
Constant rate PCPs for circuit-SAT with sublinear query complexity

Eli Ben-Sasson∗ Yohay Kaplan∗ Swastik Kopparty† Or Meir‡

June 12, 2013

With an Appendix by Henning Stichtenoth 1

Abstract

The PCP theorem (Arora et. al., J. ACM 45(1,3)) says that every NP-proof can be encoded
to another proof, namely, a probabilistically checkable proof (PCP), which can be tested by a
verifier that queries only a small part of the PCP. A natural question is how large is the blow-up
incurred by this encoding, i.e., how long is the PCP compared to the original NP-proof. The
state-of-the-art work of Ben-Sasson and Sudan (SICOMP 38(2)) and Dinur (J. ACM 54(3))
shows that one can encode proofs of length n by PCPs of length n · poly logn that can be
verified using a constant number of queries. In this work, we show that if the query complexity
is relaxed to nε, then one can construct PCPs of length O(n) for circuit-SAT, and PCPs of length
O(t log t) for any language in NTIME(t).

More specifically, for any ε > 0 we present (non-uniform) probabilistically checkable proofs
(PCPs) of length 2O(1/ε) ·n that can be checked using nε queries for circuit-SAT instances of size
n. Our PCPs have perfect completeness and constant soundness. This is the first constant-rate
PCP construction that achieves constant soundness with nontrivial query complexity (o(n)).

Our proof replaces the low-degree polynomials in algebraic PCP constructions with tensors
of transitive algebraic geometry (AG) codes. We show that the automorphisms of an AG code
can be used to simulate the role of affine transformations which are crucial in earlier high-rate
algebraic PCP constructions. Using this observation we conclude that any asymptotically good
family of transitive AG codes over a constant-sized alphabet leads to a family of constant-rate
PCPs with polynomially small query complexity. Such codes are constructed in the appendix
to this paper for the first time for every message length, after they have been constructed for
infinitely many message lengths by Stichtenoth [Trans. Information Theory 2006].

∗Department of Computer Science, Technion, Haifa, Israel. Work done while visiting MIT, Cambridge, MA.
eli/yohayk@cs.technion.ac.il. The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 240258.

†Department of Mathematics & Department of Computer Science, Rutgers University.
swastik.kopparty@rutgers.edu. This material is based upon work supported by the National Science Foun-
dation under Grant No. NSF CCF-1253886.

‡Institute for Advanced Study, Princeton, NJ. ormeir@ias.edu. Partially supported by NSF grant CCF-0832797.
1Sabanci University, MDBF, Istanbul, Turkey. henning@sabanciuniv.edu. This work was partially supported by

Tubitak, proj. no. 111T234

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 85 (2013)

Contents

1 Introduction 3

1.1 Our techniques . 4

1.2 AG arithmetization . 6

1.3 Open problems . 8

1.4 The road ahead . 8

2 Formal Statement of Main Results 9

3 Tensors of AG Codes and an AG Combinatorial Nullstellensatz 10

3.1 Error Correcting Codes . 10

3.2 Tensor Codes . 11

3.3 AG codes and the multiplication property . 13

3.4 The AG Combinatorial Nullstellensatz . 14

4 Proof of Main Theorem 2.3 15

4.1 From circuit-SAT to Hypercube-CSP . 15

4.2 From Hypercube-CSP to aggregate-AGCSP . 16

4.3 A proof of Main Theorem 2.3 using AG combinatorial Nullstellensatz 19

4.4 A proof of Main Theorem 2.3 using the sum-check protocol 22

5 Hypercube CSPs — Proof of Theorem 4.5 27

6 From Hypercube-CSP to aggregate-AGCSP 30

6.1 A non-aggregated algebraic CSP . 30

6.2 Aggregating the constraint polynomials . 33

7 Combinatorial Nullstellensatz over algebraic curves 36

7.1 Terms and notation . 36

7.2 Formal statements of Nullstellensätze . 37

7.3 Instantiating parameters . 39

7.4 Proof of the AG Combinatorial Nullstellensatz for splitting sets 41

7.5 Local Derivatives and multiplicities . 43

7.6 AG Combinatorial Nullstellensatz for splitting sets with multiplicity 45

7.7 Proof of the AG Combinatorial Nullstellensatz for general sets 47

Appendix: Dense families of transitive codes 54

2

1 Introduction

The PCP theorem [AS98, ALM+98] is one of the major achievements of complexity theory. A PCP
(Probabilistically Checkable Proof) is a proof system that allows checking the validity of a claim
by querying only a small part of the proof. The PCP theorem says that every NP-claim has a PCP
of polynomial length that can be verified using a constant number of queries. The theorem has
found many applications, most notably in establishing lower bounds for approximation algorithms
for constraint satisfaction problems (cf. the surveys [Aro02, GO05] and references therein).

