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Abstract

For a property P and a sub-property P’, we say that P is P'-partially testable with q queries
if there exists an algorithm that distinguishes, with high probability, inputs in P’ from inputs
e-far from P by using ¢ queries. There are natural properties that require many queries to test,
but can be partitioned into a small number of subsets for which they are partially testable with
very few queries, and in fact the minimal O(1/¢).

We prove that this is not always the case. More than that, we prove the existence of a
property P such that the only subsets P’ for which P is P’-partially testable are very small. To
prove this we introduce new techniques for proving property testing lower bounds. In addition
to obtaining some broad-brush criteria for non-testability, this implies a lower bound on the
possibility of PCPPs with a sublinear proof size. This also implies lower bounds on MAPs, a
notion newly defined by Gur and Rothblum.

The new techniques rely on analyzing a proposed partial tester. We show that the queries
performed by a tester must, with high probability, query indexes where a uniformly random
member of the sub-property has low entropy. We then show how one can aggregate the “entropy
loss” to deduce that a random choice in the sub-property must have low entropy, and therefore
the sub-property must be small.

We develop two techniques for aggregating the entropy loss. A simpler technique that applies
to non-adaptive testers is based on partitioning the input bits into high query probability parts
and parts where there is an entropy loss when conditioned on the high probability parts. Against
adaptive testers we develop a more intricate technique based on constructing a decision tree. The
root-to-leaf paths in this tree rearrange the input into parts where each part exhibits entropy loss
when conditioned on the path prefix. This decision tree is constructed by combining carefully
selected decision trees from those used by the adaptive testing algorithm.
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1 Introduction

Property Testing deals with randomized approximation algorithms that operate under low informa-
tion situations. Formally, we deal with objects from some universe U parametrized by an integer n,
usually 2" where X is some finite alphabet; with a notion of distance between two objects in U, usu-
ally the Hamming distance; and with a notion of a query to an object in U, usually corresponding
to retrieving z; for an index i € {1,...,n}.

Definition 1.1 (Testable property). Let P C {0,1}". We say that P is testable with ¢ queries
if there exists an algorithm A that gets as input a parameter € > 0 and query access to an input
string x € {0,1}" and outputs accept or reject such that:

e Ifx € P, then A accepts with probability at least 2/3.
o Ifd(xz,P) > €, then A rejects with probability at least 2/3.

If furthermore all queries performed to the input can be decided before any of them are made, then
the algorithm is non-adaptive, and otherwise it is adaptive. If we require that whenever x € P,
then the algorithm accepts with probability 1, then the algorithm is 1-sided, and otherwise it is
2-sided.

Property Testing was first addressed by Blum, Luby and Rubinfeld [6], and most of its general
notions were first formulated by Rubinfeld and Sudan [19]. The first investigated properties were
mostly of an algebraic nature, such as the property of a Boolean function being linear. The first
investigation of combinatorial properties and the formal definition of testability was by Goldreich,
Goldwasser and Ron [11]. Since then Property Testing has attracted significant attention. For
surveys see [8, 16, 17].

When proving that testing a property requires many queries, one might ask “how strong is this
requirement?”, which can be illustrated with an example. Alon et. al. [3] studied the testability
of formal languages, and proved that the language L = {uufvvf|u,v € {0,1}*} requires at least
Q(y/n) queries to test. Informally, one may say that the “reason” for this language being untestable
is the difficulty in guessing the length of uu®. This can be made formal by considering the languages
L; = {uuRvvf|u,v € {0,1}*, |u| = i}, which form a partition of L. A simple sampling algorithm can
perform O(e~!) queries to an input and distinguish between inputs in L; and inputs e-far from L.
It is also important to note that |LN{0,1}"| = 22" but its partition LoN{0,1}", ..., L,N{0,1}"
is only to a number of subsets linear in n.

This phenomenon is not unique to the language considered by Alon et. al. Another example is
that of graph isomorphism, first considered in the property testing framework by Alon et. al. [2]
(and later by Fischer and Matsliah [9]), and shown to require at least Q(n) queries to test. In
this setting we consider a pair of unknown graphs given by their adjacency matrices, and we are
charged with distinguishing the case where they are isomorphic from the case where more than en?
of their edges must be changed to make them isomorphic. In this case, the size of the property
is 292"") and we can partition the property into n! properties {Pr|r € S,}, each defined by
P, = {(G1,G)|r(G1) = Ga}, such that a sampling algorithm can perform O(e~!) queries to an
input and distinguish between inputs in P, and inputs e-far from the original property.

Thus it is tempting to ask whether this is a general phenomenon. Can any property P be
partitioned into k = |P|°) properties P, ..., P such that the task of distinguishing inputs in P;
from inputs far from P can be performed with a number of queries that depends only on €? The



main result of the present paper is to prove that this is not always the case. In fact, there exist
properties for which any such partition must be to a number of subsets exponential in n.
To prove this result we consider a simpler setting that implies it.

Definition 1.2 (Partially testable property). Let P C {0,1}" and P’ C P. We say that P is
P’-partially testable with q queries if there exists an algorithm A that gets as input a parameter
e > 0 and query access to an input string x € {0,1}" and outputs accept or reject such that:

o Ifx € P, then A accepts with probability at least 2/3.
o Ifd(xz,P) > €, then A rejects with probability at least 2/3.

