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Abstract

We show that in the model of zero error communication complexity, direct sum

fails for average communication complexity as well as for external information cost.

Our example also refutes a version of a conjecture by Braverman et al. that in the zero

error case amortized communication complexity equals external information cost.

In our examples the underlying distributions do not have full support. One inter-

pretation of a distributions of non full support is as a promise given to the players (the

players have a guarantee on their inputs). This brings up the issue of promise versus

non-promise problems in this context.

1 Introduction

1.1 Direct Sum for Zero Error Communication

A direct sum problem asks whether solving n independent copies of a given task requires n

times the amount of resources needed to solve a single copy. This fundamental ques-

tion has been studied in many computational models. In the context of communication

complexity, direct sum theorems in various settings have been the focus of many works

[FKNN95, CSWY01, JRS03, HJMR07, BBCR10, Kla10, Jai11]. We study the direct sum

problem in the model of communication complexity with zero error.

1.1.1 Average Case Complexity Measures

Since we are interested in computations with zero error, we shall only consider here average

case complexity measures. The reason is that worst case communication roughly corresponds

to deterministic computation in the zero error case, since by fixing the randomness of a zero

error protocol we get a deterministic zero error protocol with the same worst case complexity.
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Let π be a communication protocol between two players, one holding an input x and

the other y, where (x, y) are drawn from a mutual distribution µ. The protocol π has three

average case complexity measures associated with it:

1. Average communication complexity, denoted CCavg
µ (π): The expected number of bits

exchanged by the players while executing π.

2. External information cost, denoted ICext
µ (π): The amount of information an observer

who watches the execution of π learns about the players’ inputs.

3. Internal information cost, denoted ICint
µ (π): The amount of information the players

learn about each other’s input while executing π.

We focus on the first two measures, formally defined in Section 2. For a definition of

internal information cost see [Bra12a]. The following inequality gives an order between the

three measures (see Section 3.2 for the proof).

Claim 1. For every protocol π,

CCavg
µ (π) ≥ ICext

µ (π) ≥ ICint
µ (π).

There are several possible definitions for the measures defined above. The options relate

to randomized versus distributional complexities. A detailed discussion is given in Section 4.

The definitions we use are given in Section 2.

For a given function f , a distribution µ and an error parameter ε ≥ 0, these three measures

on protocols induce three measures on f over µ with error ε. For example, CCavg
µ (f, ε) is the

minimum CCavg
µ (π) for a protocol π that computes f with error ε over µ. We also discuss

two options for the definition of “computes” in Section 4.

1.1.2 Direct Sum

We are interested in the complexity of computing n independent copies of a function f ,

that is, of the function fn((x1, . . . , xn), (y1, . . . , yn)) = (f(x1, y1), . . . , f(xn, yn)) over the

distribution µn.

It was shown in [BBCR10] that direct sum holds for internal information cost: For

every f, µ and ε ≥ 0,

ICint
µn(fn, ε) = n · ICint

µ (f, ε).

Here we show (in a strong sense) that direct sum does not hold for average communication

and for external information in the zero error case. For this part, we focus on average

communication (external information is considered later on). A direct sum theorem for this

model would say that if CCavg
µ (f, 0) ≥ C then CCavg

µn (fn, 0) is at least Cn or Cn/100 or even1

(C − 1)n/100. We show that this is far from true: For every C > 0 there exist a boolean

1This is because in any non trivial case the communication complexity is at least one.
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function f and a distribution µ such that CCavg
µ (f, 0) ≥ C, but for every n it holds that

CCavg
µn (fn, 0) is at most roughly C + C2−Cn ≤ C + n.

Observe that for “reasonable” computational models, if a function f requires an amount

of C resources then fn requires Ω(C +n) resources: The reason is that solving n copies is at

least as hard as solving a single copy, and outputting the results of the n independent tasks

requires at least Ω(n) resources.

1.2 Zero Error Amortized Cost Versus External Information

Another implication of our construction is the following. The amortized (average case)

communication complexity of function f over µ with error ε ≥ 0 is the per-copy average

communication cost, when we solve n→∞ copies of f simultaneously:

ACavg
µ (f, ε) , lim

n→∞

CCavg
µn (fn, ε)

n
.