It is natural to ask how long should the PCPs be compared to the corresponding NP-proofs.
To make the discussion a bit more formal, let L be a language in NP, and recall that there is
a polynomial-time algorithm V that verifies the membership of a string x in L when given an
additional NP-witness. Let t : N → N be such that t(n) is an upper bound on the running time of
V on inputs of length n. The original PCP theorem says that there exists a PCP verifier that verifies
claims of the form x ∈ L by making O(1) queries to proofs of length poly (t(n)) where n = |x|.
Following works have improved this state of affairs [PS94, HS00, GS06, BSVW03, BGH+06] and
culminated in the works of Ben-Sasson, Sudan, and Dinur which construct PCP verifiers that make
O(1) queries to proofs of length only t(n) · poly log t(n) [BS08, Din07]. It is an interesting open
question whether one can improve on the latter construction and obtain PCPs of length O(t(n)),
or even t(n) · poly log t(n) with smaller degree in the polynomial.

While the aforementioned works have focused mostly on PCPs that use a constant number of
queries, it is also interesting and natural to consider PCPs that make a larger number of queries.
In fact, even constructing a PCP that uses any sub-linear number of queries is interesting and non-
trivial. In particular, such PCPs have applications to succinct verification of computer programs,
as first suggested in [BFLS91] and improved upon in [BGH+05, Mie09, BCGT13a, BCGT13b].
Thus, it is natural to ask whether we can get PCPs with better length if we allow ourselves to use
more queries, say, O(nε) queries. Indeed, recent constructions of locally decodable codes [KSY11],
and locally testable codes [Vid12], show that by allowing O(nε) queries, it is possible to achieve
very high rates, arbitrarily close to 1.

In this work, we show that for the special case of circuit-SAT, there exists a (non-uniform) PCP
verifier that verifies the satisfiability of a circuit of size n by making nε queries to a proof of length
Oε(n) for all ε > 0. Using the efficient reduction of NP to circuit-SAT of [PF79], this implies
the existence of a PCP verifier that makes O(tε) queries to a proof of length Oε(t log t) for every
language L ∈ NTIME(t).

Theorem 1.1 (Main — Informal) There exists a constant c > 0 such that the following holds
for every ε > 0 and integer n. There exists a randomized oracle circuit Cn of size poly(n) that
when given as input the description of a circuit ϕ of size n, acts as follows:

1. Cn makes at most nε queries to its oracle.

2. If ϕ is satisfiable, then there exists a string πϕ of length 2c/ε ·n such that C
πϕ
n (ϕ) accepts with

probability 1.

3. If ϕ is not satisfiable, then for every string π, it holds that Cπn (ϕ) rejects with probability at
least 1

2 .

Again, by combining Theorem 1.1 with the reduction of [PF79], we obtain the following result.

3

Corollary 1.2 For every ε > 0 and time-constructible function t : N → N the following holds for
every language L ∈ NTIME(t). For every input length n, there exists a randomized oracle circuit
Cn of size poly(t) that when given as input x ∈ {0, 1}n, acts as follows:

1. Cn makes at most (t (n))ε queries to its oracle.

2. If x ∈ L, then there exists a string πx of length Oε (t(n) log t(n)) such that Cπxn (x) accepts
with probability 1.

3. If x /∈ L, then for every string π, it holds that Cπn (x) rejects with probability at least 1
2 .

Remark 1.3 As noted above, our PCPs are non-uniform. The reason is that our construction
relies on a family of algebraic-geometry codes which we do not know how to construct in polynomial
time. See also remark A.19.

1.1 Our techniques

In order to explain the new ideas that we employ to get PCPs of linear length for circuit-SAT, let
us first recall how the state-of-the-art PCP of [BS08, Din07] was constructed, and what caused the
poly-logarithmic blow-up in the length there. Very roughly, that construction applies the following
five main steps to an instance ϕ of circuit-SAT of size n:

1. (Graph problem) Reducing ϕ to a constraint satisfaction problem (CSP) over a “well-
structured” graph G of size m1. In this context, a graph is said to be “well-structured”
if we can identify its vertices with the vectors of some vector space, such that the neighbors
of a vertex v can be obtained by applying a collection of affine transformations to v (where
the affine transformations are the same for all vertices). This reduction uses routing [Lei92],
which loses a logarithmic factor in the length of the PCPs, i.e., m1 ≥ n log n.

2. (Arithmetization) Reducing the foregoing constraint satisfaction problem to an algebraic CSP
(ACSP). As part of this reduction, binary strings of length m1 are represented by evaluations
of polynomials of degree m1 over a field F which is of size greater than m1. I.e., the binary
string of length m1 is encoded via the Reed-Solomon (RS) code of degree m1. In particular,
if we measure the length of the latter encoding in bits rather than in elements of the field,
their length will become m2 ≥ m1 logm1. This loses another logarithmic factor in the length
of the PCPs, i.e., m2 ≥ n log2 n.

