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Abstract. For each natural number d we consider a finite structure Md whose universe
is the set of all 0, 1-sequence of length n = 2d, each representing a natural number in the
set {0, 1, ..., 2n − 1} in binary form. The operations included in the structure are the
four constants 0, 1, 2n − 1, n, multiplication and addition modulo 2n, the unary function
min{2x, 2n − 1}, the binary functions bx/yc (with bx/0c = 0), max(x, y), min(x, y), and
the boolean vector operations ∧,∨,¬ defined on 0, 1 sequences of length n, by performing
the operations on all components simultaneously. These are essentially the arithmetic
operations that can be performed on a RAM, with wordlength n, by a single instruction.
We show that there exists an ε > 0 and a term (that is, an algebraic expression) F (x, y)
built up from the mentioned operations, with the only free variables x, y, such that if
Gd(y), d = 0, 1, 2, ..., is a sequence of terms, and for all d = 0, 1, 2, ..., Md |= ∀x, [Gd(x) =
0↔ ∃y, F (x, y) = 0], then for infinitely many integers d, the depth of the term Gd, that is,

the maximal number of nestings of the operations in it, is at least ε(log d)
1
2 = ε(log log n)

1
2 .

The following is a consequence. We are considering RAMsNn, with wordlength n = 2d,
whose arithmetic instructions are the arithmetic operations listed above, and also have the
usual other RAM instructions. The size of the memory is restricted only by the address
space, that is, it is 2n words. The RAMs has a finite instruction set, each instruction is
encoded by a fixed natural number independently of n. Therefore a program P can run
on each machine Nn, if n = 2d is sufficiently large. We show that there exists an ε > 0
and a program P , such that it satisfies the following two conditions.

(i) For all sufficiently large n = 2d, if P running on Nn gets an input consisting of two
words a and b, then, in constant time, it gives a 0, 1 output Pn(a, b).

(ii) Suppose that Q is a program such that for each sufficiently large n = 2d, if Q,
running on Nn, gets a word a of length n as an input, then it decides whether there exists
a word b of length n such that Pn(a, b) = 0. Then, for infinitely many positive integers d,
there exists a word a of length n = 2d, such that the running time of Q on Nn at input a
is at least ε(log d)

1
2 (log log d)−1 ≥ (log d)

1
2
−ε = (log log n)

1
2
−ε.
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1 Introduction

1.1 Motivation, historical background

One of the central questions of complexity theory is the comparison of the computational
resources needed for deterministic and nondeterministic computation. Namely, assume
that we want to find a 0, 1-sequence satisfying a test T . Is it true, under some natural
assumptions on the test and on the algorithm searching for x, that to find x requires
essentially more computation, than checking that a given x really satisfies T? In the case
when both the test and the searching algorithm must be performed in polynomial time
(in the length of x) by a turing machine, this leads to the P = NP? question.

In an earlier paper [2] the author has shown that if both the test and the computation
consist of an evaluation of an algebraic expression made from the operations described in
the abstract, and the length of the algebraic expressions are constant then deterministic
an nondeterministic computations can be separated. An equivalent formulation in term
of RAMs is that there exists a constant time test P in the sense described in the abstract,
such that there exists no constant time program Q, which decides for all n and for all
words a of lengths n, while running on Nn, whether there exists a word b of length n
with Pn(a, b) = 0. The main motivation of the present paper is to improve the time lower
bound on Q. The methods in [2] show only that a Q with the given properties cannot
work in constant time but do not give any specific unbounded function f(n) as a lower
bound.

First we compare our results to other theorems, where nonlinear lower bounds were
given, or deterministic and nondeterministic computation were separated in general com-
putational models. Some of these proofs were based on diagonalization arguments. In
fact the high level structure of the present proof and the proof in [2] is very similar to
the structures of the proofs given in [13], [17], or [15]. The technical details however are
completely different.

For multi-tape turing machines linear time nondeterministic and deterministic compu-
tations were separated in [17] by Paul, Pippenger, Szemerédi, and Trotter in 1984. Their
theorem and the present result are not comparable in the sense, that none of them follows
from the other, since in the turing machine model longer bitwise computations can be
done than in our RAM model with the given time limit, but the RAM model allows arith-
metic operations e.g., multiplication, and division of n bit numbers, and it is not known
whether these operations can be computed on a multitape turing machine in linear time.
For uniform computational models where the working memory is smaller than the input,
Fortnow gave nonlinear lower bounds in [15]. In a similar sense as in the case of [17]
our results and the results of [15] are not comparable. The highlevel structures of the
proofs in both [17] and [15] however are very close to the highlevel structure of the present
proof. The argument which forms the highlevel structure of all of these proofs was used
by Hopcroft, Paul, and Valiant (see [13]) in 1977. In this paper we will use the outline of
the proofs in [17] as a model while giving the sketch of the present proof. There are also
nonlinear lower bounds for nonuniform models of computations see [3], [10], [11], but the
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results are also incomparable to the present ones and even the high level structures of the
proofs are completely different.

We can say that the difference between these already existing lower bounds and the
ones in the present paper and in [2] is that they are based on different properties of the
computational models. Both in the case of the turing machine model, and in the models
with small working memory, a lower bound proof is possible because of the organization
of the memory, which in the second case includes the input. In both cases there is some
restriction on the structure/use of the memory that is the crucial property used in the
proof. In contrast, our present proofs, or the proofs in [2], are not based on properties
of the memory structure or the memory access, but on properties of the set of arithmetic
instructions. Therefore our results say something about the set of arithmetic operations
multiplication, addition etc., which is used in the usual random access machines.

As an additional motivation we can say that solving several search problems, each
within the framework of our theorem, frequently occurs as part of computational problems
to be solved on a RAM. Of course our lower bound does not imply a lower bound for the
solution for all of the search problems together, still it may show that we cannot hope for
a fast solution by solving each of these search problems separately.

1.2 The formulation of the results

First we formulate our result about RAMs. For each positive integer n we define a von
Neumann type machine Nn with word length n. (See also [5].) These machines have a
common finite instruction set. Each instruction has a name, which is a natural number.
We consider only the machines Nn for, say, n > 10, where such a name fits into a memory
cell. The set of these names will be denoted by I. A program P is a sequence from
the elements of I. When we say that the machine Nn executes the program P of length
k, we mean that the machine starts to work from the state where the first k memory
cells contains the elements of P in their natural order and the contents of the other
memory cells are zeros. The total number of memory cells is restricted only by the address
space, say, it is 2n. The instruction set contains (i) arithmetic instructions: addition and
multiplication modulo 2n, the constants 0, 1, n, 2n−1, the unary function min{2x, 2n − 1},
the binary functions bx/yc with bx/0c = 0, max(x, y), min(x, y), and the boolean vector
operations ∧,∨,¬ defined on 0, 1 sequences of length n. (ii) read, write instructions, (iii)
control transfer instructions, (iv) input/output instructions, (v) halt instruction.

Assume that c, k are positive integers. A program P will be called a c-size k-ary
test, if length(P ) ≤ c, k ≤ c and for all positive integers n > 10, and for all integers
x1, ..., xk ∈ [0, 2n−1], the program P on machine Nn, at input x1, ..., xk uses only the first
c memory cells, and produces an output Pn(x1, ..., xk) ∈ {0, 1}. The time requirement
of P on Nn is the smallest integer t such that for all integers x1, ..., xk ∈ [0, 2n − 1], the
program P at input x1, ..., xk provides an output in time at most t.

Theorem 1 There exist an ε > 0, a positive integer c and a c-size binary test P , with
time requirement at most c on each machine Nn, such that for all c′ > 0, and for all c′-size
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unary tests Q the following holds. Suppose that for all sufficiently large positive integers
n, and for all a ∈ [0, 2n − 1], the following two statements are equivalent:

(i) ∃x ∈ [0, 2n − 1], Pn(x, a) = 0,
(ii) Qn(a) = 0.

Then for infinitely many positive integers n, the time requirement of Q on Nn, is at least
ε(log log n)

1
2 (log log log n)−1

In other words, there exists a constant time test P (x, a), depending on a parameter a,
such that the question whether it has a solution in x or not, cannot be decided for all n
by a constant size program Q which gets a as an input, even if the time used by Q on Nn

can be as large as ε(log d)
1
2 (log log d)−1, where n = 2d. The theorem remains true even in

the following stronger nonuniform version. Suppose that the sequence Qn, n = 1, 2, ... is
a sequence of programs, and f, g are functions defined on the the set of natural numbers
with real values. We say that the sequence Qn is a family of unary tests with size bound
f and time limit g, if for each sufficiently large n, Qn is a program, that is, a sequence
from the elements of I, of length at most f(n), and for each a ∈ [0, 2n − 1], Qn, while
running on the machine Nn at input a, gives a 0, 1 output Qn(a) in time at most g(n).

Theorem 2 There exist an ε > 0, a positive integer c and a c-time binary test P , with
time requirement at most c, such that for all families of unary tets Qn, n = 1, 2, ...,
with both size bound and time limit ε(log log n)

1
2 (log log log n)−1 the following holds. For

infinitely many positive integers n, there exists an a ∈ [0, 2n − 1], such that the following
two statements are not equivalent:
(i) ∃x ∈ [0, 2n − 1], Pn(x, a) = 0,
(ii) Qn(a) = 0.

The proof of these theorems will be based on a theorem about the structures Md

described in the abstract. Our next goal is to formulate that result.

Definition. 1. The set of all natural numbers will be denoted by ω, that is, ω =
{0, 1, 2, . . .}. Each natural number n is considered as the set of all natural numbers less
than n, that is, n = {0, 1, . . . , n− 1} and 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, etc.

2. Assume that a, b ∈ ω, b ≥ 2. The natural number a can be written in a unique way
in the form of

∑∞
i=0 αib

i, where αi ∈ {0, 1, . . . , b − 1} for i ∈ ω. The integer αi will be
denoted by coeffi(a, b). In other words coeffi(a, b) is the ith “digit” of a in the numeral
system with base b. We extend the definition of coeffi(a, b) for negative integers i as
well, by coeffi(a, b) = 0 for all i = −1,−2, . . ..

3. M will denote a first-order language with equality, which does not contain any
other relation symbols, and contains the following function and constant symbols. (We
consider constant symbols as 0-ary function symbols as well.)

Constant symbols: 0,1,−1,n.
Unary function symbol: N , p, ( N stands for “negation”, p stands for “power”).
Binary function symbols: +, ×, ÷, max, min, ∩.
4. Since M is a language with equality, in the interpretations defined below, we do

not define the interpretation of the relation “=”, it is already given as “equality”. Assume
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that d ∈ ω = {0, 1, 2, . . .} and n = 2d. Md will denote the following interpretation of the
languageM : universe(Md) = {0, 1, . . . , 2n−1} = 2n and for all x, y, z ∈ universe(Md),
( Md |= +(x, y) = z ) iff x+ y ≡ z (mod 2n),
(Md |= ×(x, y) = z ) iff xy ≡ z (mod 2n),
( Md |= p(x) = z ) iff z = min{2x, 2n − 1},
(Md |= z = ÷(x, y)) iff (y 6= 0 ∧ z = bx/yc) ∨ (y = 0 ∧ z = 0)
(Md |= z = 0) iff z = 0,
(Md |= z = 1) iff z = 1,
(Md |= z = n) iff z = n,
(Md |= z = −1) iff z = 2n − 1,
(Md |= z = max(x, y)) iff z = max{x, y},
(Md |= z = min(x, y)) iff z = min{x, y},
(Md |= z = x ∩ y) iff
coeffi(z, 2) = min(coeffi(x, 2), coeffi(y, 2)) for i = 0, 1, . . . , n− 1,
(Md |= z = N (x)) iff coeffi(z, 2) = 1− coeffi(x, 2) for i = 0, 1, . . . , n− 1.

We will call the interpretations Md, d ∈ ω of M the standard interpretations of M.
5. Motivated by the definition of the standard interpretations we will use the following

notation as well when we use the functions symbols of M : +(x, y) = x + y, ×(x, y) =
x × y = xy, p(x) = 2x. Generally we will use this notation only if it is clear from
the context the we mean the function symbol interpreted in a structure Md, otherwise
x+ y, xy, 2x retain their usual meaning as operations among real numbers. Although the
relation ≤ is not included in the language M sometimes we will write Md |= a ≤ b as an
abbreviation for Md |= a = min(a, b).

6. When we use the function symbols ofM we will write x− y for x+ (−1)y and −y
for (−1)y.

7. Assume that F (x, y) is a term of M and G = 〈Gd(y) | d ∈ ω〉, d ∈ ω is a sequence
of terms of M. We will say that the sequence G decides whether there exists a solution
for F , if for all sufficiently large d ∈ ω, we have

Md |= ∀y, [Gd(y) = 0↔ ∃x, F (x, y)]

8. The length of a term τ of a first-order language L is the total number of symbols
(counted with multiplicity) in it. This number will be denoted by length(τ). The depth
of the term τ , that will be denoted by depth(τ), is the maximal number of nestings of
the function symbols in it. ut

Theorem 3 There exists an ε > 0 and a term F (x, y) of M such that the following
holds. Assume that G = 〈Gd(y) | d ∈ ω〉 is a sequence of terms of M such that G decides
whether there exists a solution for F . Then for infinitely many d ∈ ω, the depth of Gd is
at least ε(log d)

1
2 = ε(log log n)

1
2 , where n = 2d.

The depth of a propositional formula is the maximal number of nestings of func-
tion symbols and boolean operations together. It is easy to show that there exists
a c ∈ ω such that for each propositional formula P (x1, ..., xk) of M, there exists
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a term F (x1, ..., xk) of M, such that depth(F ) ≤ cdepth(P ), and for all d ∈ ω,
Md |= ∀x1, ..., xk, P (x1, ..., xk) ↔ F (x1, ..., xk) = 0. This implies the following equivalent
form of Theorem 3. The theorem says that over the structures Md quantifier elimination
is not possible in a strong quantitative sense.

Theorem 4 There exists an ε > 0 and an existential formula ψ(y) of M containing
a single existential quantifier, such that, if Pd(y), d ∈ ω is a sequence of propositional
formulas and for all d ∈ ω, Md |= ∀y, ψ(y) ↔ Pd(y), then for infinitely many d ∈ ω,

depth(Pd) ≥ ε(log d)
1
2 .

Weaker versions of Theorems 3 and Theorem 4 were proved in [2]. E.g., the weaker
version of Theorem 3 is equivalent to the statement that if G = 〈Gd | d ∈ ω〉 is a sequence
of terms ofM such that G decides whether there exists a solution for F then there exists a
sequence d0, d1, ... of natural numbers such that limi→∞ depth(Gdi) =∞. The motivation
for the formulation of Theorem 3, apart from the fact the it is used in the proofs about
RAMs, is that it is a natural continuation of a long chain of results in mathematics which
say that certain search problems, e.g., equations, cannot be solved by the same operations
as were used in their formulation. For example Galois’ theorem about the unsolvability
of equations of degree five by algebraic operations belong to this category. (Sevaral other
examples of this nature is described [2]). In the present case we give such a Theorem in a
quantitative form by giving a lower bound on the depth on the algebraic expression which
could compute a solution.

There are many important first-order structures where quantifier elimination is pos-
sible (e.g., the field of real numbers, field of complex numbers) and also where it is
not possible (e.g., Peano Arithmetic). Theorem 4 gives us an example where quantifier
elimination is not possible, moreover the statement is true in a quantitative form. The
particular choice of the structures involved in the theorem is motivated by the connection
with random access machines.

The first-order properties of structures similar to the structures Md were studied for
a long time in the theory of Fragments of Peano Arithmetic. In that case however the set
of operations defined by function symbols is usually more restricted (although sometimes
exponentiation in some restricted form is allowed). In that theory the basic structure is
usually not a finite set as in the case of Md, but rather an infinite initial segment of a
nonstandard model of Peano Arithmetic, which is closed under addition, multiplication
and sometimes under the operation xblog yc. The advantage of this is that instead of
speaking about an infinite sequence of structures the results can be formulated in a single
structure. A similar solution may be possible in our case too, but then the connections
with RAMs would be much more complicated than with the present formulation of the
result. Namely, it would be difficult to maintain a fixed upper bound on the sizes of
memory cells since each multiplication would double the number of bits in a word.

The following theorem shows that the lower bounds that we proved in the four theo-
rems described above are probably very far from the truth.

Definition. Assume that F (x, y) is a term ofM. We describe a problem in NP , which
will be called “the solution of the equation F (x, a) = 0 in x”.
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If the size of he problem is n, where we assume that n = 2d, then the input of the
problem is an integer a ∈ 2n. An integer b ∈ {0, 1, . . . , 2n−1} is a solution of the problem
if Md |= F (b, a) = 0, where n = 2d. ut

Theorem 5 There exists a term F (x, y) of M, such that the solution of the equation
F (x, a) = 0 in x is an NP -complete problem.

The following two theorems are important steps in the proof of Theorem 3 and The-
orem 4.

If t ∈ ω then the ith 22t-ary digit of a natural number a will be denoted by a[i, t], that
is, a =

∑∞
i=0 a[i, t]2i2

t
. Assume that d, t ∈ ω, d ≥ t. We may consider the elements of Md

as 2d−t dimensional vectors whose components are in Mt, namely the integer a ∈Md will
represent the vector 〈a[0, t], a[1, t], ..., a[2d−t − 1, t]〉, that is the 22t-ary digits of a are the
components of the vector represented by a.

Let f be a k-ary function symbol of M for some k ∈ {0, 1, 2}. For all d, t ∈ ω
with d ≥ t, we define a k-ary function fd,t on the universe of Md in the following way.
Assume that d, t ∈ ω is fixed with d ≥ t and a0, ..., ak−1 ∈ Mt. Then fd,t(a0, ..., ak−1)
is the unique element b ∈ Md with the property that for all i ∈ 2d−t, we have Mt |=
f(a0[i, t], ..., ak−1[i, t]) = b[i, t]. In other words we consider each element of a ∈ Md as
a vector 〈a[0, t], ..., a[2d−t − 1, t]〉 and perform the operation f component-wise in Mt.
The following theorem states that, if f is a function symbol and f /∈ {×,÷,p}, then the
function fd,t can be defined by an existential formula in Md, that is, vector operations
apart from the exceptions of multiplication, division, and exponentiation are existentially
definable.

Theorem 6 Assume that f is a k-ary function symbol of M for some k ∈ {0, 1, 2} and
f /∈ {×,÷,p}. Then there exists an existential first-order formula ψ(x0, ..., xk−1, y, z) of
M such that for all d, t ∈ ω with d ≥ t, and for all a0, ..., ak−1, b ∈Md, the following two
conditions are equivalent:
(i) fd,t(a0, ..., ak−1) = b,

(ii) Md |= ψ(a0, ..., ak−1, b, t).

For the exceptional function symbols ×,÷,p we do not know whether the statement
in Theorem 6 holds. We may define the vector operations for these function symbols too
in a somewhat larger structure Mv by an existential formula ψ, if v ≥ t+ c(d− u), where
c is a sufficiently large constant.

Theorem 7 Assume that f is a k-ary function symbol of M for some k ∈ {0, 1, 2}.
Then there exists a c ∈ ω and an existential first-order formula ψ(x0, ..., xk−1, y, z, w) of
M, such that for all d, t ∈ ω with d ≥ t, and for all a0, ..., ak−1, b ∈ Md, if v ∈ ω,
v ≥ t+ c(d− t), then the following two conditions are equivalent:
(i) fd,t(a0, ..., ak−1) = b,

(ii) Mv |= ψ(a0, ..., ak−1, b, d, t).
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This theorem motivates the following definition. Assume that for all d, t ∈ ω with
d ≥ t, Fd,t(x0, ..., xi−1) is an i-ary function defined on Md and with values in Md. We will
say that the family of functions F = 〈Fd,t | d, t ∈ ω, d ≥ t〉 is polynomially existential in
M if there exist a c ∈ ω and an existential first-order formula ψ(x0, ..., xi−1, y, z, w) ofM
such that for all d, t ∈ ω with d ≥ t and for all a0, ..., ai−1, b ∈Md if v ∈ ω, v ≥ t+ c(d− t)
then the following two conditions are equivalent:
(i) Fd,t(a0, ..., ak−1) = b,

(ii) Mv |= ψ(a0, ..., ak−1, b, d, t).

Therefore Theorem 7 says that for each function symbol f ofM the family of functions
fd,t, d, t ∈ ω, d ≥ t is polynomially existential. We use the word polynomially because of
the following reason. In Theorem 7 we consider the elements of Md as vectors with 2d−u

components, where each component is an element of Mt. In the formula ψ we existentially
quantify elements of Mv which can be considered as vectors with 2c(d−t) components which
are in Mt. Therefore the number of components of the existentially quantified vectors is
a polynomial of the number of component in the arguments of the function. This is true
not only for Theorem 7 but in general for polynomially existential families. In addition
to this, as the following theorem will show the notion of polynomially existential families
of functions is closely related to the notion of polynomial time computation.

For the following definition recall that Nm is a random access machine with word
length m and with 2m memory cells. In case m = 2d, for some d ∈ ω, the machine can
compute each M operation in Md by a single instruction.

Definition. Suppose that F = 〈Fd,t | d, t ∈ ω, d ≥ t〉 is a family of k-ary functions,
where each function Fd,t, d, t ∈ ω, d ≥ t is a k-ary function defined on Md with values in
{0, 1}. We will say that the family F is polynomial time computable with respect to M if
there exist a γ1 ∈ ω and a program P for the family of RAMs Nn such the the following
holds,

(1) for all sufficiently large d ∈ ω, for all t ∈ ω with d ≥ t, and for all a0, ..., ak−1 ∈Md,
the machine Nm, where m = 2d, with program P and input k, d, t, a0, ..., ak−1, using only
the first 2γ1(d−t) memory cells in time 2γ1(d−t) computes Fd,t(a0, ..., ak−1).

We assume that at time 0 the program and the input is in the first length(P ) + 3 + k
memory cells, the program is in the first length(P ) cells and the input k, d, t, a0, ..., ak−1

is in the next 3 + k cells in the given order. ut

Remark. 1. Since d is sufficiently large we may assume that 22d the total number of
memory cells of Nm is larger than 2γ1(d−t) the number of memory cells required for the
computation, and 22d is also larger than length(P ) + k + 3 the number of memory cells
required for the input.

2. We stated the definition for functions with 0, 1-values. In fact, we may allow any
value in Md or even a sequence of length 2d−t in Md, and everything that we prove about
this notion remains true. We will use however this notion in a nondeterministic setting
where the 0, 1-valued functions are sufficient for our purposes. ut
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Theorem 8 Suppose that F = 〈Fd,t | d, t ∈ ω, d ≥ t〉 is a family of k-ary functions,
where each function Fd,t, d, t ∈ ω, d ≥ t is a k-ary function defined on Md with values in
{0, 1}. Assume further that the family F is polynomial time computable with respect to
M. Then the family F is polynomially existential in M.

2 Sketch of the proof of Theorem 3.

2.1 Overview

As we have mentioned already, a weaker version of Theorem 3 was proved in [2], namely it
has been shown that if G = 〈Gd | d ∈ ω〉 is a sequence of terms ofM such that G decides
whether there exists a solution for F then there exists a sequence d0, d1, ... of natural
numbers such that limi→∞ depth(Gdi) = ∞. We will refer to this theorem as Theorem
A. The proof of Theorem A did not provide any unbounded function f(x) such that we
could conclude that for infinitely many d, the depth of Gd is at least f(d). It seems that
the lack of such a function f is a consequence of the nature of the indirect proof given in
[2]. The paper [2] also described a generalized version of Theorem A, which essentially
abstracted those properties of the structures Md which were needed in the proof. For the
present proofs these properties are not sufficient. (It is possible that the improved lower
bounds hold for the generalized version of Theorem A and can be proved by different
methods.) We have to go back to the original definition of the structures Md in terms of
its arithmetic operations, and formulate new additional properties which will be used in
the proof of Theorem 3.

We start sketching the proof of Theorem 3 by comparing it to the proof of Paul,
Pippenger, Szemerédi, and Trotter about the separation of deterministic and non-
deterministic linear time computation on multitape turing machines (see [17]). We will
refer to their theorem as the PPST Theorem. We will point out which are those steps in
the proof of the PPST Theorem which has an analogue in the present paper.

The outline of the proof of the PPST Theorem is, roughly speaking, the following.
The proof has three parts that we will call Collapsing, Simulation, and Diagonalization.
The roles of these parts can be summarized this way.

Collapsing. This is an indirect argument. Assuming that the PPST theorem is not true
it is shown that the alternating hierarchy of linear time computation on multitape turing
machines is collapsing, that is, for each k there exists a c such that each computation
with k alternation and time n can be also performed by a machine with no alternations
and in time cn.

Simulation. It is shown, without the indirect assumption, that any computation
performed by a multitape turing machine (without alternations) in time n, can be
also performed on an alternating machine with four alternations in time εnn, where
limn→∞ εn → 0.

Diagonalization. Assume that the PPST theorem is not true. The Collapsing and
Simulation results described above lead to a contradiction through a diagonalization ar-
gument.
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First we describe what is the concept of “computation” in our case. We do not define
a machine which performs the computation we only describe functions that we want to
compute. We may think that the process of evaluating a term or a first-order formula is
the computation. (The RAM model, described earlier, is not equivalent to this model of
computation if the depth of the formulas can be larger than constant.) The analogue of
non-alternating turing machine is the following. A term τ ∈ M is given and an n ∈ ω,
n = 2d is fixed. We want to compute the function which assigns to each a ∈Md the truth
value of Md |= τ(a) = 0.

The analogue of a turing machine with k alternation is the following. A Σk or Πk

first-order formula ϕ of M is given and an n ∈ ω, n = 2d is fixed. We want to compute
the function which assigns to each a ∈Md, the truth value of Md |= ϕ(a).

The term τ and the formula ϕ in the “computations” described above will be taken
from sets depending on n. Namely, let Tn be the set of all terms τ of M which can be
computed by an algebraic circuit (whose gates perform M-operations in Md, n = 2d)
of size at most 2d+log d+3. H′n will be a set containing only Σm formulas, where m =

c(d+ log d)
1
2 for a constant c. (We will say more about it later.) Hn will be a similar but

somewhat larger set of first-order formulas of M with the property that if we perform a
constant number of boolean operations or variable changes on the elements of H′n then
we get an element of Hn. With these definitions we can give a short description of the
three parts of the present proof, which are analogues of the three parts in the proof of the
PPST theorem.

Collapsing. Assuming that the theorem is not true we show that for each fixed n = 2d

there exists a term τ(x, y) ∈ Tn and there exists a function g (an analogue of the Gödel
numbering) which assigns to each element of ϕ ∈ Hn an integer g(ϕ) ∈Md such that if
q = bd+ log2 dc then for all a ∈Md, Md |= ϕ(a)↔Mq |= τ(a,g(ϕ)) = 0.

Simulation. We show that for each τ ∈ Tn, there exists a λτ ∈ H′n such that for all
a, b ∈Md, Md |= λτ (a, b) is equivalent to Mq |= τ(a, b) = 0, where q = bd+ log dc.

Diagonalization. Using the Collapsing and Simulation statements we show that there
exists a formula µ(x, y) of Hn such that for all ϕ ∈ Hn, and for all a ∈Md, Md |= ϕ(a)
iff Md |= µ(a,g(ϕ)), that is, the truth, at least for the formulas in Hn, are definable in
Md. This leads to a contradiction.

We give now a more detailed description of the various parts of the proof. We start
with the diagonalization since it has the simplest proof.

2.2 Diagonalization.

This is similar to the argument in Gödel’s incompleteness theorem or, more closely, to
Tarski’s proof about the non-definability of truth functions.

Starting with an arbitrary formula ϕ(x) ∈ Hn and the statement formulated in “Col-
lapsing” we get a τ ∈ Tn with Md |= ϕ(a) ↔ Mq |= τ(a,g(ϕ)) for all a ∈ Md. It
is important that τ does not depend on ϕ. Next by the “Simulation” statement we
get, that there exists a first-order formula λτ (x, y) ∈ H′n for this particular τ . Clearly if
µ(x, y) ≡ λτ (x, y) then for all ϕ ∈ Hn and for all a ∈Md, Md |= ϕ(a) iff Md |= µ(a,g(ϕ)).
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Now we apply this for ϕ(x) ≡ ¬µ(x, x). Since µ is in H′n, our assumptions about Hn

imply that ϕ ∈ Hn. With the choice a:= g(ϕ) we get Md |= ϕ(g(ϕ)) ↔ µ(g(ϕ),g(ϕ)),
that is, we have Md |= ¬µ(g(ϕ),g(ϕ))↔ µ(g(ϕ),g(ϕ)) a contradiction.

2.3 Collapsing.

First we give the definitions of the sets H′n and Hn. Assume that ϕ is prenex first-order
formula of M. We form blocks from the quantifiers of ϕ, such that (a) each block is an
interval of consecutive quantifiers of identical types, that is, existential or universal and
(b) two consecutive quantifiers of identical type is always in the same block. Suppose that
ϕ has k blocks and the number of quantifiers in the blocks are ι1, ..., ιk. We will say that
the sequence 〈ι1, ..., ιk〉 is the quantifier pattern of ϕ. (We do not identify which are the
universal and existential quantifiers.)

We describe now the sets Hn, H′n. Assume that M, j1, ..., jm are positive integers. The
set of all prenex first-order formulas ϕ of M satisfying the following two conditions will
be denoted by L(M, j1, ..., jm):

(i) if the quantifier pattern of ϕ is 〈ι1, ..., ιk〉 then k ≤ m and ιi ≤ ji for all i=0,...,k-1.
(ii) if ϕ ≡ Qrxr, ..., Q1x1, P (xr, ..., x1), where Qr, ..., Q1 are quantifiers and P is a

propositional formula of M then length(P (x1, ..., xr)) ≤ M , where length(P ) is the
number of symbols in P .

Let δ = ε(log d)
1
2 , m = bcδc. The exact definitions of H′n, and Hn are too technical to

describe them in this sketch, but we may think that they are essentially of the following
form Hn = L(cδ, c, c2, ..., cm), H′n = L(cδ1, c1, c

2
1, ..., c

m
1 ), where c > 2 and c1 > 2 are

constants, and c is sufficiently large with respect to c1. The essential feature of these
formulas are that there are upper bounds on the number of quantifier blocks, the lengths
of the formulas, and the sizes of the quantifier blocks starting from c or c1 can grow only
exponentially.

Naturally the starting point of the collapsing argument is that, by the indirect as-
sumption, if a first-order formula ϕ contains a subformula ∃x, F (x, y) = 0 then it can
be replaced by the formula Gd(y) = 0, and by this replacement we have decreased the
number of quantifiers in ϕ. Unfortunately it may happen that such a subformula does
not exist. Indeed, if the prenex form of ϕ is Q1y1, ..., Qkyk,∃x, F (x, y1, ..., yk) = 0, where
Q0, ..., Qk−1 are quantifiers, then for k > 1 the indirect assumption is not applicable since
F depends on too many parameters. In this case however we may consider the formula
not in Md but in Md+r for r = dlog2 ke, where the sequence y1, ..., yk from the elements of
Md can be encoded by a single element of Md+r. This is done in the proof of Theorem A,
and can be done in the present case as well.

There is however another difficulty. The term F (x, y) in the indirect assumption is of
constant size and n = 2d can be arbitrarily large. Therefore the indirect assumption is
not applicable if the size of F (x, y) is not constant. Actually the definition of the set H′n
allows formulas whose sizes grow with n. This cannot be avoided since the terms Gd may
have sizes growing with n = 2d so after a single application of the indirect assumption,
when we replace ∃x, F (x, y) by Gd(y), we may get a formula containing a term of size
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ε(log d)1/2. This problem did not arise in the proof of Theorem A since there the terms
Gd were of constant sizes. (Another similar problem however arose since after we reduced
Md |= ϕ(a) to Md+c |= τ(a) = 0, the size of term τ , although did not depend on d, but it
still did depend on ϕ. The solution of that problem given in [2] is not applicable to the
present case.)

The solution of the problem, caused by the non-constant size of a term F , is the main
part of the proofs in this paper. For the solution we will use a lemma which says that
the evaluation in Mt of an algebraic circuit C with M-operations (M-circuits) can be
evaluated by an existential (or a universal) formula in Mv, provided v ≥ t + c log |C|,
where c ∈ ω is a sufficiently large constant. In other words the input-output relation of
such a circuit can be defined by an existential formula. To give a rigorous formulation
of this lemma we will encode each M-circuit by two integers. (It is possible to encode
the circuits by one integer, we use two integers only because it is more convenient.) We
do this in the following way. We consider an M-circuit as a directed graph whose nodes
are the gates (and the input nodes) and are labeled with the name of the corresponding
operations. For the sake of simplicity we assume now that the arity of eachM operation
is 2. At each node x which is not an input node there are exactly two incoming edges
with tails, say y, z, one labeled with 0 the other labeled with 1. At x we perform an M
operation assigned to x on the elements which are the outputs of the gates at nodes y
and z.

Suppose that theM-circuit C has m nodes, and the set of nodes is the set {0, 1, ...,m−
1}. Then C can be described by three sequences. Sequence j for j = 0, 1 is defined in the
following way. The ith element of sequence j is the tail of of the edge labeled by j whose
head is the node i. (If there are no incoming edges at node i, that is, i is an input node
then the ith element is 0). The definition of sequence 2: the ith elements of sequence 2 is
a label which shows whichM operation must be executed at node i, or whether node i is
an input node. To encode the three sequences by two integers, first we choose the smallest
integer d such that m < 22d and 22d is also larger than the number ofM operations. Then
we encode the three sequences of length m by a single integer a with 3m digits in the
22d-ary numeral system, such that the digits of a form the three sequences. This way the
M-circuit C is characterized by 2 integers the integer d that we denote by Circ0(C) and
the integer a that we denote by Circ1(C). It is important that an M-circuit C can be
evaluated in any structure Mt with t ∈ ω, but the encoding Circ0(C), Circ1(C) does not
depend on the choice of the structure Mt.

We also need a way the encode the input of the circuit. Assume that we want to
evaluate an M-circuit C in the structure Mt for some t ∈ ω, and the number of input
nodes of C is k and the input is the sequence a0, ..., ak−1 ∈Mt. Then we encode this input
with the single integer enck,t(a0, ..., ak−1) =

∑k−1
i=0 ai2

i2t . Here the arithmetic operations
are performed as among the integers so the sum is not necessarily in Mt.

Now we can formulate the lemma which says that the input output relation of a M-
circuit can be defined by an existential (or universal) formula of M in a not too large
structure Mv.

Circuit Simulation Lemma. (See Lemma 57) There exists an existential formula
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ϕ(x0, ..., x4) of M with the following property. For all sufficiently large c ∈ ω, for all M-
circuits C with k inputs, and for all t, v ∈ ω, if v ≥ t+ c log |C| then for all a0, . . . , ak, b ∈
Mt, we have that Circ0(C) ∈ Mv, Circ1(C) ∈ Mv, enck,t(a0, . . . , ak−1) =

∑k−1
i=0 ai2

i2t ∈
Mv, and

Mt |= C(a0, . . . , ak−1) = b ↔ Mv |= ϕ(enck,t(a0, . . . , ak−1), b, t, Circ0(C), Circ1(C))

The lemma only states the existence of an existential formula with the required prop-
erty, but if we can define a function with an existential formula then we can also define it
by a universal formula by simply saying, that the function does not take any other values.

The smallest possible v guaranteed by the lemma namely v = t + c log |C| has the
following significance. Let m = |C|. Then the input of the circuit is a sequence of length
at most m from the elements of Mt. The elements of Mv can be considered as sequences of
length 2v−t = mc from the elements of Mt. That is, the lemma says that if we are allowed
to quantify existentially sequences from Mt whose length is a polynomial in m then we
can define the input-output relation of the circuit C. We will prove this by showing the
input-output relation of any computation done in time polynomial in m, can be defined
in Mv by an existential formula, provided that the computation is done on a RAM with
word length 2t. (That is, each word is an element of Mt.) If t is so small the with words of
length t we cannot address m memory cells then the computation with time polynomial
in m is done on a turing machine.

Now we may return to the sketch of the “Collapsing” part of the proof, which was
interrupted because we needed a tool (the Circuit Simulation Lemma) to handle the
problem with the size of the terms in the formula ϕ. Assume now that the first-order
formula ϕ contains a propositional formula H(x1, ..., xk−1) = 0 whose size depends on
d. The Circuit Simulation Lemma with F := H makes it possible to replace the formula
H(x1, ..., xk−1) = 0 in ϕ by an existential or universal formula ψ of constant size. Since
the new quantifier can be included in the previous quantifier block, the number of blocks
is not growing.

After these changes in ϕ we will get a formula ϕ′ which is equivalent to ϕ (at least
in a larger structure Mv). The formula ϕ′ contains a subformula of the form ∃x, F (x, y).
By the indirect assumption this can be replaced by a formula G(y) = 0 and this way we
decreased the number of quantifier changes in ϕ. (The formula ϕ′ is not in prenex form,
because of the encoding problems, but after the replacement we take it to prenex form
again.)

After repeated use of the Circuit Simulation Lemma we have a sequence of formulas
ϕ = ϕ0, ϕ1, ..., ϕk and a sequence of integers d = v0, v1, ..., vk such that the number of
quantifier blocks in the formulas ϕi is strictly decreasing with i, and for all i = 0, 1, ..., k
we have the following: for all a ∈ Md, Md |= ϕ(a) iff Mvi |= ϕi(ai,gi(ϕ)). The integer
gi(ϕ) encodes the parameters of the formulas ϕj, j ≤ i, which arose at the applications of
the circuit simulation lemma till that stage of the proof. Meanwhile we are maintaining
reasonable bounds on vi and length(ϕi). Let k be the smallest integer such that ϕk has
a single block of quantifiers, that is, ϕk is either universal or existential. We may assume
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that ϕk is existential otherwise we may work with its negation. We may also assume,
based on the techniques mentioned earlier, that ϕk has a single existential quantifier. The
formula ϕ was chosen from the set Hn, where n = 2d. Using the upper bounds in the
definition of Hn, on the number of quantifier blocks, their sizes and the length of ϕ, and
using the upper bounds in the circuit simulation lemma, we get that that vk ≤ d+ log d.
It is easy to see that we may assume that vk = bd + log dc. Since ϕk is of the form
ϕk(y) ≡ ∃x, F0(x, y) = 0 we may apply again the indirect assumption and get a term τ

of M such that depth(τ) ≤ ε(log d)
1
2 , and for all a ∈Md the following three statements

are equivalent:
(i) Md |= ϕ(a)
(ii) Mvk |= ϕk(a))
(iii) Mvk |= τ(a,g(ϕ)) = 0, where g(ϕ) = gk(ϕ)

which completes the sketch of the collapsing argument.

2.3.1 Sketch of the Proof of the Circuit Simulation Lemma.

The Circuit Simulation Lemma is an easy consequence of Theorem 8. Theorem 8 essen-
tially says that the result of a computation done on the machine N2d with word length 2d

and in space and time polynomial in 2d−t, where d ≥ t, can be expressed by an existential
formula ofM in the structure Mv, if v ≥ t+ c(d− t) and c is a sufficiently large constant.
We will apply this for the proof of the circuit simulation lemma with the parameter t given
in the lemma and with d:= t + c′Circ0(C), where c′ > 0 is a sufficiently large constant.
It is an easy consequence of the definition of Circ0(C) that 2Circ0(C) ≥ 1

2
log |C|. (See

Lemma 56.) Therefore the evaluation of the circuit C in the structure Mt trivially can be
done on the RAM N2d , since an element of Mt can be stored in a single memory cell, and
also an element of C can be stored in a single memory cell, the operations of Mt can be
performed in constant time, and the time and memory that can be used is at least a suf-
ficiently large polynomial of |C|. So circuit evaluation (or checking that a guessed output
is correct) is polynomial time computable with respect to M, and Theorem 8 implies the
existence of the formula with the properties required by the Circuit Simulation Lemma.