If furthermore all queries performed to the input can be decided before any of them are made, then
the algorithm is non-adaptive, and else it is adaptive.

Obviously, if P is testable with ¢ queries, then for any subset P’ C P it is P/-partially testable
with the same number of queries. On the other hand, for any property P and any element x € P,
we have that P is {x}-partially testable with O(¢~!) queries.

The partitions described above are in fact partitions of P into subsets Pi,..., P; such that P
is Pj-partially testable for every 1 <1 < k. If there exists such a partition into not too many sets,
then there must be at least one set that is relatively large. Our main result shows that there exists
a property P for which all subsets P’ C P such that P is P’-partially testable are small. In fact,
all linear codes with large dual distance define such properties.

Theorem 1.3. Let C C {0,1}" be a linear code of size |C| < 261" and dual distance T'. For every
_o(rL
C' C C, if C is C'-partially testable with q adaptive queries, then |C'| < |C|2 @(q>.

We will first prove a weak version of Theorem 1.3 in Section 4 which will apply for ¢ non-
T

adaptive queries and imply the bound |C’'| < |C |2_®(q3). This proof will use some of the key ideas
that will later manifest in the proof of the theorem in its full generality in Section 5.

An important question is the existence of codes with strong parameters. A random linear code C
will have T' = ©(n) and |C| = 29 with high probability (this is implied by the Gilbert-Varshamov
bound [10, 20]; MacWilliams et. al. [15] showed that this can also be obtained by codes which are
self-dual and thus also have good distance), and thus by Theorem 1.3 we will have that for any

n

C’ C C such that C is C’-partially testable with ¢ queries, |C'| < \0]2_(9(5). For a constant ¢,
this implies that partial testability will only be possible with exponentially small subsets. The best
explicit (and low uniform decision complexity) construction known to us is that of [1], which gives

|C] = 29 with T' = ©(n/logn), and thus the bound becomes |C’| < n0(1)|C|2_®<%>, which is
polynomially worse than the non-explicit bound, but is still a strong upper bound on the size of
C'.

Theorem 1.3 implies that there exist properties P that require a lot of queries to test, and that
every partition of P into subsets Pi,..., P, such that P is P;-partially testable for every 1 <i¢ < k
requires that k will be very big. One might ask if we can prove a converse. That is, if P can be
tested with a few queries, can we find such a partition with a small k7

Open Problem 1.4. Let P be a property testable with r queries. Is it true that we can partition
P into subsets Py, ..., P such that P is P;-partially testable with O(1) queries for every 1 <i <k
and k is bounded by some moderate function of r?



n
q

Theorem 1.3 implies that for some properties, £ might be as big as 26( ) It is not clear
whether this value of k& can always be obtained. The trivial upper bound for every property is by
partitioning into 2"~ ¢ subsets of size 29. Are there properties for which this is required?

Open Problem 1.5. Does there exist a property P such that for every P’ C P where P is P'-
partially testable with q queries we also have |P'| < |P|20(@)~-0(1) ¢

1.1 Related work

Our notion of a partition is similar to existing notions in computational complexity. For a partition
P=P UP,U...UP; where for every 1 <1i < k, P is P;-partially testable, the designation of P;
can be seen as a “proof” that a certain x is in P. If x € P, then there exists some P; such that
x € P; and therefore a P;-partial tester for P will accept it with high probability. If x is e-far from
P, then all P;-partial testers for P will reject it with high probability.

This is similar to the notion of a Probabilistically Checkable Proof of Proximity (PCPP), first
introduced by Ben-Sasson et. al. [4]. PCPPs are to property testing as NP is to P. A g query
PCPP for a property P C U is an algorithm that gets as input « € U and a proof of prozimity
€ {0, 1}1. The algorithm must perform at most ¢ queries to z and 7 and fulfill the requirement
that if x € P then there exists a proof 7w that causes the algorithm to accept with high probability,
but when x is e-far from P then for any proof 7 the algorithm rejects with high probability. In our
setting, the algorithm is allowed free access to a proof of length [ = log(k), but we expect [ to be
sublinear in the size of z. In particular, the property we analyze here cannot have a PCPP with a
sublinear length proof.

Rothblum et. al. [18] introduced the notion of an Interactive Proof of Proximity (IPP). In
an IPP for a property P, the tester can also communicate with a prover in addition to querying
the input x. If z € P then the prover has a strategy that will cause the tester to accept with
high probability. When x is e-far from P, the prover cannot make the tester accept with high
probability. Rothblum et. al. show that all languages in NC admit such a protocol with \/n query
and communication complexity and polylog(n) communication rounds. Protocols of this kind are
only interesting for the case where the communication complexity is sublinear, or else the prover
may just give the input to the tester.

Independently of the present work, Gur and Rothblum [13] weakened the IPP model to create
Merlin-Arthur Proofs of Prozimity (MAP). Gur and Rothblum define a MAP as a proof-system for
a property P where for an input x and a proof w the verifier reads the entire proof 7 and queries ¢
bits from the input x. If x € P, then there exists a proof 7 such that the verifier accepts with high
probability, and if x is far from P, then for every proof w the verifier rejects with high probability.
Since we can trivially set m = x, the only interesting cases are where the length of 7 is sublinear.