3. (Zero testing) An ACSP instance obtained via arithmetization is specified by a low-degree
polynomial Q. The instance is defined to be satisfiable if and only if there exists a low-degree
polynomial P such that when Q is “composed” with P then the resulting polynomial, denoted
Q ◦ P , is one that vanishes on a large predefined set of points H ⊂ F. Roughly speaking, P
is supposed to be the polynomial interpolating a boolean assignment that satisfies the graph
CSP G, hence deg(P) ≈ m1, and Q “checks” the algebraic analog of each and every constraint
of the graph CSP.

To verify that Q is satisfiable, one needs to solve the “zero testing” problem which asks

whether R
def
= Q ◦ P indeed vanishes on every point in H. In [BS08] this reduction is done

by an algebraic characterization of polynomials vanishing on H. Other works in the PCP
literature (e.g., [AS98, ALM+98]) have solved the “zero testing” problem using the sum-check
protocol of [LFKN92].

4

4. (Low-degree testing) The zero-testing procedures mentioned above only work under the
promise that P and Q ◦ P are low-degree polynomials, or are at least close to low-degree
polynomials2. Thus, in order to verify that the ACSP instance is satisfiable, we need to be
able to very that a function is close to a low-degree polynomial. This is done in [BS08] by
constructing a PCP of proximity (PCPP) [BGH+06, DR06] for testing that a polynomial is
of low degree. This step uses Õ(

√
n) queries and loses only a constant factor in the length

of the PCP, i.e., denoting the length of the PCP by m3 we have m3 ≈ m2 ≥ n log2 n. We
elaborate later more on this step.

5. (Composition) Reducing the query complexity to a constant by using more composition with
PCPs of proximity and gap-amplification. This step loses a poly-logarithmic factor in the
length of the PCP: Denoting the final PCP length by m we have m = m3 · poly logm3 =
n · poly log n.

Thus, in order to construct a PCP of linear length for circuit-SAT, we need to find ways to deal
with the losses in the Steps 1, 2, and 5 above, while supporting the functionality of steps 3 and 4.

• For Step 1, we observe that since we are going to construct a PCP with a large query
complexity, we can afford to use “well-structured” graphs G′ of significantly larger degree
(specifically, nε), in which case the routing loses only a constant factor, i.e. m′

1 = Oε(n). In
contrast, the work of [BS08] uses graphs of constant degree, for which the routing must lose a
logarithmic factor. However, in order to support the following steps, we must generalize the
definition of “well-structured graph” to settings of AG-codes. Basically, our generalization
replaces the affine transformations with automorphisms of the corresponding AG-code (note
that this is indeed a generalization, as affine transformations are automorphisms of RS-codes).

• For Step 2, we reduce the size of the finite field used in the algebraic CSP to a constant,
which prevents the logarithmic blowup incurred when moving fromm1 to m2. This is done by
replacing the Reed-Solomon code with a transitive AG code that has an alphabet of constant
size, which results in codewords of bit-length m′

2 = O(m′
1) = O(n). This replacement is

non-trivial, however, and also causes complications in Steps 3 and 4 which are discussed in
the next subsection.

• For Step 3, we present two ways for solving the zero testing for AG codes: the first solution
follows the ideas of [BS08] by generalizing the algebraic characterization of multi-variate
polynomials vanishing onHm (a.k.a. the “Combinatorial Nullstellensatz” of [Alo99]) to tensor
products of AG-codes. This yields a new “AG Combinatorial Nullstellensatz” which we prove
in Section 7. We discuss this point in some more detail in the next sub-section.

The second method is based on the sum-check protocol of [LFKN92], and in particular, uses
the generalization of the sum-check protocol to general error-correcting codes of [Mei10]. The
PCP constructed this way has the advantage that it requires a less sophisticated algebraic ma-
chinery, and in particular, it does not require the AG combinatorial Nullstellensatz. However,
this PCP is less randomness efficient.

• In order to emulate Step 4, we need to solve the analog of low-degree testing for AG codes
with query complexity nε. To this end, we use tensor products of the AG codes rather than

2Actually, those procedures also rely on the promise that some additional auxiliary functions are close to low-degree
polynomials.

5

the AG codes themselves. We then use the fact that tensor codes are locally testable3 as an
analog of low-degree testing.

We mention that we use the tensor codes for another reason in addition to their local testa-
bility. Specifically, we use the fact that tensor codes support the sum-check protocol (see
[Mei10]), which is used in our second PCP construction.

• We do not have an analogue of Step 5 in our PCP construction. We currently do not know a
way of composing our PCP to reduce the query complexity below nε while keeping the rate
constant. This seems like a very interesting question.

1.2 AG arithmetization

We briefly discuss a number of issues that arise from the use of AG codes in PCP constructions,
as this is the first case4 such codes are used in the context of PCPs.