2.3.2 Motivation for Theorem 6 and 7.

Our final goal is to prove Theorem 8. Theorem 6 and 7 can be considered as steps in this
proof. Therefore as a motivation we look again at the statement of Theorem 8 which says
that the result of a computation done on the machine N2d with word length 2d and in
space and time polynomial in 2d−t, where d ≥ t, can be expressed by an existential formula
ϕ ofM in the structure Mv, if v ≥ t+ c(d− t) and c is a sufficiently large constant. If we
just think about what can we quantify in such a formula ϕ Theorem 8 is not surprising.
Indeed with such a formula ϕ we can existentially quantify a sequence from the elements
of Md which is of length 2c(d−t), so which can be the whole history of the mentioned a
polynomial time computation. The problem arises when we want to verify that a given
sequence of elements of Md is really a history of a computation. Such a verification have
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to check that we get certain elements of the sequence by arithmetic operations from other
elements. This is the main motivation for Theorem 6 and Theorem 7, since they say
that with a certain type of fromula we can simultaneously perform a large number of
arithmetic operations. There will be another problem too, namely performing parallel
arithmetic operations as in theorems 6 and 7 is not enough, we also have to be able to
rearrange the sequence somehow such that the operands of the arithmetic operations are
at the right places. This problem arises at several different parts of the proofs so we will
discuss it in more detail there.

We were speaking about sequences formed from the elements of a structure Md. If we
want to speak about such a sequence in a larger structure Mv, then we have to represent
it there as a single element of Mv. We will represent a sequence a0, ..., ak−1 ∈ Md by
the integer a =

∑k−1
i=0 ai2

i2d . Therefore the elements of the sequence a0, ..., ak−1 are the
“digits” of the integer a in the 22d-ary numeral system. The ith digit of the integer a in
the 22d-ary system will be denoted by a[i, d], so in our example ai = a[i, d] for i ∈ k and
a[i, d] = 0 for all i ≥ k. In particular the ith binary bit of the natural number a will be
denoted by a[i, 0].

Our first results clarify what can we define by propositional or first-order existential
formulas with such sequences. These results are all preparations for the proofs of Theorem
6 and Theorem 7

2.3.3 Basic results about propositional and existential definitions in Md.

Let R = 〈Rd | d ∈ ω〉 be a family of k-ary relations where for each d ∈ ω, Rd is a k-ary
relation on Md. We will say that the family R is uniformly propositional/existential in M,
if the there exists a propositional/existential formula ϕ of M such that for all d ∈ ω and
for all a0, ..., ak−1 ∈ Md, Rd(a0, ..., ak−1) is equivalent to Md |= ϕ(a0, ..., ak−1). A family
of k-ary functions f = 〈fd | d ∈ ω〉 is uniformly propositional/existential if the family of
relations Rd(x0, ..., xk−1, y) ↔ Rd(x0, ..., xk−1) = y is uniformly propositional/existential.
Of course if f(x) = y can be defined by an existential formula then it also can be defined
by the universal formula ∀z, z = y ∨ ¬(f(x) = y), so a uniformly existential function is
also uniformly universal, so we could call it a uniformly ∆1-function.

Note that the notion of uniformly existential is a stronger one than the notion polyno-
mially existential relations defined earlier, since here we have to define the relation Rd in
the structure Md and not in a larger extension Mv. It is easy to see that every uniformly
existential family is also polynomially existential.

Assume that f = 〈fd | d ∈ ω〉 is a family of k-ary function. We will say that the term
τ uniformly defines the family f , if for all d ∈ ω, and for all a0, ..., ak−1, b ∈Md, we have
fd(a0, ..., ak−1) = b iff Md |= τ(a0, ..., ak−1) = b.

This part of the proof builds up tools which make it possible to prove about more
and more specific families of functions and relations that they are uniformly propositional
or existential or uniformly can be defined by a term. Frequently the proof is only the
simple application of one or two arithmetic operations of M. For example if we consider
and element a of Md as a 0, 1 sequences of length 2d, formed from its binary bits, that
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is, a is represented by the sequence 〈a[0, 0], a[1, 0], ..., a[2d − 1, 0]〉, then we can perform
boolean operations component-wise on these sequences. Moreover we may also shift such
a seqeunce by a given amount in either direction using a term. That is, there exists a
term σ such that for all a ∈ Md, i ∈ 2d and we get σ(a, i) from a by shifting a with i
places toward the more significant digits (and putting zeros into the empty places). The
term σ(a, i) = ap(i) (in this case p(i) = 2i) is good for this purpose. If we want to shift
a in the other direction then we can use the term ÷(a,p(i)).

For each d, t ∈ ω we will denote by ed,t the unique element of Md with ed,t[i, t] = 1
for all i ∈ 2d−t. There exists a term τ of Md such that for all d, t ∈ ω, with d ≥ t,
Md |= τ(t) = ed,t. For the proof of this fact we have to use only the closed form of the
sum of a finite geometric series. (See Lemma 13.)

Using these simple facts, about the binary component-wise boolean operations, about
the various types of shifts and about the element ed,t we already can prove about more
interesting functions that they are uniformly propositional or existential. A trivial but
very important observation is the following. Let B(x0, ..., xk−1) be a boolean expression
with k-variables and let a0, ..., ak−1 ∈Md.

(2) Then the relation Rd defined by ∀i ∈ 2d,B(a0[i, 0], ..., ak−1[i, 0]) is propositional.

Indeed, if the term τ is built up from theM operations, ∩ and N the same way as B
from the boolean operations ∧ and ¬, then Rd(a0, ..., ak−1) holds iff Md |= τ(a0, ..., ak−1) =
−1, since all of the binary bits of −1 is 1. This way we expressed a universal statement
about the components of elements in Md by a propositional formula. This elimination of
universal quantifier will be very important in the proofs.

This argument about boolean expression can be mixed with the operation shift. As a
result

(3) we can express by a propositional formula a relation defined by

∀i ∈ 2d,B(a0[i+ j0, 0], ..., ak−1[i+ j0, 0], ..., a0[i+ jr−1, 0], ..., ak−1[i+ jr−1, 0])

where B is a boolean expression with rk variables, and j0, ..., jr−1 are integers.

If u ≤ d then with this type of propositional formula we can say that the sequences
ai[0, 0], ..., ai[2

d− 1, 0], i = 0, ..., l− 1 describe the history of a turing machine with a tape
with 2u cells, each containing a 0, 1 bit which works from time 0 till time 2d−u − 1 and
whose finite automaton A, directing the movement of the head etc., has 2l−2. states. The
contents of the cells of the tape at time t, will be given by the sequence a0[t2u, 0], ..., a0[t2u+
2u − 1, 0]. If at time t the head is a cell j for some j ∈ 2u, then a1[t2u + j, 0] = 1, and
a1[t2u + i, 0] = 0 for all i ∈ 2u, i 6= j. Finally the state of the finite automaton A at time
t will be determined by the l − 2 bits a2[t2u + j, 0], ..., al−1[t2u + j, 0], where the head is
at cell j at time t. (For all i ∈ 2u, i 6= j we have a2[t2u + j, 0] = ... = al−1[t2u + j, 0] = 0.)
It is easy to see that there exists a Boolean expression B as in statement (3), with r = 6,
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j0 = −1, j1 = 0, j2 = 1, j3 = 2u− 1, j4 = 2u, j5 = 2u+1, k = l+ 1, a0:= a0, ..., al−1:= al−1,
ak−1:= ed,u such that

∀i ∈ 2d,B(a0[i+ j0, 0], ..., ak−1[i+ j0, 0], ..., a0[i+ jr−1, 0], ..., ak−1[i+ jr−1, 0])

holds iff the sequence a0[2ut + j, 0], j ∈ 2u, t ∈ 2d−u is the history of a turing machine
with the finite automaton A, in the sense that at time t the content of cell number j
is a0[2ut + j, 0]. The reason is that if at time t the head is at cell j, then the changes
from time t to t + 1 may involve only the contents of cell j − 1, j or j + 1 and the state
of the head. Therefore the rule defined by the finite automaton A involves only the bits
of ai[t2

u + j + δ] and ai[(t + 1)2u + j + δ] for i ∈ k and δ ∈ {−1, 0, 1} (not all of them
are needed) and this can be expressed by a boolean expression B. The role of the integer
ed,u is that it signals if the head is at the end of the tape, where the rules of the head
movement may be different than at other locations.

This argument is sufficient the prove the NP-completeness result but we also use it for
other purposes. In the case of NP -completeness it must be aplied with u = bd/cc where
c > 1 is a constant. The fact that “to be a history of turing machine with a fixed finite
automaton A” is uniformly propositional in M implies that the input-output relation for
the same turing machine is uniformly existential, if stated in the same structure Mv, and
naturally this remains true for the history of a nondeterministic turing machine. (If we
are speaking about turing machines with tape length ` that are working till time T then
the existential formula that defines the input/output relation is formulated in Mv where
v ≥ log2 `+ log2 T .)

For the proof Theorem 6 we do not use turing machines, but the techniques are similar
to the one that were used for the proof related to them. One important difference will,
be that in the case of turing machines we needed only the binary bits, that is, a[i, 0] of
various elements a ∈Md, while in the proof of Theorem 6 we will need that 22u-ary digits,
that is, a[i, u] for some u ≤ d. We do not give here an outline of the proof of Theorem
6 because it consists of several independent lemmas related to the various operations of
M. The only common idea in these result is the one that we have illustrated in the case
of turing machines.

2.3.4 Sketch of the proof of Theorem 7

The statement of Theorem 7 follows from Theorem 6 if f /∈ {×,÷,p}. The most important
case is f = ×, once we have the theorem for f = × the f = ÷ case is relatively easy. For
f = p we have a somewhat longer proof but it is conceptually simpler.

We sketch here the basic idea of the proof of Theorem 7 for f = ×.
We have to show that there exists an existential formula ψ(x0, x1, y, z, w) of M and

a c ∈ ω such that for all d, u ∈ ω with d ≥ u, and for all a0, a1, b ∈ Md, if v ∈ ω,
v ≥ u+ c(d− u), then the following two conditions are equivalent:
(i) ×d,u(a0, a1) = b,

(ii) Mv |= ψ(a0, ..., ak−1, b, d, u).
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To get ×d,u(a, b) in Md we want to use ×(a, b) that is ab in Md. We want to get an
element h of Md, such that h[i, u] = a[i, u]b[i, u] for all i ∈ 2d−u. The choice h = ab is
obviously not good since (ab)[i, u] is a linear combination of various products a[k, u]b[l, u].
To separate the products a[k, u]b[k, u] that we need from the products a[i, u]b[j, u], i 6= j
that we do not need we replace a and b by two other integers F0(a) and F1(b) so that
they have the same 22u-ary digits as a and b only these digits are stretched out on longer
intervals. We hope that this way all of the products a[i, u]b[j, u] will contribute to different
digits of F0(a)F1(b). Let s = 2d−u. We may try first F0(a) =

∑s−1
i=1 a[i, u]2is2

u
, and

F1(b) = b, so the distance of the 22u-ary a[i, u] digits in F0(a) is s. The integer b is
smaller than 2s2

u
therefore each product a[k, u]b[l, u] will contribute to at most one digit

of F0(a)F1(b), if we disregard the carryover. The carryover however is a problem since a
product a[k, u]b[l, u] is a two digit 22u-ary number so it contributes both to the sk + lth
digit and the sk + l + 1th digit of F0(a)F1(b).

To avoid the complications caused by the carryover problem, we stretch out the se-
quence of digits of a by a factor of 2s and the sequence of digits of b by factor of 2. That
is, we have F0(a) =

∑s−1
i=1 a[i, u]22si2u ∈ Mq+(q−u)+1, F1(b) =

∑s−1
i=1 b[i, u]22i2u ∈ Mq+1.

Now the carryover is not a problem since we care about only the values of the digits
of F1(a)F1(b) at even numbered places, while the carryovers influence only digits at odd
numbered places. Note here that the functions F0, F1 were defined by moving the 22u-ary
digits into new places. We will have to show that the functions F0 and F1 can be defined
by an existential formula in Mv, where v ≥ u+ c(d− u). For the moment we accept that
this can be done somehow and continue the computation of ×d,u, but later we will return
to this question.

We have that if w = F0(a)F1(b) then w < 2(2s2+2s)2u ∈Mv′ , where v′ = u + 4(d − u)
and for all k ∈ s, (a[k, u]b[k, u])Mu = w[2ks + 2k, u], where (xy)Mu means that we have
to take the product in Mu, that is, modulo 22u .

We define a function F2 by F2(p) =
∑s−1
k=0 p[2sk + 2k, u]2k2u for all p ∈ Mv′ . Clearly

we have (F2(w))[k, u] = a[k, u]b[k, u]. So we have shown that F2(F0(a)F1(b)) = ×d,u(a, b).
The function F2(p) is also defined by moving the 22u-ary digits of the integer p to other
places, and turning some of the digits into zeros. As in the case of the functions F0, F1 we
have to show that F2 can be defined by an existential formula in Mv. Finally it is easy to
prove that if all of the three functions F0, F1, F2 are defined by an existential formula in
Mv, then their composition F2(F0(a)F1(b)) can be also defined by an existential formula
in Mv.

Now we show that the functions Fi, i = 0, 1, 2 described above can be defined by an
existential formula in Mv provided that v ≥ u+ c(d− u) and c ∈ ω is a sufficiently large
constant. Recall that for each 0, 1, 2 the value Fi(p) was defined in the following way. We
took the 22u-ary digits of p and replaced some of them by 0 and took the others to new
places, to get the 22u-ary form of Fi(p). All of this, which digits must be replaced by
zero, and where we put the remaining digits, was explicitly described in the sense that
we could compute it in time polynomial in s = 2d−u by a turing machine which needed
only the input s. Motivated by this we prove here a general statement which says that
functions with this property are polynomially existential which will imply in our case that
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Fi, i = 0, 1, 2 are existentially definable in Mv is c is a sufficiently large constant. Later
we will need this result for the proof of Theorem 8 as well, where its very general nature
will be fully used.

The result in a simple form which is sufficient for proving the required properties of
Fi, i = 0, 1, 2 is the following.

Digit Relocation Lemma (See also Lemma 40) Assume that λ(x, y) is a function
defined for all x ∈ ω, y ∈ x such that the value of λ is in the set {0, 1, ..., x}, and given
the input x, y, λ(x, y) can be computed by a turing machine in time and space polynomial
in x. Then the family R = 〈Rd,u | d, u ∈ ω, d ≥ u〉 of binary relations is polynomially
existential, where for all d, u ∈ ω with d ≥ u and for all a, b ∈ Md, Rd(a, b) holds if for
all i ∈ 2d−u, b[i, u] = a[λ(2d−u, i), u].

According to this lemma the integer b is defined in a way that its 22u-ary digits are
selected from the 22u-ary digits of the integer a. The selection is made by a turing
machine but without the knowledge of the integer a. According to the assumptions of the
lemma the value of λ(x, y) can be x. In this case if λ(2d−u, i) = 2d−u then we get that
b[i, u] = a[2d−u, u] = 0, since a < 22d . Therefore 0 is always among the digits of a which
can be used as digits of b (this is important in the case of the functions Fj, j = 0, 1, 2).
(In Lemma 40 we formulate a somewhat more general form of this result namely we allow
λ depend on a parameter which is an element of Md representing a 0, 1 sequence of length
2d−u.)

In the proof of the Digit Relocation Lemma we will construct the integer b from the
integer a by constructing a sequence α0 = a, α1, ..., αν = b, where αi ∈ Md and we get
each αi+1 from αi by one of the following operations ηi,ι defined below. In describing these
operations we will consider an element w of Md as the sequence 〈w[0, u], w[1, u], ..., w[s−
1, u]〉 of length s = 2d−u from the elements of Mu. Therefore we define operations acting on
such sequences and they induce a corresponding operations on Md as well. For each i ∈ s,
ι ∈ 4 we define an operation ηi,ι, which applied to the sequence x = 〈x0, ..., xs−1〉 ∈ (Mu)

s

gives the following:
ηi,0(x) = 〈y0, ..., ys−1〉, where for all j ∈ {0, 1, ..., s− 2}\{i}, yj = xj, and yi = 0. That

is, we get ηi,0(x) from x by replacing xi with 0.
ηi,1(x) = 〈y0, ..., ys−1〉, where for all j ∈ {0, 1, ..., s−2}\{i, i+1}, yj = xj, and yi = xi+1,

yi+1 = xi. That is, we get ηi,1(x) from x by swapping xi and xi+1.
ηi,2(x) = 〈y0, ..., ys−1〉, where for all j ∈ {0, 1, ..., s − 2}\{i}, yj = xj, and yi = xi+1.

That is, we get ηi,0(x) from x by replacing xi with xi+1.
ηi,3(x) = x that is the sequence remain unchanged. (In the detailed proof this opera-

tion will be missing because we will reach the same effect in a different way.)
Therefore our assumption is that a turing machine computes in polynomial time a

sequence of pairs 〈im, ιm〉, for m = 0, 1, ..., ν−2 and αm+1 = ηim,ιmαm for m = 0, 1, ..., ν−2.
In other words

b = ηiν−2,ιν−2(. . . ηi0,ι0(a) . . .)

To show that this whole construction is uniformly existential we need a turing machine,
in some generalized sense, which can perform the operations ηi,ι if the sequence x =
〈x0, ..., xs−1〉 is the sequence of contents of the cells. More precisely we will consider a
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turing machine T with a fixed tape length s = 2d−u such that each cell contains a pair
〈δ, w〉, where δ is 0, 1-sequence δ = 〈δ0, ..., δk−1〉 of length k, where k is a constant and
w ∈ Mu. The finite automaton A directing the head movement and the changes in the
contents of the cell from time t to time t + 1 works in the following way. If the head is
at time t at cell j whose content is the pair 〈δ, w〉 δ ∈ {0, 1}k, w ∈Mu then the input of
the finite automaton A is δ, that is, the finite automaton simply does not see the element
w of Mu. Suppose that at time t the content of cell j is 〈δ(t), wt,j〉. We will denote the
sequence 〈wt,0, ..., wt,s−1〉 by Wt. (In the detailed proof we do not allow the cells to contain
elements in w ∈Mu. We let only the turing machine compute the sequence of operations
and then execute the operations on sequences of elements from Mu, and show that both
steps are existentially definable. The two versions has the same basic idea, and the one
that we sketch here is perhaps more intuitive, but we need the version of turing machines
that we describe in the detailed proof for other purposes as well.)

Suppose that the head is at cell j at time t. Then depending on the input of A
described above, it gives an output which consists of three different things:

(i) A directs the head either to change the content of cell j or leave it unchanged,
(ii) A directs the head to stay at cell j or to move either to cell j + 1 or to cell j − 1

(if the destination cell does not exist then the head does not move)
(iii) A also give as an output an integer ι ∈ {0, 1, 2, 3}. If the head is at time t at

cell s − 1 then Wt+1 = Wt. If the head is is at time t at cell i, where i 6= s − 1 then
Wt+1 = ηi,ι(Wt).

This completes the definition of the turing machine T that we will call a generalized
turing machine so the word turing machine in itself will mean a turing machine in its
original sense. If the finite automaton A and its initial state at time 0 and the contents of
the cells at time 0 are given, the rules described above uniquely determine the history of
the generalized turing machine T . We will consider a generalized turing machine T of this
type where W0 = 〈a[0, u], ..., a[s − 1, u]〉 and the generalized turing machine determines
the type (iii) output of the automaton A in a way that Wsγ−1 = 〈b[0, u], ..., b[s − 1, u]〉.
Since the function λ is computable in time polynomial in s, such a generalized turing
machine exists if γ ∈ ω is a sufficiently large constant.

We claim that the same way as we have seen earlier with a turing machine, where each
cell contained only a single 0, 1 bit, the history of the generalized turing machine also can
be defined by an existential formula in Mv, where v = u+ (γ + 2)(d− u). This is true in
the following sense.

When we proved the existential definability of the history of a turing machine, then
we encoded the the 0, 1 bits occurring in the cells of the machine at various times as the
binary bits of an integers ai ∈ Md, i ∈ l for a suitably chosen d ∈ ω. Even when the
integers ai encoded the position of the head and the state of the head at each time, the
integer l remained a constant. Now however the situation is changed since the contents
of the cells are elements of Mu so we cannot encode them with a constant number of
0, 1, bit. To keep the advantages of the 0, 1-bits that can be the arguments of boolean
expressions, and at the same time allow the encoding of sequences from the elements of
Mu, we will do the following. The history of the generalized turing machine with tape
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length ` = 2d−u, which works till time T = 2γ(d−u) will be encoded by the integers in Mv,
where v = u+ (γ+ 1)(d−u). For example the δi in cell j at t time will be encoded by the
a0,i[t`+ j], where a0,i ∈Mv. This way even for encoding 0, 1 bits we use the 22u-ary form
of integers. Therefor to define the history in an existential way we have to define the set
of integers a in Mv whose 22u-ary bits are all zeros and ones by an existential formula.
This is not a problem since a has this property iff a ≤v,u ev,u, and Theorem 6 implies that
the family of relations ≤v,u is uniformly existential.

We also need to encode the position of the head and the state of the finite automaton
this will be done, as before, by the integers a1, a2, ..., al−1, but now using their 22u-ary
digits which are only ones and zeros. Consequently if at time t the head is at cell j,
then a1[t` + j, u] = 1, a1[t` + j′, u] = 0 for all j′ ∈ `\{j}. If a1[t` + j, u] = 1 a2[t2d−u +
j, u], ..., al−1[t2d−u + j, u] determines the state of the finite automaton at time t while
a2[t2d−u + i, 0] = ... = al−1[t2d−u + i, 0] = 0 for all i 6= j.

In the generalized turing machine the content of a cell is a pair 〈δ, w〉 where the content
of each cell is a 0, 1-sequence δ = 〈δ0, ..., δk−1〉 ∈ {0, 1}k and w ∈Mu. The history of the
contents w of the cells will be represented by an integer β ∈Mv such that if at time t the
content of cell j is wt,j then β[t2d−u + j, u] = wt,j.

We define the family of k + l + 1-ary relations relation RA = 〈Rv,A |
v ∈ ω〉 by: for all v ∈ ω, and for all a0,0, ..., a0,k−1, a2, ..., al−1, β, d, u ∈ Mv,
Rv,A(a0,0, ..., a0,k−1, a2, ..., al−1, β, d, u) iff v ≥ d ≥ u, v = u + (γ + 1)(u − d) and the
sequence a0,0, ..., a0,k−1, a2, ..., al−1, β describes a history of the turing machine with the
finite automaton A.

The proof of the fact that the family of relations RA is uniformly existential is almost
the same as in the case of (non-generalized) turing machines, since a0,i[r, u] ∈ {0, 1} for
i ∈ k, r ∈ `T and aν [r, u] ∈ {0, 1} for ν =, 1..., l − 1, r ∈ `T , we are able to express the
the rules defining the turing machine by boolean expressions, provided that twe disregard
the elements wt,j ∈ Mu. Instead of using the elements wt,j directly we will use the
elements Dt,j,t,′,j′ defined by Dt,j,t′,j′ = 1 if wt,j = wt′,j′ and Dt,j,t′,j′ = 0 if wt,j = wt′,j′ .
Since these elements take only 0, 1 values we will be able to express evrything about the
working of the turing machine by boolean expressions. For the description of the rules
defining the turing machine we need Dt,j,t′,j′ only in the special cases t′ ∈ {t, t + 1},
j′ ∈ Hj = {j − 2, j − 1, j, j + 1, j + 2}. In terms of the integer β this means that we
need to know the boolean values of the statements β[t2d−u + j, u] = β[t′2d−u + j′] for
t′ ∈ {t, t + 1}, j′ ∈ Hj. We define an element βξ,η = 2η+ξ(d−u)2u ∈ Mv, for ξ ∈ {0, 1},
η ∈ H0. We get that the sequence of 22u-ary digits of βξ,η by shifting the digit sequence
of β toward the more significant digits (for negative values of η it means shifting to the
opposite direction.) As we have seen for all relevant values of ξ, η there exists a term τξ,η
such that Mv |= βξ,η = τξ,η(β). Therefore in the existential formula that will define the
relation Rd,A in Mv we can use the integers βξ,η, ξ ∈ {0, 1}, η ∈ H. Therefore we get
the required 0, 1-bits Dt,j,t′,j′ , t

′ ∈ {t, t + 1}, j′ ∈ Hj as the 22u-ary digits of the integers
ρξ,η,ξ′η′ , where ρξ,η,ξ′,η′ , ξ, ξ

′ ∈ {0, 1}, η, η′ ∈ H0 is defined by

Mv |= ρξ,η,ξ′η′ = minv,u(2
2v − 1, βξ,η − βξ′,η′)
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Since the operation minv,u can be defined by an existential formula in Mv this is also
true for the integers ρξ,η,ξ′η′ . Finally using the integers ρξ,η,ξ′η′ and also the integers
a0,0, ..., a0,k−1, a2, ..., al−1 we are able to express the rules defining the turing machine in
the form of

∀i ∈ 2v−uB(a0,0, ..., a0,k−1, a2, ..., al−1, ~ρξ,η,ξ′,η′)

where ~ρξ,η,ξ′,η′ is the sequence of all expressions ρξ,η,ξ′,η′ , ξ, ξ
′ ∈ {0, 1}, η, η′ ∈ H0.

This implies, as we have seen in statement (2), that the relation Rv,A can be expressed
by an existential formula in Mv. Form this it is easy to get the statement of the Theorem
7, since we have to say only that there exists a history of the generalized turing machine
with a given initial and final states.

2.3.5 Sketch of the proof of Theorem 8

The assumption of the theorem is that the functions Fd,t are computable on the RAM
N2d in time 2γ1(d−t) using only the first 2γ1(d−t) memory cells.

Such a computation can be performed also by a circuit C of size 2γ2(d− t) whose gates
perform operations in Md, where γ2 depends only on γ and C is given independently of
the program and input of the machine N2d−u . Moreover the circuit C can be chosen in
a way that it is computable by a turing machine T with the intput 2d−t in time 2γ3(d−t)

where γ3 depend only on γ1.
If we want to define existentially the Fd,t(a0, ..., ak−1) then we may guess what will

be the outputs of the gates of C and then verify by an existential formula that these
values are consistent with each other and the input. The verification has two steps.
Suppose that at each gate G both the guessed output of gate G and given the (guessed)
inputs of the gate G are given. We associate each gate with one of the natural numbers
0, 1, ..., |C| − 1, and for example, the sequence of outputs is represented by the integer∑|C−1|
i=0 bi2

i2t , where bi ∈ Mt is the guessed output at gate number i. The two (or less)
inputs at each gate are encoded in a similar way. Then we have to verify that the values
which are given more than once as inputs and outputs are the same. Since the structure
of the circuit can be calculated by a turing machine this verification can be done using
the Digit Relocation Lemma. The other step in the verification is that each gate performs
correctly the operation assigned to it. Here we assume that at each gate together with
the inputs and output also the name of the operation is also given (where such a name
a natural number in the set {0, 1, ...,k}, where k is the number of M operations ). The

assignment of the operations to the gates is encoded by an integer
∑|C−1|
i=0 qi2

i2t where
qi ∈ k is the name of the operation at gate i. (Here we assume that 22t > k but this is
only a technical problem that can be avoided easily.)

Using Theorem 7 we can perform parallel all of the operations at the all of the gates,
in the sense the we can define the result by an existential formula. Now we have the
results of all of the operations performed on the twp inputs at each gate. With another
existential formula we can check that the output at G is identical to the result which
corresponds to the name of the operation assigned to gate G. For this checking we use
the same technique as was used to conclude the proof of Theorem 7, that is, first we
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express the equalities between that various integers at gate G in terms of 0, 1-bits and
then use statement (2).

2.4 Simulation

Our goal is to show that for each τ ∈ Tn, there exists a λτ ∈ H′n such that for all a, b ∈Md,
Md |= λτ (a, b) is equivalent to Mq |= τ(a, b) = 0, where q = bd+ log dc.

Recall that Tn is a set of terms ofM with some bounds on their sizes and H′n is a set
of first-order formulas with some restriction on the number of quantifier changes and on
the sizes of the formulas. For the moment we disregard the quantitative bounds on the
term τ and the formula λ, we consider only the following general question.

Assume that τ(x, y) is a term of M, a, b ∈Md and we want to know whether Mq |=
τ(a, b) = 0, but we are allowed only to evaluate first-order formulas in Md, where q =
bd + log dc. How can we do this? Since the structure Md is much smaller than Mq we
cannot simply perform the computation of (τ(a, b))Mq in Md. It is true that the starting
points for the computation of (τ(a, b))Mq , namely the elements a, b are in Md, but during
the computation we may get partial results which are in Mq but not in Md.

In spite of this difficulty our plan is to follow the computation of (τ(a, b))Mq step
by step in Md, that is, we want to simulate the computation of τ(a, b) in Mq by doing
something in Md. During this simulation we have to represent the partial results, which
are elements of Mq, in some way in Md. The structure Md does not have enough elements
for this. So we will represent each element h of Mq by a binary relation η(h) on Md, and
we will do it in a way that all of the elements w of Mq which occur as partial result during
the computation of (τ(a, b))Mq will be represented by a binary relation η(w) which can be
defined by a first-order formula ϕw on Md in the sense that for all x, y ∈ Md, we have
η(w)(x, y) iff Md |= ϕw(x, y). At the beginning of the computation that is if w = a or
w = b or w can be defined by a constant symbol in Mq, then the formula ϕw will be of
constant size. As we will proceed with the computation of (τ(a, b))Mq , the formulas ϕw
corresponding to the partial results w will be larger and larger, at each step the number of
quantifier alternations in ϕw will grow by an additive constant and the size of the formula
ϕw by a multiplicative constant.

We will define the formulas ϕw in the following way. First we define ϕw for each
element w ∈ Md, and when Mq |= w = c, where c is a constant symbol of M. Then
we give a general rule such that in the knowledge of ϕw and ϕw′ it will be possible to
construct ϕf(w,w′) or ϕg(w) for all function binary function symbols f and unary function
symbols g of M.

First we indicate how can we do this with unary relations. The simplest solution is
to represent each element of Mq by a unary relation using the binary form of w. For
each w ∈ Mq let ξ(w) be the unary relation on Md defined by “for all i ∈ Md, ξ

(i)(a) iff
w[i, 0] = 1”, that is, ξ(i)(a) holds iff the ith binary bit of w is 1. If d is sufficiently large
and q = bd + log dc we have that w → ξ(w) is a one-to-one map of Mq into the set of
unary relations on Md. The next question is that if we have the relations ξ(w) and ξ(w′)

how can we get from them the relations ξ(w+w′), ξ(ww′), ξ÷(w,w′) etc. We will see that these
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relations can be defined by a first-order formulas from the relations ξ(w) and ξ(w′).
We will use binary not unary relations to represent the elements of Mq but we do this

only because it is technically more convenient but the binary representation that we will
use is, in some sense, equivalent to the unary representation described above.

We may think that the structures Mt, t = 0, 1, ... are constructed in this order. The
property of the operations ofM on these structure that we sketched above and will define
below means that at the time when we have constructed the structure Md we are able
to “predict” what will be the result of various operations in Mq for some q > d. This
motivates the term “predictive” that we will use in the following definition. (Recall that
coeffi(a, b) is the ith digit of a in the b-ary numeral system.)

Definition. 1. The set of functions symbols ofM (including the constant symbols) will
be denoted by fsymb(M)

2. Let J be a function. We will say that M is J -predictive if the following conditions
are satisfied.

(4) The function J is a monotone increasing function defined on ω and with values in
ω.

(5) For all sufficiently large d ∈ ω, J (d) ∈Md and J (d) > d.

(6) There exists a function defined on fsymb(M) assigning to each function symbol
f(x0, . . . , xk−1) of M, a first-order formula Φf (x, y, z, Y0, . . . , Yk−1) of M, where x, y, z
are free first-order variables and Y0, . . . , Yk−1 are free variables for binary relations, such

that the following holds. For all d, r ∈ ω with d + r ≤ J (d) there exists a map a→ η
(a)
d,r

of universe(Md+r) into the set of binary relations on universe(Md) with the following
properties:

(i) For each a, u, v ∈Md, we have η
(a)
d,r (u, v) iff “u = 0 and coeffv(a, 2) = 1”.

(ii) Suppose that f(x0, . . . , xk−1) is a k-ary function symbol ofM, for some k = 0, 1, 2
(including the constant symbols for k = 0), f̄ = (f)Md+r

, and a0, . . . , ak−1 ∈Md+r. Then

for all u, v ∈Md, η
(f̄(a0,...,ak−1))
d,r (u, v) iff

Md |= Φf (u, v, r, η
(a0)
d,r , . . . , η

(ak−1)
d,r ).

ut

The proof of the simulation statement is based on the following lemma.

Lemma 1 Assume that c > 0 is a real, and J (x) = bx+c log xc. Then M is J predictive.

In [2] a weaker result of similar nature is proved which implies that there exists a
function g(x) with limx→∞ g(x) =∞, such that if J0 = x+ g(x) then M is J0-predictive.
Some of the partial results of the proof given there were stronger than what was needed
for the theorem formulated in [2]. We get Lemma 1 by using the full strength of these
partial results in particular about the first-order definability of the bits of the results of
multiplication and division between large numbers. The proof is given in section 9.2. This
completes the sketches of the various parts of the theorem.
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3 Existential and propositional families of relations

on M

A large part of our proofs consists of constructions of first-order formulas of M which
define relations or functions in the structures Md, d ∈ ω with properties which are use-
ful in proving our theorems. For example the “Collapsing statement” and “Simulation
statement” claim the existence of certain first-order formulas ofM that we will construct
during our proofs. In spite of the fact that Theorem 3 and Theorem 4 are “non-existence”
statements, which claim that formulas of M with given properties do not exist for their
proof we use statements which claim the existence of formulas ofM with other properties.
(This is a typical situation in lower bound proofs.)

In the Collapsing and Simulation statements we are speaking about first-order formulas
which are interpreted in a structure Md where d ∈ ω. The sizes of these formulas may
depend on d. In this section we consider a simpler question where there is only one
formula. More precisely let Rd, d ∈ ω be a family of relations, where for all d ∈ ω,
Rd is a k-ary relations on Md. If there exists a first-order formula ϕ(x0, ..., xk−1) of M
such that for all d ∈ ω and for all a0, ..., ak−1, Rd(a0, ..., ak−1) iff Md |= ϕ(a0, ..., ak−1)
then we will say that the formula ϕ defines the family Rd. This means that the whole
family can be defined by a single first-order formula. We will say that such a family of
relations is uniformly first-order definable. The special cases when ϕ is propositional or
existential will be very important and then the corresponding families of relations will be
called uniformly propositional and uniformly existential. We will use similar definitions
for families of functions as well.

The importance of these notions is that there is a large number of explicitly defined
relations and functions, which are either uniformly propositional or uniformly existential,
and we use them in the proofs of the Collapsing statement. This section contains the
formulations and proofs of results of these types.

It is easy to see that for each propositional formula P (x0, ..., xk−1) there exists a
term t(x0, ..., xk−1) of M such that for all d ∈ ω, Md |= ∀x0, ..., xk−1, P (x0, ..., xk−1) ↔
t(x0, ..., xk−1) = 0. (See Lemma 3 below.) This implies that for all uniformly proposi-
tional family of relations Rd(x0, ..., xk−1), d ∈ ω, there exists a term t of M such that
for all a0, ..., ak−1 ∈ Md, Md |= t(a0, ..., ak−1) = 0 is equivalent to Rd(a0, ..., ak−1). In
particular if fd, d ∈ ω is a family of k − 1-ary functions such that Rd(a0, ..., ak−1) holds
iff fd(x0, ..., xk−2) = xk−1 then for all a0, ..., ak−1 ∈ Md, Md |= t(a0, ..., ak−1) = 0 is
equivalent to fd(a0, ..., ak−2) = ak−1. In this case we say that the family of functions fd is
propositional. We will be also interested in families where each functions fd is computable
by the same term. This requirement can be formulated as follows.

There exists a term s(x0, ..., xk−2) of M such that for all d ∈ ω and for all
a0, ..., ak−2, ak−1 ∈Md, Md |= s(a0, ..., ak−1) = fd(a0, ..., ak−2) = ak−1.

If this last condition is satisfied then we will say that the family function fd, d ∈ ω can
be uniformly expressed by a term. This clearly implies that the family of function fd is
propositional. In some cases we will need this stronger property. (When we say stronger
we mean only that the definition is formally stronger but we do not know whether there
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exists a uniformly propositional family of function which cannot be expressed uniformly
by a term.)

If f(x0, ..., xk−1) is a function which is defined by an existential formula
ϕ(x0, ..., xk−1, y) in Md, that is, for all a0, ..., ak−1, b we have Md |= f(a0, . . . , ak−1) =
b ↔ ϕ(a0, . . . , ak−1, b) then the function f can be also defined by a universal formula
namely Md |= f(a0, . . . , ak−1) = b ↔ ∀x, x = b ∨ ¬ϕ(a0, . . . , ak−1, b). Therefore each
existential family of functions is also universal.

Most of the families of relations and functions where we will prove that they are
uniformly existential or propositional are related to the notion of “digits” of integers in
various numeral systems. For example it is easy to show that the family of relations
Rd(u, i, a, t) defined by “t ≤ d and u is that ith digit of a in the numeral system with
base 22t” is propositional. The numeral systems with base 22t has a particular importance
for us since if d ≤ t the a sequence u0, ..., uk−1 ∈ M, k = 2d−t, can be encoded as the
sequence of 22t-ary digits of a single element a ∈ Md, namely a =

∑k−1
i=0 ui2

2it . As we
have mentioned already in section 2 we will frequently need to encode sequences from the
elements of a structure Mt by a single element of a larger structure Md. A very important
and characteristic example is the Circuit Simulation Lemma whose intuitive statement
was described in section 2. Here the a circuit, by definition, will be the sequence of its
nodes with various labelings which describe the operations and the “wires” between the
nodes. A circuit given this way will be encoded by a single element a of a sufficiently large
structure Md and the 22t-ary digits of the integer a will define the sequences of nodes and
labelings, for a suitably chosen positive integer t < d.

We will need also to perform operations on sequences of integers which are encoded
as the 22t-ary digits of an integer a ∈Md. This is very important for the Vector Property
Lemma (see the formulation of this lemma in section 2 and the explanation before the
statement of the lemma). In this section we prove the Vector Property Lemma for each
of the operations f /∈ {×,÷,p}. We actually get in these cases a stronger version of the
lemma with c = 0. Th most problematic cases proved in this section will be the operations
min and max.

3.1 Existential and propositional formulas in Md, basic prop-
erties

Definition. func(A,B) will denote the set of all functions defined on the set A with
values in the set B. ut

Definition. 1. Assume that k ∈ ω and R = 〈R(d) | d ∈ ω〉 is a family of k-ary relations,
such that for each d ∈ ω, R(d) is a k-ary relation on Md. Then we will say that R is a
family of k-ary relations on M.

2. Suppose that k ∈ ω and R = 〈R(d) | d ∈ ω〉 is a family of k-ary relations
on M. We will say that the family R is uniformly propositional on M if there ex-
ists a propositional formula P (x0, . . . , xk−1) of M such that, for all d ∈ ω, and for all
a0, . . . , ak−1 ∈Md, R

(d)(a0, . . . , ak−1) is equivalent to Md |= P (a0, . . . , ak−1). In a similar

26



way the family R is called uniformly existential on M if there exists an existential first-
order formula ϕ(x0, . . . , xk−1) ofM such that, for all d ∈ ω, and for all a0, . . . , ak−1 ∈Md,
R(d)(a0, . . . , ak−1) is equivalent to Md |= ϕ(a0, . . . , ak−1). ut

Definition. 1. Assume that f = 〈f (d) | d ∈ ω〉 is a family of k-ary functions, such that
for each d ∈ ω, f (d) is a k-ary function defined on Md and with values in Md. Then we
will say that f is a family of k-ary functions on M.