The notion of a MAP with ¢ queries and proofs of length ¢ for a property P is equivalent to
the existence of k = 2¢ sets P, ..., P, such that P = P, UP, U...U P, where for every 1 <i <k,
P is Pj-partially testable with ¢ queries.

Gur and Rothblum give several constructions of properties where a MAP with a sublinear length
proof greatly reduces query complexity. Gur and Rothblum also introduce the Tensor Sum family
of properties, for which they prove that for every constant o > 0 there exists an instantiation
of Tensor Sum such that any MAP for it that performs ¢ queries must require a proof of length

Q ("1q_a). This is slightly weaker than Theorem 1.3 proved in the present paper. Their lower

bound is proved by an extension of the communication complexity technique of Brody et.al. [5] to



Merlin-Arthur communication complexity. This proof technique is fitting for the MAP setting, but
does not apply to partial testing in general. Gur and Rothblum also prove that this trade off is
almost optimal for the Tensor Sum properties.

Additionally, Gur and Rothblum show separations between the power of MAPs and that of
IPPs and PCPPs. They also show that 2-sidedness may only give a MAP a polylog(n) factor
improvement in proof length and query complexity over a 1-sided algorithm. Their result implies a
connection also between 1-sided and 2-sided partial testability, though not one that would preserve
O(1)-query partial testability.

2 Proof plan

For the proofs of our main result we develop new techniques that are in some ways more flexible
than the traditional use of Yao’s method for proving property testing lower bounds. We believe
that these techniques hold promise for other lower bound situations where using Yao’s method
seems to hit a wall.

2.1 General themes

As with Yao’s method, we contrast the behavior of a supposed test when it is run over an input
chosen according to some distribution over “yes” instances, with its behavior when it is run over an
input chosen according to some distribution over “no” instances. However, while in the traditional
method these two distributions are chosen based only on the property (and should work against
all possible algorithms of a given class), here the distributions are in fact tailor made for the
specific analyzed algorithm. Note that special care must be taken in the definition of such an input
distribution. It may not depend on the “real-time” behavior of the algorithm (i.e. it may not adapt
itself to the identity of the random queries that the algorithm has made), and is instead constructed
based only on the description of the algorithm.

The second theme is the use of Shannon entropy. Our goal here is to prove that if C' is
C'-partially testable, then C’ cannot be too large. For achieving this we assume that a testing
algorithm exists, and then contrast a uniformly random choice of a word in C’ with another word
chosen from a “dangerous” distribution over words far from C. The assumption that the test in
fact distinguishes the two distributions allows us to show that a uniformly random choice of a word
in " has low entropy, and hence C' must be small. Using entropy instead of direct counting is
crucial to using our main method for obtaining a bound against 2-sided error tests, rather than
only 1-sided error ones.

2.2 Proving a bound against non-adaptive algorithms

The bound against non-adaptive algorithms showcases the above general themes. A supposed C’-
partial test with g queries is in essence a distribution over query sets of size ¢, such that with high
probability a query set is chosen that highlights a difference between members of C’ and inputs
far from being in C. Now if the test were additionally 1-sided, this would translate to forbidden
values in the meaningful query sets, which would give a cross product bound on the size of C’. For
2-sided tests we use an analogous feature of entropy, namely that of subadditivity.

To construct a “dangerous” distribution over words far from being in C, we first take note of the
“heavy” indexes, which are those bits of the input that are with high probability part of the query



subset of the investigated testing algorithm. There will be only few of those, and our distribution
over far words would be that of starting with a restriction of a uniformly random word in C’ to
the set of heavy indexes, and augmenting it with independently and uniformly chosen values to all
other input bits. When contrasted with the uniform distribution over all members of C’, we obtain
that there must be many query sets that show a distinction between the two distributions over the
non-heavy indexes with respect to the heavy ones. This means that the values of the non-heavy
indexes in each such query set do not behave like a uniformly independent choice, and thus have
a corresponding entropy (conditioned on the heavy index bits) that is significantly less than the
maximal possible entropy. Having many such query sets in essence means that we can find many
such sets that are disjoint outside the heavy indexes, which in turn leads to an entropy bound by
virtue of subadditivity (when coupled with general properties of linear codes).

2.3 Proving a bound against adaptive algorithms

An adaptive algorithm cannot be described as a distribution over query sets, but rather as a
distribution over small decision trees of height ¢ that determine the queries. Therefore low-entropy
index sets cannot be readily found (and in fact do not always exist). To deal with this we employ
a new technique, that allows us to “rearrange” the input in a way that preserves entropy, but now
admits disjoint low-entropy sets.

This new construction is a reader, which in essence is an adaptive algorithm that reads the
entire input bit by bit (without repetitions). As this adaptive algorithm always eventually reads
the entire input, it defines a bijection between the input to be read and the “reading stream”, i.e.
the sequence of values in the order that the reader has read them.