Braveman et al. [Bra12a, BGPW13] conjecture that in the zero error regime, the amor-

tized communication complexity of a function is exactly captured by its external information

complexity.

Conjecture 2 ([Bra12a, BGPW13]). For every function f : X ×Y → Z and distribution µ

over X × Y, it holds that

ACavg
µ (f, 0) = ICext

µ (f, 0).

Conjecture 2 was proposed as a zero error analog of the fact that, for error ε > 0, the

internal information cost of a function is equal to its amortized (worst case) communication

complexity: ACµ(f, ε) = ICint
µ (f, ε) [BR10]. This connection gives an “operational” meaning

to the internal information of a function, but fails for ε = 0.

The “≤” direction of Conjecture 2 is known to hold [BGPW13, HJMR07]. The conjecture

is true for product distributions µ = µx×µy, since then the external and internal information

costs coincide. Furthermore, the conjecture was shown to hold for well studied functions, such

as the message transmission function f(x, y) = x, the bit equality function, and the AND

function. Further discussion of the motivation for the conjecture can be found in [Bra12a,

BGPW13].

The conjecture has several interpretations, depending on the meaning of “compute” and

“average complexity” as discussed in detail in Section 4. With the definitions we use, our

example refutes the conjecture.

1.3 Promise Versus Non-Promise

In our example, the measure µ does not have full support (i.e. supp(µ) 6= X × Y). This

seems to be a crucial property of µ in our proof. It, therefore, can still be the case that both

direct sum and Conjecture 2 hold for measures of full support.
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One way to think of a measure that does not have full support is as a “promise” that is

given to the players about their inputs (the inputs are always from support). In this respect,

our examples correspond to promise problems, whereas full support measures correspond

to non-promise problems. This highlights a (possible) difference between promise and non-

promise problems in this context that is worth a further investigation.

1.4 Results

Our main result is a construction of a function f and distribution µ on inputs with high

external information and low amortized cost. The function f is the equality function on

k-bit strings. The distribution µ puts almost all its weight on the diagonal (i.e., on input

pairs with x = y). The remaining weight is on input pairs with x < y (when we interpret

both x and y as integers).

Theorem 3 (Main). For every k ∈ N, there exist a function f : {0, 1}k × {0, 1}k → {0, 1}
and a distribution µ over {0, 1}k × {0, 1}k such that for every n ∈ N,

ICext
µ (f, 0) ≥ 0.99k, while CCavg

µn (fn, 0) ≤ 5k + 10k2−kn.

The following two corollaries show two cases where direct sum does not hold. Both

corollaries follow from Theorem 3 using Claim 1.

Corollary 4. For every k ∈ N, there exist a function f : {0, 1}k × {0, 1}k → {0, 1} and a

distribution µ over {0, 1}k × {0, 1}k such that for every n ∈ N,

CCavg
µ (f, 0) ≥ 0.99k, while CCavg

µn (fn, 0) ≤ 5k + 10k2−kn.

Corollary 5. For every k ∈ N, there exist a function f : {0, 1}k × {0, 1}k → {0, 1} and a

distribution µ over {0, 1}k × {0, 1}k such that for every n ∈ N,

ICext
µ (f, 0) ≥ 0.99k, while ICext

µn (fn, 0) ≤ 5k + 10k2−kn.

Another corollary of Theorem 3 refutes a version of Conjecture 2.

Corollary 6. For every α ∈ (0, 1), there exist a function f : X × Y → {0, 1} and a

distribution µ over X × Y such that

ACavg
µ (f, 0) < α · ICext

µ (f, 0).

We complement Theorem 3 and Corollaries 4 and 5 by the following Claim 7, which

provides a matching lower bound.

Claim 7. Let f : X × Y → Z be a function and µ a distribution over X × Y. Assume

that f is not constant on the support of µ, that is, there exist (x, y) 6= (x′, y′) so that

µ(x, y), µ(x′, y′) > 0 and f(x, y) 6= f(x′, y′). Then, there exists a constant β > 0 so that for
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every n ∈ N,

CCavg
µn (fn, 0) ≥ 1

2
CCavg

µ (f, 0) + βn and ICext
µn (fn, 0) ≥ 1

2
ICext
µ (f, 0) + βn.

The constant β in the claim above depends on f and µ. It is roughly the entropy of f(x, y)

for (x, y) ∼ µ. This lower bound almost matches the upper bound given in Theorem 3 where

the k2−k term is roughly the entropy of the distribution given in the theorem.