2. Suppose that k ∈ ω and f = 〈f (d) | d ∈ ω〉 is a family of k-ary functions on M. We
will say that the family f is uniformly propositional on M if there exists a propositional
formula P (x0, . . . , xk−1, y) ofM such that, for all d ∈ ω, and for all a0, . . . , ak−1, b ∈Md,
f (d)(a0, . . . , ak−1) = b is equivalent to Md |= P (a0, . . . , ak−1, b). In a similar way the
family f is called uniformly existential on M if there exists an existential first-order
formula ϕ(x0, . . . , xr−1, y) of M such that, for all d ∈ ω, and for all a0, . . . , ak−1, b ∈Md,
f (d)(a0, . . . , ak−1) = d is equivalent to Md |= ϕ(a0, . . . , ak−1, b). ut

Definition. 1. If a, t ∈ ω and i is an integer then we will use the notation a[i, t] =
coeffi(a, 2

2t). (By the definition of the function coeff if i is negative then a[i, t] = 0. )
E.g., the ith binary bit of the natural number a is a[i, 0].

2. The elements of Md are natural numbers, in the set {0, 1, . . . , 22d − 1}, but
sometimes it is useful to represent them as sequences of various types. For each fixed
d ∈ ω and p ∈ {0, 1, . . . , d} each element a ∈ Md will be represented by a sequence
〈a[0, p], a[1, p], . . . , a[2d−p − 1, p]〉, that we will denote by [[a, d, p]]. This is a sequence of
length 2d−p whose elements are the 22p-ary digits of the natural number a. ut

Lemma 2 There exist binary terms h, g of M such that for all d ∈ ω and for all a, b in
Md,

(7) a = b implies Md |= g(a, b) = 1 and a 6= b implies Md |= g(a, b) = 0.

(8) a < b implies Md |= h(a, b) = 1 and a ≥ b implies Md |= h(a, b) = 0.

Proof. The definitions of the terms are g(x, y) = 1−min(1, x− y), and
h(x, y) = (1− g(x, y))(1− g(min(x, y), y)). Q.E.D.(Lemma 2)

For the following definition recall that the interpretation of the function symbol p(x)
in the structure Md was the function min(2n − 1, 2x), where n = 2d.

Definition. We define a term q(x) of M by q(x) = h(x,n)p(x) where h(x, y) is the
term defined in Lemma 2. This definition implies that for all x, z ∈Md, if n = 2d then

( Md |= q(x) = z ) iff “either x < 2d and z = min{2x, 2n− 1} = 2x, or x ≥ 2d ∧ z = 0.
Therefore the terms q(x) and p(x) take different values only if x ≥ 2d. In this case
p(x) = 22d − 1 and q(x) = 0. ut

Lemma 3 For each propositional formula P (x0, ..., xk−1) there exists a term
t(x0, ..., xk−1) of M such that for all d ∈ ω, Md |= ∀x0, ..., xk−1, (P (x0, ..., xk−1) →
t(x0, ..., xk−1) = 0) ∧ (¬P (x0, ..., xk−1)→ t(x0, ..., xk−1) = 1).
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We need this lemma so frequently that we will use it without a reference.

Proof of Lemma 3. We prove the lemma by induction on the number of logical con-
nectives in the formula P . If P is an atomic formula then it is of the form t0 = t1, where
t0, t1 are terms of M. If g is a term with the properties described in Lemma 2 then the
term t = 1− g(t0, t1) meets the requirements of the lemma.

Suppose that P = ¬P ′ and the term t′ is chosen so that the conditions of the Lemma
are satisfied with P := P ′, t:= t′. Then t = 1 − t′ is the required term. Assume that
P = P0 ∨ P1, and the terms ti, i = 0, 1 are chosen so that the conditions of the Lemma
are satisfied with P := Pi, t:= ti for i = 0, 1. Then t = t0t1 meets the requirements of the
lemma. The remaining logical connectives can be expressed as combinations of ¬ and ∨.
Q.E.D.(Lemma 3)

Lemma 4 There exists a term κ(x) ofM such that for all d, t ∈ ω if t ≤ d and b = 22t−1
then Md |= κ(t) = b.

Proof of Lemma 4. The term q(q(x)) − 1 satisfies the requirements of the lemma.
(The choice κ(x) = p(p(x)) − 1 is not satisfactory since in the t = d case the definition
of (p)Md

would imply Md |= κ(d) = r, where r = min(22d − 1, 22d − 1 − 1) = 22d − 2.)
Q.E.D.(Lemma 4)

Lemma 5 There exists a term σ of M such that for all d, b, a, j, k, α0, ..., αk−1 ∈ ω, if
α0, ..., αk−1 < 2b, 2kb − 1 ∈Md, a =

∑k−1
i=0 αi2

ib, and j ∈ k, then Md |= αj = σ(a, b, j).

Proof of Lemma 5. We have that for all l ∈ k if Sl =
∑l−1
i=0 αi2

ib, then Md |= Sl =
a−÷(a, 2lb). Since αj = Sj−Sj−1

2(j−1)b this implies our statement. Q.E.D.(Lemma 5)

In the following definition if 0 ≤ t ≤ d, then for each an element a ∈Md we consider
the sequence [[a, d, t]], that is, the sequence of 22t-ary digits of the integer a. We define
a unary operation shiftd,t,i(a) which shifts this sequence by i places toward the more

significant places if i ≥ 0. Those which would represent a number larger that 22d will
disappear and on the other end of the sequence the new elements will be zeros. If i < 0
then the shift is in the other direction with similar rules. First we consider the special
case when t = 0, the corresponding function will be denoted by shiftd,i.

Definition. Assume that d ∈ ω and i is an integer. We define a function shiftd,i on Md.
For all a, b ∈Md, shiftd,i(a) = b iff for all k ∈ 2d, b[k, 0] = a[k− i, 0]. (Recall that a[j, 0]
is defined for all integers j, and if j is negative then a[j, 0] = 0.) For each d, t ∈ ω, d ≥ t
and integer i, we define a function shiftd,t,i on Md : for all a, b ∈Md, shiftd,t,i(a) = b
iff for all k ∈ 2d−t, b[k, t] = a[k − i, t]. These definitions imply that for each d, t ∈ ω with
t ≤ d, if i is an integer then shiftd,i ∈ func(Md,Md) and shiftd,t,i ∈ func(Md,Md). ut

The next two lemma shows that the function shift can be defined uniformly with a
term. In the formulation of Lemma 6 it is important that we have defined the interpreta-
tion of the operation ÷ such that for all d ∈ ω, and a ∈Md, we have Md |= ÷(a,0) = 0.
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Lemma 6 Assume that d, t ∈ ω, d ≥ t, a, i ∈ Md. Then shiftd,t,i(a) is the unique
element b of Md such that Md |= b = aq(i), and the integer shiftd,t,−i(a) is the unique
element b of Md such that Md |= b = ÷(a,q(i)).

Proof of Lemma 6. The statement of the lemma is an immediate consequence of the
definitions of the function shiftd,t,i and the structure Md. Q.E.D.(Lemma 6)

Lemma 7 There exists a term τ of M such that for all d, t ∈ ω, with d ≥ t, and for all
a, i ∈ Md, δ ∈ {−1,1}, the following holds. Assume that and an integer b is defined by
b = shiftd,t,i(a) if δ = 1, and b = shiftd,t,−i(a) if δ = −1. Then Md |= b = τ(a, i, t, δ).

Remark. In this lemma the possible values of δ are terms of M. Since the integer −1
is not in Md, we cannot use it as an argument for the term σ. The term −1 takes the
value 22d − 1 in Md, which plays the role of −1. ut

Proof of Lemma 7. Lemma 6 implies that there exists a term σ+ which meets the
requirements with the lemma with σ:= σ+ provided that δ = 1. In a similar way there
exists another term σ− that meets the requirements of the lemma if δ = −1. Consequently
the term σ = g(δ,1)σ+ + g(δ,−1)σ− meets the requirements of the lemma in all cases,
where g is the term defined in Lemma 2. Q.E.D.(Lemma 7)

Lemma 8 There exists a term σ(x, y, z, w) of M such that if d, i, j ∈ ω, t ∈ d, 0 ≤ i ≤
j < 2d−t, a ∈Md, a =

∑2d−t−1
k=0 ak(2

2t)k and b =
∑j
k=i ak(2

2t)k then Md |= b = σ(a, i, j, t).

Proof of Lemma 8 The statement of the lemma is a consequence of Lemma 7. We
shift the digits of a first toward the more significant digits, in a way that some of the
digits which are not needed in b disappear. Then we repeat this in the other direction.
More precisely. Let q = 2d−t − j − 1, and let b0 = shiftd,−q,t(shiftd,q,t(a)). Then b =
shiftd,−i,t(shiftd,i,t(b0)). By Lemma 7 the function shift can be expressed uniformly
by a term of M. Q.E.D.(Lemma8)

Lemma 9 There exists a term σ ofM such that the following holds. Assume that d, t ∈ ω
with d ≥ t, r = 2d−t, a0, ..., ar−1 ∈ Mt and S =

∑r−1
i=0 ai2

i2t. Then for all i ∈ r we have
Md |= σ(S, i, t) = ai

Proof of Lemma 9. This is an immediate consequence of Lemma 8 in the i = j special
case. Q.E.D.(Lemma 9)

Lemma 10 Q(x, y) will denote either the relation x = y or the relation x ≤ y
among the integers. The following statement holds in both cases. Assume that
p(x1, . . . , xk, y, z), q(x1, . . . , xk, y, z) are terms of M and for each d ∈ ω, fd is a k+ 2-ary
function on Md defined by: for all a1, . . . , ak, u, v ∈Md,

if Q(u, v) then Md |= fd(a1, . . . , ak, u, v) = p(a1, . . . , ak, u, v), and
if ¬Q(u, v) then Md |= fd(a1, . . . , ak, u, v) = q(a1, . . . , ak, u, v).

Then there exists a term t(x1, . . . , xk, y, z) of M such that for all d ∈ ω and for all
a1, . . . , ak, u, v ∈Md, Md |= fd(a1, . . . , ak, u, v) = t(a1, . . . , ak, u, v).
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Proof of Lemma 10. Assume the Q is the relation x = y and h, g are the terms whose
existence are sated in Lemma 2. Then

t(x1, . . . , xk, y, z) = g(y, z)p(x1, . . . , xk, y, z) + (1− g(y, z))q(x1, . . . , xk, y, z)

If Q is the relation x ≤ y then the term h is used in a similar way. Q.E.D.(Lemma KB1)

Lemma 11 There exist terms σ(x, y), τ(x, y) of the language M such that for all d ∈ ω
if r, j, k ∈Md, k > 1 and r = 2j then the following two conditions are satisfied.

(9) rk+1 ≤ 22d, and S =
∑k
i=0 r

i implies S ∈Md and Md |= S = σ(j, k),

(10) (k + 1)rk(r− 1) < 22d, and T =
∑k
i=1 ir

i−1 implies T ∈Md and Md |= T = τ(j, k).

Proof of Lemma 11. Condition (9)). S =
∑k
i=0 r

i = rk+1−1
r−1

, therefore the assumption

rk+1 ≤ 22d implies S ∈Md and Md |= S = ÷(q((k + 1)j) − 1, 2j − 1). Condition (10)).
The proof is similar to the previous case, but here we use that

k∑
i=1

iri−1 =
1− rk+1

(1− r)2
− (k + 1)rk

1− r
=

(k + 1)rk(r − 1)− rk+1 − 1

(r − 1)2

Q.E.D.(Lemma 11)

Lemma 12 There exists a term η of M such that for all d, t,m, k ∈ ω with t ≤ d,
m ≤ 2d−t, k < m and for all a ∈Md the following two statements are equivalent:

(11) Md |= a = η(t,m, k)

(12) for all i ∈ 2d−t, if i ≡ k (mod m) then a[i, t] = 1, otherwise a[i, t] = 0.

Proof of Lemma 12. First we consider the special case k = 0. Let a0 ∈Md the unique
integer so that condition (12) is satisfied with a:= a0 and k = 0. The integer a0 can be
expressed as the sum of a geometric sequence, that is,

a0 =
α(d,t,m)∑
j=0

2jm2t

where α(d, t,m) = b(2d−t−1)/mc. α(d, t,m) can be written in the form of ÷(2d−t−1,m),
so it is a term of M. Therefore Lemma 11 implies that there exists a term ξ(x, y) of M
such that for all d ∈ ω, Md |= a0 = ξ(m, k).

Let h be a term of M such that for all d ∈ ω and for all a, b in Md, a < b implies
Md |= h(a, b) = 1 and a ≥ b implies Md |= h(a, b) = 0. Lemma 2 implies the existence of
such a term.

Suppose now that k ∈ m is arbitrary. We construct a term η1 which works if k +
mα(d,m, t) < 2d−t and another term η2 which works if k + mα(d,m, t) ≥ 2d−t and then
we use Lemma 10 to get the term η.

Assume a satisfies condition (12) with a k ∈ m such that k+mα(d,m, t) < 2d and a0

satisfies condition (12) with k = 0. Then a = 2k2ta0, which gives the definition of η1.
If k+mα(d,m, t) ≥ 2d then a = 2k2t(a0−2α(d,m,t)2t), which defines η2. Q.E.D.(Lemma

12)
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Lemma 13 For all d, t ∈ ω with t ≤ d, there exists a unique integer e ∈Md, such that for
all i ∈ 2d−t, e[i, t] = 1. Moreover, for this integer e, we have Md |= e = ÷(−1,q(q(t))−1).

Proof of Lemma 13. The uniqueness follows for the facts that e < 2
2d

and the first
2d−t, 22t-ary digits of e are given. Adding the geometric series representing e as it is done
in the proof of Lemma 11 we get Md |= e = ÷(−1,q(q(t))− 1). Q.E.D.(Lemma 12)

Definition. For all d, t ∈ ω the unique element e ∈ Md with the properties described
in Lemma 13 will be denoted by ed,t. The term ÷(−1,q(q(x))− 1) with the free variable
x will be denoted by ē(x). Therefore if t ∈Md, t ≤ d then Md |= ē(t) = ed,t ut

In the following definitions we introduce new operations on the elements of Md. These
operations will be defined in the following way. A natural number t ≤ d is given and for
each a ∈Md we consider the vector whose coordinates are the 22t-ary digits of a. The new
operations will be defined as vector operations performed on vectors of this type. These
operations and the way they can be uniformly defined in M (e.g., by a propositional
formula of M) will be important for the proofs of Circuit Simulation Lemma and the
Vector Property.

Definition. 1. Assume that d, t ∈ ω, t ≤ d, a ∈ Md, and δ ∈ {0, 1}. We define
(a)d,t,δ as the unique integer b ∈ Md such that for all k ∈ 2d−t, if k ≡ δ (mod 2)) then
b[k, t] = a[k, t], otherwise b[k, t] = 0.

2. Suppose that d, t ∈ ω and t ≤ d. We define an operation a ⊕d,t b on Md. For all
a, b, c ∈Md, a⊕d,t b = c iff for all k ∈ 2d−t, a[k, t] + b[k, t] ≡ c[k, t] (mod 22t).

We define a binary operation �d,t on Md if d ∈ ω and t ∈ d + 1. For all a, b ∈ Md

a�d,t b is defined in the following way. If a /∈Mt = 22t then a�d,t b = 0. If a ∈Mt then
for all c ∈ Md, a �d,t b = c iff for all k ∈ 2d−t, a · b[k, t] ≡ c[k, t], (mod 22t), where the
operation “ · ” is the multiplication between integers.

3. Suppose that d, t ∈ ω and t ≤ d. We define a binary operation �d,t on Md. For all
a, b ∈Md, a�d,t b is defined in the following way. If b = 0 then a�d,t b = 0. If b 6= 0 then
a�d,t b is the unique element c of Md, such that for all k ∈ 2d−t, ba[k, t]/bc = c[k, t]. ut

Remark. The operation ⊕d,t corresponds to the modulo 22t addition of 2d−t dimensional
vectors. The operation a�d,tb, if we restrict a to the set Mt, corresponds the multiplication
of 2d−t dimensional vectors modulo 22t by scalars from the set Mt = 22t . The operation
a � b is the integer division of each component of a by the scalar b. In the case of
b = 0 our definition is compatible with the interpretation of ÷ in Md. More precisely
we have the following. Suppose d, t ∈ ω, d ≤ t, a, b ∈ Mt and c = a �d,t b. Then for
all k ∈ Mt |= ÷(a[k, t], b) = c[k, t]. (This holds even for b = 0.) If b ∈ Md\Mt, then
a� b = 0 ut

Lemma 14 Each family of relations R = 〈R(d) | d ∈ ω〉 on M, defined in the conditions
below, is uniformly propositional on M.

(13) R(d) is the unary relation on Md defined by R(d)(t)↔ d iff t ≤ d,
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(14) for each boolean function f with two variables, R
(d)
f is the ternary relation on Md

defined by
R

(d)
f (a, b, c)↔ ∀k ∈ 2d, f(a[k, 0], b[k, 0]) = c[k, 0]

(15) for each integer r, R(d)
r is the binary relation on Md defined by R(d)

r (a, b) iff
shiftd,r(a) = b,

(16) R(d) is the binary binary relation on Md defined by R(d)(a, t) iff t ≤ d and for all
i ∈ 2d−t, a[i, t] = 1,

(17) for each integer r, R(d)
r is the ternary relation on Md defined by, R(d)

r (a, b, t) iff
t ≤ d and shiftd,t,r(a) = b,

(18) for each δ ∈ {0, 1}, R(d) is the ternary relation on Md defined by, R(d)(a, b, t) iff
t ≤ d and (a)d,t,δ = b,

(19) for each δ ∈ {0, 1}, R(d) is the binary relation on Md defined by, R(d)(a, t) iff t ≤ d
and (22d − 1)d,t,δ = a,

(20) R(d) is the quaternary relation on Md defined by R(d)(a, b, c, t) iff t ≤ d and a⊕d,tb =
c,

(21) R(d) is the quaternary relation on Md defined by R(d)(a, b, c, t) iff t ≤ d, and a�d,tb =
c,

(22) R(d) is the ternary relation on Md defined by R(d)(a, b, t) iff t ≤ d and for all
k ∈ 2d−t, a[k, t] ≡ −b[k, t] (mod 22t).

Proof of Lemma 14. (13) For all t ∈Md, t ≤ d iff Md |= 2t ≤ n. Consequently t ≤ d
is uniformly propositional on M.

In some of the further statements of the lemma we use the assumption t ≤ d. Since
the conjunction of uniformly propositional families of relations on M are also uniformly
propositional on M, statement (13) that we may assume in all of these cases that t ≤ d,
that is, we prove the equivalence of the given relation and the relation defined by a
propositional formula with the additional assumption t ≤ d.

(15) and (17) are immediate consequences of Lemma 7.
(14). This is an immediate consequence of the following two facts (a) the function

symbols ∩ and N are are interpreted as boolean vector operations ∧ and ¬, on the
sequences of binary bits a[0, 0], a[1, 0], . . . on the elements a of the structure Md, (b) each
boolean function f can be obtained as a composition of the functions ∧ and ¬.

(16). The statement follows from Lemma 13.

(19). We have (22d − 1)[k, 0] = 1 for all k ∈ 2d, and
∑2t−1

i=0 2i = 22t − 1. Therefore

(22d − 1)d,t,0 = (22t − 1)
b(2d−t−1)/2c∑

j=0

22j2t
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Consequently Lemma 11, and Md |= 2d−t = ÷(n, 2t) implies the existence of the re-
quired term for δ = 0. To get the term for δ = 1 we use the equality (22d − 1)d,t,1 =

shiftd,t,1((22d − 1)d,t,0) and the already proven statement (15).

(18). This is a consequence of (19) and the fact that (a)d,t,δ = a∩(22d−1)d,t,δ, where ∩
is the operation defined in Md, that is, the vector operation ∧ performed on the sequences
of binary bits.

(20). Follows from a⊕d,t b = ((a)d,t,0 + (b)d,t,0)d,t,0 + ((a)d,t,1 + (b)d,t,1)d,t,1
(21). We define a�d,t be separately for the cases a ≥ 22t and a < 22t . We will

show that both definition is uniformly proposition, therefore Lemma 10 will imply our
statement.

If a ≥ 22t than a�d,t b = 0 which gives a propositional definition.
Assume that a < 22t . Then a�d,t b = (a(b)d,t,0)d,t,0 +(a(b)d,t,1)d,t,1. The already proven

statement (18) implies that this is equivalent to a propositional formula.
(22) The condition “for all k ∈ 2d−t, a[k, t] ≡ −b[k, t] (mod 22t) ” is equivalent to

a ⊕d,t b = 0, therefore our assertion is a consequence of statement (20). Q.E.D.(Lemma
14)

Lemma 15 Assume that k ∈ ω, f(x0, ..., xk−1) is a boolean function of k variables. Then
there exists a term τ of M, such that for all d ∈ ω, and for all a0, ..., ak−1 ∈Md we have
that for all i ∈ 2d,

Md |= f(a0[i, 0], ..., ak−1[i, 0]) =
(
τ(a0, ..., ak−1)

)
[i, 0]

Proof of Lemma 15. The boolean function f can be expressed using only the boolean
operations ∧, ¬. The corresponding expression in M using the operations ∩ and N will
be τ . Q.E.D.(Lemma 15)

Lemma 16 The family of ternary relations 〈R(d) | d ∈ ω〉, is uniformly propositional on
M, where

(23) R(d) is the ternary relation on Md defined by Rd)(a, b, c) iff a + b = c among the
integers.

Proof of Lemma 16. For all a, b, c ∈ Md, a + b = c (as integers) is equivalent to
Md |= a+ b = c ∧ a ≤ c ∧ b ≤ c. Q.E.D.(Lemma 16)

Remark. So far we have proved about some functions and relations, that we defined
in terms of the 22t-ary digits of integers, that they are propositional. In particular the
operations ⊕,� were among these functions. In the remaining part of this section we will
consider relations that are also defined in terms of 22t-ary bits of integers but now we will
allow in the definitions statement which consider inequalities between the corresponding
digits of two integers. For example such a relation is “R(d)(a, b, t) iff (for all k ∈ 2d−t,
a[k, t] ≤ b[k, t])” (see Lemma 21). We will show that this particular family of relations is
uniformly existential, and we will state many similar results which will be useful later in
proving the Circuit Simulation Lemma. ut
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Lemma 17 The family of binary relations 〈R(d) | d ∈ ω〉 is uniformly propositional on
M, where

(24) R(d) is the binary relation defined on Md by R(d)(a, t) iff t ≤ d and for all i ∈ 2d−t,
a[i, t] is either 0 or 22t − 1.

Remark. 1. In this lemma the definition of the relation R(d) contains a universal
quantification on the set 2d−t. In spite of that, we have to show that the definition is
equivalent to a propositional statement. We do this by showing that a vector of length
2d−t, namely a vector consisting of the 22t-ary digits of an integer depending on a is
the 0 vector. We will use frequently this argument to eliminate of a universal quantifier
(restricted to 2d−t).

2. The condition “for all i ∈ 2d−t, a[i, t] is either 0 or 22t − 1” is equivalent to the
following: the sequence of first 2d binary bits of a is formed from blocks of 0s and 1s each
of length exactly 2t, or equivalently the value a[i, 0] depends only on bi/2tc for all i ∈ 2d−t.
In the proof we will use the fact that if we consider the same blocks for the binary bits of
the integer ed,t then the least significant bit in such a block is 1 and all of the other bits
are zeros.

Proof of Lemma 17. The relation R(d)(a, t) is equivalent to the following: t ≤ d and for
all i ∈ 2d, if i 6≡ 0 (mod 2t) then the ith binary bit of a is the same as the i−1th binary bit
of a (which is the ith bit of 2a). Using the observation about ed,t in the previous remark
we get the following. R(d)(a, t) holds iff t ≤ d and for all i ∈ 2d, A(i, t, a) holds, where
A(i, t, a) ≡ “if ed,t[i, 0] 6= 1 then a[i, 0] = (2a)[i, 0]”. By Lemma 13 and Lemma 8 there
exists terms η, ξ ofM such that ed,t[i, 0] = (η(i, t))Md

and a[i, 0] = (ξ(i, a))Md
. Condition

A can be expressed by boolean vector operations on the binary bits of the integers ed,t, a
and 2a, in the sense that A holds iff all of the components of the resulting vectors are 0s.
Therefore Lemma 15 implies that the relation A is propositional. Q.E.D.(Lemma 17)

Definition. Assume that t, a, i ∈ ω. We define a function bita,t,i on 2t by bita,t,i(k) =
(a[i, t])[k, 0] for all k ∈ 2t. According to this definition, bita,t,i(k) is the kth binary
bit of the ith 22t-ary digit of the integer a. We define another function incra,t,i(k), by
incra,t,i(k) = maxkj=0 bita,t,i(k) for all k ∈ 2t. For fixed a, t and i, incra,t,i(k) is monotone
increasing in k and taking values in the set 0, 1. The function incra,t,i can be also defined
by recursion, namely, incra,t,i(0) = bita,t,i(0) and for all k ∈ 2t − 1, incra,t,i(k + 1) =
max{bita,t,i(k+ 1), incra,t,i(k)}. We define also a monotone decreasing function decra,t,i
on 2t by a similar recursion in the opposite direction decra,t,i(2

t − 1) = bita,t,i(2
t − 1)

and for all k ∈ 2t\{0}, decra,t,i(k − 1) = max{bita,t,i(k − 1), decra,t,i(k)}. Equivalently,

for all k ∈ 2t, decra,t,i(k) = max2t−1
j=k bita,i,t(j). For fixed a, i, t, the function decra,t,i(k)

is monotone decreasing in k.

Lemma 18 Each family of relations R = 〈R(d) | d ∈ ω〉 on M, defined in one of the
conditions below, is uniformly propositional on M.

(25) R(d) is the ternary relation on Md defined by R(d)(a, t, b) iff t ≤ d and for all
i ∈ 2t−d, k ∈ 2t we have bitb,t,i(k) = incra,t,i(k).

34



(26) R(d) is the ternary relation on Md defined by R(d)(a, t, b) iff t ≤ d and for all
i ∈ 2t−d, k ∈ 2t we have bitb,t,i(k) = decra,t,i(k).

Remark. The importance of this lemma is that the result of the recursive process
contained in the definition of the function incra,t,i can be verified by a propositional
statement. ut

Proof of Lemma 18. We use similar reasoning in this proof as in the proof of Lemma
17. Consider first of condition (25). For given d, a, t clearly there exists a unique b ∈Md

such that for all i ∈ 2d−t and k ∈ 2t, bitb,t,i(k) = incra,t,i(k), since all the bits of b
are determined. This integer b is also uniquely determined by the following condition:
“for all j ∈ 2d−t if ed,t[j, 0] = 1, then b[j, 0] = a[j, 0], if ed,t[j, 0] = 0 then b[j, 0] =
max{a[j, 0], b[j − 1, 0]} = max{a[j, 0], (2b)[j, 0]}” using the same argument as in the case
of Lemma 17 we get that the family R(d) is propositional. Statement (26) can be proved
in a similar way. Q.E.D.(Lemma 17)

Definition. For all d, t ∈ ω, t ≤ d, we define two functions Incr
(d)
t , Decr

(d)
t on Md

with values in Md. For each a ∈Md, Incr
(d)
t (a) will be the unique integer b ∈Md such

that for all i ∈ 2d−t and k ∈ 2t, we have bitb,t,i(k) = incra,t,i(k). For each a ∈ Md,

Decr
(d)
t (a) will be the unique integer b ∈Md such that for all i ∈ 2d−t and k ∈ 2t, we have

bitb,t,i(k) = decra,t,i(k).

Lemma 19 The family of binary functions f
(d)
0 , f

(d)
1 , d ∈ ω defined below are uniformly

propositional.

(27) For each a, t ∈Md, if t ≤ d then f
(d)
0 (a, t) = Incr

(d)
t (a), otherwise f

(d)
0 (a, t) = 0.

(28) For each a, t ∈Md, if t ≤ d then f
(d)
1 (a, t) = Decr

(d)
t (a), otherwise f

(d)
1 (a, t) = 0.

Proof of Lemma 19. The lemma is an immediate consequence of Lemma
Q.E.D.(Lemma 18)

Lemma 20 Each family of ternary relations 〈R(d) | d ∈ ω〉 defined below is uniformly
existential on M, where

(29) R(d) is the ternary relation on Md defined by R(d)(a, b, t) iff t ≤ d and for all
k ∈ 2d−t, b[k, t] = 0 if a[k, t] = 0, and b[k, t] = ed,t[k, t] otherwise.

(30) R(d) is the ternary relation on Md defined by R(d)(a, b, t) iff t ≤ d and for all
k ∈ 2d−t, b[k, t] = 0 if a[k, t] = 0, and b[k, t] = 1 otherwise.

Proof of Lemma 20. Statement (29). Assume that t ≤ d. The definition of the
relation R(d) implies that R(d)(a, b, t) holds iff for all i ∈ 2d−t either each binary bit of
b[i, t] is 1 or each binary bit of b[i, t] is 0, (depending on whether a[i, t] has a nonzero bit or
not). Therefore the definitions of the functions Incr(d) and Decr(d) imply that R(d)(a, b, t)
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iff b = Decr
(d)
t (Incr

(d)
t (a)). Therefore R(d)(a, b, t) iff there exists a c ∈ Md such that

b = Decr
(d)
t (c) and c = Incr

(d)
t (a). By Lemma 19 the families of functions Incr and Decr

are uniformly propositional therefore the family R(d), d ∈ ω is uniformly existential.
Statement (30) is a consequence of statement (29) of the present lemma and statement

(14) of Lemma 14 and Lemma 13. Suppose that t ≤ d and let R0 be the relation defined
in condition (29), and let R be the relation defined in condition (30), then R(a, b, t) holds
iff there exists a c ∈Md such that R0(a, c, t) and for all i ∈ 2d we have that ed,t[i, 0] = 1
implies that b[i, 0] = c[i, 0] and ed,t[i, 0] = 0 implies that b[i, 0] = 0. By Lemma 13 ed,t is
the value of a term, and by statement (14) of Lemma 14 the fact that a boolean relations
holds between the ith bits of the integers b, c, and ed,t can be expressed by a propositional
formula. Q.E.D.(Lemma 20)

Lemma 21 The families of ternary relations 〈R(d)
i | d ∈ ω〉, i = 0, 1 defined below are

uniformly existential on M, where

(31) R
(d)
0 is the ternary relation on Md defined by R

(d)
0 (a, b, t) iff t ≤ d and for all

k ∈ 2d−t, a[k, t] 6= b[k, t],

(32) R
(d)
1 is the ternary relation on Md defined by R

(d)
1 (a, b, t) iff t ≤ d and for all

k ∈ 2d−t, a[k, t] ≤ b[k, t].

Proof of Lemma 21. According to statement (13) of Lemma 14 we may assume that
t ≤ d.

Statement (31). Let w be the unique element of Md such that for all i ∈ 2d, w[i, 0] is

the exclusive or of a[i, 0] and b[i, 0], and let w′ = Decr
(d)
t (Incr

(d)
t )(a). Clearly R

(d)
0 (a, b, t)

iff w′ = et. Therefore Lemma 19 and Lemma 13 with t = 0 imply that the family R
(d)
0 is

uniformly existential.
(32). We claim that

(33) R
(d)
1 (a, b, t) iff Md |= a ≤ b ∧ b = a⊕d,t (b− a).

According to statement (20) of Lemma 14 this implies our assertion. We prove now

statement (33). If R
(d)
1 (a, b, t) holds then looking at the binary representations of a and

b we get that a ≤ b, and for all k ∈ 2d−t, b[k, t] = (b[k, t] − a[k, t]) + a[k, t], where
both terms are nonnegative. Therefore the definition of the operation ⊕d,t implies that
Md |= a ≤ b ∧ b = a⊕d,t (b− a) holds. Assume now that Md |= a ≤ b ∧ b = a⊕d,t (b− a)
holds and let c = b− a. Since a ≤ b the integer operation and the operation in Md gives
the same value for c. We perform the integer addition a+ c in the 22t-ary number system,
starting from the least significant digits, a[0, t], c[0, t]. As long as there is no carryover the

condition b = a ⊕d,t c implies that a[k, t] ≤ b[k, t] as required by R
(d)
1 (a, b, t). We claim

that Md |= a ≤ b ∧ b = a ⊕d,t (b − a) implies that there is no carryover at all. Assume
that the first carryover occurs at the addition a[k, t] + c[k, t] for some k < 2d−t − 1. This
implies that when we add a[k + 1, t] + c[k + 1, t] we have to add the carryover 1. On the
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other hand, because of b = a⊕d,t c, we have a[k+1, t]+ c[k+1, t] ≡ b[k+1, t] (mod 22t) so
together with the carryover 1 we do not get b[k + 1, t] as the next digit, a contradiction.
Assume now that the carryover occurs at k = 2d−t − 1. This however, together with
b = a⊕d,t c, contradicts the assumption Md |= a ≤ b. Q.E.D.(Lemma 21)

Definition. Assume that d, t ∈ ω, d ≥ t. The set of all integers a ∈ Md such that for
all j ∈ 2d−t, a[j, t] ∈ {0, 1}. We will be called the zero-one set of M with parameters d, t
and will be denoted by zo(d, t). ut

Lemma 22 For each d ∈ ω, let R(d)(x, y) be the binary relation on Md defined by: for
each a, t ∈ Md, R

(d)(a, t) iff t ≤ d and a ∈ zo(d, t). Then the family of binary relations
R = 〈R(d) | d ∈ ω〉 is uniformly existential on M.

Proof of Lemma 22. Assume that d, t ∈ ω, d ≤ t. Recall that ed,t is the unique
element of Md such that for all j ∈ 2d−t, ed,t[j, t] = 1. For all a ∈Md, we have a ∈ zo iff
for all j ∈ 2d−t, a[j, t] ≤ ed,t[j, t]. Therefore Lemma 13 and statement (31) of Lemma 21
imply the conclusion of the lemma. Q.E.D.(Lemma 22)

Lemma 23 Assume that f is boolean function of two variables. Then the family of
relations R = 〈R(d) | d ∈ ω〉, is uniformly existential on M, where

(34) R(d) is the quaternary relation on Md defined by R(d)(a, b, c, t) iff t ≤ d, for all
k ∈ 2d−t, a[k, t], b[k, t], c[k, t] ∈ {0, 1}, and f(a[k, t], b[k, t]) = c[k, t].

Proof of Lemma 23. Lemma 22 implies that the relation Φ(a, b, c, t) ≡“t ≤ d and
a[k, t], b[k, t], c[k, t] ∈ {0, 1}” is uniformly existential on M. Assume now that for some
d ∈ ω and a, b, c, t ∈Md, and Φ(a, b, c, t) holds. Then, using statement (14) of Lemma 14
and the fact that for all i ∈ 2d, ed,t[i, 0] = 1 if i ≡ 0 (mod 2t) and ed,t[i, 0] = 0 otherwise,
we may express f(a[k, t], b[k, t]) = c[k, t] uniformly on M by a propositional formula of
M. Q.E.D.(Lemma 23)

Lemma 24 Assume that m ∈ ω and B(X0, ..., Xm−1) is a boolean expression, where
X0, ..., Xm−1 are boolean variables. Then the family of m + 2-ary relations R = 〈R(d) |
d ∈ ω〉 on M, is uniformly existential on M, where

(35) R(d) is the m+ 2-ary relation on Md defined by R(d)(a0, ..., am−1, c, t) iff t ≤ d, for
all k ∈ 2d−t, a0[k, t], ..., am−1[k, t], c[k, t] ∈ {0, 1}, and B(a0[k, t], ..., am−1[k, t]) = c[k, t].

Proof of Lemma 24. The lemma follows from Lemma 23 and Lemma 22. Let
B = B0,B1, ...,Bs−1,Bs, ...,Bs+m−1 be the sequence of all subformulas of B, where
B0,B1, ...,Bs−1 are not variables, and Bs, ...,Bs+m−1 are variables. Assume that for
all i ∈ s, Bi = fi(Bi0 ,Bi1), where fi is a boolean operation of two variables. Sup-
pose that t ≤ d and for all k ∈ 2d−t, a0[k, t], ..., am−1[k, t], c[k, t] ∈ {0, 1}. Then
Mt |= R(d)(a0, ..., am−1, c, t) iff exists u0, ..., us+m−1 such that for all i = s, ..., s + m − 1
ai = ui, and for all i ∈ s and k ∈ 2d−t, ui[k, t] = fi(ui0 [k, t], ui1 [k, t]). Lemma 23 and
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Lemma 22 imply that this condition can be expressed uniformly by an existential formula
of M. Q.E.D.(Lemma 24)

The following lemma implies the Vector Property (formulated in section 2) for the
operations max and min.

Lemma 25 The families of quaternary relations 〈R(d)
i | d ∈ ω〉, i = 0, 1 are uniformly

existential on M, where

(36) R
(d)
0 is the quaternary relation on Md defined by R

(d)
0 (a, b, u, t) iff t ≤ d and for all

k ∈ 2d−t, u[k, t] = min{a[k, t], b[k, t]}, and

R
(d)
1 is the quaternary relation on Md defined by R

(d)
1 (a, b, u, t) iff t ≤ d and for all

k ∈ 2d−t, u[k, t] = max{a[k, t], b[k, t]}.

Remark. For the proof of Lemma 25 we need two other lemmas. In these lemmas we
show that we can define in a uniformly existential way 0, 1-valued functions on the set
2d−t which select the values k ∈ 2d−t where a[k, t] 6= b[k, t] or where a[k, t] ≤ b[k, t]. In
the proof of Lemma 25 these and similar 0, 1-valued functions, which can be represented
by a single element of Md, will be existentially quantified. ut

Lemma 26 The family of quaternary relations 〈R(d) | d ∈ ω〉, is uniformly existential on
M, where

(37) R(d) is the quaternary relation on Md defined by R(d)(a, b, w, t) iff t ≤ d and for all
k ∈ 2d−t, a[k, t] = b[k, t]→ w[k, t] = 0, and a[k, t] 6= b[k, t]→ w[k, t] = 1

Proof of Lemma 26. As in the previous lemmas we will assume that t ≤ d. Let β
be the unique element of Md such that for all k ∈ 2d−t, β[k, t] ≡ −b[k, t] (mod 22t),
and let c = a ⊕d,t β. Conditions (22) and (20) of Lemma 14 imply that c has a uniform
propositional definition, that is a propositional formula P (x, y, z, s) such that Md |=
∀x, P (x, a, b, t)↔ x = c, where P does not depend on d, t, a or b. Clearly for all k ∈ 2d−t,
c[k, t] = 0→ w[k, t] = 0, and c[k, t] 6= 0→ w[k, t] = 1 and so R(d)(a, b, w, t) iff

Md |= t ≤ d ∧ ∃c, P (c, a, b, t) ∧ ∀k < 2t,Ψ(c, w, k, t)

where
Ψ(c, w, k, t) ≡ (c[k, t] = 0→ w[k, t] = 0) ∧ (c[k, t] 6= 0→ w[k, t] = 1)

Therefore the statement of the lemma follows from condition (30) Lemma 20 with a:= c
and b:= w. Q.E.D.(Lemma 26)

Lemma 27 The family of quaternary relations 〈R(d) | d ∈ ω〉, is uniformly existential on
M, where

(38) R(d) is the quaternary relation on Md defined by Rd)(a, b, w, t) iff t ≤ d and for all
k ∈ 2d−t, a[k, t] ≤ b[k, t]→ w[k, t] = 0, and a[k, t] > b[k, t]→ w[k, t] = 1.
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Proof of Lemma 27. As in the previous proofs we may assume that t ≤ d. First we
prove the lemma for the modified relation R̄(d) defined by,

(39) R̄(d)(a, b, w, t) iff R(d)(a, b, w, t) ∧ (a = (a)d,t,0) ∧ (b = (b)d,t,0).