The construction of this reader is fully based on the description of the g-query adaptive algorithm
that C’-partially tests for C' (again we assume that such an algorithm exists). In fact we contrast
the uniform distribution over members of C’ with not one but many possible distributions over
inputs far from C. At every stage we obtain that, as long as our reader has not yet read a large
portion of the input, the adaptive test can provide a decision tree over the yet-unread bits that
shows a difference between a uniformly random member of C” (conditioned on the values of the
bits already read) and an independently uniform random choice of values for the unread bits. Our
reader will be the result of “concatenating” such decision trees as long as there are enough unread
bits. Thus in the “reading stream” we have sets of q consecutive bits, each with low entropy (as it
is distinguishable from independently uniform values). When there are not enough unread bits left,
we read all remaining bits arbitrarily, and use general properties of codes to bound the entropy on
that final chunk.

The method of constructing a reader not only allows us to do away with the exponential penalty
usually associated with moving from non-adaptive to adaptive algorithms, but we additionally
obtain better bounds for non-adaptive algorithms as well. This is because a reader can do away
also with the penalty of moving from the situation of having many low-entropy query sets to having
a family of sets disjoint outside the heavy indexes, in essence by constructing the reader for the
uniform distribution over C’ based on not one but many “dangerous” input distributions.



3 Preliminaries

Below we introduce the reader to some basic definitions and results regarding entropy and the dual
distance of codes. We refer the reader who is interested in a more thorough introduction of entropy
to [7, Chapter 2].

First, we introduce a standard notion of distance between distributions.

Definition 3.1 (Total variation distance). Let p and q be two distributions over the domain D.
The total variation distance between p and q is defined to be drv (p,q) = 3> ;cp (i) — q(i)].

We now introduce the notion of the entropy of a random variable, the entropy of a random
variable conditioned on another one, and two well-known lemmas.

Definition 3.2 (Entropy). Let X be a random variable over the domain D. The entropy of X is
defined to be H[X]| = =3, p Pr[X = i]log(Pr[X = i]).

Definition 3.3 (Conditional entropy). Let X and Y be random variables over the domain D. The
entropy of X conditioned on Y is defined to be H[X|Y] =3 pPr[Y =dH[X]Y =y|.

Lemma 3.4 (The chain rule). Assume that X and Y are random variables. The entropy of the
combined state determined by both random variables is denoted H[X,Y|. This quantity obeys the
chain rule HX,Y]| = H[X|Y]+ H[Y].

Lemma 3.5 (Subadditivity). If X and Y are random variables, then H[X,Y] < H[X] + H[Y].

The total variation distance is not a natural fit to the context of entropy. A more fitting notion
of distance between distributions is divergence.

Definition 3.6 (Divergence). Let p and q be two distributions over D. The divergence of g from
p is defined to be D(pllg) = > ;ep p(i) log ("8)

Fortunately, divergence and total variation distance are related via Pinsker’s inequality.

Lemma 3.7 (Pinsker’s inequality). Assume that p and q are two distributions over the domain
D. The total variation distance between p and q is related to the divergence of q from p by the

inequality %D(qu) >drv(p,q)-

We will actually be using a simpler corollary of it.

Lemma 3.8 (Corollary of Pinsker’s inequality). Assume that X is a random variable distributed
according to p over D, and denote the uniform distribution over D by p,. The entropy of X is related
to its total variation distance from the uniform distribution by H[X] < log(|D|) — 2(drv (p, pu))?.

Proof.
Z Pr[X = i]log(Pr[X =1i])

1€D
1
=~ Y PHX = i log(Pr(X =] L [D)
€D ‘D|
=— ZPr =1 log ZPr i|log(Pr[X =] - |D|)
1€D €D

6



=1log(|D]) — D(pllpu) <log(|D]) — 2(drv (p, pu))?
Where the last step follows from Pinsker’s inequality. O

Let z € {0,1}" and J C [n]. We use z[J] to denote the restriction of x to the indices in J.
That is, the vector < x; >j;c;. When C' C {0,1}" we use C[J] = {z[J]|z € C}.

Let C € {0,1}". We denote by U(C) the uniform distribution over C. In accordance with the
notation above, when X ~ U(C'), X[J] denotes the random variable obtained by drawing uniformly
from C and then restricting to the indices in J. As a shorthand we use U(C')[J] for the distribution
of X[J]. We use U;(C) to denote the result of first drawing a vector = according to U(C'), and then
replacing z [[n] \ J] with a uniformly random vector in {0, 1}V, In particular, in many cases we
will take C' to be a singleton, in which case we drop the curly braces and denote this probability
distribution by Uy (x).

We will make inherent use of the following result, which can be found e.g. in [14, Chapter 1,
Theorem 10].

Lemma 3.9. If J C [n] is such that |J| < T and X ~ U(C), then X[J] is distributed uniformly
over {0,1}171,

We will also need the fact that a mostly random input is far from a code with high probability.

Lemma 3.10. Let C C {0,1}" such that |C| < 281" ¢ < 1/8, and let J C [n] be such that
|J| < nj2. X ~ Uy(C) is e-far from C with probability 1 — o(1). Furthermore, this is still true
when conditioned on any value of X[J].