2 Preliminaries and Definitions

2.1 Communication Complexity

We use the definitions of protocols from [Bra12b].

Private coin protocols. Let X ,Y ,Z be finite sets. A private coin protocol π between

two players, Alice and Bob, over inputs in X × Y and outputs in Z, is a rooted tree with

the following structure:

• Each non-leaf node is owned by either Alice or Bob.

• Each non-leaf node owned by a particular player has a set of children that are owned

by the other player. Each of these children is labeled by a binary string. This labeling

is prefix-free: No child has a label that is a prefix of a different child.

• Each non-leaf node owned by Alice is associated with a function mapping X to distri-

butions on children of the node, and each non-leaf node owned by Bob is associated

with a function mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by values from Z.

On input (x, y) ∈ X × Y , the protocol π is executed as in Algorithm 1.

Algorithm 1 (Generic Communication Protocol)

1. Alice gets x and Bob gets y.

2. Set v to be the root of the protocol tree.

3. If v is a leaf, the protocol ends and outputs2 π(x, y) which is the value labeling v.

Otherwise, the player owning v samples a child of v according to the distribution

associated with v and her input, and sends the child’s label to the other player.

4. Set v to be the newly sampled node and return to the previous step.

2Observe that even for fixed x, y the value π(x, y) may be random.
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Public coin protocols. A public coin protocol is a distribution on private coin protocols.

A public coin protocol is executed by first using the public randomness R to sample a private

coin protocol πR, and then running πR. Every private coin protocol is thus also a public coin

protocol.

Notation. In all that follows, we assume that f is a function f : X ×Y → Z, π is a public

coin protocol over inputs in X × Y , µ is a distribution over X × Y , and ε ≥ 0 is an error

parameter.

We denote by X, Y the (random) pair of inputs given to the players (i.e., they are

distributed according to µ). We denote by T the random variable that is the transcript of

the protocol π with respect to µ. That is, T is the concatenation of all the messages that are

sent during the execution of π. Observe that supp(T ) is a prefix-free code. Let |T | denote

the bit-length of T . We denote by R the public randomness of π.

Computing a function. We say that π computes f with error ε with respect to µ if there

exists a function d of the transcript T and public randomness R so that

Pr[d(T,R) 6= f(x, y)] ≤ ε,

where the probability is over (x, y) ∼ µ and the randomness of π. We denote by Πε,µ(f) the

set of all protocols that compute f with error ε with respect to µ.

Definition 8 (Average Communication Complexity). The average communication

complexity of a protocol π with respect to a distribution µ is defined as

CCavg
µ (π) = E

[
|T |
]
.

The average communication complexity of a function f with error ε with respect to a distri-

bution µ is defined as

CCavg
µ (f, ε) = inf

{
CCavg

µ (π) : π ∈ Πε,µ(f)
}
.

Definition 9 (Amortized Communication). The (average case) amortized communi-

cation complexity of a function f with error ε with respect to a distribution µ is defined

as

ACavg
µ (f, ε) = lim

n→∞

CCavg
µn (fn, ε)

n
.

We consider only average case amortized communication complexity since we focus on

the zero error case where average case is more meaningful than worst case.

2.2 Information Cost

Information cost of protocols is defined using information theory notions (see e.g. [BBCR10]).

Let A be a random variable taking values in a setA. We denote by H(A) the Shannon entropy
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of the distribution over A induced by A. The logarithms in this work (including the log in

the entropy function) are taken with base 2.

Definition 10. Let A,B,C be random variables. The conditional entropy of A given B is

defined as

H(A|B) = H(A,B)−H(B).

The conditional mutual information of A and B given C is

I(A;B|C) = H(A|C)−H(A|BC).

Definition 11 (External Information). The external information cost of a public coin

protocol π with respect to a distribution µ is defined as

ICext
µ (π) = I(XY ;T |R),

where, as before, T is the transcript of π and R is the public randomness. The external

information cost of a function f with error ε with respect to a distribution µ is defined as

ICext
µ (f, ε) = inf

{
ICext
µ (π) : π ∈ Πε,µ(f)

}
.

