
En Route to the log-rank Conjecture:
New Reductions and Equivalent Formulations

Dmitry Gavinsky
NEC

dmitry@nec-labs.com

Shachar Lovett
UC San Diego

slovett@cs.ucsd.edu

April 1, 2013

Abstract

We prove that several measures in communication complexity are equivalent, up to
polynomial factors in the logarithm of the rank of the associated matrix: deterministic
communication complexity, randomized communication complexity, information cost
and zero-communication cost. This shows that in order to prove the log-rank conjec-
ture, it suffices to show that low-rank matrices have efficient protocols in any of the
aforementioned measures.

Furthermore, we show that the notion of zero-communication complexity is equiv-
alent to an extension of the common discrepancy bound. Linial et al. [Combinatorica,
2007] showed that the discrepancy of a sign matrix is lower-bounded by an inverse poly-
nomial in the logarithm of the associated matrix. We show that if these results can be
generalized to the extended discrepancy, this will imply the log-rank conjecture.

1 Introduction

The log-rank conjecture proposed by Lovász and Saks [8] suggested that for any function
f : X ×Y → {0, 1} its deterministic communication complexity CCdet(f) is polynomi-

ally related to the logarithm of the rank of the associated matrix Mf
def
= (f(x, y))x,y.

Validity of this conjecture is one of the most fundamental open problems in communi-
cation complexity. Very little progress has been made towards resolving it. The best
known bounds are

Ω
(

loglog3 6 rank(Mf )
)
≤ CCdet(f) ≤ log(4/3)rank(Mf ), (1)

where the lower bound is due to Kushilevitz (unpublished, cf. [9]) and the upper bound
is due to Kotlov [4]. Recently a conditional improvement has been made by Ben-Sasson
et al. [1], who showed that the polynomial Freiman-Ruzsa conjecture from additive
combinatorics implied CCdet(f) ≤ O(rank(Mf )/ log rank(Mf )).
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In this work we study the relation of the log-rank conjecture to several commu-
nication complexity measures. Besides those ones that directly correspond to natu-
ral communication models (e.g., randomized communication cost or non-deterministic
communication cost), there is a number of “auxiliary” complexity measures that are
mostly used as technical tools for studying communication complexity. Probably, the
best known and the most useful one is discrepancy. More recently a number of other
measures have been introduced, including partition bound, rectangle bound, smooth
discrepancy, smooth rectangle bound, relaxed partition bound, γ2 norm, etc. (cf. [2, 3]).
Most of the currently known structural separations and concrete lower bound proofs in
communication complexity can be viewed as analyzing one of the auxiliary complexity
measures with respect to a specific communication problem.

1.1 Our contribution

We show that several conjectures, seemingly weaker than the log-rank conjecture, are
in fact equivalent to it. We do so by showing that several natural communication
complexity measures are equivalent, up to a polynomial in the logarithm of the rank
of the associated matrix.

Theorem 1.1 (Main result, informal). Let f : X × Y → {0, 1} be a function and Mf

its associated matrix. The following communication complexity costs are equivalent, up
to poly(log rank(Mf )) factors:

• The deterministic communication cost of f

• The randomized communication cost of f (with public randomness)

• The information cost of f

• The zero-communication cost of f (a slight variant of the relaxed partition bound)

Regardless of rank(Mf ), the last three measures are small whenever a short deter-
ministic protocol exists. On the other hand, an assumption that any of those measures
(or even all three of them) is small does not, in general, imply existence of a efficient
deterministic protocol. We have the following immediate corollary.

Corollary 1.2. To prove the log-rank conjecture, it suffices to show that any low-rank
function has an efficient randomized protocol, or a protocol with low information cost,
or a protocol with low zero-communication complexity.

In the second part of this work we investigate the weakest notion of communication
complexity mentioned in Theorem 1.1, namely that of zero-communication cost. We
use linear-programming duality to show that it is equivalent to the following notion,
which extends the usual definition of discrepancy: Let F : X × Y → {±1} be a sign
matrix, then for 0 < α < 1/3 the α-extended discrepancy of F is

discα(F )
def
= maxK,

subject to: σ is a distribution on X × Y ;

∀R ∈ R :

∣∣∣∣∣∣
∑

(x,y)∈R

σ(x, y) · F (x, y)

∣∣∣∣∣∣ ≤ 1

K
+ α · σ(R).
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The case of α = 0 corresponds to the usual discrepancy bound. We show that for
α > Ω(1), the α-extended discrepancy is equivalent to zero-communication cost.

Corollary 1.3. To prove the log-rank conjecture, it suffices to show that discα(F ) ≤
poly(log(rank(F ))) for any α ≥ Ω(1).