Proof. By Chernoff bounds, the probability that a random element X ~ U;(C') will agree with
¢ € C in more than (1 — €)n coordinates is at most exp < —n(1/4— e)2>. Taking the union bound

over all ¢ € C gives us |C| - exp < —n(l/4 - e)2> = o(1). Since this calculation assumes that X[J]

always agrees with ¢[J], it holds when conditioned on any value of X[.J]. O

Finally, we will also need to use Lemma 3.9 to help us calculate the entropy of uniform random
variables in codes.

Lemma 3.11. Let C be a code with dual distance ', J C [n] such that |J| < T, C' C C and
X ~U(C"). Then HIX|X[J]] <log|C| — |J|. Furthermore, this is true when conditioned on any
particular value of X|[J].

Proof. We can partition C according to the values of the bits in J:

C= |J feeCli=2}

2€{0,1}171

By Lemma 3.9, all sets on the right hand side are of size 2~1//|C|. Obviously, for all z € {0, 1},
we have {¢' € C'|[J] = z} C {c € C|c[J] = z}, simply because C’ C C. Thus for every = € C'[]],
we have that

H[X|X[J] =z] <log|{c € C"|d[J] = z}| <log|{c € C|c[J] = 2}|.



This completes the “furthermore” part of the lemma. To obtain the non-conditioned version,
note that by the definition of conditional entropy,

HIX|X(J]) = By HIXIX[J] = 2] < log (27]0]) = log|C| 7],

We note (and use throughout) that trivially H[X|X[J]] = H[X[{1,...,n}\ J]|X[J]].

4 Nonadaptive lower bound

In this section we prove Theorem 1.3 for the case of a non-adaptive tester and with slightly worse
quantitative bounds. For the rest of this section, set C' C {0,1}" to be a code with dual distance
I' and |C]| < 261", Set € < 1/8 and assume that C is C'-partially testable for C! C C with ¢
non-adaptive queries.

Next we define a non-adaptive tester for a property. This definition is consistent with the
standard one.

Definition 4.1 (Non-adaptive property tester). A non-adaptive e-tester for a code C C {0,1}"
with query complexity q(e,n) is defined by a collection of query sets {Q;}icr of size q together with
a predicate w; for each query set and a distribution p over I which satisfies:

o Ifx € C, then with probability at least 2/3 an i € I is picked such that m;(xz[Q;]) = 1.
o [fd(z,C) > €, then with probability at least 2/3 an i € I is picked such that m;(z][Q;]) = 0.
For a C'-partial tester the first item must hold only for x € C'.

Set a non-adaptive tester for C’, and let {Q; }ics be its query sets.
We will be interested only in those query sets which are useful for telling a random element in
C’ from a mostly random element in {0,1}".

Definition 4.2 (J-Discerning query set). Let J C [n] be such that |J| <n/2. A query set Q; is a
J-discerning set if dry(U(C")Qi], Us(CH[Q1]) > 1/8.

Next we prove that a tester must have a lot of such good query sets.

Lemma 4.3. Set J C [n] such that |J| < n/2. With probability at least 1/9 the query set Q; picked
by the tester is a J-discerning set.

Proof. Assume the contrary, that is, that with probability greater than 8/9 the query set @; picked
by the tester is such that dpy (U(C")[Q4], Us(C)[Q4]) < 1/8.
Thus for every such Q);,

Pr [tester accepts] — Pr [tester accepts]| < 1/8.
U(C’)[QJ[ ] UJ(C’)[QZ-][ I /

For the case where the query set picked is not discerning, which occurs with probability smaller
than 1/9, we have no bound (better than 1) on the difference in probability.



Overall, over the randomness of the tester,

Pr [tester accepts Pr [tester accepts|| < 8/9-1/8+4+1/9=2/9.
| s - Pr | pts]| < 8/9-1/8+1/9 =2/
But by the correctness of the tester and Lemma 3.10, we arrive at PrU(C/)[tester accepts] > 2/3
and Pry, (o [tester accepts] < 1/3, a contradiction. O

We will later want to construct a collection of J-discerning sets disjoint outside of a small fixed
portion of the input. Towards this end we prove that J-discerning sets show difference between an
element in C’ and a mostly random element in {0, 1}™ even when we only look outside of J.

Lemma 4.4. Assume that Q; is a J-discerning set, draw Z ~ U(C")[J] and then draw X ~
U(C")[Q;] conditioned on X[J] = Z. With probability at least 1/15, the distribution of X|[Q; \ J] is
1/16-far from U ({0, 1}1@:\1).

Proof. First note that the distance between U(C")[Q;] and U;(C")[Q;] is the expectation over Z of
the distance of X[Q; \ J] from U({0,1}/9:\/) conditioned on X|[J] = Z. By definition, that is at
least 1/8. By simple probability bounds, with probability at least 1/15, Z is such that the distance
of X[Q; \ J] from U({0,1}1Q:\/]y conditioned on X[J] = Z is at least 1/16. O

However, total variation distance is not very handy for counting. We now use Lemma 3.8 to
transform our total variation bounds into “entropy loss” bounds.

Lemma 4.5. If Q; is a J-discerning set and X ~ U(C")[Q;], then H[X[Q; \ J||X[J]] <1Q: \ J| —
0.0005.