3 Proofs

3.1 An Example Violating Direct Sum

In this section we prove Theorem 3. The assertion of Theorem 3 follows directly from

Lemma 12 (found in Section 3.1.2), Lemma 13 (found in Section 3.1.3), and Lemma 14

(found in Section 3.1.4). For the rest of the section we assume to be given k, n ∈ N as in the

statement of Theorem 3.

3.1.1 The Example

The equality function. Let EQ : {0, 1}k × {0, 1}k → {0, 1} be the equality function on

k-bit strings. That is, EQ(x, y) = 1 if and only if x = y.

The input distribution. We think of x ∈ {0, 1}k both as a binary string and as an integer

between 0 and 2k−1. For x, y ∈ {0, 1}k, e.g., we write x < y if x is smaller than y as integers.

Let µx=y denote the uniform distribution on the set {(x, y) | x = y} ⊆ {0, 1}k × {0, 1}k
and µx<y denote the uniform distribution on the set {(x, y) | x < y} ⊆ {0, 1}k ×{0, 1}k. Set

δ =
1

25k22k
.

Define

µ = (1− δ) · µx=y + δ · µx<y.
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3.1.2 The External Information of EQ

The following lemma gives a lower bound of (1− δ)k on the zero error external information

cost of EQ with respect to µ. Informally speaking, the reason is that in the case that

x = y = a, the protocol must reveal a to make sure that x and y are equal.

Lemma 12. ICext
µ (EQ, 0) ≥ (1− δ)k ≥ 0.99k.

Proof. It suffices to prove the lemma for private coin protocols (as external information is

defined as an average over the public randomness). Let π be a zero error private coin protocol

for EQ.

Let t be a possible transcript of π. Denote by A(t) the set of all input pairs (x, y) so

that µ(x, y) > 0 and3 Pr[T (x, y) = t] > 0. Since π has zero error, A(t) is a µ-monochromatic

rectangle. That is, there exist subsets X ′,Y ′ ⊆ {0, 1}k such that A(t) = (X ′ × Y ′)∩supp(µ),4

and for every (x, y), (x′, y′) ∈ A(t) it holds that EQ(x, y) = EQ(x′, y′).

Let a ∈ {0, 1}k. We claim that if (a, a) ∈ A(t) then A(t) = {(a, a)}: By definition of µ, if

x > y then (x, y) 6∈ A(t) (as it is not in supp(µ)). Since A(t) is a µ-monochromatic rectangle,

it cannot contain any (x, y) with x < y as well. Finally, if (a′, a′) ∈ A(t) for some a′ > a,

then since A(t) is a rectangle it is also the case that (a, a′) ∈ A(t), which is impossible (a

similar argument works for a′ < a).

Let T denote the transcript of π and think of A = A(T ) as a random variable. Therefore,

H (A | X = Y,XY ) = 0.

Furthermore, conditioned on X = Y , the random variable A(T ) is uniform over {0, 1}k, and

so

H (A | X = Y ) = k.

It follows that

I (XY ;A | X = Y ) = H (A | X = Y )−H (A | X = Y,XY ) = k.

Let E be indicator random variable of the event X = Y . Finally,

ICext
µ (π) = I(XY ;T )

≥ I(XY ;A) (T determines A)

= I(XY E;A) (XY determines E)

= I(E;A) + Pr[E = 1] · I (XY ;A | E = 1)

+ Pr[E = 0] · I (XY ;A | E = 0) (the chain rule)

≥ Pr[X = Y ] · I (XY ;A | X = Y )

= (1− δ)k.
3Even for fixed (x, y) the transcript T (x, y) is a random variable that depends on the private coins.
4supp(µ) is the set of all (x, y) ∈ X ′ × Y ′ such that µ(x, y) > 0.
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3.1.3 Efficiently Computing EQn for n < 2k

Consider the zero error protocol πn for EQn described in Algorithm 2:

Algorithm 2 (A zero error protocol πn for EQn over µn, n < 2k)

1. Alice computes x =
∑n

i=1 xi and Bob computes y =
∑n

i=1 yi, where xi, yi are viewed as

integers, and “+” is integer addition5. So, the bit-length of x, y is most k + log n+ 1.