Interestingly, Linial et al. [6, 7] showed that disc(F ) ≤ O(
√

rank(F )), which allows
us to conclude that certain “slightly relaxed” version of our equivalent formulation in
terms of extended discrepancy is already known to hold.

Finally, if we set α = O(1/
√

rank(F )) it immediately implies that discα(F ) ≤
O(
√

rank(F )). This allows us to derive another interesting corollary.

Corollary 1.4. Let F be a sign matrix with rank(F ) = r and disc(F ) = d. Then F
has a deterministic protocol of complexity O(d2 log(d) log2(r)).

In particular, if for a matrix F one has a discrepancy bound that is better than
the one guaranteed by [6, 7] by only a poly-logarithmic factor, that already implies
existence of a shorter deterministic protocol than what is guaranteed by (1).

2 Preliminaries

Let f : X×Y → {0, 1} be a total1 Boolean function, where X and Y are finite sets. The
rank of f is the rank of its associated {0, 1}-matrix. We review standard definitions in
communication complexity (see, e.g., [5] for more definitions and discussion).

Unless stated otherwise, we let a randomized communication protocol use shared
randomness. We will say that a protocol computes f with respect to the input distri-
bution µ if it produces the right answer to f(X,Y ) with probability at least 2/3 when
(X,Y ) ∼ µ. We will also say that a protocol computes f if it produces the right answer
to f(X,Y ) for every (X,Y ) ∈ X × Y with probability at least 2/3. The deterministic
communication cost of f , denoted CCdet(f), is the maximal number of bits sent by an
optimal deterministic protocol that computes f . The randomized communication cost
of f , denoted CCrand(f), is the maximal number of bits sent by an optimal randomized
protocol computing f . The information cost of a function, denoted IC(f), is the infi-
mum of the total amount of information revealed by a randomized protocol computing
f to each player about the other player’s input, maximized over all choices of the input
distribution.

Let R def
= {A×B |A ⊂ X,B ⊂ Y }, and call the elements of R rectangles. A labeled

rectangle is a pair (R, z) with R ∈ R and z ∈ {0, 1}. We will also need a somewhat
less common notion of zero-communication cost of a function, which we define next.

Definition 1. (Zero-communication cost) The zero communication cost of f with error
ε, denoted CCzero

ε (f), is the minimal c such that the following holds. There exists a
distribution ρ on labeled rectangles (R, z) such that for any (x, y) ∈ X × Y ,

1. Pr(R,z)∼ρ[(x, y) ∈ R] ≥ 2−c.

1We always assume that the communication task is a total function, as that is all we need in the context
of the log-rank conjecture.
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2. Pr(R,z)∼ρ[f(x, y) = z|(x, y) ∈ R] ≥ 1− ε.
We abbreviate CCzero(f) = CCzero

1/3 (f).

For all the notions of communication cost that we have defined, a protocol is consid-
ered efficient with respect to that specific cost if the latter is bounded by poly(log n).

Claim 2.1. For any function f ,

CCdet(f) ≥ CCrand(f) ≥ IC(f) ≥ Ω(CCzero(f)).

Proof. The first two inequalities follow immediately from the definitions. The fact
that CCzero(f) ≤ O(IC(f)) has been established recently by Kerenidis et al. [3] (The-
orem 1.1).2 �

3 Zero-error protocols reduce to deterministic

protocols for low-rank functions

We prove the following theorem in this section.

Theorem 3.1. Let f : X × Y → {0, 1} be a Boolean function. Then CCdet(f) ≤
O
(
CCzero(f) · (log(rank(f)))2

)
.

We fix the function f and prove Theorem 3.1 in the remainder of this section. A
rectangle R ⊂ X × Y is called monochromatic if the value of f is constant on R (i.e.,
all zero or all one). We will use the following theorem of Nisan and Wigderson [9]
which shows that to establish that a low-rank function has small deterministic com-
munication cost, it suffices to show that any rectangle contains a large monochromatic
sub-rectangle. We denote by |R| the number of elements in a rectangle.

Lemma 3.2 ([9]). Let f : X × Y → {0, 1} be a Boolean function. Assume that
for any rectangle R1 ⊂ X × Y there exists a sub-rectangle R2 ⊂ R1 such that R2 is
monochromatic and |R2| ≥ δ|R1|. Then CCdet(f) ≤ O(log(1/δ) · log rank(f)).

Thus, we reduced proving the theorem to the task of showing that any rectangle
contains a large monochromatic sub-rectangle. We next show that this follows given a
zero-communication protocol with small enough error.