Proof. Let L C {0,1}7] be the set of values z € {0,1}//! such that when drawing X ~ U(C")[Qi]
conditioned on X [J] = z, the distribution of X[Q; \ J] is 1/16-far from U ({0, 1}/Q:\/]),
Since the entropy is non-negative, we can upper bound

HXQAIXUIS Y, pr 2= AHIQANXUI =2+ 30 B 12 =200\

2€{0,1}/\L Z~U(EN]
To treat the first summand on the right hand side, we invoke Lemma 3.8 to obtain

H[[Qi\ J]IX[J] = 2] <|Q: \ J| — 0.007.

Overall we get

Pr [Z=zH[Q;\J||X|J] =z + Pr [Z=2]|Qi\J| <|Q;i\ J|— 0.0005.
2 o dbyl? = QAN = 2 Ze{%\#m/)m[ @i\ T < 1Qi\

O

Next we would try to cover the indices in [n] with as many discerning sets as possible. To later
sum up the entropy loss, we need these sets to be disjoint outside a not-too-big set. We determine
this set of “bad” indices as the set of bits read (non-adaptively) by the tester with the highest
probability.

Definition 4.6. Define B = {k € [n]|Prg.,lk € Q] > %}



Observation 4.7. |B| <I'/2 <n/2. Therefore Lemma 3.10 holds with I = B.

Now we can prove that we can find many B-discerning sets which are disjoint outside of B.
Lemma 4.8. There exists a set Ip such that:

e Foralli € Ip, Q; is a B-discerning set

o Foralli,je€Ip, Q;\ B and Q; \ B are disjoint
D = Uier, (Qi \ B) satisfies I'/2 > |D| > 18 . Additionally, |Ip| > BF

Proof. We construct the set Ip greedily. Suppose that we have discerning sets covering k bits that
are disjoint outside of B. Choose a set randomly using the tester’s distribution conditioned on
it being B-discerning. This increases the probability of every query set, and every bit to be in
a query set, by at most 9. By the definition of B, if we choose a query set randomly using the
tester’s distribution, the probability that it intersects our already covered bits outside of B is at
most 9%14:. As long as this number is smaller than 1, such a set exists. Therefore, as long as
k< @ we have a set to add, leading to the bound. To get the upper bound on |D| we can just
stop the process before D gets too big. O

Finally, we are ready to calculate the entropy of a uniformly random codeword from C’. We
use the chain rule to split this into calculating the entropy of the bits in B, the entropy of the bits
in D conditioned on the bits of B, and the entropy of everything else conditioned on the bits in
DUB.

Lemma 4.9. If X ~U(C"), then H[X] <log|C|— 0. 000518 5

Proof. First, by the chain rule for entropy and the fact that D\ B = D,

H[X|=H[X|X[DUBJ|+ HX[D]|X[B]| + HX|[B]]

We proceed by bounding each element in the sum. First, trivially:

H[X[B]] < |B]
Next, invoke Lemma 3.11 for D U B, since |D U B| <T'. This gives us:

H[X|X[DUB]| < log|C| — |DU B

Now, recall that U;er,(Q; \ B) = D. Since these sets are disjoint outside of B, we employ
subadditivity to get:
H[X[D\ B||X[B]] < ) H[X[Q;\ B]|X[B]]
i€lp

Now, since these are all B-discerning sets, by Lemma 4.5 we know that for all i € Ip we have that
H[X[Q;\ B]|X[B]] < |Q; \ B] —0.0005. By Lemma 4.8 we know that |Ip| > z—=. Summing up we
get:

> HIX[Q: \ B||X[B]] < |D| — 0.0005|Ip|

i€lp
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r
< 1D = 0.0005

That is,
H[X[D]|X[B]] <|D| - 0.0005 3
- ' 18¢3

Summing everything up we get the statement of the lemma. O
From this it follows that:

Theorem 4.10 (Weak form of the main theorem). Let C' C C, if C is C'-partially testable with q

non-adaptive queries, then

0] = oHIX] < |C|2—0.0005#.

5 Adaptive lower bound

In this section we prove Theorem 1.3 in its full generality. We start by introducing the mechanism
of a reader, which allows us to separate the adaptivity and randomness of the algorithm.

Definition 5.1 (Reader). A k-reader r is a sequence rg, 71, . ..,7p_1, wherer; : {0,1} — {1,...,n}
satisfy for all i < j and y € {0,1}7 that r;i(y[{1,...,i}]) # r;(y).

Given an input x € {0, 1}", the reader defines a sequence of its bits. This is the reading of x.

Definition 5.2 (Reading). Givenx € {0,1}" and a k-readerr, the reading R, ;) of v according tor
is a sequence yi, . . ., Y defined inductively by Yiy1 = Tp,(y,,..y,)- We defineri(z) to beri(y, ..., ¥i)-
The set of unread bits U, (, is the subset of {1,...,n} that did not appear as values of 1,...,7}
in the reading.

We can now define an adaptive tester as a distribution over readers and decision predicates.

