, . . . , yk) is (γ1 + γ2)-close to the string C(x)k.
Hence, for at most a γ5 fraction of i ∈ [k], it holds that yi is (γ1 +γ2)/γ5-far from C(x). Thus,
by the union bound, for at least 1− γ3 − γ5 fraction of i ∈ [k] it holds that (1) (wi, yi, zi) is
γ4-close to Ci

(
x(i)
)

for some x(i) ∈ {0, 1}k and (2) yi is (γ1 + γ2)/γ5-close to C(x).

Suppose that for one of the i’s above it holds that x(i) 6= x. Then, yi is Θ(γ4)-close to
C
(
x(i)
)

and (γ1 + γ2)/γ5-close to C(x). Thus, by the triangle inequality and our setting

or parameters, C(x) is (Θ(ε) + δ0/2)-close to C
(
x(i)
)
. Recall that ε < c for some constant

c > 0 of our choosing and so we set c so that the two codewords C(x) and C(xi) have relative
distance less than δ0, which is a contradiction.

Hence, at least a 1 − γ3 − γ5 fraction of i ∈ [k] are such that (wi, yi, zi) is γ4-close to
Ci(x). We conclude that

(
(w1, y1, z1), . . . , (wk, yk, zk)

)
is at least δ-close to C ′(x), where

δ ≤ γ3 + γ5 + (1− γ3 − γ5) · γ4 < ε,

in contradiction to our assumption. This ends the proof of Proposition 3.14.

C More on MAPs with Proximity-Dependent Proofs

Recall that we defined the notion of MAPs such that the proof of proximity is oblivious of
the proximity parameter ε. However, it is also natural to consider a relaxation of MAPs
wherein the proof of proximity may depend on the proximity parameter. In fact, one can
consider two levels of relaxation: (1) the content of the proof but not its length may depend on
the proximity parameter, and (2) both the contents and the length of the proof may depend
on the proximity parameter. We note that the first possibility is almost equivalent to the
standard definition of MAP , since it always suffices to refer to only a logarithmic number
of values of ε (i.e., ε = 2i for all i ∈ [log n]), and concatenate the proofs for these values,
thus obtaining a standardMAP with only a logarithmic overhead to the proof complexity.
As for the second possibility, we refer to it as an MAP ′ and note that we do not know of
any general transformation from an MAP ′ to an MAP .

We note that the distinction does not make much sense in the context of IPP . Namely,
in the IPP model we do give the prover ε as part of its input since otherwise the verifier
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could simply send the value of ε to the prover (at the cost of (at most) a single message and
additional O

(
log(1/ε)

)
communication).

D Lower Bound on theMA Communication Complex-

ity of GHD

Let n ∈ N, and let t, g > 0. The Gap Hamming Distance problem is the promise problem
wherein Alice gets as input an n-bit string x, Bob gets as input an n-bit string y, and the
players need to decide whether the Hamming distance of their strings is greater than t + g
(a YES instance), or smaller than t− g (a NO instance). Formally,

Definition D.1. The Gap Hamming Distance problem is the communication complexity prob-
lem of computing the (partial) Boolean function GHDn,t,g : {0, 1}n × {0, 1}n → {0, 1} given
by

GHDn,t,g(x, y) =

{
1 if ∆ (x, y) ≥ t+ g

0 if ∆ (x, y) ≤ t− g
.

We denote GHD
def
= GHDn,n

2
,
√
n.

The (standard) communication complexity of GHD has been studied extensively, and
after a long line of work, Chakrabarti and Regev [CR11] have shown the seminal linear lower
bound on the communication complexity of GHD (later, the proof was significantly simplified
by [Vid11, She11]).

In a subsequent work, Gur and Raz [GR13] showed the following tight lower bound on
the MA communication complexity of GHD.

Theorem D.2 ([GR13]). Every MA communication complexity protocol for GHD, with
proof complexity p ≥ 1, has communication complexity at least Ω(n/p).

We note that the aforementioned lower bound can be extended for general settings of the
parameters of the Gap Hamming Distance problem. Specifically, we use the fact that the
simple reductions in [CR11, Section 4]) are based solely on padding arguments (and thus are
robust to MA) to obtain the following corollary.

Corollary D.3. Let g, n ∈ N such that g ≤ n, let α ∈ (0, 1) and t = αn. Then, every
MA communication complexity protocol for GHDn,t,g, with proof complexity p ≥ 1, has

communication complexity at least Ω

(
min(n,(n/g)2)

p

)
.
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