Informal description of AG codes Codewords of an AG code C are best thought of as (ratio-
nal) functions evaluated over a specially chosen set of points, i.e., C = {f : D → Fq | f ∈ L}. The
set of points D ⊂ Fmq is the set of solutions to a system E = (e1, . . . , ek), ei ∈ Fq(x1, . . . , xm) of k
carefully chosen rational equations over Fq (see Equation (25) in the Appendix for an example)

D =
{
x = (x1, . . . , xm) ∈ Fmq | e1(x) = . . . = ek(x) = 0

}

The set L of “legitimate” functions is a linear space that is best thought of the space of “low-
degree” rational functions in x1, . . . , xm. AG codes are interesting because by fixing the base-field
Fq and letting m grow, one can obtain a family of codes over constant alphabet Fq and arbitrarily
large dimension and block-length. Indeed, the celebrated results of [TVZ82, GS96] show that using
this framework one can obtain explicit constructions of asymptotically good codes that beat the
Gilbert-Varshamov bound.

Why AG codes? A key property of Reed-Solomon and Reed-Muller (RM) that is used in the
arithmetization steps of previous works (and in particular, in [BS08]) is their “multiplication prop-
erty”: Let f, g be two codewords of the RS code of degree d, i.e., f, g : F → F are evaluations of
polynomials of degree at most d. Then their coordinate-wise multiplication is the function f · g
defined by (f · g)(x) def

= f(x) · g(x), x ∈ F. Clearly, deg(f · g) ≤ 2d, so we conclude that f · g is a
codeword of a code with relative distance 2d/|F|. Taking |F| to be sufficiently large means f · g be-
longs to a large-distance code. As shown by [Mei10, Mei12a], this “distance of multiplication code”
property is sufficient for a PCP-style arithmetization. AG codes are a natural generalization of
“low-degree” codes (under the proper definition of “degree”) and, in particular, have the “distance
of multiplication code” property needed for PCPs.

The main advantage AG codes have over RS/RM is their constant-size alphabet. All known PCP
constructions based on RS/RM (and AG) codes suffer a log |F|-factor loss in their rate because,

3The study of local testability of tensor codes was initiated by [BS06] and further studied in [Val05, CR05, DSW06,
BV09, BSV09, GM12, Mei12b, Vid12]. We use the state-of-the-art testability results of [Vid12] (cf. Theorem 3.10)

4Formally, RS codes are AG codes but are usually not referred to as such in the computational complexity
literature. Given that RS codes have genus 0, a more precise statement would be that our construction is the first
that utilizes AG codes of positive genus in PCP constructions.

6

roughly speaking, they are used to encode boolean assignments to a circuit-SAT instance. Constant-
rate RS/RM codes of blocklength n require fields of size nΩ(1) which implies a rate-loss of Ω(log n).
Using constant-rate AG codes over a constant-size alphabet allows us to avoid this loss.

Why transitive? Another property of RS codes that is used in previous arithmetizations is the
fact that composing a degree-d polynomial with an affine function results in a degree-d polynomial.
This property is combined with the notion of “well-structured graphs” to yield an algebraic con-
straint satisfaction problem in Step 2 that is of low-degree. We point out that the reason all this
works out is because affine functions are automorphisms of the RS code. When generalizing the
notion of “well-structured graphs” to our AG-setting it is sufficient to work with AG-codes that
have a transitive automorphism group.

The affine-invariance of linear codes has been intensely investigated in recent years in the context
of locally testable codes, starting with the work of [KS08] (see [Sud10] for a recent survey). The
role the automorphisms of AG codes play in constructing locally correctable and decodable codes
has been recently considered in [BGK+13].

The Appendix: Dense transitive AG codes A family of codes F = {Ci}i∈N that has constant
rate, constant relative distance and constant alphabet-size is called “asymptotically good”. The
only previously-known asymptotically good family of transitive AG codes appeared in [Sti06]. The
family described there is “sparse”: Assuming Ci has blocklength ni and n1 < n2 < . . ., the ratio
ni+1/ni of that family is super-constant,

ni+1

ni

i→∞−→ ∞.

Consequently, using that family we would only be able to obtain an “infinitely-often” type of result:
For infinitely often circuit-sizes k1 < k2 < . . ., circuits of size ki have constant-rate PCPs. The
new asymptotically good family of transitive AG codes presented by Stichtenoth in the Appendix
is “dense”, i.e., ni+1/ni is at most an absolute constant c. This dense family allows us to extend
our main result to all circuit-sizes.

The properties required for our PCP construction. The multiplication property and the
transitivity property discussed above are sufficient for the our PCP construction that is based on
the sum-check protocol. Theoretically, this construction could be implemented using any family
of error-correcting that has this property. However, practically, we do not know other examples of
such codes.

Our first PCP construction, on the other hand, relies crucially on our codes being AG codes, and
in particular on the AG Combinatorial Nullstellensatz theorem to be discussed next. However,
this construction is more randomness-efficient, and is also somewhat simpler assuming the AG
Combinatorial Nullstellensatz.