Definition 5.3 (Adaptive tester). An adaptive e-tester for a code C' C {0,1}" with query com-
plezity ¢ = q(e,n) is defined by a collection of q-readers {r'};c; together with predicates m; for each
reader, and a distribution p over I which satisfies:

o Forallxz € C, Priv, [Fi(Rri(z)) =1] >2/3.
e For all z € {0,1}" such that d(z,C) > €, Priy [mi(Ryi(y)) = 0] > 2/3.

Part of the usefulness of readers is that if we can construct a reader that reads the entire input,
then reading the property C’ through it preserves its size.

Observation 5.4. If r is an n-reader, then the function mapping every x € {0,1}" to its reading
R, () is a bijection.

Proof. Suppose that ' # x, and let ¢ € {1,...,n} be the least index such that Tpi(x) 7 w;i(m).

Such an ¢ must exist since r reads all bits, and 2’ # z. Note that r;(z) = r;(2’), since it is the
first bit read to be different (and thus yi,...,y; = 91,...,¥;). Thus z,, ;) # a:;i(x/) and therefore

Rr(z) 7é Rr(x’)' 0

11



In light of the above, we will construct an n-reader and bound the size of C’ when permuted by
its reading. However, while the end product of the construction is an n-reader, the intermediate
steps might not be k-readers for any k. Thus we need to introduce a more general notion.

Definition 5.5 (Generalized reader). A generalized reader r is a sequence ro,r1,...,r—1 where
ri 0 {0,1} — {1,...,n} U {x} satisfy for alli < j and y € {0,1}7 one of the following

o i(y[{1,...,i}]) € {1,...,n}\ rj(y)

i Ti(@/[{lv e 71}]) = Tj(y) =x

Given a generalized reader v, a terminal sequence in it is y € {0,1} such that ri(y1,...,y:) = *,
while ri—1(y1, ..., Yi—1) # * or i = 0.

If we fix a certain z € {0,1}", a generalized reader defines a sequence of non-repeating indices
that at some point may degenerate to a constant sequence of x. Note that every k-reader naturally
defines a generalized reader by setting all undefined functions to map everything to *.

It is useful to think of a (possibly generalized) reader as a decision tree. With a generalized
reader, we will often want to continue the branches of the tree with another reader. This operation
is called grafting. We start with the notion of a 0-branch and a 1-branch.

Definition 5.6 (0-branch, 1-branch). Let r be a (possibly generalized) reader. The 0-branch of r is
the reader r' defined by vi(y1, ..., vyi) = riz1(0,y1, ..., y;). Similarly, the 1-branch of r is the reader

7’,/ deﬁned by Tffl(yh o 7y’b) = ri-‘rl(]'? Y1, - - - 7y’b)

We can now define grafting, and will do so recursively. Informally, grafting a reader ¢ onto r at
y means that at every = in the decision tree of r that can be reached after reading y, we continue
the reading according to ¢.

Definition 5.7 (Grafting). Let r andt be generalized readers and x € {0,1}" be a terminal sequence
in r. The grafting of t onto r on the branch y is a new reader Y defined as follows.

o Iftoe{ro(yr, - Yi)s---sTic1(Y1,---, i)}, graft the y,-branch of t onto r at y1,...,y;.

o Ifto ¢ {ro(yry---sYi)s--srim1(y1, - vi)}, set ri(yi,...,y:) = to, call the new reader r', and
graft the 0-branch of t onto v’ at yo,...,y;,0 and the 1-branch of t onto t at yo,...,v;, 1.

Repeat the above recursively, with the base case being the grafting of an identically x reader onto r
by not changing anything.

Note that the grafting of a generalized reader onto another results in a generalized reader. Note
that it is also possible that %Y = r when all bits that ¢ may read were already read by r according
as y.

To introduce the notion of a reader that discerns a random input from an input from C’, we
will first need to formulate a notion of executing a reader, which is inherently adaptive, on a partly
random input.

Definition 5.8 (J-Simulation of a reader). Let r be a g-reader, J C [n] and y € {0,1}’|. The J-
simulation of r on y is the distribution S(r,y,J) over {0,1}4 defined to be R,.(,) where x[J] = y[J],
and all bits of x outside of J are picked independently and uniformly at random from {0, 1}.

12



We now introduce the notion of a reader that discerns a random input from an input from C’.

Definition 5.9 (J-Discerning reader). Let r be a (possibly generalized) reader, J C [n] and y €
{0,1}/1. Let & be a uniform random variable in {c € C'|c[J] = y}. We say that r is a J-discerning
reader for y if drv (Ry(z), S(r,y,J)) > 1/8.

Next, we prove that many readers are indeed discerning.

Lemma 5.10. Set J C [n] such that |.J| < n/2 and y € {0,1}7]. With probability at least 1/9 the
q-reader r picked by the tester is J-discerning for y.

Proof. Let r be a reader that is not J-discerning for y. Let B ~ Uy(y) and G ~ U({c € C'|c[J] =
y}). Denote by 7, the predicate associated with r. By our assumption,

| Pr[m,(Ry(p)) = 1] = Pr[m(Ry(q)) = 1]| < 1/8.

Now assume that with probability greater than 8/9, the g-reader picked is not J-discerning for
y. Now consider the difference in acceptance probability when drawing a reader according to u.

| Pl (Ryqp) = 1) = P [ (Bu)) = 1) < 8/9-1/8+1/9 = 2/9.