Let c be the unique element of Md such that a⊕d,t c = b. As we have seen in the proof
of Lemma 26 the element c has a uniform propositional definition. It is a consequence of
condition (39) and the definition of c that

(40) a+ c = b (among the integers) iff for each even k ∈ 2d−t, a[k, t] ≤ b[k, t].

Lemma 16 implies that “a + c = b among the integers” is a uniformly propositional
relation on M therefore “for each odd k ∈ 2d−t, a[k, t] ≤ b[k, t]”≡ ∃c, a+c = b is uniformly
existential. This completes the proof for the family of relations R̄(d). The same proof
works also for the relation R̃(d)(a, b, w, t) iff Rd)(a, b, w, t) ∧ (a = (a)d,t,1) ∧ (b = (b)d,t,1).
We have a = (a)d,t,0 + (a)d,t,1, b = (b)d,t,0 + (b)d,t,1. First we apply the already proven
part of the lemma for the pair (a)d,t,0, (b)d,t,0 and get a uniformly existential definition for
the corresponding element w that we will denote by w̄. Using the pair (a)d,t,1, (b)d,t,1 in a
similar way we get an existential definition for w̃. We have R(a, b, w, t) iff Md |= w = w̄+w̃
which together with the existential defintions of w̄ and w̃ gives the existential formula for
R(d). Q.E.D.(Lemma 27)

Proof of Lemma 25. As in the previous lemmas we may assume that t ≤ d. We
consider first the family of relations R

(d)
0 . The existential formula defining the relation

R
(d)
0 will be equivalent to the following statement.

There exists v, w, w′ ∈Md such that,
(i) for all k ∈ 2d−t, a[k, t] ≤ b[k, t]→ v[k, t] = 0, and a[k, t] > b[k, t]→ v[k, t] = 1, and
(ii) for all k ∈ 2d−t, a[k, t] = u[k, t]→ w[k, t] = 0, and a[k, t] 6= u[k, t]→ w[k, t] = 1, and
(iii) for all k ∈ 2d−t, b[k, t] = u[k, t]→ w′[k, t] = 0, and b[k, t] 6= u[k, t]→ w′[k, t] = 1, and
(iv) for all k ∈ 2d−t, w[k, t] = 0→ v[k, t] = 0, and w[k, t] = 1→ (w′[k, t] = 0∧v[k, t] = 1).

We claim that this statement is equivalent to R0(a, b, u, t). First we show that if
u[k, t] = min{a[k, t], b[k, t]} for all k ∈ 2d−t, then there exist v, w, w′ ∈ Md satisfying
conditions (i),(ii),(iii) and (iv). We define for each fixed k ∈ 2d−t, the integer v[k, t] ∈
{0, 1} by condition (i). This gives a v ∈ Md satisfying condition (i). In a similar way
we define the integer w ∈ Md by condition (ii) and the integer w′ ∈ Md by condition
(iii). We have to show that the integers v, w, w′ defined this way satisfy condition (iv).
Suppose that a k ∈ 2d−t is fixed.

If w[k, t] = 0 then by condition (ii) a[k, t] = u[k, t] = min{a[k, t], b[k, t]} ≤ b[k, t] and
therefore by condition (i) v(k, t) = 0.

If w[k, t] = 1 then by condition (ii) a[k, t] 6= u[k, t] = min{a[k, t], b[k, t]}. Therefore
u[k, t] = b[k, t] < a[k, t]. Condition (iii) and u[k, t] = b[k, t] implies w′[k, t] = 0. Condition
(i) and b[k, t] < a[k, t] implies v[k, t] = 1, which completes the proof of condition (iv) and
the fact that there exist integers v, w, w′ satisfying conditions (i),(ii),(iii) and (iv).
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Assume now that there exist integers v, w, w′ ∈ Md satisfying conditions (i),(ii),(iii)
and (iv) and we show that for all k ∈ 2d−t, u[k, t] = min{a[k, t], b[k, t]}. Suppose that a
k ∈ 2d−t is fixed. Statement (ii) implies that w[k, t] is either 0 or 1. If w[k, t] = 0 then
according to (iv) v(k, t) = 0 and by (ii) u[k, t] = a[k, t]. v(k, t) = 0 and (i) implies that
a[k, t] ≤ b[k, t] and therefore u[k, t] = min{a[k, t], b[k, t]}.

Assume now that w[k, t] = 1. According to (iv) v(k, t) = 1 and w′(k, t) = 0.
Therefore by (i) a[k, t] > b[k, t] and by (iii) b[k, t] = u[k, t]. Consequently u[k, t] =
min{a[k, t], b[k, t]}. This completes the proof of the fact that R0(a, b, u, t) holds iff there
exist integers v, w, w′ satisfying conditions (i),(ii),(iii) and (iv).

All of the four statements (i), (ii), (iii), and (iv) are uniformly existential on M. This
can be proved in each case separately using the following lemmas: statement (i): Lemma
27, statement (ii): Lemma 26, statement (iii): Lemma 26, statement (iv): Lemma 23.

The statement of the lemma for the family of relations R
(d)
1 can be proved in a

similar way, or we may use the fact that Md |= ∀x, y,max(x, y) = −min(−x,−y) .
Q.E.D.(Lemma 25)

Definition. 1. Let f be a k-ary function symbol of M for some k ∈ {0, 1, 2}. For
all d, t ∈ ω with d ≥ t, we define a k-ary function Υf ,d,t on the universe Md in the
following way. Assume that d, t ∈ ω is fixed with d ≥ t and a0, ..., ak−1 ∈ Md. Then
Υf ,d,t(a0, ..., ak−1) is the unique element b ∈ Md with the property that for all i ∈ 2d−t,
we have Mt |= f(a0[i, t], ..., ak−1[i, t]) = b[i, t]. The function Υf ,d,t will be also called the
parallel version of the operation f . In the special cases f = +,× we will use the notation
Υ+,d,t = ⊕d,t Υ×,d,t = ⊗d,t. For the remaining function symbols f we will sometimes write
fd,t instead of Υf ,d,t, e.g. we may write ÷d,t, mind,t, ∩d,t etc.

2. Let f be a k-ary function symbol of M for some k ∈ {0, 1, 2}. We define a

family of k + 2-ary relations Ῡf = 〈Ῡ(d)
f | d ∈ ω〉 on M. For all d ∈ ω and for all

a0, ..., ak−1, b, t ∈ Md, Ῡ(d)(a0, ..., ak−1, b, t) iff t ≤ d and Υf ,d,t(a0, ..., ak−1) = b. We will
say that the parallel f operation is uniformly existential on M, if the family of relations
Ῡf is uniformly existential on M. ut

Lemma 28 Suppose that f is a function symbol of M such that f /∈ {×,÷,p}. Then the
parallel f operation is uniformly existential on M.

Remark. 1. For some of the function symbol even more is true, in the sense that the
family of relations Ῡf is uniformly propositional. See e.g., statement (20) of Lemma 14
about the parallel version of addition, which was denoted by ⊕d,t.

2. For the three the function symbols ×,÷,p we will be able to prove the lemma only
in a weaker form, namely the existential formula defining the relation Ῡf ,d,t will not be
considered in the structure Md but in a larger structure Md+c(d−t) for a sufficiently large
constant c ∈ ω. This generalized form of the lemma will have a crucial role in the proof
of Theorem 3. ut

Proof of Lemma 28. We show separately for each function symbols of M, that the
statement of the lemma is true.
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Symbol 0. Υ0,d,t = b is equivalent to Md |= b = 0.
Symbol 1. Υ1,d,t = b is equivalent to Md |= b = ed,t, therefore Lemma 13 implies our

statement.
Symbol −1. Υ−1,d,t = b is equivalent to Md |= b = −1. (Indeed for all i ∈ 2t,

Mt |= b[i, t] = −1 implies that all of the 2t binary bits of b[i, t] is 1.)
Symbol +. This follows from statement (20) of Lemma 14.
Symbol n. Υn,d,t = b is equivalent to b[i, t] = 2t for all i ∈ 2d−t, that is, b = 2ted,t.

Therefore our statement follows from Lemma 13.
Symbols N and ∩. The statement is an immediate consequence of the fact that

these two operations are boolean vector operations performed on the binary forms of the
arguments.

Symbols max and min. The statement is equivalent to Lemma 25. Q.E.D.(Lemma
28)

Definition. For all d, t ∈ ω with d ≥ t, we define a binary relations <d,t on Md, by
a <d,t b iff for all i ∈ 2d−t, a[i, t] < b[i, t]. ut

Lemma 29 The family of ternary relations Q = 〈Qd | d ∈ ω〉 is uniformly existential,
where for all d ∈ ω and for all a, b, t ∈Md, we have Qd(a, b, t) iff “d ≥ t and a <d,t b”.

Proof of Lemma 29. Let R be the quaternary family of relations defined in Lemma
27. Then for all d ∈ ω and for all a, b, t ∈ Md we have Qd(a, b, t) iff Rd(b, a, ed,t, t). By
Lemma 13, ed,t can be written as a 0-ary term, therefore Lemma 27 implies our statement.
Q.E.D.(Lemma 29

Lemma 30 For each boolean function δ(x, y) of two variables the family of quater-
nary relations R = 〈R(d) | d ∈ ω〉 is uniformly existential where for all d ∈ ω
with t ≤ d, and for all a, b, c, t ∈ Md, R

(d)(a, b, c, t) iff t ≤ d and for all i ∈ 2d−t,
c[i, t] = δ(min(a[i, t], 1),min(b[i, t], 1)).

Proof of Lemma 30. Assuming that t ≤ d, R(d)(a, b, c, t) is equivalent to the following.

(41) There exists a′, b′ ∈Md such that a′ = Decr
(d)
t (Incr

(d)
t (a)), b′ = Decr

(d)
t (Incr

(d)
t (a)),

and for all i ∈ 2d, either “ed,t[i, 0] = 1 and c[i, 0] = δ(a′[i, 0], b′[i, 0])” or “ed,t[i, 0] = 0 and
c[i, 0] = 0”.

By Lemma 19 the definitions of a′ and b′ are uniformly propositional, by Lemma
13 ed,t is the value of a term, therefore statement (14) of Lemma 14 imply that the
relation described in condition (41) is uniformly propositional. Consequently the family
of relations R(d), d ∈ ω is uniformly existential. (We can get another proof by using
Lemma 23 and the fact that the function mind,t is uniformly existential, as stated in
Lemma 28.) Q.E.D.(Lemma 30)

Lemma 31 The family of quaternary relations R(d), d ∈ ω is uniformly existential, where
for all d, a, b, c, t ∈ ω, R(d)(a, b, c, t) holds iff t ≤ d and a�d,t b = c
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Proof of Lemma 31. We may assume that t ≤ d. Then a�d,t b = c iff either ((b > 22t

or b = 0) and c = 0) or “b ≤ 22t and there exists a w ∈ Md, such that w <d,t b and
a = (b�d,t c)⊕d,t w”. By statement (21) of Lemma 14 the relation a = (b�d,t c)⊕d,t w is
uniformly existential, and by Lemma 29 the relation w <d,t b is also uniformly existential.
This implies that the relation a �d,t b = c is also uniformly existential. Q.E.D.(Lemma
31)

Lemma 32 Assume that k,m, l ∈ ω and f (j) = 〈f (j)
d | d ∈ ω〉 are families of k-ary

function on M, for j = 0, 1, . . . ,m − 1 and g = 〈gd | d ∈ ω〉 is a family of m-ary
functions on M. Let h be the family of k-ary functions h = 〈hd | d ∈ ω〉 on M de-

fined by hd(a0, . . . , ak−1) = gd(f
(0)
d (a0, . . . , ak−1), . . . , f

(m−1)
d (a0, . . . , ak−1)) for all d ∈ ω,

a0, . . . , ak−1 ∈ Md. Suppose further that each of the families g, f (0), . . . , f (m−1) are uni-
formly existential on M. Then the family h is also uniformly existential on M.

Proof of Lemma 32. We have that for all d ∈ ω, and for all a0, ..., ak−1, b ∈Md,

b = h(a0, ..., ak−1)↔ Ψ(a0, ..., xa−1, b))

where Ψ(x0, ..., xk−1, y) is the formula

∃z0, ..., zm−1, g(z0, ..., zm−1) = y ∧
m−1∧
i=0

zi = fi(x0, ..., xk−1)

Writing the existential formulas defining the functions g, f0, ..., fm−1 into the formula Ψ
we get the existential formula of M defining the function h. Q.E.D.(Lemma 32)

Definition. We will denote by L(=) the first-order language with equality which contains
the constant symbols 0, 1 and does not contain any other relation symbols, function
symbols or constant symbols. For each m ∈ ω, Nd will denote a model of L(=) with
universe(Nm) = m and (0)Nm = 0, (1)Nm = 1. ut

Lemma 33 Let k ∈ ω and let P (x0, ..., xk−1) be a propositional formula of L(=). Then

the family of k + 1-ary relations R(P ) = 〈R(P )
d | d ∈ ω〉 is uniformly existential, where for

all d ∈ ω, a0, ...ak−1, u ∈Md, R
(P )
d (a0, ..., ak−1) holds iff u ≤ d and for all i ∈ 2d−u,

Nū |= P (a0[i, u], ..., ak−1[i, u])

where ū = 22u

Proof of Lemma 33. Let ak = 0, ak+1 = ed,u, and κ = k + 2. For each r, s ∈ κ let
bκr+s = mind,u(ed,u, ar − as). Lemma 13 implies that eu,d is a term of f and by Lemma
28 the operation mind,t is uniformly existential. Therefore for each fixed r and s there
exists a uniform existential definition for the integer bκr+s, consequently, there exists an
existential formula ψ(x0, ..., xk−1, y, z0, ..., zκ2−1) of M whose choice depends only on k,
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such that b0, ..., bκ2−1 is the unique sequence of length κ2 from the elements of Md such
that

Md |= ψ(a0, ..., ak−1, u, b0, ..., bk2−1)

We have ak[i, u] = 0 and ak+1[i, u] = 1 for all i ∈ 2d−u. Therefore for a fixed i ∈ 2d−u

the sequence of 0, 1 values b0[i, u], ...., bκ2−1[i, u] determines the truth values of the following
statements in Nū: aj[i, u] = 0, aj[i, u] = 1 for all j ∈ k, ar[i, u] = as[i, u] for all r, s ∈ k.
Therefore there exists a boolean expression B(x0, ...., xκ2−1) such that “for all i ∈ 2d−u

Nū |= P (a0[i, u], ..., ak−1[i, u])” iff

∀i ∈ 2d−uB(b0[i, u], ..., bκ2−1[i, u]) = 0

Lemma 24 implies that this property of the sequence bi, i ∈ κ2 can be expressed by an
existential formula whose choice depends only on κ (and consequently only on k). This
completes the proof since we have already seen that the sequence bi is definable by such
an existential formula. Q.E.D.(Lemma 33)

Definition. 1. We will denote by α ◦ β the concatenation of the sequences α and β.
2. Assume that u, a, i, l ∈ ω, and α = 〈α0, ..., αl−1〉 is a sequence of natural numbers.

The sequence a[i+α0, u], ..., a[i+αk−1, u], a[i−α0, u], ..., a[i−αk−1, u] will be denoted by
~a[i± α o u]. ut
Lemma 34 Let k, l ∈ ω and let P (x0, ..., x2kl−1) be a propositional formula of L(=). Then

the family of k+ 1-ary relations R(P ) = 〈R(P )
d | d ∈ ω〉, is uniformly existential, where for

all d ∈ ω, a0, ...ak−1, α0, ..., αl−1, u ∈Md, α = 〈α0, ..., αl−1〉, R(P )
d (a0, ..., ak−1) holds iff the

following conditions are satisfied:

(42) u ≤ d and for all j ∈ l, αj < 2d−u

(43) and for all i ∈ 2d−u,

Nū |= P
(
~a0[i± α o u] ◦ ... ◦ ak−1[i± α o u]

)
where ū = 22u.

Proof of Lemma 34. For each j ∈ l, r ∈ k we choose an integer bjk+r ∈Md such that

(44) Md |= bjk+r = 2αj2
u
ar

and with the same j and r another integer that will be denoted by bjl+r+kl such that

(45) Md |= bjk+r+lk = ÷(ar, 2
αj2

u
).

We apply now Lemma 33 with k:= 2kl, ai:= bi for all i ∈ 2kl. Conditions (44) and

(45) guarantee that all of the arguments of P
(
~a0[i±α ou]◦ ...◦ak−1[i±α ou]

)
of condition

(43) is of the form bj[i, u] for a suitably chosen j ∈ 2kl, whose choice does not depend on
i.

Therefore there exists a propositional formula P ′(x0, ..., x2kl−1) of L(=) such that for all

i ∈ 2d−u, Nū |= P
(
~a0[i±α ou] ◦ ... ◦ ak−1[i±α ou]

)
is equivalent to Nū |= P ′(b0, ..., b2kl−1),

(where P , P ′ may differ only in the order of its variables.) Therefore Lemma 33 implies
the conclusion of the present lemma. Q.E.D.(Lemma 34)
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3.2 Extending existential formulas to larger structures

In section 3.1 we have proved about several families of relations Rd, d ∈ ω that there
exists a single existential formula of ϕ which for each d ∈ ω defines the relation Rd in
the structure Md. Sometimes we will need an existential definition for Rd not in the
structure Md but in another larger structure Mq with q ≥ d. The results of this section
will show that such an existential definition always exists provided that we can use in it
d as a parameter. The following lemma considers the special case when the relation Rd

is defined by a single function symbol of M.

Lemma 35 Suppose that f(x0, . . . , xj−1) is a function symbol of M. Then there ex-
ists a term t(x0, . . . , xj−1, y) of M such that for all d, q ∈ ω with d ≤ q and for all
a, b0, . . . , bj−1 ∈Md, we have Md |= a = f(b0, . . . , bj−1) iff Mq |= a = t(b0, . . . , bj−1, d).

Proof Lemma 35. For the various function symbols f of M the choice of t is the
following:

Constant symbols. Assume that f is one of the constant symbols 0 or 1. In these
cases t is identical to the constant symbol f . If f = −1 then t(y) = 22y − 1. If f = n
then t(y) = 2y.

In the following definitions we will write mod(x, y) for the term x− ybx/yc
Unary function symbols. f = N , t(x0, y) = mod(N (x0), 22y). f = p, t(x0, y) =

min(p(x0), 22y − 1).
Binary function symbols. f = +, t(x0, x1, y) = mod(x0 + x1, 2

2y), f = ×, t(x0x1, y) =
mod(x0x1, 2

2y), f = ÷, t(x0, x1, y) = ÷(x0, x1), f = max, t(x0, x1, y) = max(x0, x1),
f = min, t(x0, x1, y) = min(x0, x1), f = ∩, t(x0, x1, y) = mod(∩(x0, x1), 22y). Q.E.D.(35).

If we consider instead of a function symbol f a term τ of M we may replace each
function symbol in τ by the term whose existence is stated in 35. This way we get the
following:

Corollary 9 Let τ(x0, . . . , xj) be a term ofM. Then there exists a term t(x0, . . . , xj−1, y)
of M such that for all sufficiently large d, q ∈ ω, with d ≤ q, and for all a, b0, . . . , bj−1 ∈
Mq, we have Md |= a = τ(b0, . . . , bj−1) iff Mq |= a = t(b0, . . . , bj−1, d).

Lemma 36 For all k ∈ ω and for all propositional formulas P (x0, ..., xk−1) of M, there
exists a propositional formula P ′(x0, ..., xk−1, y) ofM with the following property. Assume
that d, q ∈ ω, d ≤ q. Then the following two conditions are satisfied:

(46) for all a0, ..., ak−1 ∈Md, Md |= P (a0, ..., ak−1) iff Mq |= P ′(a0, ..., ak−1, d).

(47) for all b0, ..., bk−1 ∈Mq, Mq |= P ′(b0, ..., bk−1, d) implies b0, ..., bk−1 ∈Md.

Proof of Lemma 36. The equality is the single relation symbol of the language M.
Consequently each atomic formula of M is of the form τ1 = τ2, where τ1, τ2 are terms of
M. We construct a propositional formula P ′′(x0, ..., xk−1) by substituting in P for each
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atomic formula τ1 = τ2 the atomic formula t1 = t2, where ti is the term whose existence
is stated in Corollary 9 with τ := τi, for i = 1, 2. P ′(x0, ..., xk−1, y) will be the formula

P ′′(x0, ..., xk−1) ∧
k−1∧
i=0

xi < 22y

The statement of the lemma is an immediate consequence of Corollary 9 . Q.E.D.(Lemma
36)

As we have mentioned already in section 2 it is very important in the proof of the
Collapsing statement that we are able to encode sequences formed from the elements
of a structure Md by a single element of a larger structure Mq. Here we consider the
implication of such an encoding for the number of existential quantifiers in an existen-
tial formula of M. The following lemma states that if ϕ(y0, . . . , ym−1) is an existential
first-order formula ofM containing k existential quantifiers, then there exists another ex-
istential formula ψ(y0, . . . , ym−1) ofM containing only a single existential quantifier such
that for all d ∈ ω, and for all a0, . . . , am−1 ∈Md, Md |= ϕ(a0, . . . , am−1) is equivalent to
Md+p |= ψ(a0, . . . , am−1), where p depends only on k and the number of quantifiers in ϕ.
Moreover the formula ψ can be given in the form of ψ(y0, . . . , ym−1) = ψ′(π(y0, . . . , ym−1))
where π is a term of M whose length is linear in m.

Lemma 37 There exists a c0 ∈ ω, such that for all m, k ∈ ω there exist a p ∈ ω and
a term π(z0, . . . , zm−1, w) of M of length at most c0m, such that for all propositional
formulas P (x0 . . . ., xk−1, y0, . . . , ym−1) of M, there exists a propositional formula Q(x, y)
of M with the property that for all d ∈ ω, if q > d+ p, then the following holds:

For all a0, . . . , am−1 ∈Md,

Md |= ∃x0, . . . , xk−1P (x0 . . . ., xk−1, a0, . . . , am−1) ↔ Mq |= ∃x,Q(x, π(a0, . . . , am, d))

Remark. In this lemma we replaced several existential quantifiers by a single one, and
in the propositional part of the existential formula we replaced several parameters by a
single one. These steps were needed since the indirect assumption in the proof of Theorem
3 is that a formula of the type ∃x, F (x, y) is equivalent to a propositional formula. In order
to apply this indirect assumption we need existential formulas with a single quantifier and
a single parameter. The upper bounds on the integer q and on the size of the term π will
be needed when by repeated use of the indirect assumption we will eliminate quantifiers
from an arbitrary first-order formula ofM. In each step, the number of quantifiers in the
formula will decrease, but the size of the structure where we interprete the formula will
grow. The upper bounds are needed to keep this growth within reasonable limits. ut

Proof of Lemma 37. We may assume that both k and m are powers of 2. (Otherwise
we may add new variables to the formula P to make these numbers a power of 2.) Assume
that m = 2s, k = 2r. We claim that the integer p = r+s+2 meets the requirements of the
lemma. The term π(y0, ..., ym−1, z) is defined by π(y0, ..., ym−1, z) = z2÷(n,2) +

∑m−1
i=0 yi2

i2z .
(Recall that Mq |= n = 2q.)
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If a0, ..., ak−1 ∈ Md then we have that Mq |= π(a0, ..., am−1, d) = b = b0 + b1, where

b0 = d22q−1
and b1 =

∑m−1
i=0 ai2

i2d . Since ai < 22d for i ∈ m we have b1 < 2m2d < 22d+s .
Therefore q > d+ s+ 2 implies that b1 < 22q−1

. As a consequence if π0(y) = ÷(y, 2÷(n,2)),
and π1(y) = y − π0(y)2÷(n,2), then, using that Mq |= 2÷(n,2) = 22q−1

, we get that

(48) Mq |= π0(π(a0, ..., am−1, d)) = d, and

Mq |= π1(π(a0, ..., am−1, d)) =
∑m−1
i=0 ai2

i2d

Motivated by these identities we define the propositional formula Q in the following
way using the term σ(x, y, z, w) that was defined in Lemma 8. Here it is used to extract
a single term from the sum

∑m−1
i=0 ai2

i2d and from another sum of similar type. Our
definition for Q(x, y) is:

Q(x, y) ≡ P ′(κ1 . . . , κk−1, λ1, ..., λk−1, π0(y))

where κi = σ(x, i, i, π0(y)) for i = 0, 1, ..., k − 1, λj = σ(π1(y), j, j, π0(y)), and
where P ′ is the formula defined in Lemma 36 if we apply the lemma for the
present formula P and k:= k + l. With this definition we get the truth value of
Mq |= ∃x,Q(x, π(a0, . . . , am, d)) in the following way. Condition (48) gives the val-
ues of Mq |= πi(π(a0, . . . , am, d)), for i = 0, 1. Putting this into the defining
formula of Q and using Lemma 36, we get that Mq |= ∃x,Q(x, π(a0, . . . , am, d))
is equivalent to Mq |= ∃x0, . . . , xk−1, P

′(x0 . . . , xk−1, a0, . . . , am−1, d). Lemma 36
and the related choice of P ′ implies that the last expression is equivalent to
Md |= ∃x0, . . . , xk−1, P (x0 . . . ., xk−1, a0, . . . , am−1) as claimed in the present lemma.
Q.E.D.(Lemma 37)
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4 Existential definitions and turing machines

Definition. ∇ will denote the set of all pairs 〈a0, a1〉 with a0, a1 ∈ ω and a0 ≥ a1. ut
Definition. 1. Suppose that k ∈ ω and for all 〈u, t〉 ∈ ∇, Ru,t is a k-ary relation defined
on Mu. We will say that the family of relations R = 〈Ru,t | 〈u, t〉 ∈ ∇〉 is polynomially
existential in M, if there exists an integer c ∈ ω and an existential first-order formula
ϕ(x0, . . . , xk−1, y, z) of the language M such that

(49) for all v, u, t ∈ ω, if u ≥ t and v ≥ c(u − t) + t, then for all a0, . . . , ak−1 ∈ Mu,
Ru,t(a0, . . . , ak−1) holds iff Mv |= ϕ(a0, . . . , ak−1, u, t).

In this case we will say that the formula ϕ is a defining formula of the family of relations
R. A family of k-ary functions fu,t, 〈u, t〉 ∈ ∇ will be called polynomially existential if the
family of relations Ru,t, 〈u, t〉 ∈ ∇ is polynomially existential, where for each 〈u, t〉 ∈ ∇,
and a, b0, ..., bk−1 ∈Mu, Ru,t(a, b0, ..., bk−1) iff Mu |= a = fu,t(b0, ..., bk−1).

2. Assume that f is a k-ary function symbol of M. We will say that the function
symbol f is polynomially existential if the family of relations Ff = 〈fd,t | 〈d, t〉 ∈ ∇〉 is
polynomially existential. ut
Remark. The expression “polynomially existential” is motivated by the following facts.
We may represent an element of Mu by the sequence of its 22t-ary digits, that is, by
a sequence of length 2u−t whose elements are from Mt, provided that u ≥ t. In the
existential formula defining the relation Ru,t we can existentially quantify elements of Mv

which also can be represented by the sequences of their 22t-ary digits. For the smallest
integer v satisfying condition (49) the length of such a sequence is 2c(u−t). This number is a
polynomial of 2u−t, that is, for the definition of the relation Ru,t it is enough to existentially
quantify a sequence whose length is only a polynomial of the length of the sequences
which represent the elements of Mu. The next lemma shows that in the definition of a
polynomially existential family of relations we may replace the assumption v ≥ c(u−t)+t
by v = c(u−t)+t, and so considering only the smallest choice for the integer v is justified.
ut

Lemma 38 The definition of a polynomially existential family of relations remains valid
if we replace condition (49) by the following condition

(50) for all v, u, t ∈ ω, if u ≥ t and v = c(u − t) + t, then for all a0, . . . , ak−1 ∈ Mu,
Ru,t(a0, . . . , ak−1) holds iff Mv |= ϕ(a0, . . . , ak−1, u, t).

Proof of Lemma 38. The statement of the lemma is an immediate consequence of
Lemma 37 Q.E.D.(Lemma 38)

Lemma 39 Assume that k,m, l ∈ ω and f (j) = 〈f (j)
d,u | 〈d, u〉 ∈ ∇〉 are families of k-ary

function on M, for j = 0, 1, . . . ,m − 1 and g = 〈gd,u | 〈d, u〉 ∈ ∇〉 is a family of m-
ary functions on M. Let h be the family of k-ary functions h = 〈hd,u | 〈d, u〉 ∈ ∇〉 on
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M defined by hd,u(a0, . . . , ak−1) = gd,u(f
(0)
d,u(a0, . . . , ak−1), . . . , f

(m−1)
d,u (a0, . . . , ak−1)) for all

〈d, u〉 ∈ ∇, a0, . . . , ak−1 ∈Md. Suppose further that each of the families g, f (0), . . . , f (m−1)

are polynomially existential on M. Then the family h is also polynomially existential on
M.

Proof of Lemma 39. Assume that c ∈ ω is an integer and ϕ0, ..., ϕm−1, γ are existential
formulas of M such that for all d, u ∈ ω and for all ai, ai,0, ..., ai,k−1 ∈ Md, i ∈ m and
b, b0, ..., bm−1 ∈ Md we have that for all i ∈ m, Mu+c(d−u) |= ϕi(ai, ai,0, ..., ai,k−1, d, u) iff

f
(i)
d,u(ai,0, ..., ai,k−1) = ai and Mu+c(d−u) |= γ(b, b0, ..., bm−1, d, u) iff gd,u(b0, ..., bm−1) = b.

Then we have that for all x0, ..., xk−1, y ∈Md, hd,u(x0, ..., xk−1) = y iff

Mu+c(d−u) |= ∃z0, ..., zm−1,Ψ0 ∧Ψ1 ∧Ψ2

where Ψ0 ≡ ∧
i∈m zi < 22d , Ψ1 ≡ ∧

i∈m ϕi(zi, x0, ..., xk−1, d, u)) and Ψ2 ≡
γ(y, z0, ..., zm−1, d, u). Therefore the existential formula ∃z0, ..., zm−1,Ψ0 ∧Ψ1 ∧Ψ2 shows
that the family of functions h is polynomially existential. Q.E.D.(Lemma 39)

Definition. In the following a turing machine will mean a turing machine with a single
tape and a single head, whose each cell contain a natural number less than 2q for some
fixed q ∈ ω. We may also consider the contents of the cells as 0, 1-sequences δ0, ..., δq−1 of
length q. If we say that T is a turing machine without specifying the value of q then we
assume that q = 2, that is each cell contains a 0, 1 bit. The machine has always a finite
number of cells, but as the machine works it can always open new cells. Since we will
consider only polynomial time computation on this machine the exact way as the input
and output is presented is not important. E.g. if the input consists of several integers
we may give their binary bits in even numbered cells, while the bits in the odd numbered
cells signal the start of a new input number and the end of the input. We will call this
type of turing machines also unlimited turing machines when we want to distinguish them
from another class of turing machine, the restricted turing machines that we will define
later. (In a restricted turing machine the number of cells is fixed when the machine starts
to work, and there are restrictions on the contents of the cells too.) ut

Definition. Assume that d, u ∈ ω, d ≥ u and χ ∈ zo(d, u), that is, χ =
∑2d−u−1
i=0 δi2

i2u ,

where δi ∈ {0, 1} for all i ∈ 2d−u. The the integer
∑2d−1
i=0 δi2

i will be denoted by bin(χ),
motivated by the fact the we interprete the 22u-ary digits of a as binary bits. ut

Lemma 40 Suppose that c0 ∈ ω and T is a turing machine such that for all n, j ∈ ω
with j < n, h < 2n, the machine T at an input 〈n, j, h〉 and at time nc0 provides the
output λ(n, j, h) ∈ n + 1. Then the family of relations Rd,u, 〈d, u〉 ∈ ∇ is polynomially
existential, where for all 〈d, u〉 ∈ ∇, Rd,u is defined in the following way. Suppose that
a, b, χ ∈Md. Then Rd,u(a, b, χ) iff the following holds

(51) χ ∈ zo(d, u) and for all i ∈ 2d−u

b[i, u] = a[λ(2d−u, i, bin(χ)), u]
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In Lemma 40 we are speaking about polynomial time computation on turing machines
so the exact parameters of the machine the number of tapes, etc. are irrelevant. From
the point of view of our proof however these parameters are important so we give a more
detailed definition of a turing machine. Before we start the proof of Lemma 40 we will
prove another related result Lemma 42.

In the next definition we define a class of turing machines which will be called restricted
turing machines or shortly r.-turing machines which will differ at the following points from
the turing machines defined earlier:

(i) the number of cells are given when the machine starts to work, new cells cannot
be opened,

(ii) each cell contains a 0, 1 sequence 〈δ0, ..., δµ−1〉 of length µ, for some fixed µ ∈ ω,

(iii) the contents of the cells where the head is located, determine in itself that the
head is there and determines also the state of the automaton,

(iv) it is possible to tell in the knowledge of the content of a cell C whether C is at
one of the two ends of the tape an if the answer is yes, it is possible to tell whether it is
the first or the last cell.

Definition. We define a class of turing machines which will be called restricted turing
machines or shortly r.-turing machines motivated by the fact that the length of the tape
and the contents of the cells cannot be arbitrary, there are some restrictions on them.
Such a machine T consists of a tape of length ` = tplength(T ). The cells are denoted by
cell0, ..., cell`−1, they are given when the machine starts to work, new cells cannot be
opened. Each cell at each time contains a 0, 1-sequence of length µ = Width(T ), where
µ ∈ ω, µ > 3. µ = Width(T ) will be also called the large width of the machine. If
δ0, ..., δµ−1 is the content of cell j at time t, for some j ∈ `, t ∈ ω, then for all i ∈ µ
we will denote δi by contt,j,i. A k ∈ ω, k < µ − 3 is fixed. The first k bits that is
contt,j,0, ..., contt,j,k−1 will be called the work bits of cellj at time t. They will play the
role of the contents of the cells of a turing machine in the traditional sense the remaining
bits, that is, contt,j,k, ..., contt,j,µ−1 will contain information related to requirements (iii)
and (iv) formulated before this definition. The integer k will be called the small width of
the machine and denoted by k = width(T ). We assume that the movement of the head
and the changes of the contents of the cells from time t to time t + 1 is directed by the
finite automaton aut(T ) with 2ν states where ν = µ − k − 3. The states are identified
with the natural numbers 0, 1, ..., 2ν − 1. The state of the automaton aut(T ) at time t
will be denoted by statet. At time 0 the finite automaton is always in state 0.

At each time t ∈ ω the head of the machine is at one of the cells. If it is at cellj
then we will write headt = j. If headt = j then contt,j,k+ν = 1, and the sequence
contt,j,k, ..., contt,j,k+ν−1 are the binary bits of statet(aut(T )), where statet(aut(T )) is
the state of the automaton aut(T ) at time t.

Finally the values contt,j,k+ν+1 and contt,j,k+ν+2 indicate whether cellj is at an edge
of the tape and if it is which one. Namely contt,j,k+ν+1 = 1 iff j = 0 and contt,j,k+ν+2 = 1
iff j = `− 1. We will call contt,j,k+ν+1 and contt,j,k+ν+2 the edge bits.
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The change of the contents of the cells from time t to time t+1 is done in the following
way. Assume that at time t the head is at cellj. Then the automaton aut(T ) gets the
the work bits of cellj at time t, that is, the sequence, contt,j,0, ..., contt,j,k−1 as input
and depending on this and its state at time t it provides an output which determines the
following three things: (i) the work bits of cellj at time t+ 1, (the work bits of the other
cells remain unchanged), (ii) the state of aut(T ) at time t+ 1, (iii) the movement of the
head from time t to time t+1, that is, whether it stays where it is, or it attempts to move
to the neighboring cell on the left or right (if it is at an edge of the tape where the desired
movement is not possible then it stays where it is). Therefore (ii) and (iii) together with
headt determine headt+1 and statet+1. which uniquely determine contt+1,j,i for all j ∈ `,
i = k, k + 1, ..., µ− 1.

For a fixed t ∈ ω, j ∈ ` the sequence contt,j,0, ..., contt,j,µ−1, will be denoted by ~contt,j.
This definition does not define the symbols ~contt,−1, ~contt,`, however we will use these
symbols to denote 0, 1-sequences of lengths µ, and on each occasion we will tell what are
their values.

The advantage of using restricted turing machines is their property stated in the
following lemma. This lemma will make it easy to define the history of a restricted turing
machine by an existential formula of M in a suitably chosen structure Mv.

Lemma 41 Suppose that T is a restricted turing machine with tplength(T ) = `,
Width(T ) = µ, width(T ) = k. Then there exist boolean functions Bi, for all i ∈ µ,
with 3µ variables such that for all t ∈ ω, j ∈ `, i ∈ Width(T ), and for all possible values
of the vectors ~contt+1,−1, ~contt,` ∈ {0, 1}µ, we have

contt+1,j,i = Bi( ~contt,j−1 ◦ ~contt,j ◦ ~contt,j+1)

Proof of Lemma 41. The values ~contt,j−1, ~contt,j, ~contt,j+1 determine the answer to
the following questions.

(i) Is the head located at time t at one of the cells cellj−1, cellj, cellj+1 and if it is
which one?

(ii) If the answer to question (i) is yes then what is statet and the what are the
contents of the cells cellj−1, cellj, cellj+1?

(iii) Is cellj at the edge of the tape, or more precisely, which one of the following
equations hold j = 0 or j = `− 1?

The answers to questions (i), (ii), and (iii) uniquely determine what is contt+1,i,j.
Moreover using the answer for question (iii) we can makes sure that the values ~contt,−1

and ~contt,` are not used to answer any of these question even if they are present among
the three sequences ~contt,j−1 ◦ ~contt,j ◦ ~contt,j+1. Q.E.D.(Lemma 41)

Definition. Assume that T is restricted turing machine, tplength(T ) = `, Width(T ) =
µ, width(T ) = k, and an u ∈ ω is fixed. The sequence of integers a0, ..., ak−1, will be
called the u-based input for the machine T , if for each i ∈ k, ai =

∑`−1
j=0 cont0,j,i2

j2u . Our
definition implies that the u-based input uniquely determines the complete history of the
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machine that is all of the values contt,j,i for t ∈ ω, j ∈ `, and i ∈ µ. For all i ∈ µ, T ∈ ω
we define an integer bi,T by

bi,T =
T−1∑
t=0

`−1∑
j=0

contt,j,i2
(t`+j)2u

The sequence b0,T , ..., bµ−1,T will be called the u-based history of the machine T till time
T . ut

Lemma 42 Assume that c0, k, µ,∈ ω and A is a finite automaton with |A| = 2µ−k−3.
Then there exists an existential formula ψ ofM such that for all d, u ∈ ω, with d ≥ u and
for all a0, ..., ak−1 ∈ Md, b0, ..., bµ−1,∈ Mv, where v = u + (c0 + 1)(u − d) the following
two conditions are equivalent:

(52) Mv |= ψ(a0, ..., ak−1, b0, ...., bµ−1, d, u)

(53) For all i ∈ k, ai ∈ zo(d, u), and if T is a restricted turing machine with aut(T ) =
A, width(T ) = k, tplength(T ) = ` = 2d−u, Width(T ) = µ, and with the u-based input
a0, ..., ak−1, then its u-based history till time T = `c0 is b0, ..., bµ−1.

Proof. This lemma is a consequence of Lemma 34 and Lemma 41. We apply lemma
34 with k:= k + µ + 1, l:= 4 d:= v a0:= a0, ..., ak−1:= ak−1, ak:= b0, ..., ak+µ−1:= bµ−1,
ak+µ:= ed,u, α0:= 0 α1:= `− 1, α2:= `, α3:= `+ 1.