Lemma 3.3. Let f : X × Y → {0, 1} be a Boolean function with rank(f) = r. Set
ε = 1/8r and assume that CCzero

ε (f) = c. Then any rectangle R1 ⊂ X × Y contains a
monochromatic sub-rectangle R2 ⊂ R1 with |R2| ≥ (1/16)2−c|R1|.

2The definition of zero-communication protocol given in [3] (or more accurately, that of a relaxed partition
bound) is somewhat different than the definition we are using here. Our definition is less restricting (and
probably, somewhat more natural), and therefore CCzero(f) ≤ O(IC(f)) holds. The main reason for choosing
our definition is that it allows more straightforward error reduction by repetition, which we will need later.
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Proof. We first establish that there exists a sub-rectangle R′ ⊂ R1 which is nearly
monochromatic, and then use the low-rank property of f to establish the existence of
a monochromatic rectangle R2 ⊂ R′.

Let ρ be the distribution on labeled rectangles guaranteed by the zero-communication
cost assumption, and let (R, z) ∼ ρ and R′ = R ∩ R1. Let E = {(x, y) ∈ R1 :
f(x, y) 6= z} be the set of inputs whose value disagrees with z. We will show that
|R′| ≥ (1/2)2−c|R1| and |R′ ∩ E| ≤ 2ε|R′| with non-zero probability.

Note that we can reformulate the definition of a zero-communication protocol as

Pr[(x, y) ∈ R] ≥ 2−c; Pr[(x, y) ∈ R and f(x, y) 6= z] ≤ εPr[(x, y) ∈ R],

where the probabilities are taken over (R, z) ∼ ρ. So,

Pr[(x, y) ∈ R]− (1/2ε) Pr[(x, y) ∈ R and f(x, y) 6= z] ≥ (1/2)2−c.

Summing over all (x, y) ∈ R1 gives

E[|R′| − 1/(2ε) · |R′ ∩ E|] ≥ (1/2)2−c|R1|.

Thus, there must exist a choice for R′ exceeding the average. In particular, it satisfies
|R′| ≥ (1/2)2−c|R1| and |R′ ∩ E| ≤ 2ε|R′|.

Next we establish existence of a large monochromatic rectangle R2 ⊂ R′. Assume
that R′ = A′ × B′. Let A′′ ⊂ A′ be the set of rows having at most 4ε-fraction of
elements disagreeing with z,

A′′ = {x ∈ A′ : |{y ∈ B′ : f(x, y) 6= z}| ≤ 4ε|B′|}.

By Markov’s inequality we have |A′′| ≥ |A′|/2. We now apply the low-rank property of
f . Consider the matrix generated by restricting f to A′′ ×B′. Its rank is also at most
r = rank(f). Hence, there exist r elements x1, . . . , xr ∈ A′′ whose corresponding rows
span all rows in A′′. Define for 1 ≤ i ≤ r the sets of inputs taking the ”wrong” value
on row xi,

Bi = {y ∈ B′ : f(xi, y) 6= z}.

We know by assumption that |Bi| ≤ 4ε|B′|. Let B′′ = B′ \ ∪ri=1Bi. Then |B′′| ≥
|B′|(1− 4εr) ≥ |B′|/2. Consider now the matrix restricted to A′′ × B′′. It is spanned
by rows which are all equal to z, hence all of its rows are constant! We take R2 to
be the set of rows taking the majority value. To conclude, we found a monochromatic
rectangle R2 ⊂ R1 of size

|R2| ≥ (1/2)|A′′||B′′| ≥ (1/8)|A′||B′| = (1/16)2−c|R1|,

as required.

We are nearly done, it remains to argue that the error in zero-communication
protocols can be reduced efficiently.
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Claim 3.4. For any 1/2 > λ > ε > 0,

CCzero
ε (f) ≤ O

(
CCzero

λ (f) · log(1/ε)

(1/2− λ)2

)
.

In particular, CCzero
ε (f) ≤ O(CCzero(f) · log(1/ε)).

Proof. Denote c
def
= CCzero

λ (f), and let ρ be a distribution over labeled rectangles (R, z)
satisfying

1. Pr(R,z)∼ρ[(x, y) ∈ R] ≥ 2−c.

2. Pr(R,z)∼ρ[f(x, y) = z|(x, y) ∈ R] ≥ 1− λ.

Let t = O
(

log(1/ε)
(1/2−λ)2

)
, and sample (R1, z1), . . . , (Rt, zt) ∼ ρ independently. We define

R∗ to be the intersection of R1, . . . , Rt and z∗ to be the majority value of z1, . . . , zt. We
claim that the resulting distribution of (R∗, z∗) gives a zero-communication protocol
with error ε and cost ct.