The AG Combinatorial Nullstellensatz. As mentioned above, the work of [BS08] solved the
zero-testing problem by using an algebraic characterization of polynomials that vanish on a set H.
More specifically, it used that fact that a univariate polynomial p(X) vanishes at each α ∈ H if
and only if

∏

α∈H(X − α) divides p(X). As shown in [BS08, Lemma 4.9], Alon’s Combinatorial
Nullstellensatz [Alo99] gives an extension of this characterization to to multi-variate polynomials

7

that vanish on a set Hm. This characterization (cf. (3)) can be used to solve the zero-testing
problem multi-variate polynomials.

Our first method for solving the zero-testing problem in the AG settings uses a similar algebraic
characterization of Hm-vanishing functions, but now f is not a low-degree polynomial. Rather, it
belongs to the tensor product of “low-degree” AG codes, and H is a subset of the point-set D.
Theorem 7.4 contains what we view as the natural generalization of the Combinatorial Nullstellen-
satz, and we hope it will find further applications. To prove it we need to overcome a number of
nontrivial technical challenges that arise only over curves of positive genus (i.e., only over algebraic
codes that are not RS/RM). One such problem appears even in the simplest case, the univariate
one (when m = 1): Some point-sets H ⊂ D cannot be characterized as the roots of a degree-|H|
function. This contrasts with the RS-code where every H ⊂ F is the set of roots of the polynomial
∏

α∈H(X − α). See Section 7 for more details.

1.3 Open problems

PCPs with constant rate and query complexity. The most obvious open question that
arises from our work is “what is the smallest possible query complexity for a constant-rate PCP?”.
In particular, do constant-rate PCPs with constant query complexity exist?

A smooth trade-off. A perhaps less ambitious goal would be to try to obtain a smooth trade-
off between the existing PCP constructions. Currently, we have a PCP construction that obtains
constant query complexity and length of n ·poly log n, and our construction gives query complexity
of nε and length O(n). Is it possible to obtain a smooth trade-off between the query complexity
and the length? As a concrete conjecture, is it possible to construct, for every function q, a PCP
with query complexity q and length n · poly logq n?

Better decision complexity. The most straightforward way to obtain a trade-off as in the last
paragraph would be to apply composition to our PCPs. Unfortunately, our PCPs do not compose
efficiently. The main obstacle is that the decision complexity of our PCPs (defined in Section 2
below) is too large - in particular, it is polynomial, rather than linear, in the query complexity.
Improving the decision complexity of our PCPs is another open question that arises from our work.

We note that the large decision complexity results from the fact that we do not know how to verify
the membership of a codeword in an AG code in linear time. In fact, even the fastest algorithms for
verifying membership in a Reed-Solomon code run in time n log n, which is not sufficiently efficient
for our purposes.

1.4 The road ahead

In the next section we formally state our main results. Section 3 states the required preliminaries
about error correcting codes: tensor codes and their testability, the asymptotically good family
of transitive AG codes and a special case of the AG combinatorial Nullstellensatz sufficient for
the analysis of our PCP construction. Section 4 gives the proof of Main Theorem 1.1. It does
so in a succinct manner, leaving the proofs of various reductions to later sections (Sections 5–
7). Of particular importance is Section 7 where the AG combinatorial Nullstellensatz is proved.
Finally, the Appendix by Henning Stichtenoth constructs the asymptotically good “dense” family
of transitive AG codes needed for our result.

8

2 Formal Statement of Main Results

Throughout this paper, when we discuss circuits, we always refer to boolean circuits with AND,
OR, and NOT gates whose fan-in and fan-out are upper bounded by 2. The size of the circuit ϕ,
denoted |ϕ|, is defined to be the number of wires of ϕ. We say that a circuit ϕ is satisfiable if there
is an input x ∈ {0, 1}∗ for ϕ such that ϕ(x) = 1.

Definition 2.1 The circuit satisfiability problem, circuit-SAT, is the problem of deciding whether
a circuit is satisfiable. Formally,

circuit-SAT
def
= {ϕ : ϕ is a satisfiable circuit} .

Recall that a PCP verifier for a language L is an algorithm that verifies a claim of the form w ∈ L
by querying few bits from an auxiliary proof π. It is common to define a PCP verifier as an oracle
machine that is given oracle access to the proof π and is allowed to make only few queries to
this oracle. In this work, we will use a slightly different definition of PCPs, taken from the PCP
literature (e.g., [BGH+06]), which allows keeping track of some additional important parameters
of the PCP, namely, the randomness complexity and the decision complexity of the PCP.

The randomness complexity of a PCP verifier is just the number of coin tosses the verifier uses.
The decision complexity is the complexity of the predicates that the verifier applies to the answers
it gets from its oracle: More specifically, in the definition of PCPs, we view the verifier as machine
that outputs its queries (as a list of coordinates), and a predicate (represented as a circuit) that
should be applied to the answers given to those queries. We view the verifier as accepting if the
predicate accepts the answers to the queries, and otherwise we view the verifier as rejecting. The
decision complexity of the PCP is the complexity of the aforementioned predicate. The randomness
complexity and decision complexity of a PCP are usually used in the PCP literature in order to
facilitate the composition of PCPs. While in this work we do not use composition, we still keep
track of those parameters since they might be of use for future works.