In the formulation of the propositional statement P we follow the notation of the
present lemma. The propositional formula P will say the following for all r ∈ 2v−u:(
ed,u[r, u] = 1→ ∧

i∈k(br[i, u] = ar[i, u])
)

and if ed,u[r, u] = 0, then

bi[r, u] = Bi(~βr−`−j−1 ◦ ~βr−`−j ◦ ~βr−`−j+1)

where Bi is the boolean expression from Lemma 41 and ~βr = 〈b0[r, u], ..., bµ−1[r, u]〉.
Lemma 41 implies that if the the propositional formula P holds for all r ∈ 2v−d then
b0, ..., bµ−1 is the u-based history of the machine T . Therefore Lemma 34 implies the
existence of the existential formula ψ. Q.E.D.(Lemma 42)

Proof of Lemma 40. Suppose that a, b, χ ∈Md and Rd,u(a, b, h) holds, that is, for all
i ∈ 2d−u

b[i, u] = a[λ(2d−u, i, bin(χ)), d]

This means we get the 22u-ary digits of the integer b from the digits of the integer a
in the following way. To get the ith digit b[i, u], we have to compute, using the turing
machine T , the value of λi = λ(2d−u, i, bin(χ)). If λi < 2d−u then b[i, u] = a[λi, u] which
is an element of 22u . This is true also for the λi = 2d−u but, since a ∈ Md, we have
a[2d−u, u] = 0. Therefore each the 22u-ary digit of b is either one of the first 2d−u digits of
a or it is 0.

Let S be the set of sequences of length s from the elements of Mu, where s = 2d−u.
We define maps ηj,ι, j ∈ s − 1, ι = 0, 1, 2, that map S into itself. Suppose that x =
〈x0, ..., xs−1〉 ∈ S, then
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ηi,0(x) = 〈y0, ..., ys−1〉, where for all j ∈ {0, 1, ..., s− 2}\{i}, yj = xj, and yi = 0. That
is, we get ηi,0(x) from x by replacing xi with 0.

ηi,1(x) = 〈y0, ..., ys−1〉, where for all j ∈ {0, 1, ..., s−2}\{i, i+1}, yj = xj, and yi = xi+1,
yi+1 = xi. That is, we get ηi,1(x) from x by swapping xi and xi+1.

ηi,2(x) = 〈y0, ..., ys−1〉, where for all j ∈ {0, 1, ..., s − 2}\{i}, yj = xj, and yi = xi+1.
That is, we get ηi,0(x) from x by replacing xi with xi+1.

Clearly if d, u, a, χ, b are given as above then there exists a sequence J = 〈ηim,ιm | m =
0, 1, ..., κ− 1, where κ < s3 such that

(54) if A = 〈a[0, u], ..., a[s− 1, u]〉, B = 〈b[0, u], ..., b[s− 1, u]〉, then

B = ηi0,ι0(ηi1,ι1(...ηiκ,ικ(A)...))

Since the function λ was computable by an (unlimited) turing machine T in time
polynomial in s, the sequence J = 〈〈im, ιm〉 | m = 0, 1, ..., κ − 1〉 is polynomial time
computable as well. So far we have assumed that T is an unlimited turing machine
whose each cell contain a single 0, 1 bit. The same computation can be performed by an
unlimited turing T1 machine turing whose each cell contains two bits. The advantage of
using such a machine is that the encoding of the input can be done in a form which is
convenient for definitions by M formulas in a structure Mv.

More precisely the assumptions of the lemma imply that there exists a constant c1 ∈ ω
and an unlimited turing machine T1 such that for each j ∈ ω, cellj at time t, contains
two bits contt,j,0 and contt,j,1 and the machine in time sc1 computes a sequence 〈im, ιm |
m = 0, 1, ..., κ − 1〉 which satisfies condition (54). We will denote the time by tm when
the computation of the pair 〈im, ιm〉 has been completed. Moreover we also assume that
the input χ is given at time 0 in the form cont0,j,0 = χ[j, 2], for all j < dlog2 χe, and
cont0,j,i = 0 for all other values of j, i ∈ ω, where cont0,j,i is defined. (We may assume
that at time 0 the length of the tape is determined by the length of the input, and when
a new cell is opened its initial content is always 〈0, 0〉.)

We define now a restricted turing machine T2 with Width(T2) = c2, width(T2) = k0

where k0, c2 ∈ ω, k0 < c2 − 3 are constants that we will fix later and tplength(T2) =
` = sc1 . When the machine starts to work cont0,j,i is the same for T1 and T2 where both

values are defined. If cont
(T1)
0,j,i is not defined and i < c2 − 3 then cont

(T2)
0,j,i = 0. (For

i = c2 − 3, c2 − 2, c2 − 1 cont
(T2)
0,j,i is determined by the definition of a restricted turing

machine.)
We partition the first k0 bits of each cell j at time t into subsets Xt,j, Yt,j, Zt,j. We

will call the the X-bit, Y -bit and Z-bits. Xt,j contain the first two bits (corresponding to
the bits used by T1), Yt,j contains the next two bits and Zt,j contains the remaining work
bits. The computation done by T2 will consist of κ consecutive time intervals I0, ..., Iκ−1.
Each interval Im is further divided into four consecutive intervals Jm, Km, Lm,Mm.

In the interval Jm, m ∈ κ, using only the X bits of its cells T2 simulates the compu-
tation done by T1 in the time interval (tm−1, tm], (where t−1 = −1).

52



After that this simulation is suspended, and during the intervals Km, Lm,Mm the X
bits of the cells do not change, and consequently T2 will be able to continue the simulation
of T1 in the time interval Jm+1.

In the interval Km, T2 does the following, while it leaves the X bits and Y bits
unchanged in each cell. T2 takes the head to cellim , where 〈im, ιm〉 is the pair computed
by T1 by time tm. For this no other work bits are used than the Z bits. Meanwhile
aut(T2) “remembers” the value of ιm, that is, it has enough states to use different ones
depending on the value of ιm.

During the whole interval Lm the head remains at cellim . When interval Lm starts
say at T2-time t′m, T2 writes the binary form of ιm + 1 into the two bits of the set Ytm,im .
That is, contt′m,im,2 = (ιm + 1)[0, 0] and contt′m,im,3 = (ιm + 1)[1, 0]. All of the other work
bits remain unchanged

At time t′m+1 still in interval Lm, the head remains at cellim and the bits in Yt′m+1,im

are changed into 0, that is, the contt′m+1,im,2 = 0 and contt′m+1,im,3 = 0. All of the other
work bits remain unchanged.

In the interval Mm the head goes back to the position where it was at the end of
interval Km. During this the X and Y bits do not change. (The very last interval of the
form Mm is exceptional in the sense that is has no end since according to our definition
the machine cannot stop, so the head remains at the same place and the content of all of
the cells remain unchanged.)

This completes the description of the computation done by T2. It is easy to see that
there exists a finite automaton A, such that if A = aut(T2) then T2 will perform the
described computation. Width(T2) = c2 and width(T2) = k0 are chosen in a way that is
compatible with the described computation and the choice of A.

Let t be a time according to T2 and let j ∈ ` such that at least on of the bits in Yt,j is
not 0, equivalently contt,j,2 6= 0 or contt,j,3 6= 0. Then we will say that the integer j is a
critical cell number at time t. We will need later the following immediate consequence of
the definition of T2:

(55) the machine T2 has the property that for each t ∈ ω there exists at most one integer
j ∈ ` such that j is a critical cell number at time t. If j is a critical cell number at time t
then then there exists a unique m ∈ κ such that the machine T2 at time t, wrote the binary
bits of ιm + 1 into the Yt,j bits. (In this case ιm will be called the critical map-number at
time t.)

The total time needed for T2 to complete the described steps is at most T = sc3 , where
c3 ∈ ω is sufficiently large with respect to c1. We will write T (d,u)

2 instead of T2 if we want
to emphasize its dependence on d and u. Applying Lemma 42 we get the following.

There exists an existential formula ψ of M such that for all d, u ∈ ω with d ≥ u for
all χ ∈ zod,u and for all b0, ..., bc2−1 ∈Mv, here v = u+ (c3 + c1)(d− u) the following two
conditions are equivalent

(56) χ ∈ zod,u, and the u-based history of the machine T (d,u)
2 with u-based input

〈χ, 0, ..., 0〉 is b0, ..., bc2−1.
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(57) Mv |= ψ(b0, ..., bc2−1 , χ, d, u)

The next step is to give an existential formula ϕ of M such that for all b0, ..., bc2−1 ∈
zo(v, u) and for all a, b, χ ∈Md, Mv |= ϕ(b0, ..., bc2−1, a, b, χ, d, u) iff condition (51) of the
lemma is satisfied. This together with the equivalence of conditions (56) and (57) clearly
implies the conclusion of the Lemma 40, (we also need that according to Lemma 22 the
conditions b0, ..., bc2−1 ∈ zo(v, u), χ ∈ zod,u can be described by an existential formula in
Mv.)

We define an integer α ∈ Mv. We for each j ∈ `, t ∈ T , where s = 2d−u, ` = sc1 ,
T = sc3 , αt,j will denote the integer α[t`+ j, u]. We define αt,j by induction on t.

For t = 0, α0,j = a[j, u]. Assume that αt−1,j has been defined for some t ∈ ω\{0} and
for all j ∈ `. If j ≥ s or there is no critical cell number at time t, then αt,j = αt−1,j. If
there exists a critical cell number j0 at time t and ιm is the critical map-number at time
t. Then we define αt,j for all j < s, by

〈αt,0, ..., αt,s−1〉 = ηj0,ιm
(
〈αt−1,0, ..., αt−1,s−1〉

)
and by αt,j = 0 for all j ≥ s. This completes the definition of the integer α. The definition
implies that we have αT,j = b[j, u] for all j ∈ s. In the definition we treated separately the
cases j < s and j ≥ 0. Later we will use the fact that the integer wv,d,u = ed,u

∑T−1
i=0 2i`2

u
,

has the property that for all j ∈ `, t ∈ T , w[t`+j, u] = 1 if j < s and and wv,d,u[t`+j, u] = 0
otherwise. Moreover by Lemma 11 there exists a term σ of M whose choice does not
depend on anything, such that Mv |= wv,d,u = σ(v, u, d) and as a consequence w is
definable by an existential formula in M.

We show now that the integer α can be defined by an existential formula in Mv

(using b0, ..., bc2−1, a, d, u as a parameters). We will denote by ~contt,j the sequence
contt,j,0, ..., contt,j,c2−1 with respect to the machine T2. As earlier we use the symbols
~contt,−1 ~contt,` to denote 0, 1 sequences of length c2, whose values will be decided later.

In a similar way αt,−1, αt,` will denote integers in Mu whose values will be decided later.
The definition of the integers αt,j implies the following:

(58) There exists a propositional formula P of the language L(=) such that for all t ∈ sc3,
j ∈ `, i ∈ c2 = Width(T2), and for all possible definitions of the vectors ~contt,−1, ~contt,` ∈
{0, 1}c2 and the integers αt,−1, αt,` ∈Mu, we have that αt+1,j is the unique integer A ∈ Nū

such that

Nū |= P (A,αt−1,j, αt,j, αt+1,j, ~contt,j−1 ◦ ~contt,j ◦ ~contt,j+1, wv,d,u[ts
c3 + j])

Now we use Lemma 34 and get that the α is definable by an existential formula in
Mv.

The definition of α implies that Mv |= b = ÷(α, 2`(T−1)2u) and a = mod(α, 2s2
u
), that

is, Mv |= a = α − 2s2
u ÷ (α, 2s2

u
), where mod(x, y) is the least nonnegative residue of x

modulo y. Q.E.D.(Lemma 40)
Lemma 42 that we have formulated and proved earlier states that if T is a restricted

turing machine T such that width(T ) and aut(T ) are constants, then its history can
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be defined by an existential formula in Mv, where v is large enough so that the u-based
history can be presented as a sequence in Mv. Now we formulate a consequence of the
lemma which is dealing with not the whole history of T but only its input-output relation.

Lemma 43 Assume that c0, c1, k ∈ ω and A is a finite automaton. Then the family of
relations 〈Rd,u | 〈d, u〉 ∈ ∇〉 is polynomially existential, where for all d, u ∈ ω, d ≥ u,
and for all a0, ..., ak−1, b0, ..., bk−1 ∈Md, Rd,u(a0, ..., ak−1, b0, ..., bk−1) holds iff there exists
a restricted turing machine T with width(T ) = k, aut(T ) = A, tplength(T ) = 2c0(d−u)

such the the following holds:

(59) If the u-based input of the machine T is the sequence a0, ..., ak−1, and T = 2c1(d−u)−
1, then for all i ∈ k, bi =

∑2d−u−1
j=0 contT,j,i2

j2u.

Proof of Lemma 43. The statement of the lemma is an immediate consequence of
Lemma 42, since we have to say only by an existential formula that there exists a history
of T which is compatible with the given u-based input and the given contents of the cells
at time T . Q.E.D.(Lemma 43)
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5 Polynomially existential definition for parallel

multiplication

In this section we prove the following

Lemma 44 The function symbol × ofM is polynomially existential in M. Equivalently,
the family of functions 〈⊗q,u | 〈q, u〉 ∈ ∇〉 is polynomially existential.

As a first step of the proof we reformulate the statement of Lemma 44.

Lemma 45 The following statement implies Lemma 44. Let F = 〈Fd,u | 〈d, u〉 ∈ ∇〉 be
the the family of ternary functions defined in the following way. For all d, u ∈ ω with
d ≥ u, and for all a, b, q ∈ Md, Md |= Fd,u(a, b, q) = a ⊗q,u b if a, b ∈ Mu, q ≥ u and
d ≥ u + 2(q − u) + 2, otherwise Fd,u(a, b, q) = 0. Then the family of function Fd,u is
polynomially existential.

Proof of Lemma 45. Let Γ be the set of all triplets 〈d, q, u〉 ∈ ω3, such that d ≥ q ≥ u
and d ≥ u+ 2(q−u) + 2. Suppose that the family functions F is polynomially existential.
This implies that there exists an existential formula ψ of M and a c0 ∈ ω, such that for
all 〈d, q, u〉 ∈ Γ, and for all a, b, c ∈Mq, and for all w ≥ u+ c0(d− u) we have

(60) Mw |= ψ(a, b, c, q, d, u) iff Mq |= a⊗q,u b = c.

Assume now that we choose 〈q, u〉 ∈ ∇ arbitrarily with the only restriction q > u,
a, b, c ∈ Mu, and we define d by d = q + 2(q − u) + 2, and so we have 〈d, u, q〉 ∈ Γ. Let
c1 ∈ ω be a constant with c1 > c0 + 6. Then u+ c1(q − u) ≥ u+ c0(d− u) and therefore
condition (60) implies that

(61) Mu+c1(q−u) |= ψ(a, b, c, q, d, u) iff Mq |= a⊗q,u b = c.

This holds for all 〈q, u〉 ∈ ∇, with q > u and for all a, b, c ∈ Mq. The q = u case
however is trivial since Mq |= a ⊗q,q b = ab. Therefore if we define another existential
formula ψ′ of M with ψ′(a, b, c, q, u) ≡ (q = u ∧ ab = c) ∨ ψ(a, b, c, q, q + 2(q − u) + 2, u),
then we have that for all 〈q, u〉 ∈ ∇ and for all a, b, c ∈Mq

(62) Mq+c1(q−u) |= ψ′(a, b, c, q, u) iff Mq |= a⊗q,u b = c.

as required in the definition of a polynomially existential family of functions.
Q.E.D.(Lemma 45)

Proof of Lemma 44. Let F = 〈Fd,u | 〈d, u〉 ∈ ∇〉 be the family of functions defined
in Lemma 45. We will show that F is polynomially existential. We define four families
of functions Fi = 〈Fd,u,i | 〈d, u〉 ∈ ∇〉 for i = 0, 1, 2 and G = 〈Fd,u,i | 〈d, u〉 ∈ ∇〉. The
functions Fd,u,i, i = 0, 1, 2 will be binary functions and the functions Gd,u will be ternary
functions. For each fixed 〈d, u〉 ∈ ∇ we define a ternary function F ′ = 〈F ′d,u | 〈d, u〉 ∈ ∇〉.
For all a, b, q ∈Md,u,

F ′d,u(a, b, q) = Fd,u,2

(
Gd,u

(
Fd,u,1(a, q), Fd,u,1(a, q), q

)
, q
)

We will prove the following two statements.
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(63) The families of functions F0, F1, F2, G, are all polynomially existential.

(64) For all 〈d, u〉 ∈ ∇ and for all q ∈Md and a, b ∈Mq, we have

F ′d,u(a, b, q) = Fd,u(a, b, q)

According to Lemma 39 the composition of polynomially existential families is poly-
nomially existential. The family F ′ was defined as a composition, therefore condition (63)
implies that the family F ′ is polynomially existential. The fact that the family F ′ is poly-
nomially existential and condition (64) together imply that the family F is also polynomi-
ally existential. (The functions F ′d,u and Fd,u are not necessarily identical on Md since the
equality in condition (64) is guaranteed only for a, b ∈Mq.) Indeed assume that ψ is an ex-
istential formula ofM and Mu+c0(u−d) |= ψ′(a, b, c, q, d, u) is equivalent to F ′d,u(a, b, q) = c,
for all a, b, c, q ∈Md. Let ψ(a, b, c, q, d, u) ≡ ((a ≥ 22q∨b ≥ 22q)∧c = 0)∨ψ′(a, b, c, q, d, u).
Then ψ′ is an existential formula of M, and Mu+c0(u−d) |= ψ′(a, b, c, q, d, u) is equivalent
to Fd,u(a, b, q) = c.

Therefore to complete the proof of Lemma 44 it is sufficient to show that there exists
families of functions F0, F1, F2, G, such that conditions (63) and (64) are satisfied. (In the
latter one F ′ is defined as a composition F0, F1, F2, G, as indicated earlier.)

Let Γ be the set of all triplets 〈d, q, u〉 ∈ ω3, such that d ≥ q ≥ u and d ≥ u+2(q−u)+2.
We start the definition on the functions Fd,u,i, and G by defining their values in places

that are not interesting for us. Suppose that d, u, q ∈ ω, d ≥ u, q ∈Md and 〈d, q, u〉 6∈ Γ.
Then for all x, y ∈ Mu, Fd,u,0(x, q) = Fd,u,0(x, q) = Fd,u,0(x, q) = G(x, y, q) = 0. Since
〈d, q, u〉 6∈ Γ implies Fd,u(x, y, q) = 0 for all x, y ∈Mu as well condition (64) is satisfied if
〈d, q, u〉 6∈ Γ. Therefore, starting from from this, point we consider only the 〈d, q, u〉 ∈ Γ
case. Since 〈d, q, u〉 ∈ Γ is a propositional statement in Md, this is sufficient for our
purposes.

The family of functions F0 and F1. Assume that a 〈d, q, u〉 ∈ Γ is fixed, s = 2q−u and
p ∈ 2s2

u
= Md. If p /∈Mq then Fd,u,0(p, q) = Fd,u,1(p, q) = 0. Assume now that p ∈Mq.

We define Fd,u,i(p, q) for i = 0, 1. The integer p can be written in the form of

p =
s−1∑
i=0

π(i)2i2
u

where π(i) ∈ 22u for all i ∈ s. Our definitions are

Fd,u,0(p, q) =
s−1∑
i=0

π(i)22is2u , Fd,u,1(p, q) =
s−1∑
i=0

π(i)22i2u ,

that is, in both cases we got the 22d-ary digits of Fd,u,i(p, q) from the digits of p by moving
the digits of p to different places and putting 0s in the remaining places. We have that
Fd,u,0(p, q)[j, u] = π( j

2s
) if 2s|j and Fd,u,0(p, q)[j, u] = 0 otherwise. We apply Lemma 40

with n:= 2d−u, χ:= 2(q−u)2u , h = bin(χ) = 2q−u, and the function λ(n, j, h) is defined in
the following way: if j = 2hi for some i ∈ h then λ(n, j, h) = i otherwise λ(n, j, h) = n.
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Lemma 40 implies that the family F0 is polynomially existential. We can show in a
similar way that the family F1 is also polynomially existential.

The family of functions G. Assume that 〈d, q, u〉 ∈ ∇ and x, y ∈Md. Then Gd(x, y) =
xy. Clearly the family of functions G is polynomially existential.

The definition of the function Fd,u,2. Assume that a γ ∈ 〈d, q, u〉 ∈ Γ is fixed and
p ∈Md and p[i, d] = π(i). Then Fd,u,2(p) =

∑s−1
i=0 π(2si + 2i)2i2

u
. In the same way as in

the case of the family F0 we can show using Lemma 40 that the family F2 is polynomially
existential.

This completes the definition of the families Fi and G and the proof of statement (63).
Now we prove statement (64).

It is sufficient to show that for all a, b ∈Mq, and for all i ∈ 2d−u,

F ′d,u(a, b, q)[i, u] = Fd,u(a, b, q)[i, u]

Since the values of d, u and q are fixed now, we will write F0(x) instead of Fd,u,0(x, q),
F2(x, y) instead of Fd,u,2(x, y, q), etc.

Let a =
∑s−1
j=0 aj2

j2u and b =
∑s−1
j=0 bj2

j2u , where s = 2u−q. Then, by the definition of
F and the definition of the operation ⊗q,u we have F (a, b)[i, u] = (aibi)Mu , that is, aibi
must be computed in Mu.

If we compute F ′, according to its definition as a composition, we get the following.
F0(a) =

∑s−1
j=0 aj4

sj2u and F1(b) =
∑s−1
k=0 bk4

k2u . Therefore if we compute ab in the 42u-ary
numeral system then all of the products ajbk will contribute to to a different digits of
the product ab, since the sums sj + k, j, k ∈ s are all different. Moreover aj, bk ∈ Mu

imply that the product ajbk as the product of integers is less than 42u , therefore there is
no carryover, and we have that

(65) F0(a)F0(b) =
∑s2−1
r=0 αr4

r2r , where αr = ajbk < 42u, if r = sj+k, and j, k ∈ s, where
every operation is performed as among integers.

Moreover the assumptions a, b ∈Mq and d ≥ u+ 2(u− q) + 2 imply that the product
F0(a)F0(b) among the integers is the same that in Md. Since F0(a)F0(b) = G(F0(a), F0(b))
we have that F2(F0(a)F0(b)) = F ′(a, b). Let h = F0(a)F1(b). Statement (65) imply
that h[2si + 2i, u] = (aibi)Mu , therefore, according to the definition of F2, we get that
F ′(a, b)[i, u] = (aibi)Mu , where (aibi)Mu . This completes the proof of statement (64).
Q.E.D.(Lemma 44)
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6 The M operations are polynomially existential.

In this section we prove Theorem 7 which is equivalent to the following lemma.

Lemma 46 For each function symbol f of M, the parallel f operation is polynomially
existential in M. Equivalently, for each function symbol f the family of functions 〈fd,t |
〈d, t〉 ∈ ∇〉 is polynomially existential in M.

We will use the following three lemmas in the proof of Lemma 46.

Lemma 47 Suppose that τ(x0, ..., xk−1) is a term of M, such that for each function
symbol f of M, if f occurs in τ then f is polynomially existential. Then the family of
k-ary relations R = 〈Rd,t | 〈d, t〉 ∈ ∇〉 is polynomially existential, where for all d, t ∈ ω
with d ≥ t and for all a0, ..., ak−1 ∈ Md, we have Rd,t(a0, ..., ak−1) iff for all i ∈ 2d−t,
Mt |= τ(a0[i, t], ..., ak−1[i, t]) = 0.

Assume now that for all of the function symbols f in τ , f /∈ {×,÷,p}. Then the family
of k + 1-ary relations Q = 〈Qd | d ∈ ω〉 is uniformly existential, where for all d ∈ ω and
for all a0, ..., ak−1, t ∈Md, Qd(a0, ..., ak−1, t) iff t ≤ d and Rd,t(a0, ..., ak−1).

Proof of Lemma 47. To prove the first statement of the lemma we construct an
existential formula ψ of M such that for all sufficiently large c > 0, for all d, t ∈ ω with
d ≥ t and for all a0, ..., ak−1 ∈Md, we have Rd,t(a0, ..., ak−1) iff Mv |= ψ(a0, ..., ak−1, d, t),
where v = t+ c(d− t).

Let f (0), ..., f (l−1) be the function symbols of M occurring in τ , and let τ0, ..., τr−1 be
the sequence of all subterms of τ where τi = xi for i ∈ k and τr−1 = τ . Assume that
τi = f (gi,0)(τgi,1 , τgi,2), where gi,0 ∈ l and gi,1, gi,2 ∈ r. (If f (gi,0) is not binary then one or
both arguments of it may be missing). The formula ψ will say the following: there exists
b0, ..., br−1 ∈Md, such that

Md |= br−1 = 0 ∧
(∧
j∈k

bj = aj

)
∧
∧
i∈r
bi = f

(gi,0)
d,t (bgi,1 , bgi,2)

Our assumption that all of the function symbols f (i), i ∈ l are polynomially existential
implies that this condition can be expressed by an existential formula in Mv.

For the proof of the second statement of the lemma we note that by Lemma 28,
f 6∈ {×,÷,p} implies that the parallel operation f is uniformly existential. Using this the
the fact that family Q is uniformly existential can be proved in the same way as the first
part of the lemma. Q.E.D.(Lemma 47)

Definition. Assume that P (x0, ..., xk−1, y0, ..., yl−1) is a propositional formula of M.
We will say that P is k-sensitive, if the following three conditions are satisfied:

(i) for each occurrence ×(τ, σ) of the function symbol × of M in P , where τ, σ are
terms of M, there exists a j ∈ l such that τ = yj,

(ii) for each occurrence ÷(τ, σ) of the function symbol ÷ of M in P , where τ, σ are
terms of M, there exists a j ∈ l such that σ = yj,

(iii) the formula P does not contain the function symbol p of M. ut
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Lemma 48 Suppose that P (x0, ..., xk−1, y0, ..., yl−1) is a k-sensitive propositional formula
ofM. Then the family of k+ l+1-ary relations R = 〈Rd | d ∈ ω〉 is uniformly existential,
where for all d ∈ ω, a0, ..., ak−1, b0, ..., bl−1, t ∈ Md, we have Rd(a0, ..., ak−1, b0, ..., bl−1, t)
iff d ≥ t, b0, ..., bl−1 ∈Mt and for all i ∈ 2d−t, Mt |= P (a0[i, t], ..., ak−1[i, t], b0, ..., bl−1).

Proof of Lemma 48. The proof of the lemma is the essentially the same as the proof
of Lemma 47. (We have to use now, that according to Lemma 14, the family of relations
Qd(a, b, c, t) is uniformly propositional, where for all a, b, c,∈ Md, Qd(a, b, c, t) holds iff
d ≤ t and �d,t(a, b) = c.) Q.E.D.(Lemma 48)

Lemma 49 Suppose that P (x0, ..., x3k−1, y0, ..., yl−1) is a 3k-sensitive propositional for-
mula of M. Then the family of k + l + 1-ary relations R = 〈Rd | d ∈ ω〉 is
uniformly existential, where for all d ∈ ω, a0, ..., ak−1, b0, ..., bl−1, t ∈ Md, we have
Rd(a0, ..., ak−1, b0, ..., bl−1, t) iff d ≥ t, b0, ..., bl−1 ∈Mt and for all i ∈ 2d−t,

Mt |= P ( ~A0, ..., ~Ak−1, b0, ..., bl−1)

where ~Aj stands for the sequence aj[i− 1, t], aj[i, t], aj[i+ 1, t] for j = 0, 1, ..., k − 1.

Proof of Lemma 49. We use Lemma 48 with k:= 3k. The statement Mt |=
P ( ~A0, ..., ~Ak−1, b0, ..., bl−1) is equivalent to

Mt |= ∃g0, ..., gk−1, h0, ..., hk−1,Φ ∧
∧
i∈k
hi = 22qai ∧ gi = ÷(ai, 2

2q)

where
Φ ≡ P ( ~B0, ..., ~Bk−1, b0, ..., bl−1)

and Bj stands for the sequence gj[i, q], aj[i, q], hj[i, q] for j = 0, 1, ..., k − 1. Therefore
applying Lemma 48 for the given propositional formula P we get the required existential
formula. Q.E.D.(Lemma 49)

Lemma 50 Assume that, k,m ∈ ω and P is a propositional formula of M with
3k + m + 1 free variables and σ does not contain any of the function symbols ×,÷ or
p. Then R = 〈Rd | d ∈ ω〉 is a uniformly existential family of k + m + 1-ary re-
lations in M , where for each d ∈ ω, and for each a0, ..., ak−1, w0, ..., wm−1, q ∈ Md,
Rd(a0, ...ak−1, w0, ..., wm−1, q) holds iff q ≤ d, w0, ..., wm−1 ∈ Mq and for all i ∈ 2d−q,

Mq |= P ( ~A0, ..., ~Ak−1, w0, ..., wm−1, q), where ~Aj is the sequence aj[i − 1, q], aj[i, q], aj[i +
1, q], for all j ∈ k.

Proof of Lemma 50. We may assume that P is of the form σ(x0, ..., x3k+m) = 0. We
have

aj[i− 1, q] = (qaj)[i, q] ∧ aj[i+ 1, q] = (baj/qc)[i, q]
Therefore Rd(a0, ...ak−1, w0, ..., wm−1, q) holds iff for all i ∈ 2d−q,

Mq |= σ( ~B0, ..., ~Bk−1, w0, ..., wm−1, q) = 0
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where ~Bj is the sequence (qaj)[i, q], aj[i, q], (baj/qc)[i, q]
Since the term σ does not contain the function symbols the second part of Lemma 47

implies the conclusion of lemma. Q.E.D.(Lemma 50)
Proof of Lemma 46. We know from Lemma 28 that the statement of the lemma holds

if f /∈ {×,÷,p}. Lemma 44 implies the statement of the present lemma for f = ×. Our
next goal is to show that the function symbol ÷ is existentially parallel. The operation
÷(a, b) has an existential definition among integers. Namely for all a, b, c ∈ ω, ÷(a, b) = c
iff “(b = 0 ∧ c = 0) or (b 6= 0 and there exists an r ∈ ω, with a = cb + r and r < b)”.
This definition is not good if a, b, c ∈ Md and we perform the arithmetic operations in
Md, since there can be many different c ∈ Md with Md |= a − b < cb ≤ a and for all of
them r:= a− cb meets the requirement of the definition of ÷(a, b). Therefore we have to
add the condition that the product cb computed among the integers is the same as the
product cb in Md. The following Lemma says that the parallel version of this condition
is polynomially existential.

Lemma 51 The family of ternary relations R = 〈Ru,t | 〈u, t〉 ∈ ∇〉 is polynomially
existential, where Ru,t is defined in the following way.

Assume that u, t ∈ ω, u ≥ t, and a, b, w ∈Mu. Then Ru,t(a, b, w) holds iff for all i ∈
2u−t, w[i, t] = 0 implies that a[i, t]b[i, t] < 22t, and w[i, t] = 1 implies that a[i, t]b[i, t] ≥ 22t

Proof of Lemma 51. For each fixed t ∈ ω we define two functions Ft, Gt on ω. Suppose
that a =

∑∞
i=0 αi2

i2t ∈ ω, where αi = a[i, t]. Then Ft(a) =
∑∞
i=0 αi2

2i2t =
∑∞
i=0 αi2

i2t+1
.

This definition implies that every second 22t- ary digits of Ft(a) is 0 and between the 0s
we have the digits of a. That is Ft(a) “stretches” out the 22t-ary form by a factor of 2,
and puts 0s in the odd numbered places. We get the integer Gt(a) from a by keeping only
its 22t-ary digits at the odd numbered places and then “compressing” this sequence by a
factor of two. More precisely if a

∑∞
i=0 αi2

i2t then Gt(a) =
∑∞
j=0 α2j+12j2

t
.

These functions has the following useful property.

Proposition 1 Assume u, t ∈ ω, u ≥ t, a, b ∈Mu, and let

hu,t(a, b) = Gt

(
Ft(a)⊗u+1,t+1 Ft(b)

)
Then for all i ∈ 2u−t, a[i, t]b[i, t] < 22t iff h[i, t] = 0.

Proof of Proposition 1. When we compute the parallel product Ft(a) ⊗u+1,t+1 Ft(b)
to get the ith component of the result we have to multiply a[i, t] and b[i, t] modulo 22t+1

.
Suppose that the result is µi2

2t + λi, where µi, λi ∈ 22t . We have Ft(a) ⊗u+1,t+1 Ft(b) =∑2u−t−1
i=0 (µi2

2t + λi)2
i2t+1

. Therefore the definition of Gt implies that Gt

(
Ft(a) ⊗u+1,t+1

Ft(b)
)

=
∑2u−t−1
i=0 µi2

2t . We have µi = (hu,t(a, b))[i, t] and so the definition of µi implies

the statement of the proposition. Q.E.D.(Proposition 1)
Lemma 40 and Lemma 44 together imply that the family of functions H = 〈hu,t |

〈u, t〉 ∈ ∇〉 is polynomially existential, where the function hu,t is defined in Proposition 1.
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The relation Ru,t(a, b, w) can be defined by “there exists a ρ ∈Mu such that ρ = hu,t(a, b)
and for all i ∈ 2u−t, w = minu,t(eu,t, ρ)”. By Lemma 28 and Proposition 1 this shows that
family Ru,t is polynomially existential. Q.E.D.(Lemma 51)

Definition. We define a binary term rem(x, y) ofM by rem(x, y) = x+ (−1)y÷ (x, y).
(Suppose that d ∈ ω, a,m, b ∈ Md, m 6= 0. Then Md |= b = rem(a,m) iff b is the least
nonnegative residue of a modulo m.) For all d, t ∈ ω with d ≥ t, remd,t will be the binary
function defined on Md in the following way. For all a,m, b ∈Md, remd,t(a,m) = b iff for
all i ∈ 2d−t, rem(a[i, t],m[i, t]) = rem(b[i, t]). ut

Lemma 52 The function symbol ÷ and the family of functions 〈remd,t | 〈d, t〉 ∈ ∇〉 are
polynomially existential in M.

Proof of Lemma 52. Let R = 〈Ru,t | 〈u, t〉 ∈ ∇〉 be the family of ternary relations
defined in Lemma 51. For all d ∈Md, and for all q, a, b ∈Md, Md |= q = ÷d,t(a, b) iff

R(b, q, ed,t) ∧ ∃r ∈Md,
(
a = (q ⊗d,t b)⊕d,t r ∧ r <d,t q

)
We have already proved that M is existentially parallel with respect to multiplication
and addition, and by Lemma 51 the relation R is polynomially existential, therefore this
definition of ÷d,t implies that the function symbol ÷ is polynomially existential as well.

The family 〈remd,t | 〈d, t〉 ∈ ∇〉 is polynomially existential since the function remd,t is
defined by a term which is using on function symbols which are polynomially existential.
Q.E.D.(Lemma 52).

Lemma 53 The function symbol p of M is polynomially existential.

Proof of Lemma 53. We have to construct an existential formula ψ such that if c ∈ ω is
sufficiently large then for all d, t ∈ ω with d ≥ t, and for all a, b ∈Md, we have pd,t(a) = b
iff Mv |= ψ(a, b, d, t), where v = t+ c(d− t).

Suupose that K ∈ ω is a sufficiently large integer and c is sufficiently large with respect
to K.

We will construct the formula ψ in the form of

ψ(a, b, d, t) ≡ (t ≤ K ∧ ψ0(a, b, d, t)) ∨ (t > K ∧ ψ1(a, b, d, t))

(Here we used a, b, d, t as variables to make the roles of the variables clear.)
The definition of ψ0. For all integers i ∈ [−2K , 2K ] we define three elements of Md,

ai, ti and Mi. If i ≥ 0 then

Md |= ai = 2ia ∧ ti = 2it ∧ Mi = 2ied,t

If i < 0 then

Md |= ai = ÷(a, 2i) ∧ ti = ÷(t, 2i) ∧ Mi = ÷(ed,t, 2
i)
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This definition implies that for each i ∈ [−2K , 2K ] there exist terms αi, τi, µi of M,
depending only on i, such that for all choices of d,K, t ∈ ω, t ≤ K, a ∈Md, we have

Md |= ai = αi(a, d, t) ∧ ti = τi(a, d, t) ∧Mi = µi(a, d, t)

For each j ∈ 2d, the three sequence of integers 〈ai[j, 0] | j ∈ [−2K , 2K ]〉, 〈ti[j, 0] | j ∈
[−2K , 2K ]〉, 〈Mi[j, 0] | j ∈ [−2K , 2K ]〉, together uniquely determine the integers a[j, t], t,
and rem(j, 2t).

Consequently there exists a boolean expression B with 3(2K+1 +1) variables such that
for all j ∈ 2d−t we have

(pd,t(a))[j, 0] = B(~ai[j, 0],~ti[j, 0], ~Mi[j, 0])

where ~xi[j, 0], stands for the sequence 〈xi[j, 0] | i ∈ [−2K , 2K ]〉 for x = a, t,M . According
to Lemma 15 this implies that there exists a term σ ofM such that Md |= pd,t(a) = σ(a, t).
Based on that, using Corollary 9 of Lemma 35 we can define the formula ψ0 with the
required properties.

The definition of ψ1. Assume that d, t ∈ ω, d ≥ t > K and a ∈ Md. We define
three integers A0, A1, A2 ∈Md, such that for all i ∈ 2d−t exactly on of the following two
conditions are satisfied

(i) A0[i, t] = a[i, t] ≥ 2t and A1[i, t] = A2[i, t] = 0.
(ii) A0[i, t] = 0, a[i, t] < 2t, a[i, t] = A1[i, t]2q + A2[i, t], and A2[i, t] < 2q.
This property uniquely determines the integers A0, A1, A2 ∈Md, moreover Lemma 47

implies that that there exists an existential formula ϕ of M such that A0, A1, A2 are the
unique elements of Md such that Mv |= ϕ(a,A0, A1, A2, d, t), where v = t+ c(d− t).

Let B0 = �d,t(22t−1,mind,t(A0, ed,t)). (That is B0[i, t] = 22t−1
if A0[i, t] 6= 0, otherwise

B0[i, t] = 0.)
Then

pd,t(a) = maxd,t

(
B0,⊗d,t

(
pd,t[�d,t(2q, A1)],pd,t[A2]

))
We know already that the functions symbols max and × are polynomially existential,
therefore it is sufficient to show that the following two families of relations relations are
polynomially existential:

(66) Θ = 〈Θd,t | 〈d, t〉 ∈ ∇〉, where for each d, t ∈ ω with d ≥ t and for each a, b ∈
Md, Θd,t(a, b) holds iff t > K and for all i ∈ 2d−t, a[i, t] < 2t and 2q|a[i, t] and b =
pd,t(�d,t(2q, a))

(67) Φ = 〈Φd,t | 〈d, t〉 ∈ ∇〉, where for each d, t ∈ ω with d ≥ t and for each a, b ∈Md,
Φd,t(a, b) holds iff t > K and for all i ∈ 2d−t, a[i, t] < 2q and b = pd,t(a)

In other words, the original problem about the existential definability of pd,t(a) has to
be solved with some additional assumptions. The following lemma will be used to define
the family Θ in an existential way.
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Proposition 2 The family of relations Θ defined in condition (66) is uniformly existen-
tial.

Proof of Lemma 2. For each d ∈ ω, let Θ′d be the ternary relation on Md, defined by:
for each t, a, b ∈Md, Θ′d(a, b, t) holds iff t ≤ d and Θd,t(a, b). We show that the family of
relations Θ′ = 〈Θ′d | d ∈ ω〉 is uniformly existential. This clearly implies the conclusion of
the proposition.