2. Alice sends x to Bob, and Bob sends y to Alice. If x = y the protocol terminates and

outputs: “∀i ∈ [n] : EQ(xi, yi) = 1”.

3. Otherwise, Alice sends x1, . . . , xn to Bob, and Bob sends y1, . . . , yn to Alice. The

protocol trivially outputs the true value of EQn.

The protocol πn works. By choice of µ, for every i ∈ [n], it holds that xi ≤ yi. If strict

inequality xi < yi holds for some i ∈ [n], then x < y. Therefore, x = y if and only if xi = yi
for every i ∈ [n].

Lemma 13. For n < 2k it holds that CCavg
µn (πn) ≤ 5k.

Proof. Denote by p the probability that there exists i ∈ [n] such that xi 6= yi. It holds that

p = 1− (1− δ)n ≤ 1− (1− δn) = δn.

Step 2 of the protocol πn exchanges at most 2(k + log n+ 1) bits. If x = y, the protocol

ends after Step 2. Otherwise, if x 6= y, at most 2kn additional bits are sent in Step 3. We

conclude that

CCavg
µn (πn) ≤ (1− p) · 2(k + log n+ 1) + p · 2kn ≤ 2(k + log n+ 1) + 2δkn2 ≤ 5k,

where in the last inquality we used the fact that δ = 1
25k22k

and n < 2k.

3.1.4 Efficiently Computing EQn for n ≥ 2k

Consider the zero error protocol π′n for EQn described in Algorithm 3:

5For example, 01 + 11 = 100.
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Algorithm 3 (A zero error protocol π′n for EQn over µn, n ≥ 2k)

Express n as n = d2k + k′ for d ∈ N and k′ ∈ {0, . . . , 2k − 1}. Partition the input pairs

into d disjoint sets of 2k pairs each, and one set of k′ pairs. Run the previous protocol

(for small n) on each of these d+ 1 sets. That is, run

π2k ((x1, . . . , x2k), (y1, . . . , y2k)) ,

π2k ((x2k+1, . . . , x2·2k), (y2k+1, . . . , y2·2k)) , . . . ,

πk′ ((xd2k+1, . . . , xn), (yd2k+1, . . . , yn)) .

Lemma 14. For n ≥ 2k it holds that CCavg
µn (π′n) ≤ 10k2−kn.

Proof. By Lemma 13,

CCavg
µn (π′n) ≤ d · CCavg

µk
(πk) + CCavg

µk′
(πk′) ≤ (d+ 1)5k ≤ 10k2−kn.

3.2 Order on Measures

Here we prove Claim 1. The inequality ICext
µ (π) ≥ ICint

µ (π) is known to hold, see e.g.

[BBCR10]. We show CCavg
µ (π) ≥ ICext

µ (π). Intuitively, the proof uses the fact that each

bit sent by the players can contain at most one bit of information about the inputs.

Formally, let π be a public coin protocol over an input space X ×Y , and let µ be a distri-

bution over X ×Y . Denote by πR the private coin protocol induced by public randomness R.

Let T be the transcript of π and TR be the transcript of πR.

For every value r that R may attain, we know that Tr is a prefix-free code. So, since the

expected length of a binary prefix-free code is at least its entropy, we know E [|Tr|] ≥ H(Tr).

Therefore,

CCavg
µ (π) = E [|T |] = E [E [|T | | R]] ≥ E[H(T )|R] = H(T |R) ≥ I(XY ;T |R) = ICext

µ (π).

3.3 Amortized Cost is Non Zero

Here we prove Claim 7. Informally speaking, the proof uses the fact that a protocol for fn

needs to encode the results of n independent evaluations of f , and each such result has

constant entropy (since f is not constant on supp(µ)).

Denote by X, Y the (random) pair of inputs given to the players, distributed according

to µ. Choose

β = 1
2

min{H(f(X, Y )), 1}.
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Since f is not a constant function on the support of µ, it holds that β > 0.

Now, let π be a public coin protocol computing fn with zero error. Denote by Xn, Y n

the n (random) pairs of inputs given to the players that are distributed according to µn.