In order to see this, fix (x, y) ∈ X × Y . First, we verify that (x, y) ∈ R∗ frequently
enough,

Pr[(x, y) ∈ R∗] = Pr[(x, y) ∈ R1, . . . , (x, y) ∈ Rt] =

t∏
i=1

Pr[(x, y) ∈ Ri] ≥ 2−ct.

It remains to verify that Pr[f(x, y) = z∗|(x, y) ∈ R∗] ≥ 1− ε. Let p
def
= Pr[f(x, y) =

z|(x, y) ∈ R]; for any v1, . . . , vt ∈ {0, 1} such that |{i | vi = f(x, y)}| = m,

Pr[z1 = v1, . . . , zt = vt|(x, y) ∈ R∗] =
r∏
i=1

Pr[zi = vi|(x, y) ∈ Ri] = pm(1− p)t−m.

So, the probability that z∗ = f(x, y) conditioned on (x, y) ∈ R∗ is given by summing
over all values v1, . . . , vt whose majority is equal to f(x, y). This equals the probability
that a binomial distribution with t trials and success probability p ≥ 1−λ has at least
t/2 successes:

Pr[f(x, y) = z∗|(x, y) ∈ R∗] ≥ Pr[Bin(t, 1− λ) ≥ t/2] ≥ 1− α(1/2−λ)2·t

for some constant 0 < α < 1. Choosing t = O
(

log(1/ε)
(1/2−λ)2

)
large enough gives the

required bound. �

4 Equivalent formulations

Recall the original log-rank conjecture of Lovász and Saks [8]:

Conjecture 4.1. (log-rank, [8]) For every {0, 1}-valued matrix M ,

CCdet(M) ≤ poly(log(rank(M))).
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We will present several equivalent formulations of the conjecture.
First, we give a version that “looks weaker” in the following sense: While the original

conjecture can be phrased as “low rank implies an efficient deterministic protocol”,
this formulation only requires existence of an efficient protocol of one of several more
powerful types.

Theorem 4.2. (log-rank conjecture, equivalent formulations) The following state-
ments are equivalent:

1. The log-rank conjecture (Conjecture 4.1).

2. For every {0, 1}-valued M , CCrand(M) ≤ poly(log(rank(M))).

3. For every {0, 1}-valued M , IC(M) ≤ poly(log(rank(M))).

4. For every {0, 1}-valued M , CCzero(M) ≤ poly(log(rank(M))).

Proof. From Claim 2.1 and Theorem 3.1 it follows that CCdet(M), CCrand(M), IC(M)
and CCzero(M) are equal, up to the factor of poly(log(rank(M))). �

4.1 Extended discrepancy: extrapolating between discrep-
ancy and zero-communication cost

Let us denote F (x, y)
def
= (−1)Mx,y and CCzero

ε (F ) = CCzero
ε (M). Define for every

{±1}-valued matrix F its α-extended discrepancy as

discα(F )
def
= maxK,

subject to: σ is a distribution on X × Y ;

∀R ∈ R :

∣∣∣∣∣∣
∑

(x,y)∈R

σ(x, y) · F (x, y)

∣∣∣∣∣∣ ≤ 1

K
+ α · σ(R).

If we choose α = 0 then discα(F ) equals the discrepancy of F , which is one of the most
commonly used tools for proving lower bounds on CCrand(M).

Claim 4.3. For every {±1}-valued matrix F and every constant 0 < α < 1
3 ,

2CCzero(F ) = Θ(discα(F )).

Proof. Let us express CCzero(M) as the optimal value of a linear program,

2CCzero
ε (M) = min

∑
R∈R

(wR,0 + wR,1) ,

subject to: ∀R ∈ R : wR,0 ≥ 0, wR,1 ≥ 0;

∀(x, y) ∈ X × Y :
∑

R:(x,y)∈R

(wR,0 + wR,1) ≥ 1;

∀(x, y) ∈ X × Y :
∑

R:(x,y)∈R

(
wR,Mx,y −

1− ε
ε
· wR,1−Mx,y

)
≥ 0.
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Its dual can be written as

2CCzero
ε (M) = maxK,

subject to: ∀(x, y) ∈ X × Y : Cx,y ≥ 0; µ is a distribution on X × Y ;

∀R ∈ R, z ∈ {0, 1} : µ(R) ≤ 1

K
+

1− ε
ε
·
∑

(x,y)∈R
Mx,y=z

Cx,y −
∑

(x,y)∈R
Mx,y=1−z

Cx,y.