By Lemma 49 it is sufficient to show that there exists 3k-sensitive propositional formula
P (x0, ..., x3k−1, y0, ..., yl−1) of M with k = 3 and l = 1 and with property.

(68) For all d ∈ ω and for all t, q, a, b ∈ Md, we have Θ′d(a, b, t) iff there exists
a0, ..., a3, w0 ∈ Md such that a0 = a, a1 = b, a2 = ed,t, d ≥ t, q = blog2 tc,
w0 = 2q and for all i ∈ 2d−q, Mq |= P ( ~A0, ..., ~A3, w0), where ~Aj stands for the sequence
aj[i− 1, q], aj[i, q], aj[i+ 1, q] for j = 0, 1, 2, 3.

The condition that there exists a0, ..., a3, w0 ∈ Md such that a0 = a, a1 = b, a2 =
ed,t, d ≥ t, q = blog2 tc, w0 = 2q can be expressed by an existential formula χ in Md

since q = blog2 tc is equivalent to 2q ≤ t < 2q+1. Therefore condition (68) implies
that Θ′(d)(a, b, t) is equivalent to Md |= ∃a0, ..., a3, w0, χ(a, b, t, a0, ..., a3, w0) and for all

i ∈ 2d−q, Mq |= P ( ~A0, ... ~A3, w0), where χ is an existential formula of M.
Lemma 49 implies that the condition “for all i ∈ 2d−q,

Mq |= P ( ~A0, ..., ~Ak−1, b0, ..., bl−1)” can be expressed by an existential formula of M in
Md, therefore we only have to prove the existence of a 9-sensitive propositional formula
P satisfying condition (68).

In the definition of P the variable a3 will be denoted by h and for a0, a1, a2 we will use
the symbols a, b, ed,t indicated in condition (68). To make the formulas more understand-
able we rename the variables xi in the following way: x3j = zj,−1, x3j+1 = zj,0, x3j+1 = zj,1.
The advantage of this notation is that in condition (68) the variable zj,δ takes the value
aj[i+ δ] for j = 0, 1, ..., k − 1, δ = −1, 0, 1.

We define P by P ≡ ∧
r∈5 Λr where the propositional formulas Λr are defined below.

First we write each formula Λr with the variables zj,δ, this is its definition, and then as
a motivation, we write the formula Λr in the form that we get if the variables take the
values indicated y condition (68) and by the abbreviation h = a3.

Λ0 ≡ z2,0 = 1→ z3,0 = z0,0

ed,t[i, q] = 1 implies h[i, q] = a[i, q]

Λ1 ≡ (z2,0 = 0 ∧ z3,−1 6= 0)→ z3,0 = z3,−1 − w0

ed,t = 0 ∧ h[i− 1, q] 6= 0 implies h[i, q] = h[i− 1, q]− 2q

Λ2 ≡ (z2,0 = 0 ∧ z3,−1 = 0)→ z3,0 = 0
ed,t[i, q] = 0 ∧ h[i− 1, q] = 0 implies h[i, q] = 0

Λ3 ≡ z3,0 6= w0 → z1,0 = 0
h[i, q] 6= 2q implies b[i, q] = 0

Λ4 ≡ z3,0 = w0 → z1,0 = 1
h[i, q] = 2q implies b[i, q] = 1
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The meaning of these formulas is the following. Assume that an integer i0 ∈ 2d−q is
given with ed,t[i0, q] = 1. It means that 2i02q = 2ν2t for some ν ∈ 2d−t, therefore i0 = ν2t−q.
Because of the assumption a[ν, t] < 22q have that a[ν, t] = a[i0, q]. We have to show that
the described formulas together are equivalent to, b[ν, t] = 2a[i0,q]2q . Since b[ν, t] is a power
of 22q , its 22q -ary form contains a single nonzero digit and this digit will be one.

The propositional formula P as we have defined it determines when b[i, q] = 1 in the
following way. The value of h[i0, q] is a[i0, q], then as starting from i = i0 each time we
increase i with 1 the value of hi,q will decrease by 2q. Therefore we will have 2i2

q
= 2a[ν,t]2q

when h[i, q] becomes 0 so at that value of i we have b[ν, t] = 2i2
q
. The propositional

formula P defined above describes this definition of h and the connections between the
values of a, b, h and ed,t. The syntax of the formula shows that it is 3k-sensitive, so it
satisfies condition (68). Q.E.D.(Proposition 2)

Proposition 3 The family of relations Φ defined in condition (67) is uniformly existen-
tial.

Proof of Proposition 3. The proof is similar to the proof of Proposition 2. For each
d ∈ ω, let Φ′d be the ternary relation on Md, defined by: for each t, a, b ∈ Md Φ′d(a, b, t)
holds iff t ≤ d and Φd,t(a, b). We show that the family of relations Φ′ = 〈Φ′d | d ∈ ω〉 is
uniformly existential. This clearly implies the conclusion of the proposition.

By Lemma 49 it is sufficient to show that there exists 3k-sensitive propositional formula
P (x0, ..., x3k−1, y0, ..., yl−1) of M with k = 7 and l = 0 and with property.

(69) For all d ∈ ω and for all t, q, a, b ∈Md, we have Φ′d(a, b, t) iff there exists a0, ..., a6 ∈
Md such that a0 = a, a1 = b, a2 = ed,t, a3 = ed,t2

(2t−q−1)2q , a4 = b2(2t−q−1)2q d ≥ t,

q = blog2 tc, and for all i ∈ 2d−q, Mq |= P ( ~A0, ..., ~A4), where ~Aj stands for the sequence
aj[i− 1, q], aj[i, q], aj[i+ 1, q] for j = 0, 1, ..., 6.

The condition that there exists a0, ..., a6 ∈ Md such that a0 = a, a1 = b, a2 = ed,t,
a3 = ed,t2

(2t−q−1)2q , a4 = b2(2t−q−1)2q d ≥ t, q = blog2 tc, can be expressed by an existential
formula χ in Md since q = blog2 tc is equivalent to 2q ≤ t < 2q+1. Therefore condition
(69) implies that Φ′(d)(a, b, t) is equivalent to Md |= ∃a0, ..., a6, χ(a, b, t, a0, ..., a6) and for

all i ∈ 2d−q, Mq |= P ( ~A0, ... ~A6), where χ is an existential formula of M.
Lemma 49 implies that the condition “for all i ∈ 2d−q,

Mq |= P ( ~A0, ..., ~Ak−1, b0, ..., bl−1)” can be expressed by an existential formula of M in
Md, therefore we only have to prove the existence of a k-sensitive propositional formula
P satisfying condition (69). (In the present case k = 7 and l = 0.)

In the definition of P the integer a5 will be denoted by h, and the integer a6 by g and
for a0, a1, a2, a3, a4 we will use the expressions a, b, ed,t, ed,t2

(2t−q−1)2q , b2(2t−q−1)2q indicated
in condition (69). To make the formulas more understandable we rename the variables xi
in the following way: x3j = zj,−1, x3j+1 = zj,0, x3j+1 = zj,1. The advantage of this notation
is that in condition (69) the variable zj,δ takes the value aj[i + δ] for j = 0, 1, ..., k − 1,
δ = −1, 0, 1.
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We define P by P ≡ ∧
r∈8 Λr where the propositional formulas Λr are defined below.

We write the formulas Λr, r ∈ 8 in the form when already aj[i+ δ, q] has been substituted
for zj,δ. The formulas Λr with the variables zj,δ (as in Proposition 2), can be derived from
this by performing the reverse substitutions.

(70) Λ0 ≡ ed,t[i, q] = 1→ (h[i, q] = a ∧ g[i, q] = 1)

(71) Λ1 ≡ (ed,t[i, q] = 0 ∧ h[i− 1, q] 6= 0)→ h[i, q] = h[i− 1, q]− 1
Λ2 ≡ (ed,t[i, q] = 0 ∧ h[i− 1, q] = 0)→ h[i, q] = 0

(72) Λ3 ≡ (ed,t[i, q] = 0 ∧ h[i, q] < h[i− 1, q] = 0)→ g[i, q] = g[i− 1, q] + g[i− 1, q]
Λ4 ≡ ed,t[i, q] = 0 ∧ h[i, q] = h[i− 1, q]→ g[i, q] = g[i− 1, q]

(73) Λ5 ≡ (ed,t2
(2t−q−1)2q)[i, q] = 1→ (b2(2t−q−1)2q)[i, q] = g[i, q]

Λ6 ≡ (ed,t2
(2t−q−1)2q)[i, q] = 0→ (b2(2t−q−1)2q)[i, q] = 0

The meaning of these formulas is the following. Assume that an integer i0 ∈ 2d−q is
given with ed,t[i0, q] = 1. It means that 2i02q = 2ν2t for some ν ∈ 2d−t, therefore i0 = ν2t−q.
Because of the assumption a[ν, t] < 2q have that a[ν, t] = a[i0, q]. We have to show that
the described formulas together are equivalent to, b[ν, t] = 2a[i0,q]2q . Since b[ν, t] is a power
of 22q , its 22q -ary form contains a single nonzero digit and this digit will be one.

The propositional formula P as we have defined it determines when b[i, q] = 1 in the
following way. We consider the sequence h[i, q], for i = 0, ..., 2t−q − 1. According to
the definition of Λ0 it starts with the integer a, and then, according to Λ1 and Λ2, each
element of the sequence is smaller by 1 than the previous one, till it reaches the value
0 where it remains constant. Since a < 2q = 2dlog2 te log ≤ 2t < 2t−q the value 0 will
be reached for some i ∈ 2t−q. The sequence g[i, q], i = 0, 1, ...2t−q starts with g[0, q] = 1
according to Λ0 and it is increasing by a factor of 2 at each step where the sequence h[i, q],
i = 0, 1, ..., 2t−q is decreasing by 1, and then remains constant. Since the sequence h[i, q],
i = 0, 1, ..., 2t−q reaches the value 0 in a steps, the sequence g[j, q] reaches the value 2a in
the same a steps and this will be its last value as well, that is, if i1 is the largest integer
with i0 + 2t−q > i1 > i0 then g[i1, q] = 2a. The integer i1 is also the unique integer i in
the interval [i0, i0 + 2t−q − 1] with the property that (ed,t2

(2t−q−1)2q)[i, q] = 1, so it can be
used to identify i1 in Λ5 and Λ6. Q.E.D.(Proposition 3) Q.E.D.(Lemma 53)
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7 RAMs and polynomially existential functions,

Proof of Theorem 8

Proof of Theorem 8. Assume that F = 〈Fd,u | 〈d, u〉 ∈ ∇〉 is a family of k-ary functions
such that for each d, u ∈ ω with d ≥ u, Fd,u is a function defined on Md with values in
{0, 1} and the family is polynomial time computable with respect to M. We have to show
that there exists a c ∈ ω and an existential formula ϕ0 of M such that

(74) for all d, u ∈ ω with d ≥ u and for all a0, ..., ak−1 ∈ Md, b ∈ {0, 1} we have
Fd,u(a0, ..., ak−1) = b iff Mv |= ϕ0(a0, ..., ak−1, b, d, u), where v = u+ c(d− u).

The assumption that the family F is polynomial time computable with respect to M
implies that there exist a γ1 and a program P such that the following holds

(75) for all sufficiently large d ∈ ω, for all u ∈ ω with d ≥ u, and for all a0, ..., ak−1 ∈Md,
machine Nm (a RAM with word length m), where m = 2d, with program P and input
k, d, u, a0, ..., ak−1, using only the first 2γ1(d−u) memory cells in time 2γ1(d−u) computes
Fd,u(a0, ..., ak−1).

We will choose the constant c ∈ ω later. We define now the existential formula ϕ0

of M. For this definition we will assume that each operation of M is binary. (The
unary operations are considered binary operations which do not depend on their second
argument and the constants are considered as binary operations which do not depend on
any of their arguments.)

Let m = 2d, s = 2γ1(d−u). We will denote by R a random access with word length m,
which has s memory cells. (That is we get R from Nm keeping only its first s mem-
ory cells.) Our assumption is that the machine R with program P and with input
k, d, u, a0, ..., ak−1 in time s computes the value of Fd,u(a0, ..., ak−1). More precisely we
assume the following.

Suppose that P is the sequence p0, ..., pc′−1, and at time 0 the content of celli is ρi for
all i ∈ s. Then ρi = pi for all i ∈ c′, ρc′ = k, ρc′+1 = d, ρc′+2 = u, ρc′+3+i = αi for all i ∈ k,
and ρj = 0 for all j ∈ s with j ≥ c′ + 3 + k. Our assumption is that if the machine starts
to work with this initial state then at time s− 1 the content of cell0 is Fd,u(a0, ..., ak−1).

Let ρ =
∑s−1
i=0 ρi2

i2u . With this notation at time 0 the content of celli is ρ[i, u]
for all i ∈ s. We will say that the integer ρ is the unified input of the machine R. (The
motivation for this expression is that ρ determines all of the integers in the input sequence
and the program P as well.) It is important that

(76) there exists a term ξ0 of M depending only on P and k such that Mv |= ρ =
ξ0(a0, ..., ak−1, d, u).

This implies that in the formula ϕ0 to be defined we can use ρ as an argument.
Now we will use the following trivial fact. If M is a random access machine which

works with ν memory cells till time ν then the output of M can be computed by a circuit
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C of size νc3 where c3 is a constant, and the circuit C is given independently of the
contents of the memory cells at time 0. The gates of the circuit are performing the M
operations. For each memory cell x of M there is an input node of C where the input
is the content of cell x at time 0. Moreover the circuit C can be constructed by a turing
machine with the input ν in time νc4 , where c4 ∈ ω is a constant.

We apply this for the present situation with M := R, ν:= s and get the following,
where k denotes the number of M operations.

Proposition 4 There exists a sequence of triplets T = 〈〈αi, κi, λi〉 | i ∈ sc3〉 with the
following properties:

(77) for all i ∈ s, αi = κi = λi = 0, and for all i ∈ sc3\s, αi ∈ k, κi ∈ i, λi ∈ i,

(78) there exists a turing machine T ′ such that if the machine T ′ gets s as input, then
it computes in time sc4, the sequence 〈αi, κi, λi〉,

(79) if the sequence b = 〈βi | i ∈ sc3〉 satisfies conditions (i) and (ii), then it also satisfies
condition (iii), where

(i) for all i ∈ s, βi = ρ[i, u], that is, βi is the content of celli, at time 0 in the machine
R with unified input ρ,

(ii) for all i ∈ sc3\s, Mm |= βi = fαi(βκi , βλi),
(iii) βsc3−1 is the output of R at time sc at unified input ρ.

In other words the circuit C has a node xi for each i ∈ sc3 . The nodes xi, i ∈ s are the
input nodes, the node xsc3−1 is the output node, and for each i ∈ sc3\s, at node xi there
is a gate performing the operation fαi on the arguments which are the outputs of gates
(or input nodes) at nodes xκi and xλi .

Assume now that a turing machine T ′ is fixed that determines a sequence T with the
properties described above. The unified input ρ and the program P are also fixed. The
formula ϕ0 in Mv will be equivalent to the following: “there exists a sequence B = 〈Bi |
i ∈ sc3〉 which satisfies conditions (i) and (ii) of Proposition 4 with βi:= Bi and for this
sequence B we have Bsc3−1 = b”. For such a formula ϕ0 we clearly have Fd,u(a0, ..., ak−1) =
b iff Mv |= ϕ0(a0, ..., ak−1, b, d, u).

As a first step we reformulate the properties of (i) and (ii) of Proposition 4. The goal
of this reformulation is to make these properties more easily expressible by existential
formulas in Mv. We will use the following notation: s0 = sc3 , h = dlog2 ke.

Proposition 5 Assume that B = 〈Bi | i ∈ s0〉 is a sequence with Bi ∈ Mm. Then
conditions (i) and (ii) of Proposition 4 are satisfied with b:= B iff there exist 2 + k + h
sequences K, L, S(j), j ∈ k, Q(r), r ∈ h, all them of length s0, satisfying the following
conditions

(80) for all i ∈ s, Bi is the content of celli at time 0 in the machine R with program
P and unified input input ρ,
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(81) for all i ∈ s0\s, Ki = Bκi, Li = Bλi, and for all i ∈ s, Ki = Li = 0.

(82) for all i ∈ s0, r ∈ h, Q
(r)
i = αi[r, 2] (and consequently Q(r)(i) ∈ {0, 1}).

(83) for all i ∈ s0, j ∈ k, Mm |= S
(j)
i = fj(Ki, Li).

(84) for all i ∈ s0, Bi = S
(j)
i , where j is the unique integer with j ∈ k, and ∀r ∈

h, j[r, s] = Q
(r)
i .

Proof of Proposition 5 Since we fixed the turing machine T ′ the sequence 〈〈αi, κi, λi〉 |
i ∈ sc3〉 is given. Assume first that b:= B satisfies conditions (i) and (ii) of property (79).
Then the sequences B = 〈βi | i ∈ sc3〉, K = 〈βκi | i ∈ sc3〉, L = 〈βλi | i ∈ sc3〉, obviously
satisfy conditions (80) and (81). Condition (82) and (83) define the sequences Q(r) and
S(j), r ∈ h, j ∈ k, and condition condition (84) is the same as condition (ii) of property
(79).

In the other direction assume that the sequences B,K,L, etc, satisfy conditions (80),
(81), (82), (83), and we show that b:= B satisfies conditions (i),(ii) of property (79). Con-

dition (80) imply condition (i). By condition (84) and (82) we have Bi = S
(αi)
i , and there-

fore by condition (83), Bi = fαi(Ki, Li) which implies condition (ii). Q.E.D.(Proposition
5)

Let c ∈ ω be constant sufficiently large with respect to γ1, k, length(P ),k, c3, c4, and
let v = u + c(d − u). We show that for each of the conditions (80),...,(84) there exists

an existential formula ψ such that the condition holds iff Mv |= ψ(B̄, K̄, L̄, ~̄S, ~̄Q, ρ, d, u),

where for each sequence A = 〈ai | i ∈ sc3〉, Ā is the integer
∑sc3−1

i=0 ai2
i2u , and ~̄S =

〈S̄(0), ..., S(k−1)〉, ~̄Q = 〈Q̄(0), ..., Q(h−1)〉.
Condition (80) is equivalent to Mv |= mod(B̄, 2s

c32u) = ρ(a0, ..., ak−1, d, u), where
mod(x, y) is a term of M such that for all w ∈ ω and for all x, y, z ∈ w Mw |= z =
mod(x, y) iff the least nonnegative residue of x modulo y is z, that is, z = mod(x, y).

To show that condition (82) is equivalent to an existential formula in Mv we use
Lemma 43. We have that αi ≤ k, k is a constant and the turing machine T ′ computes
the bits of αi in time 2c4(d−u) where c4 � c (and v = u + c(d − u)). Lemma 43 is about
restricted turing machines. T ′ is not restricted but can make a restricted machine from
it with the definition tplength(T ′) = 2c4(d−u). The integer Q̄ is defined already in a
way that Lemma 43 is applicable with b0:= Q̄. Therefore the existential formula whose
existence is stated in Lemma 43 will describe condition (82).

The fact that condition (81) can be expressed by an existential formula is a consequence
of Lemma 40. We get the sequences Ki, Li form the sequence Bi by moving its elements
to (possibly several) new places and inserting 0s. The destinations of the elements and
the places of zeros are computed by a turing machine as required by Lemma 40.

The fact that condition (83) can be expressed by an existential formula in Mv is an
immediate consequence of Lemma 46.

We show now that condition (84) can be described by an existential formula whose ex-
istence is guaranteed by Lemma 34. We have to show that the condition can be expressed
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by a propositional formula P of L(=). For each j ∈ k, let Bj(x0, ..., xh−1) be a boolean ex-
pression so that if ai = j[i, 2] that Bj(a0, ..., ah−1) = 1, and otherwise Bj(a0, ..., ah−1) = 1.
We define the propositional formula P of L(=), by

P(X, Y0, ..., Yk−1, Z0, ..., Zh−1) ≡
∧
j∈k
Bj(Z0, ..., Zh−1)→ X = Yj

Clearly for each i ∈ sc3 , Nū |= P(Bi, S
(0)
i , ..., S

(k−1)
i , Q(0), ..., Q(h−1)), where ū = 22u , iff

condition (84) holds for this particular integer i. Therefore by Lemma 34 there exists an
existential formula which is true in Mv iff condition (84) is satisfied.

We define ϕ0 as the conjunction of all of the existential formulas that expresses the
various conditions and the formula b ∈ {0, 1} ∧ Bsc3−1 = b, which can be written in Mv

as b = min(1, b) ∧ ÷(B, 2s
c3−12u) = b. The formula ϕ0 defined this way clearly meets all

of our requirements. Q.E.D.(Theorem 8)

70



8 Circuits

In this section we will evaluate algebraic circuits by first-order existential formulas. We
consider circuits whose gates are computing the functions of M in a structure Mt, that
is, the circuit evaluates a term µ of M in the structure Mt.

Both the structure of the circuit computing the value of the term µ and the sequence
of its inputs are encoded by elements of Mv, where v > t. We show in Lemma 57
that there exists an existential formula ϕ, which do not depend on anything, and which
decides whether an element of Mt is the output of the circuit, provided that v > t +
c log(|Cµ|), where Cµ is a circuit computing the value of the term µ, and c is a sufficiently
large constant. This result will be used in section 9 where we formulate and prove the
“collapsing statement” mentioned in the introduction. In fact the application of Lemma
57 will be the key step in that proof.

To give a rigorous formulation of the mentioned result we have to tell how the circuits
computing the values of terms of M are encoded in Mv. We also have to describe the
method of encoding the sequence of inputs for such a circuit. This latter encoding is
simpler. If the circuit has k inputs a0, ..., ak−1 ∈Mt, then they will be represented by the
unique 22t-ary natural number whose 22t-ary digits are a0, ..., ak−1. This natural number
will be denoted by enck,t(a0, ...., ak−1), that is, enck,t(a0, ...., ak−1) =

∑k−1
i=0 ai2

i2t .
This method of encoding a sequence by a single integer will be used in encoding a

circuit. We consider a circuit as a directed acyclic graph with labelings on its vertices and
edges which defines the gates and the flow of information in the circuit. The following
definition describes the details of the encoding of such a circuit. After that we will describe
some basic properties of the defined encoding and then formulate Lemma 57 and sketch
of its proof.

Definition. We will always assume that all of the function symbols ofM are f0, ..., fs−1.
We include a new unary function symbol id among the function symbols of M whose
interpretation is always the identity function, that is, for all d ∈ ω, a ∈ Md, we have
Md |= id(a) = a. (This will correspond to a gate whose output is the same as its
input which will be useful in circuit constructions.) We define the notion of a M-circuit.
(Essentially this will be a finite algebraic circuit whose each gate a is associated with one
of the function symbols fi, say fia . If an interpretation Mt ofM is fixed, then the gate a
performs the operation fia) in the structure Mt.

Suppose that m ∈ ω. We will say that C is a M-circuit of size m if C is a vertex-
labeled and edge-labeled directed acyclic graph with multiple edges on the set of vertices
m = {0, 1, . . . .,m− 1}, satisfying the following conditions:

(i) Each node has either 0, 1 or 2 incoming edges, the nodes with 0 incoming edges
will be called the input nodes. (The two incoming edges may have a common tail). The
node m− 1 will be called the output node.

(ii) If a node has two incoming edges then exactly one of them is labeled by 0 and the
other is labeled by 1. If a node has a single incoming edge then this edge is labeled by 0.

(iii) Each input node is labeled by the integer s, and all of the other nodes are labeled
by an element of the set {0, 1, . . . , s − 1}, where s is the number of function symbols in
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the languageM. If the label of the node a is i, where i ∈ s, then the arity of the function
symbol fi is identical to the number of incoming edges at node a.

(iv) The input nodes form an initial segment of the ordered set {0, 1, . . . ,m− 1}.
We define an evaluation χ = χC of theM-circuit C in a structure Mt in the following

way. A function g defined on the set of input nodes with values in Mt will be called
an input. If an input g is given we assign an element χ(g)(a) of Mt to each node a of
the circuit in the following way. If a is an input node then χ(g)(a) = g(a). Assume
now that a is not an input node it is labeled by the integer j ∈ s and there are two
incoming edges at a, say, e0 labeled by 0 and e1 labeled by 1. This implies that the
arity of fj is 2. If ei starts from the node bi, for i = 0, 1, then we define χ(g)(a) by
Mt |= χ(g)(a) = fj(χ

(g)(b0), χ(g)(b1)). If there is exactly one incoming edge with tail b
then the the arity of fj is 1 and Mt |= χ(g)(a) = fj(χ

(g)(b))). Finally, if the are no

incoming edges at all then fj is a constant symbol and Mt |= χ(g)(a) = f
(τ)
j .

Our assumptions imply that, for a given input g, this defines a unique function χ(g)

on the set of nodes of the circuit C. The value of the function χ(g) at the single output
node m− 1 is called the output of the circuit at input g. The function χ(g) will be called
the evaluation function of the circuit at input g.

For later use we define the depth of an element a of the circuit C as the largest natural
number i such that there exists a path of length i starting at an input node and ending
in a. Therefore the depth of each input node is 0, and the depths of all other nodes are
positive integers. The set of all nodes with depth at most i will be denoted by Starti(C).
The restriction of the function χ(g) to the set Starti(C) will be denoted by χ(g,i). If we

want to make explicit the dependence of χ(g,i) on the circuit C, we will write χ
(g,i)
C .

Assume that C is aM-circuit of size m. The circuit C is uniquely determined by the
following three sequences each of length m:

(i) the sequence 〈α0,0, α0,1, . . . , α0,m−1〉, where α0,i ∈ m is the tail of the incoming
edge labeled with 0, whose head is node i, provided that such an incoming edge exists,
and α0,i = i otherwise,

(ii) the sequence 〈α1,0, α1,1, . . . , α1,m−1〉, where α1,i ∈ m is the tail of the incoming
edge labeled with 1, whose head is node i, provided that such an incoming edge exists,
and α1,i = i otherwise,

(iii) the sequence 〈α2,0, α2,1, . . . , α2,m−1〉, where α2,i ∈ s+ 1 is the label of node i.

Our next goal is to encode an M-circuit C of size m with an integer. The encoding
will depend also on a parameter d ∈ ω. So the circuit will be represented by a pair of
integers. Suppose that a d ∈ ω is fixed with m < 22d . We also assume that s + 1 < m
and therefore αi,j < m < 22d for all i ∈ 3, j ∈ m. For each i = 0, 1, 2, we define an

integer ᾱ
(d)
i =

∑m−1
j=0 αi,j2

j2d . Since s + 1 < αi,j < m for all i ∈ 3, j ∈ m, we have that

for i = 0, 1, 2, the integer ᾱ
(d)
i uniquely determines the sequence 〈αi,0, . . . , αi,m−1〉. In fact

αi,j = ᾱ
(d)
i [j, d] for all i ∈ 3, j ∈ m. We will write ᾱ

(d,C)
i instead of ᾱ

(d)
i if we want to make

explicit the dependence of ᾱ
(d)
i on C.

For a given d ∈ ω with m < 22d , we encode the circuit C by a single inte-
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ger circoded(C) defined by circoded(C) = 22d(
∑2
i=0 ᾱ

(d)
i 2im2d) + m. The inequalities

ᾱ
(d)
i < 2m2d , i ∈ 3 and m < 22d imply that for a fixed language M and a fixed d ∈ ω,

circoded(C) uniquely determines the circuit C. Indeed, m is the least nonnegative residue
of circoded(C) modulo 22d . The 22md-ary digits of circodes(C) − m give the integers

ᾱ
(d)
i for i = 0, 1, 2 and these determine the sequence αi,j, i = 0, 1, 2, j ∈ m.

The number of nodes in an M-circuit C will be denoted by |C|. ut
Definition. We define two functions Circ0 and Circ1 on the set of allM-circuits. If C
is an M-circuit and d is the smallest natural number such that |C| < 22d , then |C| = d
and Circ1(C) = circoded(C). ut

The following lemma says that from the integer circoded(C) we can get back all of
the elements of the circuit C by computing the values of a term τ in a suitably chosen
structure Mu.

Lemma 54 There exist terms σ(x, y), τ(x, y, z, w), κi(x, y), i = 0, 1, 2 of M such that if
M has s function symbols, d, u ∈ ω, d ≤ u, s < m < 22d and C is a M-circuit with
m nodes then circoded(C) ∈ Mu implies that Mu |= m = σ(circoded(C), d) and also
implies that for all i ∈ 3, j ∈ m,

Mu |= αi,j = τ(circoded(C), d, i, j) ∧ ᾱ(d,C)
i = κi(circoded(C), d)

where the integers αi,j are defined in the definition of circoded(C). Moreover

|C| = circoded(C)− 22dbcircode(C)/22dc

Proof of Lemma 54. Clearly m is the least nonnegative residue of circoded(C)

modulo 22d and so m = circoded(C) − 22dbcircode(C)/22dc. We also have ᾱ
(d)
i =

(bcircoded(C)/22dc)[i, d] for i ∈ 3. Therefore using Lemma 8 and the fact that

αi,j = ᾱ
(d)
i [j, d] for all i ∈ 3, j ∈ m we get the term τ . Q.E.D.(Lemma 54)

Definition. If the number of input nodes of an M-circuit C is k then we will say
that C is a k-ary circuit. Assume that g is an input of the k-ary M-circuit C evaluated
according to the interpretation Mt of M. By the definition of an input this means that
g is a function with values in Mt, and defined on the set of input nodes, that is, on the
set k. In this case to express the fact that the output of the circuit C at input g is a we
will write Mt |= a = C(g) or Mt |= a = C(g(0), . . . , g(k − 1)).

Suppose that we evaluate theM-circuit C in a structure Mt. We will encode an input
sequence 〈g(0), . . . , g(k − 1)〉 by the integer enck,t(g(0), . . . , g(k − 1)) =

∑k−1
i=0 2i2

t
g(i).

This number will be called an encoded input of the M-circuit C with respect to the
interpretation τ of M. Clearly, for a given M-circuit C, and a given interpretation Mt

ofM, the encoded input uniquely determines the corresponding input sequence g. (This
is a consequence of the fact that the length of the input k is uniquely determined by the
circuit C, while the integer t is uniquely determined by the structure Mt.) ut

Lemma 55 For all sufficiently large m ∈ ω if t ∈ ω, if t ∈ ω, m < 22t, and C is a
M-circuit of size m, then circodet(C) < m+ 2(3m+1)2t.
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Proof of Lemma 55. This is an immediate consequence of the definition of
circodet(C). Q.E.D.(55)

Definition. Suppose now that k ∈ ω, k ≥ 1 and τ(x0, . . . , xk−1) is a term of M, where
we allow that some of the variables xi does not occur in τ (but all of the variables of τ is
from the set {x0, ..., xk−1}). In this definition we will consider all of variables x0, ..., xk−1

as subterms of τ(x0, . . . , xk−1), even those variables which do not actually occur in τ . (For
example, if τ(x0, x1) is the term x0 then x1 is a subterm of τ(x0, x1).) We construct an
M-circuit of Cτ based on τ . Let σ = 〈σ0, . . . , σm−1〉 be a sequence which consists of all
of the pairwise distinct subterms of τ(x0, . . . , xk−1). A subterm with several occurrences
in τ is represented only once in the sequence σ. We also assume that σm−1 is the term
τ , and for all i ∈ k, σi is the term xi. The set of nodes of the circuit Cτ will be m, the
label of each node i ∈ m will be j if the outmost M-operation of the term σi is fj. If
such an operation does not exists, that is, τ is a variable then the label is s. The edges
of C are defined in the following way. If i is labeled by j then we distinguish three cases
according to the arity of the function symbol fj. If fj is a binary function symbol and
τi = fj(τi′ , τi′′), then an edge labeled with 0 points from i′ to i, and an edge labeled by 1
points from i′′ to i. If fj is a unary function symbol and τi = fj(τi′), then an edge points
from i′ to i, and it is labeled by 1. Finally if fj is a constant symbol and τi = fj then are
no edges ending at i.

The circuit Cτ will be called the circuit associated with the term τ . The size of the
circuit Cτ , that is, m will be called the circuit size of τ and will be denoted by csize(τ).

In this definition the order of the subterms in the sequence 〈σ0, ..., σm−1〉 was arbitrary
apart from the choices of σ0, ..., σk−1 and σm−1. Therefore the circuit Cτ depends on an
arbitrary choice in the definition. This choice however is important only for the order of
the nodes.

The fact the we considered each xi, i ∈ k as a subterm of τ(x0, ..., xk−1) implies that
that the circuit Cτ has exactly k input nodes even if in the evaluation of the circuit Cτ
the input provided at some of the nodes is not used.

We define the followng functions on the set of all M-terms: Circ0(τ) = Circ0(Cτ ),
Circ1(τ) = Circ1(Cτ ) and for all d ∈ ω, circoded(τ) = circoded(Cτ ).

Suppose that C is an M-circuit with k input nodes, and µ(x0, ..., xk−1) is a term
of M. We say that the circuit C computes the term M iff for all d ∈ ω, and for all
a0, ..., ak−1 ∈Md we have Md |= µ(a0, ..., ak−1) = C(a0, ..., ak−1). ut

In the next lemma logarithm means logarithm of base two.

Lemma 56 Assume that C is an M-circuit. Then

log log |C| − 1 ≤ Circ0(C) ≤ log log |C|

and
Circ1(C) ≤ |C|8|C|

Proof of Lemma 56. By its definition Circ0(C) is the smallest natural number d with
|C| < 22d . This implies the bounds on Circ0(C). According to Lemma 55, if Circ0(C) = t
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then Circ1(C) = circodet(C) ≤ |C|+ 2(3|C|+1)2t . Using the already proven upper bound
on t = Circ0(C) we get the claimed inequality. Q.E.D.(Lemma 56).

Lemma 57 There exists an existential formula ϕ(x0, ..., x4) ofM with the following prop-
erty. For all sufficiently large c ∈ ω, for all M-circuits C, and for all t, v ∈ ω, if the
number of inputs of C is k and v > t + c log |C| then for all a0, . . . , ak, b ∈Mt, we have
that Circ0(C) ∈Mv, Circ1(C) ∈Mv, enck,t(a0, . . . , ak−1) =

∑k−1
i=0 ai2

i2t ∈Mv, and

Mt |= C(a0, . . . , ak−1) = b ↔ Mv |= ϕ(enck,t(a0, . . . , ak−1), b, t, Circ0(C), Circ1(C))

Proof of Lemma 57. Let F = 〈Fd,t | d, t ∈ ∇〉 be the family of quaternary functions
defined on Md in the following way. Assume that d, t ∈ ω, d ≥ t, and w, b, C1, C2 ∈Md.
Then Fd,t(w, b, C0, C1) ∈ {0, 1}, and Fd,t(w, b, C0, C1) = 1 iff the following three conditions
are satisfied:

(85) there exists an M-circuit C such that d ≥ max(C0, t), Circ0(C) = C0, Circ1(C) =
C1, 2d−t > |C|,

(86) if condition (85) holds and k is the number of input nodes of C, then there exists
a sequence a0, ..., ak−1 ∈Mt such that w = enck,t(a0, ..., ak−1) = w,

(87) if both conditions (85), (86) hold then Mt |= C(a0, ..., ak−1) = b.

We claim that the family of functions F is polynomial time computable with respect
to M. Let γ1 ∈ ω be a sufficiently large constant. We will show that there exists a
program P such that the following statement, needed for polynomial time computability
with respect to M, is true (note that the variable k of that definition has the value 4
now):

(88) for all sufficiently large d ∈ ω, for all t ∈ ω with d ≥ t, and for all w, b, C0, C1 ∈Md,
the following holds. The machine Nm (a RAM with word length m), where m = 2d, with
program P and input 4, d, t, w, b, C0, C1, using only the first 2γ1(d−t) memory cells in time
2γ1(d−t) computes Fd,t(w, b, C0, C1).

First assume that there exists a circuit C satisfying conditions (85) and (86). Then the
assumption 2d−t > |C| implies that machine Nm can determine the underlying directed
graph of C, and the labellings of its nodes and edges in time polynomial in 2d−t. The
assumption m = 2d implies that each M-operation in Mt can be performed in constant
time on Nm and since the number of nodes of C is at most 2d−t, P can determine the
integers ai ∈ Mt, i ∈ k and can evaluate the circuit C time polynomial in 2d−t, and
comparing the output to b can determine the value of Fd,t(w, b, C0, C1) in polynomial
time.

The same computation can be performed also by P on an arbitrary input. If the
construction of the graph of C does not terminate in time, or the result contradicts to
conditions (85), or (86) then the value of Fd,t is 0, otherwise the machine gets the value
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of Fd,t as described above. This completes the proof of the fact that the family F is
polynomial time computable with respect to M.

Theorem 8 implies that the family F is polynomially existential, that is, there exists
a there exists a c0 ∈ ω and an existential formula ϕ of M such that

(89) for all d, t ∈ ω with d ≥ t and for all w, b, C0, C1 ∈Md and for all v ≥ t+ c0(d− t)
we have Fd,t(w, b, C0, C1) = 1 iff Mv |= ϕ(w, b, C0, C1, d, t).

We define an existential formula ψ(x0, x1, y0, y1, w) of M by

ψ(x0, x1, y0, y1, w) ≡ ϕ(x0, x1, y0, y1, w + c2p(y0), w)

where c2 is a sufficiently large constant. (The meaning of the expression w+c2p(y0) is that
we want to define d, in order to choose a member Fd,t of the family F , by d = t+ c22C0 .)

Assume now that t ∈ ω, C is an M-circuit, with k inputs, a0, ..., ak−1, b ∈ Mt,
enck,t(a0, ..., ak−1) = w, and let c1 be sufficiently large with respect to c0. We claim
that for all v > t+ c1 log |C|, Mt |= C(a0, ..., ak−1) = b iff Mv |= ψ(w, b, C0, C1, t).

Let d = t + c22C0 . First we show that w, b, C0, C1 ∈ Md. By the definition of the
function enck,t we have w ≤ 2|C|2

t
, therefore it is sufficient to show that |C|2t < 2d, or

equivalently log |C| + t < d. By Lemma 56 1
2

log |C| ≤ 2C0 , and so the definition of d
implies the claimed inequality.

Since b ∈ Mt and t ≤ d we have b ∈ Mt. C0 ≤ d and so C0 ∈ Md. Finally by
Lemma 56 C1 < |C|8|C|, therefore it is sufficient to show that log log(|C|8|C|) < d. We
have log log(|C|8|C|) = 3 + log |C|+ log log |C|. According Lemma 56 log |C| ≤ 2C0+1 so if
c2 is a sufficiently large constant then C1 ∈Md.

Since w, b, C0, C1 ∈ Md, the definition of the function Fd,t implies that Mt |=
C(a0, ..., ak−1) = b iff Fd,t(w, b, C0, C1) = 1

Condition (89) implies that if v ≥ t + c0(d − t) then Mt |= C(a0, ..., ak−1) = b iff
Mv |= ϕ(w, b, C0, C1, d, t) which is equivalent to Mv |= ψ(w, b, C0, C1, t).

This is true if v ≥ t+ c0(d− t). Assume now that we know only that v > t+ c log |C|,
as required in the present lemma, where c ∈ ω is sufficiently large with respect to c0 and
c2. We have that d − t = c22C0 , and so by Lemma 56 d − t ≤ c2 log |C| and therefore
t+c0(d−t) ≤ t+c log |C| and consequently for all v ≥ t+c log |C|, Mt |= C(a0, ..., ak−1) = b
iff Mv |= ψ(w, b, C0, C1, t). Q.E.D.(Lemma 57)
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9 Collapsing and Predictivity

Notation. In this section log will always mean logarithm with base 2 unless we explicitly
state it otherwise.