Let T denote the transcript of the protocol π. It hold that

ICext
µn (π) = I (XnY n;T |R)

≥ I (XnY n; fn(Xn, Y n)|R) (T determines fn as π computes fn with zero error)

= H (fn(Xn, Y n)|R) (fn is a deterministic function of XnY n)

= H (fn(Xn, Y n)) ((Xn, Y n) is independent of R)

≥ 2βn. (the input pairs are independently selected)

Claim 1, therefore, implies

CCavg
µn (fn, 0) ≥ ICext

µn (fn, 0) ≥ 2βn.

Clearly,

CCavg
µn (fn, 0) ≥ CCavg

µ (f, 0) and ICext
µn (fn, 0) ≥ ICext

µ (f, 0).

Hence,

CCavg
µn (fn, 0) ≥ 1

2
· 2βn+

1

2
CCavg

µ (f, 0).

Similarly for ICext
µn (fn, 0).

4 Discussion of Definitions

We now discuss the definitions of “compute” and “average complexity” with a focus on zero

error communication complexity and implications to Conjecture 2. The difference between

the possible definitions relate to randomized computation versus distributional computation.

We first explain two possible definitions for each notion and then discuss them in more detail.

We start by discussing the notion of “compute.” Let f be a function defined over X ×Y
and let µ be a distribution over X ×Y . We wish to define when does a protocol π computes f

with error at most ε ≥ 0. Two possible definitions are:

(1) For every (x, y) ∈ X × Y , we have6 Prr[π(x, y, r) = f(x, y)] ≥ 1 − ε where r is the

randomness of the protocol.

(2) Pr(x,y)∼µ,r[π(x, y, r) = f(x, y)] ≥ 1− ε.

What does “average complexity” mean? Let π be a protocol with transcript T . We wish

to define when does the average complexity of π is at most C. Two possible definitions are:

(a) For every (x, y) ∈ X × Y , we have Er[|T (x, y, r)|] ≤ C.

6By π(x, y, r) = f(x, y) we mean that knowledge of the transcript and the public randomness yields
knowledge of f as in Section 2.1.
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(b) E(x,y)∼µ,r[|T (x, y, r)|] ≤ C.

Definitions (1) and (a) do not depend on µ at all, whereas Definitions (2) and (b) do.

Definitions (1) and (a) are standard for randomized protocols when there is no distribution

on inputs, see e.g. [KN97]. Definitions (2) and (b) are usually used in the distributional

setting, for example, when studying information complexity, see e.g. [BBCR10].

There are therefore four options for defining CCavg
µ (f, ε): One that does not depend on µ

at all (Definitions (1), (a) are used), and three options that depend on µ in different ways.

Observe that the definition of “information complexity” of a protocol does not make sense

in the randomized framework, and is defined in the distributional framework.

How many options to interpret Conjecture 2 are there? In any interpretation it seems

reasonable to define “compute” in the same fashion for amortized cost and information cost.

This leaves us with four interpretations:

The first two interpretations correspond to the definition of “average complexity” as per

Definition (a). The two choices left are for the meaning of “compute.” We claim that in these

two interpretations the conjecture does not hold. The reason is that with these definitions,

if µ has full support then CCavg
µ (f, 0) does not depend on µ at all, whereas ICext

µ (f, 0) does.

For example, if µ is 1 − δ times µx=y and δ times the uniform measure on X × Y , then

ICext
µ (EQ, 0) depends on δ. (We use the fact that in the zero error case, Definitions (1)

and (2) have the same meaning.)

In the other two interpretations “average complexity” is given by Definition (b). Our

example refutes the conjecture if “compute” is as in Definition (2). The case where “com-

pute” is given by Definition (1) remains open. One drawback of this interpretation is that

for ε > 0 the standard way to define “compute” in the context of information complexity is

as in Definition (2). So, this option leads to that ICext
µ (f, ε) is not continuous at ε = 0, for

example, ICext
µx=y

(EQ, ε) = 0 for ε > 0 but ICext
µx=y

(EQ, 0) > 0. We note that for measures µ of

full support, external information cost is still continuous (which fits well with the possibility

that Conjecture 2 is true for measures of full support).
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