Definition 2.2 (Non-uniform PCP verifier, following [BGH+06]) Let L ⊆ {0, 1}∗ be a lan-
guage, and let r, q, ℓ, d, v : N → N, ρ : N → (0, 1). A (non-uniform) PCP verifier V = {Vn}∞n=1

for L with query complexity q, proof length ℓ, rejection probability ρ, randomness complexity r,
decision complexity d, and verifier complexity v is an infinite family of randomized circuits that
satisfy the following requirements:

1. Input: The verifier Vn takes as input a string w of length n.

2. Output: The verifier Vn outputs a tuple I of coordinates in {1, . . . , ℓ(n)} where |I| ≤ q(n),
and a circuit ψ : {0, 1}I → {0, 1} of size at most d(n). For π ∈ {0, 1}ℓ(n) we denote by π|I
the restriction of π to I.

3. Verifier complexity: The size of the circuit Vn is at most v(n).

4. Randomness complexity: On every input w, and on every sequence of coin tosses, Vn
tosses at most r(n) coins.

5. Completeness: For every w ∈ L, there exists a string π ∈ {0, 1}ℓ(n) such that

P [ψ (π|I) = 1] = 1,

where the probability is over ψ and I generated by the verifier V on input w.

9

6. Soundness: For every string w /∈ L and every string π ∈ {0, 1}ℓ(n), it holds that

P [ψ (π|I) = 0] ≥ ρ(n),

where the probability is over ψ and I generated by the verifier V on input w.

We can now state our main result.

Theorem 2.3 (Main theorem) For every ε > 0 there exists a constant cε = 2O(1/ε) such that
the following holds for every n ∈ N. There exists a PCP verifier for circuit-SATn with query
complexity cε · nε, proof length cε · n, rejection probability 1/2, verifier complexity (cε · n)O(1),
randomness complexity log n+ cε, and decision complexity cε · nε.

The proof of Theorem 2.3 goes by the following schematic sequence of reductions, explained next.

circuit-SAT
(i) Theorem 4.5−→ Hypercube-CSP

(ii) Theorem 4.9−→ aggregate-AGCSP

(iiia) Section 4.3−→ Nullstellensatz
(iiib) Section 4.4−→ Sum-check

(1)

(i) The first reduction maps an instance ϕ of circuit-SAT to a graph constraint satisfaction problem
over a sub-graph of the hypercube. This reduction is stated in Section 4.1 and proved in Section 5.
(ii) The next reduction maps the hypercube constraint satisfaction problem into an Algebraic
Geometry Constraint Satisfaction Problem (AGCSP). This part is stated in Section 4.2 and proved
in Section 6. At this point we have two alternate paths to complete the proof of Theorem 2.3.
(iiia) The first uses our AG combinatorial Nullstellensatz (Theorem 3.16) and relies on particular
properties of tensored AG-codes. (iiib) The second is based on the sum-check protocol, and relies
only on the multiplication property and transitivity of our AG codes, but is less randomness efficient.
The Nullstellensatz proof appears in Section 4.3 and the sum-check proof appears in Section 4.4.

3 Tensors of AG Codes and an AG Combinatorial Nullstellensatz

This section starts by reviewing preliminaries of error correcting codes. It then reviews the basic
properties of tensor product codes as well as their local testability. We conclude by describing the
AG codes that we use and our AG Combinatorial Nullstellensatz which pertains to tensors of AG
codes.

3.1 Error Correcting Codes

For any n ∈ N, we denote [n] def= {1, . . . , n}. For any two strings x, y of equal length n and over any
alphabet, the relative Hamming distance between x and y is the fraction of coordinates on which
x and y differ, and is denoted by δ(x, y) = |{i ∈ [n] : xi 6= yi}| /n. Also, if S is a set of strings of
length n, we denote by δ(x, S) the distance of x to the closest string in S.

All the error-correcting codes that we consider in this paper are linear codes, to be defined next.
Let F be a finite field, and let k, ℓ ∈ N. A (linear) code C is a linear one-to-one function from Fk

to Fℓ, where k and ℓ are called the code’s message length and block length, respectively. We will
sometimes identify C with its image C(Fk). Specifically, we will write c ∈ C to indicate the fact
that there exists x ∈ Fk such that c = C(x). In such case, we also say that c is a codeword of C.

10

The relative distance of a code C is the minimal relative Hamming distance between two distinct
codewords of C, and is denoted by δC = minc1 6=c2∈C {δ(c1, c2)}. The rate of the code C is the ratio

k/ℓ. If d
def
= δC · ℓ, we also say that C is a [ℓ, k, d]F-code.