9.1 Expressing the truth value with terms

This section contains the “collapsing” argument. We show that if Theorem 3 is not true
then the hierarchy of first-order formulas ofM, interpreted in the structures Md, collapses
in a quantitative sense. For each d ∈ ω we define a class of first-order formulas Θd by
giving some bounds on the number of their quantifiers, which may depend on d. We also
define a function g on Θd with values in Md, and a term τ of M with an upper bound
on its size, also depending on d, such that if q is about d + log d, then for each formula
ϕ ∈ Θd and for each xa ∈Md we have

Md |= ϕ(a)↔Mq |= τ(a,g(ϕ)) = 0

That is, our indirect assumption implies that we are able to express the truth value of
a not too large first-order formula in Md as the value of a term in Mq, where q is not very
much larger then d. This will lead, in the following sections, to the final diagonalization
argument after we also prove the “simulation statement ”, namely, that each not too large
term in Mq can be evaluated by a first-order formula ψ in Md, moreover these formulas
can be chosen from the class Θd.

The situation will be slightly more complicated than the picture given in the preceding,
paragraphs, since the class Θd will depend on other parameters as well, which will make
it easier to choose the first-order formula mentioned above in a way that it meets all of
our requirements.

We give now a rigorous formulation of the collapsing statement as outlined above and
then we will sketch its proof.

Definition. 1. Suppose that ϕ(x0, . . . , xk−1) = Q0x0, . . . , Qk−1xk−1, P (x0, . . . , xk−1) is
a first-order prefix formula of M, where P (x0, . . . , xk−1) is a propositional formula and
Qi, i ∈ k are quantifiers. In this section if we say that ϕ is a prefix formula of M
we will always assume, unless we explicitly state it otherwise, that P (x0, . . . , xk−1) is of
the form t(x0, . . . , xk−1) = 0, where t is a term. (It is easy to see that there exists a
c > 0, such that for each k ∈ ω, and for each propositional formula P (x0, . . . , xk−1), there
exists a term t(x0, . . . , xk−1) such that length(t) ≤ clength(P ), and for all d ∈ ω, and
for all a0, . . . a,k−1 ∈ Md, Md |= P (x0, . . . , xk−1) ↔ t(x0, . . . , xk−1) = 0.) Suppose that
ϕ(x0, . . . , xk−1) ≡ Q0x0, . . . , Qk−1xk−1, t(x0, . . . , xk−1) = 0. Then term(ϕ) will denote the
term t(x0, . . . , xk−1).

2. If ϕ(x0, . . . , xk−1) ≡ Q0x0, . . . , Qk−1xk−1, t(x0, . . . , xk−1) = 0 is a first-order formula
of M, then the M-circuit Ct associated with the term t will be also denoted by Cϕ. ut
Definition. Assume that L is a first-order language and L′ is the second-order extension
of L. The set of all second-order formulas Ψ of L′ which satisfies the following conditions
will be denoted by SForm(L):
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(i) Ψ does not contain second-order quantifiers.
(ii) the only second-order variables that may be contained in Ψ are variables for k-

ary relations for some k ∈ ω. (Such a variable represents a k-ary relation between the
elements of the universe.)

Usually we will write such a formula Ψ in the form of Ψ(x0, . . . , xk−1, Y0, . . . , Yl−1)
where x0, . . . , xk−1 are all of the first-order variables contained in Ψ, and Y0, . . . , Yl−1 are
all of the second-order variables contained in Ψ. According to our definition the variables
x0, . . . , xk−1 represent elements of the universe and the variables Y0, . . . , Yl−1 represent
k0, . . . , kl−1-ary relations on the universe. ut

We formulate below a statement that we will call the D-quantifier elimination assump-
tion, where D can be a real-valued function defined on ω. In the case D(x) = ε(log x)

1
2

the D-quantifier elimination assumption follows from the assumption that Theorem 3 is
not true.

Definition. 1. Assume that D is a function. The conjunction of the following two
conditions will be called the D-quantifier elimination assumption for M or shortly D-
elimination assumption:

(90) D is a monotone increasing function defined on an interval [r,∞) of the real num-
bers with positive real values for a suitably chosen r ≥ 0,

(91) for all propositional formulas P (x, y) ofM and for all sufficiently large d ∈ ω, there
exists a term τ of M, such that depth(τ) ≤ D(d), and for all a ∈Md, Md |= ∃x, P (x, a)
iff Md |= τ(a) = 0. ut

Definition. Suppose that ϕ is a prenex first-order formula of M. The total number of
quantifiers, both existential and universal in ϕ will be denoted by quant(ϕ).ut

Notation. In a first-order formula if a sequence of quantifiers of the same type occurs
for example ∃z0, . . . ,∃zk−1 then, sometimes, we will abbreviate it by writing ∃~z, where ~z
is the sequence of variables z0, . . . , zk−1.

Definition. Assume that ϕ is a first-order prenex formula of M, and 〈jm, ..., j1〉 is a
sequence of positive integers. We will say that the quantifier pattern of ϕ is 〈jm, ..., j1〉 if
the following conditions are satisfied.

(92) ϕ ≡ Qm~xm, . . . , Q1~x1, P (~x1, . . . , ~xm), ~xi is a sequence xi,0, . . . , xi,ji−1 of variables of
M, and Qi is a quantifier binding the variables in ~xi.

(93) There exists a δ ∈ {0, 1} such that, for each for i = 1, ...,m, Qi is universal iff i ≡ δ
(mod 2).

We will refer to the expression Qi~xi in the formula ϕ as a block or as a block of
quantifiers. We define the notion of quantifier pattern in the same way for prenex formulas
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in SForm(M) as well. Since these formulas contain only first-order quantification the
definition remains unchanged. ut

Remark. We write in the quantifier pattern 〈jm, . . . , j1〉 the elements of the sequence
j1, ..., jm in reverse order since we will have an inductive proof about formulas with a
given quantifier pattern which starts with eliminating the innermost block of quantifiers.
This will simplify the notation in the inductive proof.

Definition. Assume that M, j1, . . . , jm are positive integers. Form(M, jm, . . . , j1) de-
notes the set of all prenex first-order formulas ϕ of M such that csize(ϕ) ≤M and the
quantifier pattern of ϕ is 〈jm, . . . , j1〉. ut

The main result of section 9.1 is the following Lemma 58 which is the “collapsing”
statement. The remaining part of this section contains the proof of Lemma 58.

Lemma 58 For all c ∈ ω\{0}, if ε > 0 is sufficiently small with respect c then the
following holds. Assume that

(94) the D-quantifier elimination assumption holds for M, where D(x) = ε(log x)
1
2 ,

(95) d ∈ ω is sufficiently large with respect to ε,

(96) δ = bD(d+ log d)c = bε(log(d+ log d))
1
2 c, m ∈ ω, m ≤ cδ, and ιm, ..., ι1 are positive

integers with ιm + . . .+ ι1 ≤ cδ, ιm ≤ cδ.

Then there exists a function g which assigns to each prenex formula

ϕ ∈ Form(cδ, ιm, . . . , ι1)

a natural number g(ϕ) < 22d−1
, and there exists a term τ(x, y) ofM such that the following

conditions are satisfied:

(97) csize(τ) ≤ 3 · 2d+log d

(98) for each prenex formula ϕ ∈ Form(cδ, ιm, . . . , ι1) and for each a ∈ Md, if q =
d+mb log d

m
c then

Md |= ϕ(a) ↔ Mq |= τ(a,g(ϕ)) = 0

Remark. The function g plays the role of Gödel numbering in our proof. Apart from
the upper bound given in the Lemma we do not need ut

Sketch of the proof of Lemma 58. The D-quantifier elimination says that for each first-
order formula ∃x, P (x, y), ofM, where P is propositional, and for each d ∈ ω, there exists
a τ with depth(τ) < d such that for all a ∈ Md, Md |= ∃x, P (x, y) iff Md |= τ(a) = 0.
In in Lemma 58 instead of the formula ∃x, P (x, y) = 0 which does not depend on d we
have an arbitrary first-order formula ϕ whose size may grow with d. We reach a similar
conclusion, namely Md |= ϕ(a) ↔ Mq |= τ(a,g(ϕ)) = 0. It will help in finding such a
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term τ that, (a) the structure Mq is may be somewhat larger than Md, and (b) τ may
contain a parameter g(ϕ) which encodes the formula ϕ by an integer in Md.

The structure of the proof is the following. First we try to eliminate the innermost
block of quantifiers in ϕ ≡ Qm~xm, . . . , Q1~x1, P (~x1, . . . , ~xm), namely the block Q1~x1. We
may assume without the loss of generality that Q1 is existential (otherwise we work
with formula ¬ϕ). We want to accomplish the quantifier elimination by using the D-
elimination assumption. We consider the formula without the other quantifiers namely
the formula ψ ≡ ∃~x1, P (~x1, ~x2, . . . , ~xm). Here the ~x2, . . . , ~xm are free variables their role
is the same that the role of the variable y in the formula ∃x, P (x, y). If we can show that
ψ is equivalent to a propositional formula τ(~x2, . . . , ~xm) = 0, in the sense that they are
equivalent for all choices of the values of the variables ~x2, . . . , ~xm, then we may replace
the original formula ϕ by the simpler formula Qm~xm, . . . , Q2~x2, τ(~x2, . . . , ~xm) = 0 and
continue the elimination with the next block of quantifiers.

As a first step we consider only the elimination of the first block of quantifiers Q1~x1.
There are three problems that prevents us from using directly the D-uantifier elimination
assumption.

(i) In the D-elimination assumption there is only one parameter the variable y in the
formula P (x, y), while we now we have all of the variables ~x2, . . . , ~xm

(ii) In the D-elimination assumption there is only one existential quantifier, the quan-
tifier ∃x, while now we have the whole block ∃~x1, where the number of variables may even
depend on d.

(iii) In the D-elimination assumption the propositional formula P (x, y) does not de-
pend on d while now P (~x1, . . . , ~xm) may depend on d

What may help in overcoming the problems caused by this changes is that the as-
sumptions of the lemma imply upper bounds on the number of parameters, the number
of existential qauntifiers, and the size of the formula P . These upper bounds are in
condition (96) and in the assumption ϕ ∈ Form(cδ, ιm, ..., ι1).

We will be able to reduce all of the numbers mentioned in problems (i),(ii), and (iii) to
one (the value needed in the D-elimination assumption) by considering the formula ϕ not
in the structure Md but in a larger structure Mv. In such a larger structure Mv we may
encode a sequence of elements of Md by a single integer of Mv. (The same way as it was
done in [2].) This encoding will solve problem (i) and problem (ii). For the solution of
problem (iii) we use Lemma 57 about the evaluation of circuits with existential formulas.
The propositional formula P (~x1, . . . , ~xm) can be written in the form of ξ(~x1, . . . , ~xm) = 0,
where ξ is a term of M. We may consider the algebraic circuit corresponding to ξ. As
Lemma 57 states, this circuit defined over Mv, can be evaluated by a first-order formula
in a structure Mv′ , where v′ > v, provided that its input is encoded by a single integer,
and the circuit itself is also encoded by two integers. Lemma 57 also gives an upper bound
v′.

This way we will be able to substitute the propositional formula P in problem (iii)
by an existential formula of constant size. (See Lemma 59 later in this section.) The
new existential quantifiers can be merged by the already existing existential quantifiers
mentioned in problem (i) and all of them can be reduced to a single quantifier by going
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to a larger structure.
This quantifier elimination that we described for the first block of quantifiers, can

be recursively repeated and gradually eliminate all of the quantifiers while we have to
evaluate the formulas in larger and larger structures. Later we will sketch further details
of the proof as we are getting to the definitions and lemmas which describe the specific
parts of the proof. End of Sketch

Definition. Let τ be a term ofM. We will say that τ is a 0, 1-term if for all d ∈ ω and
for all a ∈ a we have Md |= τ(a) = 0 ∨ τ(a) = 1 ut

In the following definition, starting with a formula ϕ ≡ Qm~xm, . . . , Q1~x1,
P (~x1, . . . , ~xm, x) that we have at the beginning of the inductive proof of Lemma 58,
we describe the sequence of formulas that we derive from ϕ as we eliminate its blocks of
quantifiers one-by-one.

Definition. Assume that m ∈ ω\{0, 1}, jm, . . . , j1 are positive integers, ~xi is the
sequence of variables xi,0, . . . , xi,ji of M, and ϕ is a first-order prenex formula of M,
ϕ ≡ Qm~xm, . . . , Q1~x1, P (~x1, . . . , ~xm, x), with quantifier pattern 〈jm, . . . , j1〉, where P
is a propositional formula of M, moreover Qi is the universal quantifier for all even
i ∈ {1, . . . ,m}, and Qi is the existential quantifier for all odd i ∈ {1, . . . ,m}.

We define a sequence of formulas ϕi of M for i = 0, 1, . . . ,m, by recursion on i. The
free variables of the formula ϕi will be ~xi+1, . . . , ~xm, x. For i = 0, ϕ0(~x1, . . . , ~xm, x) ≡
¬P (~x1, . . . , ~xm, x). Assume that ϕi−1(~xi, . . . , ~xm, x) has been already defined for some
i = 1, . . . ,m. Then ϕi is defined by ϕi(~xi+1, . . . , ~xm, x) ≡ ∃~xi,¬ϕi−1(~xi, ~xi+1, . . . , ~xm, x).
The formula ϕi defined this way will be called the ith segment of the formula ϕ.

Clearly if m is odd then ϕm ≡ ϕ, and if m is even, then ϕm ≡ ¬ϕ. (We get this
by replacing the quantifiers ∀~xi, (. . .) in the definition of ϕ by ¬∃~xi,¬(. . .) for all even
i ∈ [1,m].) ut
Definition. Suppose that D is a function so that the D-quantifier elimination assump-
tion holds for M. Then S = SD will denote the function 2D. ut
Remark. The functions SD will be useful for us since for every term τ of M if
depth(τ) ≤ D(d) for some d ∈ ω, then csize(τ) ≤ 2SD(d). This is a consequence of
the fact that the arities of the function symbols of M are at most two. ut

The following Lemma 59 solves the problems (i), (ii), and (iii) mentioned in the sketch
of the proof of Lemma 58. (The remaining problem, reducing the number of existential
quantifiers from a constant to one, will be solved Lemma 61.) Lemma 59 will be used
in the inductive proof of Lemma 58. Applying Lemma 59 we will be able to eliminate a
block of quantifiers in the inductive step.

Lemma 59 For all sufficiently large c ∈ ω the following holds. Assume that

(99) D is a function and the D-quantifier elimination assumption holds,

(100) ψ is an existential formula of M of the form

ψ ≡ ∃x0, . . . , xk−1, ξ(x0, . . . , xk−1, y0, . . . , yl−1) = 0
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where ξ is a 0, 1-term of M,

(101) r, v ∈ ω and v ≥ r + cdlog(csize(ξ))e.

Then there exists a 0, 1-term η(x0, . . . , xl−1, w0, w1, w2) of M such that the following
conditions are satisfied:

(102) csize(η) ≤ 2D(v) + c(k + l)

(103) for all a0, . . . , al−1 ∈Mr,

Mr |= ψ(a0, . . . , al−1) ↔ Mv |= η(a0, . . . , al−1, Circ0(ξ), Circ1(ξ), r) = 0

We will prove the lemma in three steps. First, in Lemma 60 instead of the propositional
statement η = 0 we will have an existential statement of constant size, but with possibly
more than one existential quantifiers. In lemma 61 we reduce the number of existential
quantifiers to one. Then, using the D-quantifier elimination assumption, we complete the
proof of Lemma 59.

Proof of Lemma 59. Assume that D, are fixed satisfying condition (99) of the lemma.
Sometimes we will write S(x) instead of 2D(x). As a first step we prove the following
Lemma 60 (without the assumption of D quantifier elimination). In this lemma is a
similar statement to Lemma 59 but now we express the truth value of Mr |= ψ, not by
a term η in Mv but by constant size first-order existential formula ϕ in Mv. So we are
saying less because because ϕ has quantifiers, but at the same time also saying more since
ϕ is of constant size.

Lemma 60 There exists an existential first-order formula ϕ(x0, . . . , x5) of M such that
for all sufficiently large c1 > 0 and for all integers k, l, for all formulas ψ and terms
ξ of M satisfying condition (100) of Lemma, 59, and for all r, v′ ∈ ω with v′ ≥ r +
c1dlog(csize(ξ))e, we have

(104) for all a0, . . . , al−1 ∈Mr,

Mr |= ψ(a0, . . . , al−1) ↔ Mv′ |= ϕ(A, r, Circ0(ξ), Circ1(ξ), k, l)

where A = encl,r(a0, . . . , al−1).

Remark. The important point in this lemma is that the formula ϕ does not depend on
anything. Therefore we replaced the formula ψ of arbitrary size with a fixed formula ϕ of
constant size, while k, l, ξ, r can be arbitrarily large. ut

Proof of Lemma 60. First we describe the formula ϕ as a mathematical statement,
and then we show using Lemma 57 that this statement can be expressed by an existential
formula ϕ of M, as required by the lemma.

The formula ϕ will say the following:
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(105) there exists an element u ∈ Mv′, with u < 2k2r such that if ui = u[i, r], for
i = 0, ..., k − 1, then ξ(u0, ..., uk−1, a0, ..., al−1) = 0

If we describe the statement in (105) as it is by a first-order formula of M, then the
size of the formula will depend on k and l so it is not suitable for our purposes. Lemma 57
however provides an existential first-order formula of constant size which decides whether
a term µ in the structure Mt takes a given value b, at a given evaluation of the variables of
the term µ. The evaluation of the variables is given by a single integer, and the term µ is
given by the two integers Circ0(µ) and Circ1(µ). Lemma 57 is applicable for the present
case with µ:= ξ, k:= k + l, t:= r, v:= v′, ai:= ai, for i = 0, 1, ..., l − 1 and al+j:= uj for
j = 0, 1, ..., k − 1, b:= 0. Let ϕ′(y0, ..., y4) be the existential formula whose existence is
guaranteed by lemma 57 with this choices of the parameters. The definition of the function
enc implies that enck+l,r(a0, ..., al−1, u0, ..., ul−1) = encl,r(a0, ..., al−1) + u2l2

r
= A+ u2l2

r
.

Therefore the formula ϕ(x0, ..., x5) ≡ ∃u, ϕ′(x0u2x52x1 , x1, x3, x4) meets our requirements,
since with x0:= A, x1:= r x2:= Circ0(ξ), x3:= Circ0(ξ), x4:= k, x5:= l we get that

Mv′ |= ϕ(encl,r(A, r, Circ0(ξ), Circ1(ξ), k, l) iff there “exists an u =
∑k
i=0 ui2

i2r <
2k2r ∈ Mv′ with Mv′ |= ϕ′(A + u2lr,0, r, Circ0(ξ), Circ1(ξ))”. This last statement by
Lemma 57 is equivalent to condition (105). Therefore the formula ϕ our requirements.
Q.E.D.(Lemma 60)

The existential formula ϕ in Lemma 60 may have more than one existential quantifier.
Suppose that ϕ ≡ ∃y0, ..., ys−1, P (y0, ..., ys−1, x0, ..., x5), where P is a propositional formula
of M. To reduce the number of existential quantifiers in the formula ϕ to one, and also
to replace the six parameters A, r, Circ0(ξ), Circ1(ξ), k, l of ϕ by a single parameter, we
use Lemma 37 with the propositional formula P occurring in ϕ. We get the following
stronger version of Lemma 60.

Lemma 61 There exists a term π(x0, . . . , x5) of M and there exists an existential first-
order formula ϕ(x) of M, containing a single existential quantifier, such that for all
sufficiently large c1 > 0, and for all integers k, l, for all formulas ψ and terms ξ satisfying
condition (100) of Lemma 59, and for all r, v ∈ ω with v ≥ r+ c1dlog(csize(ξ))e, we have
that

(106) for all a0, . . . , al−1 ∈Mr,

Mr |= ψ(a0, . . . , al−1) ↔ Mv′ |= ϕ(π(A, r, Circ0(µ), Circ1(µ), k, l))

where A = encl,r(a0, . . . , al−1).

Proof of Lemma 61. With the choice v = v′+c2 where v′ is the integer whose existence
is stated in Lemma 60 the statement of the present lemma is an immediate consequence
of Lemma 37 and Lemma 60. Q.E.D.(Lemma 61)

To complete the proof of Lemma 59 we use the D-quantifier elimination assumption
with the existential formula ϕ whose existence is stated in Lemma 61. We get that there
exists a term η′ of M with csize(η′) ≤ 2D(v) such that
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(107) for all a0, . . . , al−1 ∈Mr,

Mr |= ψ(a0, . . . , al−1) ↔ Mv |= η′(π(A, r, Circ0(µ), Circ1(µ), k, l)) = 0

where A = encl,r(a0, . . . , al−1).

The definition of A implies that there exists a term σ of M with length at most
c2l, where c2 is a constant, such that Mv |= A = σ(a0, . . . , al−1). There exist also
terms σ′, σ′′ (without any free variables) of M of lengths at most c2(k + l) such that
Mv |= k = σ′ ∧ l = σ′′. Therefore the term η = η′(π(σ(x0, . . . , xl−1), w0, w1, w2, σ

′, σ′′))
meets our requirements. Q.E.D.(Lemma 59)

Lemma 62 Assume that k,m ∈ ω, m ≥ k, 〈jk, ..., j1〉, 〈ιm, ..., ι1〉 are sequences of positive
integers, jk−i ≤ ιm−i for all i = 0, ..., k−1, and ϕ is a prenex formula ofM, with quantifier
pattern 〈jm, ..., j1〉. Then there exists a prenex formula ψ of M with quantifier pattern
〈ιm, ..., ι1〉 such that the propositional parts of ϕ and ψ are identical, and ` ϕ↔ ψ.

Proof of Lemma 62. We may add new quantified variables to ϕ which do not occur
in the propositional part of ϕ. By “padding” ϕ with such new variables and quantifiers
we may change its quantifier pattern into 〈ιm, ..., ι1〉 in a way that the obtained prenex
formula remains logically equivalent to ϕ. Q.E.D.(Lemma 62)

With Lemma 59 and 61 we have everything that we need to carry out the inductive
step in the proof of Lemma 58. The following Lemma 63 says exactly what we have to
prove at an inductive step, in terms of the quantitative bounds on the various parameters.
It also defines integers denoted by γi,j in Lemma 63 that will be used to define the “Gödel
numbers” g(ϕ). The role of the sequence ρ0 < ... < ρm to be defined in Lemma 63 will be
that at the ith step in the inductive proof we will show that Md |= ϕi(...) is equivalent to
Mρi |= τi(...) = 0, where ϕi is the ithe segment of the formula ϕ as defined earlier. After
the proof of Lemma 63 we will return to the proof of Lemma 58.

Definition. The expression “β is sufficiently large with respect to α” will be written as
α� β. ut

Lemma 63 For all c, α0 ∈ ω\{0}, and for ε > 0, if c� α0 � 1
ε

then the following holds.
Assume that

(108) the D quantifier elimination assumption holds, where D(x) = ε(log x)
1
2 ,

(109) d ∈ ω is sufficiently large with respect to ε,

(110) δ = bD(d + log d)c, m ∈ ω, m ≤ cδ, and ιm, ..., ι1 are positive integers with
ιm + . . . ι1 ≤ cδ, ιm ≤ cδ,

(111) ρ0, . . . , ρm is a sequence of natural numbers defined by ρi = d + iD, for i =
0, 1, ...,m, where D = b log d

m
c,
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(112) ϕ ≡ Qm~xm, . . . , Q1~x1, µ(~x1, . . . , ~xm, x) = 0 is a prenex first-order formula of M,
with quantifier pattern 〈ιm, . . . , ι1〉 ofM, where µ is a 0, 1-term ofM with csize(µ) ≤ cδ,
~xi is the sequence of variables xi,0, . . . , xi,ιi−1, and Q1 is an existential quantifier.

Then there exist 3(m + 1) natural numbers γi,j, i ∈ m + 1, j ∈ 3, and there exists a
sequence of terms 〈τ0, . . . , τm〉 of M such that for each i ∈ m+ 1 the following conditions
are satisfied:

(113) γi,0 = Circ0(τi), γi,1 = Circ1(τi), γi,2 = ρi and max{γi,0, γi,1, γi,2} < 2d,

(114) τi has arity 1 + 3i+
∑m
j=i+1 ιj,

(115) csize(τm) ≤ S(ρm), and if i > 0 then csize(τi) ≤ (S(ρm))α0,

(116) for all ~ai+1 ∈ (Md)
ιi+1 , . . . ,~am ∈ (Md)

ιm , a ∈Md,

Md |= ϕ0(~ai+1, . . . ,~am, a) ↔ Mρ0 |= τ0(~ai+1, . . . ,~am, a) = 0

and if i > 0 then

Md |= ϕi(~ai+1, . . . ,~am, a) ↔ Mρi |= τi(~ai+1, . . . ,~am, a, ~γ0, . . . , ~γi) = 0

where the formula ϕi is the ith segment of the formula ϕ, and ~γr is the sequence
γr,0, γr,1, γr,2 for all r ∈ m.

Proof of Lemma 63. Assume that c � 1
ε

and d,S,m, ν, ι0, . . . , ιm, ϕ are given and
they satisfy conditions (108),. . . ,(112) of the lemma. We construct the sequences τi, ~γi,
i = 0, 1, . . . ,m by recursion on i and at the same time we prove their required properties
by induction on i.

i = 0. We define the term τ0 by τ0 = µ. The sequence ~γ0 = 〈γ0,0, γ0,1, γ0,2〉 is defined
by condition (113) of the lemma. We check all of the conditions that must be satisfied.

Condition (113). The first three equalities follows from the definition of ~γ0.
The upper bound on the integer γ0,2 holds, since γ0,2 = ρ0 ≤ ρm ≤ d+ log d < 2d. Ac-

cording to Lemma 56 we have γ0,0 = Circ0(µ) ≤ log log(cδ) < 2d and γ0,1 = Circ0,1(µ) ≤
(cδ)8cδ = 28δcδ log c. Since δ = bD + log dc ≤ 2ε(log d)

1
2 we have that Circ1(µ) < 2d.

Condition (114). The arity of µ is 1 +
∑m
j=1 ιi.

Condition (115). For i = 0 this does not state anything.
Condition (116). Since ρ0 = d and τ0 = µ the two statements whose equivalence is

claimed are identical.
i > 0. Assume that τ0, . . . , τi−1, ~γ0, . . . , ~γi−1 has been already defined and

they meet the requirements of the lemma with i:= i − 1. For the definition of τi
we use Lemma 59 with k:= ιi, l:= 1 + 3i +

∑m
j=i+1 ιj, ξ:= 1 − τi−1, ψ:= ∃~xi,1 −

τi−1(~xi, ~xi+1, . . . , ~xm, x, ~y0, . . . , ~yi−1) = 0, where ~xj is the sequence of variables
xj,0, . . . , xj,ιj−1, for j = i − 1, . . . ,m and ~yj is the sequence of variables yj,0, yj,1, yj,2,
r:= ρi−1, v:= ρi. We assume that 1

ε
is sufficiently large with respect to the constant c
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of Lemma 59. We have to check that the assumption of Lemma 59 are satisfied by this
choice of its parameters. Conditions (99) and (100) are immediate consequences of the
definitions and the assumptions of Lemma 63.

Condition (101) of Lemma 59. Here we separately consider the i = 1 and the i > 1
case. Assume first that i = 1. Then ξ = 1 − τ0 = 1 − µ. We have csize(µ) ≤ cδ,
r = ρ0, v = ρ1, and by the definition of the sequence ρj, ρ1 ≥ ρ0 + log d

m
, where m ≤ cδ,

δ = bD(d + log d)c ≤ ε(log(d + log d))
1
2 . (We denote the constant c of Lemma 59 by c′.)

Therefore r + c′ log(size(ξ)) = ρ0 + c′ log(cδ) ≤ ρ0 + c′δ log c. Since ε > 0 is sufficiently
small with respect to both c and c′, m ≤ cδ, we have c′εδ log c < log d

m
and therefore

r + c′ log(size(ξ)) ≤ ρ1 = v as required.
In the i > 1 case (of condition (101) of Lemma 59) the upper bound on csize(ξ) =

csize(τi−1) follows from conditions (115), namely csize(τi−1) ≤ (S(ρm))α0 . Therefore

log(csize(τi−1)) ≤ α0ε(log(d + log d))
1
2 . This differs from the same upper bound in the

i = 1 case only by a constant factor which is sufficiently small with respect to 1/ε, so we
may complete the proof in the same way as in the i = 1 case. This completes the proof of
the fact that the assumptions of Lemma 59 hold, and we continue the definitions in the
inductive proof of Lemma 63 in the i > 0 case.

We define τi by τi = η, where η is the term whose existence is guaranteed by Lemma
59. ~γi is defined by (113). We show now that the sequences τ0, . . . , τi, ~γ0, . . . , ~γi satisfy
conditions (113), (114), (115), (116) of Lemma 63.

Condition (113). The first three equalities are the definitions of γi,j, j ∈ 3. We get
the upper bounds on γi,j, j = 0, 1, 2 in the same way as in the i = 0 case.

Condition (114). The arity of η in Lemma 59 is the number of free variables of ψ plus
3. The number of free variables of the formula ∃~xi, τi−1(~xi, ~xi+1, . . . , ~xm, x, ~y0, . . . , ~yi−1) is
1+3(i−1)+

∑m
j=i+1 ιj. Increasing it by three we get the value claimed in condition (114).

Condition (115). In this proof we will use the following trivial inequality containing

the function D(x) = ε(log x)
1
2 :

D(d+ log d) ≤ 2D
(
d+m

⌊ log d

m

⌋)
= 2D(ρm)

According to condition (102) of Lemma 59 csize(τi) = csize(η) ≤ S(v) + c′(k+ l) =
S(ρi) + c′(ιi + 1 + 3i+

∑m
j=i+1 ιj) ≤ S(ρi) + c′cδ + 1 + 3cδ + cδ ≤ c′′S(ρm)cδ, where c′′ is a

suitably chosen constant. (We used here the inequality S(ρi) ≤ S(ρm).) The definition of
δ implies that cδ ≤ 2D(d+log d) log c ≤ 22D(ρm) log c = (S(ρm))2 log c. Since c� α0 this implies
csize(τi) ≤ S(ρm)α0

In the i = m case we use that fact that the values k and l from Lemma 59 are
smaller than in the general case. Namely k = ιm and l = 1 + 3m. Therefore by (110)
csize(τm) ≤ S(ρm) + c′(cδ + 1 + 3cδ) ≤ S(ρm) + 4cc′ log(S(ρm)) ≤ 2S(ρm).

Condition (116). According to the inductive assumption for all ~ai ∈ (Md)
ιi+1 , . . . ,~am ∈

(Md)
ιm , a ∈Md, Md |= ϕi−1(~ai, . . . ,~am, a) is equivalent to τi(~ai, . . . ,~am, a, ~γ0, . . . , ~γi−1) =

0. This fact, the definition of ϕi, and Lemma 59 imply that for all ~ai+1 ∈
(Md)

ιi+1 , . . . ,~am ∈ (Md)
ιm , a ∈Md, the following statements are equivalent

Md |= ϕi(~ai+1, . . . ,~am, a)
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Md |= ∃~xi,¬ϕi−1(~xi,~ai+1 . . . ,~am, a)
Mρi−1

|= ∃~xi, 1− τi−1(~xi,~ai+1, . . . ,~am, a, ~γ0, . . . , ~γi−1) = 0.
Mρi−1

|= ∃~xi, ξ(~xi,~ai+1, . . . ,~am, a, ~γ0, . . . , ~γi−1) = 0
Mρi |= η(~ai+1, . . . ,~am, a, ~γ0, . . . , ~γi−1, γi) = 0
Mρi |= τi(~ai+1, . . . ,~am, a, ~γ0, . . . , ~γi−1, γi) = 0

The equivalence of the first and last statements of this sequence is claimed in condition
(116) of the present lemma. Q.E.D.(Lemma 63)

Proof of Lemma 58. Assume that S, d,m, δ, ι1, . . . , ιm, ρ0, . . . , ρm are fixed with the
properties described in the assumptions of Lemma 63. We define first the function g.

Assume that a first-order formula ϕ ∈ Form(S(ρm), ι1, . . . , ιm) is is given. We apply
now Lemma 63 for ϕ with the given values of the parameters. Let γi,j, i ∈ m, j ∈ 3 be the
natural numbers and let τ0, . . . , τm be the terms whose existence is guaranteed by Lemma
63. We define now g(ϕ) by

g(ϕ) = d2ρm + 22ρm
m∑
i=0

2∑
j=0

γi,j2
(3i+j)d

By condition (110), m ≤ cδ ≤ log d and according to condition (113) max{γi,j|i ∈ m +

1, j ∈ 3} < 2d, so we have that g(ϕ) < 22d−1
as stated in the lemma. We also claim that

(117) g(ϕ) uniquely determines all of the integers γi,j.

This is true since d2ρm is the residue of g(ϕ) divided by 22ρm . This uniquely determines
both d and

∑m
i=0

∑2
j=0 γi,j2

(3i+j)d. According to (113) γi,j < 2d, therefore this sum uniquely
determines all of the integers γi,j, i ∈ m+ 1, j ∈ 3.

This process as we got the integers γi,j for g(ϕ) can be implemented by a term of
M, which is evaluated in Mρm . Indeed we have Mρm |= ÷(g(ϕ),n) = b, where b =∑m
i=0

∑2
j=0 γi,j2

(3i+j)d and Mρm |= d = ÷(g(ϕ) − b,n). Finally from b and d we can
compute each γi,j using Lemma 5. This implies that there exist a term χ(x, y, z, w), of
M (which does not depend on anything so its length is a constant c1), such that for each
possible choice of ϕ with the described properties we have that for all i ∈ m, j ∈ 3,
Mρm |= γi,j = χ(g(ϕ),m, i, j), for i ∈ m, j ∈ 3.

We want to define the term τ such that for all a, b ∈Mρm ,

Mρm |= τ(a, b) = τm
(
a, ~χ(b,m0, 0), ~χ(b,m0, 1), . . . , ~χ(b,m0,m− 1)

)
where ~χ(b,m0, i) is the sequence χ(b,m0, i, 0), χ(b,m0, i, 1), χ(b,m0, i, 2) for i =
0, 1, . . . ,m − 1. We can achieve this by a term τ whose circuit-size is at most
csize(τm) + c′m, where c′ ∈ ω is a constant. We prove the existence of such a term
τ by constructing first an M-circuit C, which computes the same function that is ex-
pected from τ . TheM-circuit at the input a, b will compute first the numbers 0, ...,m−1
using m nodes. For each fixed i ∈ m, j ∈ 3 there will be at most c1 nodes in the circuit
C to evaluate χ(a, b, i, j) and finally C contains csize(τm) nodes to evaluate τm at the
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input a, ~χ(b,m0, 0), ~χ(b,m0, 1), . . . , ~χ(b,m0,m− 1). The term τ whose existence is stated
in the lemma will be a term of M which computes the same value at each input as the
circuit C constructed above.

We show now that the function g, and the term τ satisfies conditions (97) and (98) of
the lemma.

Condition (97). The definition of the term τ implies that csize(τ) ≤ csize(τm)+c′m
for some constant c′. Therefore m ≤ cδ and the upper bound on csize(τm) given in (115)
implies that csize(τ) ≤ 3S(d+ log d).

Condition (98). The definition of the formula τ and the terms χi,j implies that Mρm |=
τ(a,g(ϕ)) = τm(a,~γ0, . . . , ~γm) and therefore condition (116) with i = m implies our
statement. Q.E.D.(Lemma 58)
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9.2 The predictivity of M

Definition. 1. The set of functions symbols ofM (including the constant symbols) will
be denoted by fsymb(M)

2. Let J be a function. We will say that M is J -predictive if the following conditions
are satisfied.

(118) The function J is a monotone increasing function defined on ω and with values
in ω.

(119) For all sufficiently large d ∈ ω, J (d) ∈Md and J (d) > d.

(120) There exists a function defined on fsymb(M) assigning to each function symbol
f(x0, . . . , xk−1) of M, a formula Φf (x, y, z, Y0, . . . , Yk−1) ∈ SForm(M), where x, y, z are
free first-order variables and Y0, . . . , Yk−1 are free variables for binary relations, such that
the following holds. For all d, r ∈ ω with d + r ≤ J (d) there exists a map ηd,r of
universe(Md+r) into the set of binary relations on universe(Md) with the following
properties:

(i) For each a, u, v ∈Md, we have (ηd,r(a))(u, v) iff “u = 0 and v = a”.
(ii) Suppose that f(x0, . . . , xk−1) is a k-ary function symbol ofM, for some k = 0, 1, 2

(including the constant symbols for k = 0) and a0, . . . , ak−1 ∈Md+r. Then for all u, v ∈
Md, (ηd,r(f

(d+r)(a0, . . . , ak−1))(u, v) iff Md |= Φf (u, v, r, ηd,r(a0), . . . , ηd,r(ak−1)), where
f (d+r) = (f)Md+r

. ut

Lemma 64 Assume that c > 0 is a real, and J (x) = bx + c log xc. Then M is J
predictive.

Proof. In [6] a weaker result of similar nature is proved which implies that there exists
a function g(x) with limx→∞ g(x) =∞, such that if J0 = x+g(x) then M is J0-predictive.
Some of the partial results of the proof given there were stronger than what was needed
for the theorem formulated in [6]. We get Lemma 64 by using the full strength of these
partial results in particular about the first-order definability of the bits of the results of
multiplication and division between large numbers.

Here we give only the outline of the proof together with with those details that has to
be changed for the present purposes.

We define the function J by J (x) = bx + c log xc. Assume that d ∈ ω is sufficiently
large χ ∈ ω and d + χ ≤ J (d). First we define the map ηd,χ whose existence is required

by the definition of predictivity. To make our notation more concise we will write η
(a)
d,χ

instead of ηd,χ(a).
Assume that a ∈Md+χ, 2d = n, ν = 2χ. Let ai = coeffi(a, 2

n) for i = 0, 1, . . . , ν − 1.

We define ηd,χ by: “for all u, v ∈ Md, η
(a)
d,χ(u, v) iff u ∈ ν and v = au”. This definition
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implies that if a ∈Md then for all u, v ∈Md, η
(a)
d,χ(u, v) iff u = 0 and v = a, that is, our

definition satisfies condition (120)/(i) from the definition of predictivity.
We define now the formula Φf (x, y, z, Y0, . . . , Yk−1) for each function symbol f of M.

(According to the definition of J -predictivity the formula Φf cannot depend on the choices
of d or χ.)

If f = c is a constant symbol of M then Φc ≡ x = 0 ∧ y = c. By the definition of
ηd,χ, the formula Φc satisfies condition (120)/(ii) from the definition of predictivity, for
all constant symbols c of M.

We will not use the relation η
(a)
d,χ directly in the definition of Φf , for the remaining

function symbols f ofM, but we first define another binary relation ξ
(a)
d,χ on Md and use

this relation.

Definition. 1. For each positive integer k and u = 〈u0, . . . , uk−1〉 ∈ (Md)
k, uon will

denote the integer uk−1n
k−1 + uk−2n

k−2 + . . .+ u1n+ u0.
2. Assume that R is a k-ary relation on the set n = {0, 1, . . . , n − 1}, where n = 2d.

integerk(R) will denote the integer
∑{2uon | u ∈Mk

d∧R(u)}. Clearly R→ integerk(R)
is a one-to-one map from the set of all k-ary relation on n to the set of all natural numbers
less then 2n

k
. If a ∈ [0, 2n

k − 1] is a natural number then the unique k-ary relation R on
n with integerk(R) = a will be denoted by integer−1

k (R). ut

Definition. 1. Suppose that R is a k-ary relation on Md. We will say that the relation
R is n-restricted if for all u = 〈u0, . . . , uk−1〉 ∈ Mk

d, R(u0, . . . , uk−1) implies that for all
i = 0, 1, . . . , k − 1 with ui ∈ n.