But by Lemma 3.10 and the correctness of the tester, Pr..,[m-(R,(p)) = 1] < 1/3, and by the
correctness of the tester P, [m-(R.(g)) = 1] > 2/3, a contradiction. O

A common operation will be to graft a discerning reader with additional arbitrary bits. This
does not cause a discerning reader to stop being one.

Definition 5.11. Let r and s be generalized readers. We say that r contains s if for every x €
{0,1}", the sequence of non-x elements in Ry(y) 15 a prefiv of Ry (y).

Note that in particular, whenever we graft s onto r along some branch, we obtain a reader
which contains r.

Lemma 5.12. Let r and s be generalized readers such that r contains s. Let J C [n] and y €
{0, 1M1, If s is a J-discerning reader for y, then so is r.

Proof. Let B ~ Ujy(y) and G ~ U({c € C'le[J] = y}). Consider R,(py. Its outcomes can be
partitioned according to their R, p) prefixes. Thus the probability of every event defined by values
of R,.(p) can be written as a weighted sum of the probabilities of events defined by values of R,p,).
The same is true for R,y and Ryq). Therefore dry (Ry(yy, S(r,y,J)) > drv (R, S(s,y,J)). O

To prove that a uniform choice in C’ does not have high entropy we graft discerning readers
one onto the other. We will want to make sure that all the branches of the decision tree are of the
same height throughout the grafting, and thus we define the notion of a padded grafting.

Definition 5.13 (¢-Padded grafting). Let r be a generalized reader, t be a q-reader and y € {0,1}
be a terminal sequence in r. The g-padded grafting of ¢ onto r on the branch y is defined by
the following process. First, let v’ be the grafting of t onto r at the branch y. Now perform the
following repeatedly: Let z1,...,z; with j < q be such that rgﬂfl(yl, e Yis 2y 2j—1) F x but

rgﬂ(yl,...,yi,zl,...,zj) =% (or j =0 and 7}(y1,...,yi) = ). Let k be an arbitrary index not
in {rg, ... ,rgﬂ-fl(yl, ey Yin 21, -, 2j—1)}, and redefine rgﬂ-(yl, oo Yis 21, ..., 25) = k. Repeat this
process as long as such z1,...,z; with j < q exist.
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The above is basically grafting additional arbitrary reads, so that the end-result will always read
exactly ¢ bits after reading the sequence yi,...,y;. The next observation together with Lemma
5.12 implies that g-padded grafting of a J-discerning reader is equivalent to a grafting of some other
J-discerning reader.

Observation 5.14. Let r be a generalized reader, t a q-reader and y € {0,1}" a terminal sequence
inr. There exists a reader s containing t such that the q-padded grafting of t onto r at y is equivalent
to the grafting of s onto r at y.

Now we can finally prove the main lemma, by performing repeated ¢-padded grafting of dis-
cerning readers one onto another.

Lemma 5.15. If X ~ U(C"), where C' is C'-partially testable with q queries, then H[X] < log|C|—
|51 /4]

Proof. Let us construct an n-reader and consider the entropy of C’ when permuted by this reader.
Start with a O-reader r°. Let s be a ()-discerning g-reader for the empty word, which must exist
since the adaptive tester must pick one with positive probability. Set 7! to be the grafting of s onto
r0 on the branch of the empty word.
Assume that we have constructed the jg-reader r7. If jq¢ > T, graft a reader that reads all
remaining bits arbitrarily onto 7/ on all branches. Else, perform the following for all branches
y € {0,1}79 to obtain r/*! (noting that they are all terminal sequences in 77):

e If there is no member of C’ with the reading R,j(), perform a g-padded grafting of an
arbitrary g-reader onto 7/ at the branch g,

e If such a member exists, let s be a {r!(y),r3(y),. .. ,r;:q(y)}—discerning reader for y. Perform
a g-padded grafting of s onto r/ at the branch y.

Now let r be the resulting n-reader, let rpcry be the image of C’ under the reading of r, and
let X ~ U(rgc). By Observation 5.4, the distribution of X is the same as starting with a
uniformly random member of C’ and then taking its reading according to r. By the chain rule
H[X|=H[X{L,....,T'}]]+ HX|X[{1,...,T}]]

Note that in the case of a word from C’, the maximal j in the construction is equal to I'/q. By
the chain rule we may write

I'/q
H[X[{1 }:H {(i—1)qg+1,...,ig— 1| X[{1,...,(i — 1)g—1}]]

and since each sequence of ¢ bits is from the grafting of a reader which is discerning with respect
to all the previous ones, we may apply Lemma 3.8 to obtain

I'/q
HIX[{1 }:H {(i—1Dg+1,...0g—1}]|X[{1,...,GE—1)g—1}]]

I'/q 1 1
< ——)<r-r/g.—
< Z (q 32> <T-T/g- o



log

By Lemma 3.11, H[X|X[{1,...,T'}]] < log|C| — T, so by summing it all up we get H[X] <
IOl =T/q - 5.
O

This gives us Theorem 1.3 in its full generality, as it implies that |C’| = 2H[X] < 2-T/32a.|C|.
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