Due to the linearity of C, there exists an ℓ × k matrix G, called a generator matrix of C, such
that for every x ∈ Fk it holds that C(x) = G · x. Observe that given a generator matrix of C one
can encode messages by C as well as verify that a string in Fℓ is a codeword of C in time that is
polynomial in ℓ. Moreover, observe that the code C always encodes the all-zeros vector in Fk to
the all-zeros vector in Fℓ.

We say that C is systematic if the first k symbols of a codeword contain the encoded message,
that is, if for every x ∈ Fk it holds that (C (x)) |[k] = x. By applying a change of basis (which can
be implemented using Gaussian elimination), we may assume, without loss of generality, that C is
systematic.

Evaluation codes. Throughout the paper, it will often be convenient to think of the codewords
of a code as functions rather than strings. Specifically, we will usually identify the codewords of an
[ℓ, k, d]F-code C : Fk → Fℓ with some k-dimensional space L of functions C = {f : D → F | f ∈ L}
where D is some set of size ℓ. When C is an AG code, as will soon be the case, D will be a set
of points on a curve and L will be a Riemann-Roch space of a divisor on the curve. We will refer
to codes that are viewed in this way as evaluation codes. We will say that an evaluation code is
systematic if its messages can be viewed as functions h : H → F for some H ⊆ D, such that the
encoding f of a message h satisfies f |H = h.

3.2 Tensor Codes

In this section, we define the tensor product operation on codes and present some of its properties.
See [MS88] and [Sud01, Lect. 6 (2.4)] for the basics of this subject.

Definition 3.1 Let R : FkR → FℓR, C : FkC → FℓC be codes. The tensor product code R ⊗ C
is a code of message length kR · kC and block length ℓR · ℓC that encodes a message x ∈ FkR·kC as
follows: In order to encode x, we first view x as a kC × kR matrix, and encode each of its rows via
the code R, resulting in a kC × ℓR matrix x′. Then, we encode each of the columns of x′ via the
code C. The resulting ℓC × ℓR matrix is defined to be the encoding of x via R⊗ C.

The following fact lists some of the basic and standard properties of the tensor product operation.

Fact 3.2 Let R : FkR → FℓR, C : FkC → FℓC be linear codes. We have the following:

1. An ℓC × ℓR matrix x over F is a codeword of R ⊗ C if and only if all the rows of x are
codewords of R and all the columns of x are codewords of C.

2. Let δR and δC be the relative distances of R and C respectively. Then, the code R ⊗ C has
relative distance δR · δC .

3. The tensor product operation is associative. That is, if D : FkD → FℓD is a code then
(R⊗C)⊗D = R⊗ (C ⊗D).

The associativity of the tensor product operation allows us to use notation such as C⊗C⊗C, and
more generally:

11

Notation 3.3 (Iterated tensor code) Let C : Fk → Fℓ be a code. For every m ∈ N we denote
by C⊗m : Fk

m → Fℓ
m

the code C ⊗ C ⊗ . . .⊗ C
︸ ︷︷ ︸

m

. Formally, C⊗m = C⊗m−1 ⊗ C. Suppose that C is

an evaluation code, i.e., we identify the codewords of C with functions f : D → F for some set D.
In such case, we will identify the codewords of C⊗m with functions g : Dm → F.

Notation 3.4 (Axis-parallel lines) For i ∈ [m] and v = (v1, . . . , vm) ∈ Dm the set

Dm|i,v = {(v1, . . . , vi−1, x, vi+1, . . . , vm) | x ∈ D}

is called the i-axis-parallel line passing through v. Similarly, the restriction of g to this axis-parallel
line, denoted g|i,v, is the function with range D defined by

g|i,v−i(x) = g(v1, . . . , vi−1, x, vi+1, . . . , vm), x ∈ D.

Using Fact 3.2, one can prove by induction the following.

Fact 3.5 Let C be a linear code whose codewords are identified with functions f : D → F. Then, a
function g : Dm → F is a codeword of C⊗m if and only if for every 1 ≤ i ≤ m and v ∈ Dm it holds
that the function g|i,v is a codeword of C.

Another useful fact about the tensor products of systematic evaluation codes is the following.

Fact 3.6 Let C = {f : D → F} be a systematic linear evaluation code whose messages are func-
tions h : H → F (where H ⊆ D). Then, C⊗m = {fm : Dm → F} is a systematic evaluation code
whose messages are functions hm : Hm → F.

We also use the following two claims, due to [Mei10].

Claim 3.7 ([Mei10, Claim 3.7]) Let C = {f : D → F} be a systematic linear evaluation code
whose messages are functions h : H → F (where H ⊆ D), and let m ∈ N. Then, for every
coordinate x ∈ Dm there exist scalars αt,z ∈ F (for every 1 ≤ t ≤ m and z ∈ H) such that for every
codeword g ∈ C⊗m it holds that

g(x) =
∑

z1∈H
α1,z1 ·

∑

z2∈H
α2,z2 · . . .