2. Assume that d, χ are positive integers and a < 2n
2
. Then ξ

(a)
d is the unique binary

relation on Md which satisfies the following two conditions: (a) The relation ξ
(a)
d is n-

restricted, and (b) integer2(ξ
(a)
d ) = a. ut

Lemma 65 There exists a first-order formula ϕ(x, y, z) ofM such that for all d ∈ ω and
for all a, b ∈ 22d and i ∈ 2d we have that b = coeffi(a, 2) iff Md |= ϕ(a, b, i).

Proof. The statement of the lemma follows from Lemma 8, Q.E.D.(Lemma 65)

The following Lemma states that the relations ξ
(a)
d and η

(a)
d,χ can be defined from each

other in a first-order way. It is important that for the definition of the value ξ
(a)
d (u, v) for

a fixed pair u, v we may need the values η
(a)
d,χ(x, y) for all x, y ∈Md and vice versa.

Lemma 66 There exist formulas Ψi(x, y, z, Z) ∈ SForm(M), i = 0, 1, where x, y, z are
first-order variables and Z is a variable for a binary relation such that for all for all
sufficiently large d ∈ ω, for all χ ∈ 2d and for all a ∈ Md+χ the following holds: Md |=
∀u, v, [ξ(a)

d (u, v)↔ Ψ0(u, v, χ, η
(a)
d,χ)] and Md |= ∀u, v, [η(a)

d,χ(u, v)↔ Ψ1(u, v, χ, ξ
(a)
d )]

Proof. Assume a ∈ 22d+χ and a =
∑(ν−1)
i=0 ai(2

2d)ν . The formula Ψ1 have to express
the statement u ≤ ν ∧ v ≤ n ∧ coeffun+v(a, 2) = 1. coeffun+v(a, 2) = 1 is equivalent to

coeffv(au, 2) = 1. Using the relation η
(a)
d,χ we can define au in a first-order way in Md,
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namely x = au iff Md |= η
(a)
d,χ(u, x). If au is given then, by Lemma 65, coeffv(au, 2) has

a first-order definition in Md. This completes the definition of Ψ0. In the first-order
formula Ψ1 we have to define au form its binary coefficients which can be done by using
again Lemma 65. Q.E.D.(Lemma 66)

Lemma 66 implies that it is sufficient to prove that condition (120) of the definition
of predictivity holds in the following modified form. For the sake of notational simplicity
we consider here all of the function symbols of M as binary function symbols. In the case
of the constant symbols 0,1,−1, and n the interpretation of these symbols is a binary
function which does not depend on its variables. For the unary functions symbols N and
p their interpretation is a binary function which depends only on its first variable.

(121) Suppose that f is one of the function symbols 0,1,−1, n,∩,N ,
+,×,p,÷, max,min,∩,N of M. Then there exists a formula Φ′f (x, y, z, Y0, Y1) ∈
SForm(M), where x, y, z are first-order variables and Y0, Y1 are variables for binary re-
lations such that for all c ∈ ω, for all sufficiently large d ∈ ω, and for all a, b ∈ Md+χ,

and for all u, v ∈ Md, ξ
(f (d+χ)(a,b))
d (u, v) is true iff Md |= Φ′f (u, v, χ, ξ

(a)
d , ξ

(b)
d ), where

f (d+χ) = (f)Md+χ
.

In other words given the binary bits of a, b ∈ 22d+χ , each by a binary relation on
universe(Md), we have to define in Md in a first-order way the binary bits of 0, 1, 22d+χ−1,
d+ χ, 2a,N (a), a+ b, ab, a÷ b = ba/bc,, min(a, b), max(a, b), a ∩ b, where the operations
are defined in the structure Md+χ. The task is trivial for 0 and 1. In the case of 22d+χ − 1
all of the 2d+χ bits are 1s. We get the bits of d+χ by computing d+χ with an addition in
Md, where d can be defined by a first-order formula using the constant symbol n. Since
a ∩ b and N (a) are defined by bitwise operations Φf obviously can be easily defined for
these two operations. Therefore we have to prove that condition (121) holds only for the
remaining function symbols.

Using the function integer−1
k we can represent natural numbers from the interval

[0, 2n
k − 1] by k-ary relations on n. Our next goal is to represent sequences of natural

numbers by relation on n, (where we have a bound both on the length of the sequence
and the sizes of its elements).

Definition. 1. The set of all sequences of length i, whose elements are from the set
A will be denoted by, seq(i, A). For example the set of all sequences of length nl whose
elements are integers in the interval [0, 2n

k − 1] is seq(nl, 2n
k
).

2. Assume that a = 〈a0, . . . , aj−1〉 ∈ seq(nl, 2n
k
). We will represent this se-

quence by a k + l-ary relation R(a) on n defined in the following way. For all
i ≤ j − 1, and for all u0, . . . , uk−1, v0, . . . , vl−1 ∈ n, R(a)(u0, . . . , uk−1, v0, . . . , vl−1) iff

(integer
(−1)
k (at))(u0, . . . , uk−1), where t =

∑l−1
i=0 vin

i. Since in this representation the
length of the sequence cannot be arbitrarily chosen it must be nl, for some l ∈ ω, we will
call this representation a representation of the sequence without its length.

3. The definition above provides representation only for sequences with exactly nl

elements for some natural number l. A sequence a = 〈a0, . . . , aj−1〉 where j < nl, ai ∈
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[0, 2n
k − 1] will be represented in the following way. We attach the number j as the first

element to the sequence a and attach a sequence of 0s to its end, so that the total length
of the sequence a′ = 〈j, a0, . . . , aj−1, 0, . . . , 0〉 obtained this way is nl. The representation
of the sequence a together with its length will be the same as the representation of the
sequence a′ without its length, as defined earlier. In the following the representation of a
sequence will always mean a representation of the sequence together with its length unless
we explicitly state otherwise.

4. Assume that d is a positive integer and n = 2d. We will say that the set X is Md-
representable if there exists natural numbers k, l such that either X = {0, 1, . . . , 2nk − 1}
or X = seqn(nl, 2n

k
). If X is an Md representable set and X = {0, 1, . . . , 2nk − 1} then

we define its weight by weight(X) = k, if X = seqn(nl, 2n
k
) then we define its weight by

weight(X) = k+ l. If a ∈ X, where X is an Md representable set, then relationa,n will
denote the k-ary or k + l-ary relation on n representing the element a. ut

We will consider now families of functions f (d), d ∈ ω so that for each d ∈ ω,
f (d) ∈ func(X(d), Y (d)) where both X(d) and Y (d) are Md-representable sets with weight
less then w for a constant w. We are interested in the case when such a family of func-
tions can be defined by a first-order formula in Md without using any parameters. The
world “strongly” that we will use in the definition below refers to mentioned the lack of
parameters.

Definition. 1. Assume that wi ∈ ω for i = 0, 1 and for all d ∈ ω, A
(d)
i are Md

representable sets of weight wi for i = 0, 1, and f (d) ∈ func(A
(d)
0 , A

(d)
1 ). We will say

that the family of functions f (d) is a strongly first-order definable family function or
a s.f.d.-family in M if there exists a formula Γ(x0, . . . , xw1−1, Z) ∈ SForm, where xi, i =
0, 1, . . . , w1−1 are individual variables and Z is a variable for k0-ary relations such that for
all sufficiently large d ∈ ω and for all a ∈ A(d)

0 , and b ∈ A(d)
1 with f(a) = b, we have that for

all u0, . . . , uw1−1 ∈ n, relationb,n(u0, . . . , uw1−1) iff Md |= Γ(u0, . . . , uw1−1, relationa,n).
ut

We prove now that condition (121) is satisfied by each function symbol of M. As we
mentioned already this statement trivially holds for some of the function symbols. For
the remaining ones we show now that the corresponding families of functions are are
strongly first-order definable in M.

For f = min and f = max the statement is trivial since a ≤ b iff integer−1
2 (a) ≤

integer−1
2 (b) according to the lexicographic ordering which clearly can be defined in Md

in a first-order way.
The function symbol f = “ + ”. If two integers are given in binary form each with

m bits then the bits of their sum can be defined by a simple well-known constant depth
circuit whose size is linear in m. This circuit is defined in a uniform way which makes it
possible to translate it into a first-order formula interpreted in Md. For later use we also
consider now the case where we have to add a sequence of integers. This question has
been also studied for circuits, and it is known that if we have at most (logm)c0 integers
with mc1 binary bits then their sum can be computed by an unlimited fan-in boolean
circuit with size mc2 and depth c3, where c2, c3 depend only on c0 and c1, see [1]. The
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construction of the circuit is uniform, in this case too, and can be translated into a first-
order formulas, that we need for our present purposes, over a structure containing the
arithmetic operations.

Definition. If b is a finite sequence of integers then Sb will denote the sum of its
elements. ut

The following Lemma is proved in [6]

Lemma 67 Assume that c0, c1 ∈ ω. Then there exists a strongly first-order definable
family of functions f (d), d ∈ ω, such that for all sufficiently large d if n = 2d, j ≤ nc0

and a is sequence of length j, from elements of the set 2n
k
, that is, a ∈ seq(j, 2n

k
), then

Sa = f (d)(a).

We prove condition (121) for f = × in a more general form then needed, namely we
will consider products with more than two factors. This will be useful in the proof of
(121).

Definition. Assume that a = 〈a0, a1, . . . , aj−1〉 is a sequence of integers. Then Pa will
denote the number

∏j−1
i=0 ai. ut

Definition. Assume that α(x), β(x) are functions defined on ω with real values. We will
say that the pair 〈α(x), β(x)〉 is acceptable if there exists a strongly first-order definable
family of functions f (d), d ∈ ω, such that for all sufficiently large integers d ∈ ω, for all
nonnegative integers j ≤ α(d), and for all a ∈ seq(j, 2β(d)), we have Pa = f (d)(a). ut

The following two lemmas are proved in [6]. The second lemma is a special case of the
first one.

Lemma 68 For each fixed c > 0, ε > 0 the pair α(x) = xc, β(x) = 2x+x1−ε is acceptable.

Lemma 69 For all ε > 0 there exists a family of functions f (d), d ∈ ω, such that, for all

sufficiently large d ∈ ω if a = 〈a0, a1〉 ∈ seq(2, 22d+d
1−ε

), then a0a1 = f (d)(a).

Using Lemma 69 we can show that condition (121) is satisfied by f = ×. If d is

sufficiently large and d + χ ≤ J (d) ≤ d + c log log d then d + d
1
2 > d + χ and therefor

Lemma 69 implies that, multiplication in Md+χ can be defined in Md in the sense of
(121). This completes the proof of (121) for f = ×.

Now we prove condition (121) for f = ÷. We follow the technique used by Beame,
Cook, and Hoover (see [9]) for performing integer division by small depth circuits. Namely,
we reduce integer division to multiplication and addition by approximating the function

1
1−x with an initial segment of its Taylor series.

Assume that d is sufficiently large, d + χ ≤ J (d) ≤ d + c log log d, a, b ∈ Md+χ, and
we want to define ba/bc in Md in a first-order way. First we describe a way, using general
mathematical language, to compute ba/bc and then we show that this can be translated
into the formula Φ′f required in (121). We will use the notation 2d = n and 2χ = ν.
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(i) First we note that it is sufficient to find integers t, l such that 1
b
− t2l < 2−νn−1.

The reason for this is that in the possession of the integers t, l we can compute α = at2l

and |α− ba/bc| < a2−νn−1 < 2νn2−νn−1 ≤ 1
2

so we get ba/bc by rounding.
(ii) Let k be an integer so that 1 > 2−kb > 1/2. If there exists no integer with this

property then the problem is trivial, since we can get the binary bits of ba/bc form the
bits of a simply by shift and the erasure of a block of consecutive bits. Let u = 2−kb.
Since 1 > u > 1

2
, we have 1 < 1

u
< 2. We may write 1

u
in the form of v2−(n+2) +R, where

v ∈ [0, 2n+2] is an integer and 0 ≤ R < 2−n−1. (v will be determined by the first n + 1
bits of 1

u
, and R is what remains from 1

u
after erasing these bits.) Let z = v2−(n+2). The

definition of v implies that 0 ≤ z ≤ 2.
(iii) We have zb = 1 + Rz = 1 + r, where |r| < 2−n+1. We consider the series

1
zb

= 1
1−(1−zb) = 1

1−(−r) = 1 − r + r2 − r3 + . . .. Let w be the sum of the first 4ν

terms of this geometric series. Clearly w = 1
zb

+ R1, where |R1| < 2−3νn. Consequently
1
b

= z 1
zb

= z(w −R1) = zw +R2, where |R2| < 2−2νn.
Now we show that all of the quantities in this computation can be defined in a first-

order way in Md.
Stage (i). The definition of t and l will be described later. However if we have t and l

Lemma 69 implies that we may define the product at2l in a first-order way in Md. The
rounding also can be done in a first-order way.

Stage (ii). The integer v has only n + 2 bits. In Md we can quantify n bits with a
single existential quantifier, therefore v with the given property is first-order definable in
Md.

Stage (iii). Lemma 69 implies that the product zb can be defined in Md. Using
Lemma 67 we get that r can be defined as well. Each needed terms of the geometric
series can be defined in Md, we define the ith term as a product with i factors. Since
ν = 2χ ≤ 2c log logn ≤ (log n)c, Lemma 68 implies that the bits of such a product can be
defined in Md and by Lemma 67 the bits of the sum of the first 4ν terms can be defined as
well. Therefore we defined w and by Lemma 69 we can define zw as well. This completes
the proof of the fact that condition (121) is satisfied by f = ÷, and also the proof of
J -predictivity of M. Q.E.D.(Lemma 64)
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10 The Conclusion of the Proof of Theorem 3

Definition. 1. Assume that α, k are positive integers. The geometric sequence
〈α, α2, . . . , αk〉 will be denoted by gseq(k, α).

2. Assume that M, jm, ..., j1 are positive integers. The set of all prenex first-order
formulas ϕ ofM satisfying the following two conditions will be denoted by L(M, jm, ..., j1).

(122) if the quantifier pattern of ϕ is 〈ιk, ..., ι1〉 then k ≤ m and ιk−i ≤ jm−i for all
i=0,...,k-1.

(123) if ϕ ≡ Qrxr, ..., Q1x1P (xr, ..., x1), where Qr, ..., Q1 are quantifiers and P is a propo-
sitional formula of M then length(P (x1, ..., xr)) ≤M

The set of all prenex formulas ϕ ∈ SForm(M) satisfying these two conditions will be
denoted by L̄(M, jm, ..., j1) ut

Remark. The definitions of sets Form(M, jm, ..., j1) and L(M, jm, ..., j1) are similar but
they are not the same. The set Form(M, jm, ..., j1) contains prenex formulas ϕ whose
quantifier pattern is exactly 〈jm, ..., j1〉, while in the case of L(M, jm, ..., j1), the sequence
〈jm, ..., j1〉 is only an upper bound, in some sense, on the quantifier pattern of ϕ. Apart
from that, in the case of Form, M is an upper bound on the circuit size of the propositional
part of ϕ, and in the case of L it is an upper bound on the length of the propositional
part.

Lemma 70 There exists a c > 0 such that if Φ0,Φ1 are prenex first-order formulas ofM,
m ∈ ω, M ≥ 1, β ≥ 2, Φ0,Φ1 ∈ L(M, gseq(r, β)) and ϕ is one of the formulas formulas
Φ0∧Φ1, Φ0∨Φ1, ¬Φ0 then there exists a prenex first-order formula ψ ∈ L(2M+c, gseq(r+
4, β)) such that ` ϕ↔ ψ.

Proof of Lemma 70. We consider only the ϕ ≡ Φ0 ∧Φ1 case, the other logical connec-
tives can be handled in a similar way. Assume that for i = 0, 1,

Φi ≡ Qmi,i~xmi,i, ..., Q1~x1,i, P (~xmi,i, ..., ~x1,i)

where ~xj,i, j = mi, ..., 1 is sequence of variables, and Qk,i are quantifiers for k = mi, ..., 1.
The length of the sequence of variables ~xj,i will be denoted by li,j.

Our assumptions imply that li,j ≤ βmi−j+1 for i = 0, 1, j ∈ mi, ..., 1. First we choose
a c′ ∈ {1, 2} such that for all integers j ∈ ω, if Qj,0 and Qj+c′,1 are defined, then they are
quantifiers of the same type. When forming the prenex form of Φ0 ∧Φ1, we will combine
the quantifiers Qj,0 and Qj+c′,1 and the variables bound by them into a single block for
all j ∈ ω, provided that both blocks are defined. If one of these blocks is not defined then
we use the other block alone. The assumption β ≥ 2 implies that if the prenex form Φ of
Φ0∧Φ1 constructed this way has a quantifier pattern jm, ..., j1, then length(Φ) ≤ 2M + c
and jm−r ≤ βr for r = 0, ...,m− 1. Q.E.D.(Lemma 70)
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Lemma 71 For all α, β ∈ ω there exists a γ ∈ ω such that the following holds. Assume
that

(124) Φ(x0, . . . , xk−1, Y0, . . . , Yl−1) ∈ SForm(M), with length(Φ) ≤ α, where
x0, . . . , xk−1, are first-order variables, and Y0, . . . , Yl−1 are second-order variables, for k-
ary relations,

(125) m, r ∈ ω, m > 0, and Ψ0(x0, . . . , xk−1), . . . ,Ψl−1(x0, . . . , xk−1) ∈ L(m, gseq(r, β)),

Then there exists a first-order prenex formula Θ(x0, ..., xk−1) ∈ L(γm, gseq(r+γ, β)).
of M such that

(126) Θ(x0, . . . , xk−1) is logically equivalent to the formula that we get from Φ by substi-
tuting Ψi for Yi for all i ∈ l, that is,

` Θ↔ Φ(x0, . . . , xk−1,Ψ0(x0, . . . , xk−1), . . . ,Ψl−1(x0, . . . , xk−1))

Proof of Lemma 71. Assume that
Φ(x0, ..., xk−1, Y0, ..., Yl−1) ≡ Q0y0, ..., Qt−1yt, P (y0, ..., yt−1, x0, ..., xk−1, Y0, ..., Yl−1), where
Q0, ..., Qt−1 are quantifiers, P is a propositional formula, and t ≤ α. It is sufficient to
show that

(127) there exists a prenex formula Θ′ with

` Θ′ ↔ P (y0, ..., yt−1, x0, . . . , xk−1,Ψ0, . . . ,Ψl−1)

such that Θ′ ∈ L(γ′m, gseq(r+γ′, β)) for a suitably chosen γ′ ∈ ω which depends only on
α and β.

We prove condition (127) by induction on the depth d of the formula P . We will
denote by γ′d the integer γ′ which satisfies condition (127) if the depth of P is d. (Since
d ≤ α, the integer γd remains below a bound depending only on α and β.) Assume that

our statement is true for formulas of depth at most d− 1, and for example, P (~y, ~x, ~Y ) ≡
P0(~y, ~x, ~Y ) ∧ P1(~y, ~x, ~Y ), and Θ′i, is a prenex form of Pi(~y, ~x,Ψ0, . . . ,Ψl−1) for i = 0, 1,
where Θi ∈ L(γ′d−1m, gseq(r+γd−1, β)). Lemma 70 implies that Pi(~y, ~x,Ψ0, . . . ,Ψl−1) has
a prenex form Θ with Θ ∈ L(2γd−1m+ c, gseq(r + γd−1 + 4, β)) ⊆ Θ ∈ L(γdm, gseq(r +
γd, β)), where γd = 2cγd−1 + 4. The recursive definition of γ starting with γ0 = 1 implies
that γd ≤ 2c1d for a suitable chosen constant c1 ∈ ω. Since d remains below a bound
depending only on α, condition (127) is satisfied by γ′ = γd. Q.E.D.(Lemma 71)

Lemma 72 Assume that J is a function, and M is J -predictive. For all sufficiently
large c3, c4 ∈ ω, if d ∈ ω is sufficiently large, r, k ∈ ω, d ≤ r ≤ J (d) and τ(x0, . . . , xk−1)
is a term of M, and δ = depth(τ), then there exists a first-order formula

λ(x0, . . . , xk−1, y, z) ∈ L
(
cδ4, gseq(c3δ, c4)

)
with the property that for all a0, . . . , ak−1, b ∈Md,

Mr |= b = τ(a0, . . . , ak−1) ↔ Md |= λ(a0, . . . , ak−1, b, r)
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To make an inductive proof possible we prove the lemma in a slightly stronger form
stated in the following lemma. That lemma says that the terms of M has the property
which was formulated only for the operations ofM in the definition of predictivity. More-
over we also state an upper bound on the quantifier patterns of the formulas involved in
this property.

Lemma 73 Assume that J is a function, and M is J -predictive. Then for all sufficiently
large c3, c4 ∈ ω the following holds. Suppose that d, r, k ∈ ω with d ≤ r ≤ J (d), ηd,r is the
function whose existence is stated in the definition of J -predictivity, and τ(x0, . . . , xk−1)
is a term ofM with depth(τ) = δ. Then there exists a formula Ψτ (x, y, z, Z0, . . . , Zk−1) ∈
SForm(M), where x, y, z are free first-order variables and Z0, . . . , Zk−1 are free variables
for binary relations, such that

Ψτ (x, y, z, Z0, . . . , Zk−1) ∈ L̄
(
cδ4, gseq(c3δ, c4)

)
and the following condition is satisfied:

(128) for all a0, . . . , ak−1, u, v ∈Md, the following two statements are equivalent:
(i) (ηd,r(b))(u, v), where b is the unique element of Mr with Mr |= b = τ(a0, . . . , ak−1),

(ii) Md |= Ψτ (u, v, r, ηd,r(a0), . . . , ηd,r(ak−1)).

Proof of Lemma 73. We prove the lemma by induction on depth(τ). If depth(τ) = 0,
then τ is either a constant symbol c or a variable xi for some i ∈ k. In the former case the
formula Ψτ is identical to the formula Φc whose existence is guaranteed in the definition
of J -predictivity. If τ = xi then Ψτ (x, y, z, Z0, . . . , Zk−1) ≡ Zi(x, y).

Assume now that i > 0 and the Lemma is true if the depth of τ is at most i−1. We may
assume that all of the function symbols ofM are binary (e.g., a unary function symbol can
be replaced by a binary which does not depend on its second variable). Suppose that the
term τ is of the form f(τ0(x0, . . . , xk), τ1(x0, . . . , xk)), where f is a binary function symbol
of M. Then Ψτ (x, y, z, Z0, . . . , Zk−1) is defined in the following way. We will use the
notation Φf from the definition of J -predictivity, if f is a function symbol of M. For all
i = 0, 1, the relation symbol Yi may occur in the formula Φf (x, y, z, Y0, Y1) several times.
Assume that the jth occurrence of the variable Yi is contained in a subformula of the form
Yi(σj,0, σj,1), where σj,0, σj,1 are terms of M. We replace each subformula Yi(σj,0, σj,1) of
Φf (x, y, z, Y0, Y1) by the formula Ψτi(σj,0, σj,1, z, Z0, . . . , Zk−1). The formula obtained this
way will be Ψτ (x, y, z, Z0, . . . , Zk−1). The definition of the formula Φf and the inductive
assumption together imply that the formula Ψτ satisfy condition (128). The property

Ψτ (x, y, z, Z0, . . . , Zk−1) ∈ L̄
(
cδ4, gseq(c3δ, c4)

)
follows from the inductive assumption and

Lemma 71. Q.E.D.(Lemma 73)
Proof of Lemma 72. The lemma is a consequence of Lemma 73. In the conclusion

(128) of Lemma 73 we have the formula Ψτ (u, v, r, ηd,r(a0), . . . , ηd,r(ak−1)). Since ai ∈Md

for i ∈ k, the definition of J -predictivity implies that ηd,r(ai)(x, y) ≡ x = 0 ∧ y = ai.
Therefore we have a first-order formula ψτ of M such that for all a0), . . . , ak−1 ∈Md,
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(129) for all u, v ∈Md,(
ηd,r

(
τ(a0, . . . , ak−1)

))
(u, v) ↔ Md |= ψτ (u, v, r, a0, . . . , ak−1)

Therefore λ(x0, . . . , xk−1, y, z) ≡ ∀u, v, ψτ (u, v, z, x0, . . . , xk−1) ↔ (u = 0 ∧ v = y)
meets the requirements of Lemma 72. Q.E.D.(Lemma 72)

Lemma 74 For all sufficiently small ε > 0 if D is the function defined by D(x) =

ε(log x)
1
2 for all x > 0, then the D quantifier elimination assumption does not hold for

M.

Proof of Lemma 74. Let J be the function bx+ log xc. According to Lemma 64, M is
J -predictive. Therefore Lemma 72 is applicable for the function J . Let c, α0 ∈ ω, such
that 1� c� α0 � 1

ε
. We may suppose that statement of Lemma 72 holds with a choice

of c3 and c4 such that c3, c4 � c. We may also assume that Lemma 58 holds with the
present choice of c, ε and α0.

Assume that contrary to the statement of the present lemma the D quantifier elimina-
tion assumption holds for M. Then condition (94) of Lemma 58 is satisfied. We choose a
d ∈ ω such that 1

ε
� d, that is, condition (95) of Lemma 58 is also satisfied by the present

choices of the parameters. Let δ = bD(d + log d)c, m = bcδc, ιm−i = ci if i < bδ/2c and
ιm−i = cbδ/2c otherwise. Clearly these choices satisfy condition (96) of Lemma 58.

Since all of the assumptions of Lemma 58 are valid for the present choices of the
parameters, its conclusion also holds. Let g be the function and let τ(x, y) be the term
whose existence is stated in Lemma 58.

We have that if ϕ ∈ Form(cδ, ιm, ..., ι1) and q = ρm then

(130) for all a ∈Md,

Md |= ϕ(a) ↔ Mq |= τ(a,g(ϕ)) = 0

We apply now Lemma 72 with d, c3 = c4 � c, r:= q, k:= 2,
τ(x0, . . . , xk−1):= τ(x0, x1). Let λ(x0, x1, y, z) be the first-order formula whose existence
is guaranteed by Lemma 72. The conclusion of Lemma 72 and condition (130) imply that

(131) for all a ∈Md,

Md |= ϕ(a) ↔Md |= λ(a,g(ϕ),0, q)

Let σ0(x), σ1(x) be terms of M such that for all h ∈Md we have

Md |= max(σ0(h), σ1(h)) < 22d−1 ∧ σ0(h) + σ1(h)22d−1

= h

For example the terms σ0(x) = ÷(x, 22d−1
), σ1(x) = x− σ0(x) meet this requirement.

Let µ(x, y) ≡ λ(x, σ0(y),0, σ1(y)). Recall that ϕ was an arbitrary element of the set
H = Form(cδ, ιm, ..., ι1). For each and ϕ ∈ H let G(ϕ) = g(ϕ) + q22d−1

. According to
the definition of the function g in Lemma 58 g(ϕ) < 22d−1

. Since q ≤ d + log d we have
G(ϕ) ∈Md. Condition (131) and the definition of G imply that
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(132) for all ϕ ∈ H and for all a ∈Md,

Md |= ϕ(a) ↔ Md |= µ(a,G(ϕ))

Let ψ(x) be the formula ofM defined by ψ(x) ≡ ¬µ(x, x). We claim that the formula

ψ is in the set H. Indeed according to Lemma 72 λ(x0, x1, y, z) ∈ L
(
cδ4, gseq(c3δ, c4)

)
and

therefore ψ(x) ≡ ¬µ(x, x) ∈ L
(
cδ4+c5, gseq(c3δ, c4)

)
where c5 ∈ ω is an absolute constant.

The upper bound c3 = c4 � c, and the definition of the integers ιm, ..., ιm, implies that
ck4 < ιm−k+1 for k = 1, ..., c3δ. Therefore Lemma 62 implies that L

(
cδ4+c5, gseq(c3δ, c4)

)
⊆

Form(cδ, ιm, ..., ι1). (Here we also used that csize(κ) ≤ length(κ) if κ is a term of M.)
The fact ψ ∈ H and condition (132) leads to a contradiction using Gödel’s diago-

nalization argument. Namely, we have by the definition of ψ that Md |= ψ(G(ψ)) ↔
¬µ(G(ψ),G(ψ)). On the other hand condition (132) with ϕ:= ψ, and a:= G(ψ)
yields Md |= ψ(G(ψ)) ↔ µ(G(ψ),G(ψ)), that is we have Md |= µ(G(ψ),G(ψ)) ↔
¬µ(G(ψ),G(ψ)) a contradiction. Q.E.D.(Lemma 74)

Proof of Theorem 3. Assume that the statement of the theorem is not true. This
implies that for all ε > 0, and for all terms F (x, y) ofM there exists a sequence of terms
G = 〈Gd(y) | y ∈ ω〉 such that G decides whether there exists a solution for F and

the depth of Gd is smaller than ε(log d)
1
2 for all sufficiently large d ∈ ω. Since for each

propositional formula P (x, y) of M there exists a term F (x, y) of calm such that for all

d ∈ ω, Md |= ∀x, y, P (x, y) ↔ F (x, y) = 0 we get that for all ε > 0 if D(x) = ε(log d)
1
2

then the D quantifier elimination assumption holds for M. This however contradicts to
Lemma 74. Q.E.D.(Theorem 3)

99



11 Random Access Machines

A detailed description of the random access machines Nn is given in [5].
Proofs of Theorems 1 and 2. Theorems 1 and 2 are simple consequences of Theorem

3. We describe here the proof Theorem 1 and indicate the only place where it has to be
changed to get a proof of Theorem 2. In this description if d ∈ ω the symbol n always
will denote the integer 2d even if we do not say it explicitly. We assume that Theorem 1
is not true and show that Theorem 3 cannot be true either.

We will consider programs R running on Nn which get only k integers in 2n as input,
where k = 1 or k = 2. For the sake of simplicity we assume that these integers are already
given as the contents of memory cells c̄ and (possibly) c̄+ 1 at time 0 when the machine
start working, where c̄ is a constant.

Assume that F (x, y) is an arbitrary term of M and ε > 0. Using the assumption
that Theorem 1 is not true, we construct a sequence of terms G = 〈Gd | d ∈ ω〉, such
that G decides whether there exists a solution for F , and for all sufficiently large d ∈ ω,
depth(Gd) ≤ ε(log d)

1
2 .

The definitions of the M operations in the structures Md imply that there exists a
c > 0 and c-size binary test P , with time requirement c on each machine Nn, such that
for all d ∈ ω, and a, b ∈ 2n, Pn(b, a) = 0 if Md |= F (a, b) = 0, and Pn(b, a) = 1 otherwise.
(The program P computes the value of F (a, b) and checks whether it is 0.) If Theorem 1 is
not true then there exists a c′ ∈ ω, and a c′-size unary test Q such that for all sufficiently
large d ∈ ω, the time requirement of Q on Nn is at most ε′(log d)

1
2 (log d)−1, and for all

sufficiently large d ∈ ω, Qn(a) = 0 iff ∃x ∈ 2n, Pn(x, a) = 0, where ε′ > 0 is a sufficiently
small constant with respect to ε. We construct, for each sufficiently large d ∈ ω, an M-
circuit Cd such that at the input a, Cd gives the same output as the program Q on Nn,
and the depth of Cd is at most c1ε(log d)

1
2 , where c1 is a constant which does not depend

on ε or ε′. The existence of such anM circuit Cd implies a term Gd with the same depth
which meets our requirements. (Each M circuit can be transformed into a functionally
equivalent M term without an increase in the depth, of course the size of the term may
be much larger than the size of the circuit). For the construction of Cd first we replace Q
by another program Q′ which has the same input-output behavior as Q and satisfies the
following condition. There exists a c2 ∈ ω such that for all n ∈ N :

(a) the size of Q′ is less than c2,
(b) if Q′, while running on Nn, executes an instruction I which involves the memory

cell i for some i ≥ c2, then instruction I is either a write instruction or a read instruction.
(A memory cell is involved an an instruction if either its content influences what happens
when the instruction is executed or its content may change when the instruction is exe-
cuted.)

(c) the time requirements of Q′ on Nn is larger that the time requirement of Q on Nn

at most by a factor of c2.
It is easy to see, using only the definition of a RAM, that such a program Q′ exists.

(In the case of Theorem 2 the program Q is of length l, where the integer l may depend
on n. In this case we substitute first Q by a program Q0 of constant length which gets an
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input of length l which is written in the memory at time 0.) We claim now that if n = 2d

and the time requirement of Q′ on Nn is tn then we can simulate Q′ running on Nn, by
anM circuit of Cd of depth at most O(tn log tn), whose gates perform operations in Md.

The set of nodes of the M-circuit Cd will be denoted by Q. For a given input a of
the circuit Cd, we may evaluate the circuit, and this evaluation assigns a value χ(a, u) for
each node u of Q, which is the value computed by the gate at node u if the input is a.
For each s ∈ tn and i ∈ c2 the set Q will have an element us,i, and for each δ ∈ {0, 1, 2}
and s ∈ tn the set Q will have an element vs,δ. (The set Q will have other elements as
well.) We will define the circuit in a way that if at input a and at time s ≤ tn, while Q′

is running on Nn, the content of cell i for some i < c2 is w then χ(a, us,i) = w. The nodes
vs,δ for i > c2, s ∈ tn will be used in the following way. If at time s while Q′ is running
on Nn, the machine performs a write write instruction, and it writes the integer x in cell
j then χ(a, vs,0) = x, χ(a, vs,1) = j, and χ(a, vs,2) = 1. If at time s the machine does not
perform a write instruction then χ(a, vs,0)) = χ(a, vs,1) = χ(a, vs,2) = 0.

First we note that the existence of a circuit Cd with these properties and the required
bound on its depth implies the theorem. Indeed since at the nodes us,i we have the
contents of the first c2 memory cells at each time, we have the output of the program Q′

as well.
We claim that for all s ∈ tn there exists anM circuit Ds of depth at most O(tn log tn)

such that given χ(a, us,i), χ(a, vr,δ), i ∈ c2, r ∈ [0, s], δ ∈ {0, 1, 2} as input the circuit gives
as output the values χ(a, us+1,i), χ(a, vs+1,δ), i ∈ c2, δ ∈ {0, 1, 2}. Clearly the existence of
such circuits Ds imply the existence of the circuit Cd with the required properties.

Assume that at time s instruction I is executed. We distinguish two cases according
to whether I is a read instruction or not.

(i) if I is not a read instruction then it is easy to see that condition (b) implies that
for each fixed i ∈ c2, δ ∈ {0, 1, 2} the earlier specified values of χ(a, us+1,i) and χ(a, vs+1,δ)
can be computed by a constant depth M circuit Bs,i,δ from the input χ(a, us,i). i ∈ c2,
δ ∈ {0, 1, 2}.

(ii) if I is a read instruction which reads the content of cell j then we need a circuit
which determines which is the largest integer r ≤ s such that χ(a, vr,1) = j, χ(a, vs,2) = 1,
and for this integer r, χ(a, vr,1) will be the current content of cell j. (If there is no such
r then it will be the content of cell j at time 0). Since the total number of nodes needed
for this is at most O(tn), this can be done by a circuit of depth at most O(log t). The
circuits in case (i) and case (ii) can be combined into a single circuit which first checks
whether I is a read instruction. According to condition (b) this can be done in constant
depth.

Since the number of possible values for s is at most tn this construction gives the
required circuit with depth O(tn log tn). Q.E.D.(Theorem 1 and Theorem 2)
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12 NP -completeness, proof of Theorem 5

Proof of Theorem 5. The theorem is a consequence of Lemma 43. The following problem
is clearly NP -complete with a suitable choice of the finite automaton A. The size of the
problem is m. Let u = blog2(m/3)c, d = u. Let T be a restricted turing machine with
aut(T ) = A, width(T ) = 1, tplength(T ) = 2u.

Suppose that an b ∈ 22d−1 is given, decide whether there exists an a ∈ 22d−1 such that
the a is a possible u-based input for the turing machine T and if restricted turing machine
T = 〈A, 2t〉 starts to work with u-based input a, then b =

∑2d−u−1
j=0 contT,j,02j2

u
, where

T = 2d−u. (That is, the machine with the input described by a reaches a state described
by b at time T .)

Lemma 43 implies that there exists an existential formula ψ of M such that for all
u ∈ ω, and for all b ∈ 22d−1 the problem described above has a solution iff Mc′u |= ψ(b, u),
where c′ ∈ ω is a sufficiently large constant. The condition Mc′u |= ψ(b, u) is equivalent
to Mc′u |= ∃x, 2x = n ∧ ψ(b,÷(x, c′)). Therefore there exists an existential formula ψ′

of M such that for all u ∈ ω, and for all b ∈ 22d−1 the problem described above has a
solutioniff Mc′u |= ψ′(b).

The formula ψ′ may have more than one existential quantifiers. However Lemma 37
implies that there exists an existential formula ϕ ofM with a single existential quantifier
such that if c = 2c′, then Mc′uψ

′(b) is equivalent to Mcu |= ϕ(b). Therefore for a suitable
chosen term τ of M this can be written in the form of Mcu |= ∃x, τ(x, b). Therefore
we have reduced our the NP-complete problem about turing machines to an instance of
the problem that we called “the solution of the equation τ(x, b) = 0 in x”. Moreover,
since we are looking for a solution in Mcu the size of the problem is 2cu ≤ 2c log2m = mc.
Q.E.D.(Theorem 5)

102



References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1974.

[2] M. Ajtai. Detreminism versus Nondeterminism with Arithmetic Tests and Compu-
tation, Proceedings of the 44th ACM Symposium on Theory of Computing, STOC
2012, New York, NY, USA, June 2012, pages 249-268 ACM, 2012.

[3] M. Ajtai, Determinism versus Nondeterminism for Linear Time RAMs with Memory
Restrictions, Journal of Computer and Systems Science, 65(1): 2-37, (2002)

[4] M. Ajtai, Oblivious RAMs without cryptographic assumptions, Electronic Collo-
quium on Computational Complexity (ECCC), 17:28, 2010.

[5] M. Ajtai. Oblivious RAMs without cryptographic assumptions, Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Mas-
sachusetts, USA, 5-8 June 2010, pages 181–190. ACM, 2010.

[6] M. Ajtai. Determinism versus Nondeterminism with Arithmetic Tests and Compu-
tation, Proceedings of the 44nd ACM Symposium on Theory of Computing, STOC
2012, New York, NY, USA, May 2012, pages 249-268. ACM, 1012.

[7] M. Ajtai, Y. Gurevich, Monotone versus positive, Journal of the ACM (JACM), Vol.
34, Issue 4, Oct. 1987, pp. 1004-1015.

[8] E. Artin. Galois Theory, Dover Publications, 1998. (Reprinting of second revised
edition of 1944, The University of Notre Dame Press).

[9] P. Beame, S. A. Cook, and H. J. Hoover, Log Depth Circuits for Division and Related
Problems, SIAM Journal on Computing, 15(4):994-1003, November 1986.

[10] P. Beame, T. S. Jayram, M. Sacks, Time-space tradeoffs for branching programs,
Journal of Computer and Systems Science, 63(4):542-572, December 2001.

[11] P. Beame, M. Sacks, Xiadong Sun, E. Vee, Time-space trade-off lower bounds for
randomized computation of decision problems, Journal of ACM, 50(2):154-195, 2003.

[12] M. Davis, H. Putnam and J. Robinson, The decision problem for exponential dio-
phantine equations, Ann. of Math. (2) 74 (1961), 425-436.

[13] J.E. Hopcroft, W. Paul, L. Valiant. On Time versus Space. Journal of ACM, Vol. 24
Issue 2, April 1977, pp. 332-337.

[14] A. Magid, Differential Galois theory, Notices of the American Mathematical Society
46 (9): 1999.

103



[15] L. Fortnow, Time-space tradoffs for satisfiability, Journal of Computer and System
Sciences, 60:337-353, 2000.

[16] Ju. V. Matijasevic, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191
(1970), 279-282. English transi.: Soviet Math. Doklady 11 (1970), 354-358.
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