We can rewrite it as

2CCzero
ε (F ) = maxK,

subject to: σ : X × Y → R+; µ is a distribution on X × Y ;

∀R ∈ R :

∣∣∣∣∣∣
∑

(x,y)∈R

σ(x, y)F (x, y)

∣∣∣∣∣∣− (1− 2ε) · σ(R) + µ(R) ≤ 1

K
.

(2)

First, we show that 2CCzero(F ) ≥ Ω(discα(F )). For α < 1
3 , let µ be a distribution on

X × Y , such that ∀R ∈ R :∣∣∣∣∣∣
∑

(x,y)∈R

µ(x, y)F (x, y)

∣∣∣∣∣∣ ≤ 1

discα(F )
+ αµ(R).

Then for t
def
= 3α

1−3α ,

t

α
·

∣∣∣∣∣∑
R

µ(x, y)F (x, y)

∣∣∣∣∣− (t+ 1) · µ(R) + µ(R) ≤ t

αdiscα(F )
,

and therefore,

2CCzero(F ) ≥ 1− 3α

3
· discα(F ).

For the other direction of our proof, let σ : X × Y → R+ and µ be a distribution
on X × Y , such that ∀R ∈ R :∣∣∣∣∣∣

∑
(x,y)∈R

σ(x, y)F (x, y)

∣∣∣∣∣∣− (1− 2ε) · σ(R) + µ(R) ≤ 1

2CCzero
ε (F )

, (3)

which implies ∣∣∣∣∣∣
∑

(x,y)∈R

σ(x, y)F (x, y)

∣∣∣∣∣∣ ≤ 1

2CCzero
ε (F )

+ (1− 2ε) · σ(R).

For R = X × Y , (3) implies

σ(X × Y ) ≥
(

1− 1

2CCzero
ε (F )

)
· 1

1− 2ε
≥ 1

2
,
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as long as CCzero
ε (F ) ≥ 1. Then for the distribution σ′

def
= σ

σ(X×Y ) ,∣∣∣∣∣∣
∑

(x,y)∈R

σ′(x, y)F (x, y)

∣∣∣∣∣∣ ≤ 2

2CCzero
ε (F )

+ (1− 2ε) · σ′(R).

Accordingly,

disc1−2ε(F ) ≥ 2CCzero
ε (F )

2
. (4)

As long as α > 0, we can use the error-reducing technique given by Claim 3.4, and
therefore 2CCzero(F ) ≤ O(discα(F )), as required. �

The following equivalent formulations of the log-rank conjecture is immediate from
Theorem 4.2 and Claim 4.3.

Theorem 4.4. (log-rank conjecture, an equivalent formulation) The log-rank con-
jecture (Conjecture 4.1) is true if and only if the following holds for some α0 ≥ Ω(1):
For every {±1}-valued matrix M and probability distribution µ on X × Y , there exists
a rectangle R ∈ R such that∣∣∣∣∣∣

∑
(x,y)∈R

σ(x, y) ·Mx,y

∣∣∣∣∣∣ ≥ 1

qpoly(rank(M))
+ α0 · σ(R),

where qpoly(x)
def
= exp(poly(log x)).

Interestingly, it was shown by Linial et al. [6, 7] that disc(M) ≤ O
(√

rank(M)
)

.

In other words,

Fact 4.5. ([6, 7]) For every {±1}-valued matrix M and probability distribution µ on
X × Y , there exists a rectangle R ∈ R such that∣∣∣∣∣∣

∑
(x,y)∈R

σ(x, y) ·Mx,y

∣∣∣∣∣∣ ≥ Ω

(
1√

rank(M)

)
.

Note that the above statement can be viewed as a version of the equivalent formu-

lation given in Theorem 4.4, relaxed by letting “α0 = 1
/√

rank(M)”.

Finally, our techniques can be used to derive a polynomial upper bound on CCdet(F )
in terms of disc(F ) and log(rank(F )).

Claim 4.6. For a {±1}-valued matrix F , let d = disc(F ). Then

CCdet(F ) ≤ O
(
d2 · (log(rank(F )))2 · log d

)
.
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Proof. It is immediate from the definition that 1
disc(F ) -extended discrepancy is equiva-

lent to disc(F ) up to a constant multiplicative factor, and therefore

disc1/d(F ) ≤ O(d).

In the proof of Claim 4.3 we have shown (cf. (4)) that

2CCzero
ε (F ) ≤ O(disc1−2ε(F ))

holds for every ε > 0, and therefore

CCzero
1
2
− 1

2d

(F ) ≤ log d+O(1).

By Claim 3.4,
CCzero(F ) ≤ O

(
d2 log d

)
,

and the result follows by Theorem 3.1. �
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