∑

zm∈H
αm,zm · g(z1, . . . , zm).

Furthermore, the scalars αt,z can be computed in polynomial time given x and the generating ma-
trix of C. Moreover, for every t ∈ [m], the scalars {αt,z}z∈H depend only on xt and on the generating
matrix of C (but not on x1, . . . , xt−1, xt+1, . . . , xm).

Remark 3.8 The “moreover” part in Claim 3.7 does not appear in [Mei10], but is implicit in the
proof there.

Claim 3.9 ([Mei10, Claim 3.8]) Let C = {f : D → F} be a linear evaluation code, let m ∈ N,
and let g ∈ C⊗m. Then, for every sequence of scalars αt,z (for every 2 ≤ t ≤ m and z ∈ D) it holds
that the function f : D → F defined by

f(z1) =
∑

z2∈D
α2,z2 ·

∑

z3∈D
α3,z3 · . . .

∑

zm∈D
αm,zm · c(z1, . . . , zm)

is a codeword of C.

12

Finally, in this work we use the fact that tensor product codes are locally testable. In particular,
we use the following result of [Vid12].

Theorem 3.10 (Testing of tensor codes) There exists a randomized polynomial-time tester
that satisfies the following requirements:

• The tester takes as input the generating matrix of a linear code C : Fk → Fℓ of relative
distance δC and an integer m and is given oracle access to a string w ∈ Fℓ

m
,

• The tester uses at most log(ℓm)+O(logm) random bits and ℓ2 queries, and performs poly(ℓ)
arithmetic operations.

• Completeness: If w ∈ C⊗m, then the tester accepts with probability 1.

• Soundness: If w /∈ C⊗m, then the tester rejects with probability at least γm · δ(w,C⊗m),
where γm = δ3mC /poly(m).

3.3 AG codes and the multiplication property

The purpose of this section is to state the key properties of the error correcting codes required for
our proof of Main Theorem 2.3. We do so here using a limited amount of algebraic geometry and
hence postpone the definitions and proofs to Section 7. As mentioned in the introduction, two key
properties that we need of our codes are that they are part of multiplication code families with
constant relative distance, and that they possess a transitive automorphism group. These notions
are defined next.

Definition 3.11 (Multiplication codes) Let C,C ′ be two evaluation codes with the same do-
main D. Define their multiplication C · C ′ = span ({f · f ′ | f ∈ C, f ′ ∈ C ′}) where f · f ′ is the
function with domain D and range F defined by (f · f ′)(x) = f(x) · f ′(x), x ∈ D. We define Ci to
be the i-fold multiplication C · C · · ·C.

A sequence of evaluation codes ~C = (C1, . . . , Cdmult
) with the same domain D is called a multipli-

cation code family of multiplication degree dmult if for all 1 ≤ i, j ≤ dmult with i+ j ≤ dmult,
we have Ci · Cj ⊆ Ci+j .

Definition 3.12 (Codes with a transitive automorphism group) Given a code
C = {f : D → F | f ∈ L}, the automorphism group of C is the set of permutations of D
that stabilize C. Formally, for any permutation π : D → D and codeword f ∈ L we define
f ◦ π : D → F by (f ◦ π)(x) = f(π(x)) for x ∈ D. Then

Aut(C) = {π : D → D | {f ◦ π | f ∈ L} = C}
A code C is called transitive if its automorphism group is transitive, i.e., for every x, y ∈ D there
exists π ∈ Aut(C) such that π(x) = y.

An asymptotically good family of transitive AG codes was presented in [Sti06]. This family was
“sparse”: the ratio between blocklengths of consecutive members in this family was super-constant.
Applied to our framework, this family would only have led to a result saying that infinitely often
circuit-SATn has constant-rate PCPs with sublinear query complexity. The main result presented
in the appendix to this paper (Theorem A.14) gives a family of transitive AG codes that is defined
for every message length. We now state the main properties of these codes needed for our proof.
In what follows an integer q is called a square of a prime-power if q = p2r for prime p and integer r.

13

Theorem 3.13 (Asymptotically good transitive AG-codes for every message length
(Theorem A.14)) For any q = p2r > 4 a square of a prime-power there exists a constant
cq ≤ p

√
q−1 for which the following holds. Fix rate and distance parameters ρ and δ respectively

and a multiplication degree parameter dmult which satisfy

cq · dmult · ρ+ δ < 1− dmult√
q − 1

(2)

Then for every sufficiently large message length k there exists a code C, and a multiplication code
family ~C = (C1, C2, . . . , Cdmult

) with C1 = C, satisfying:

Basic parameters. C = {f : D → Fq} is a linear evaluation code over Fq of dimension at least
k, relative distance at least δ, and with length |D| ≤ 1

ρ · k. Succinctly, C is an [|D| ≤ k
ρ ,≥

k,≥ δ|D|]q-code.

Transitivity. All the codes Cj are jointly transitive: i.e., for every α, β ∈ D there exists an

automorphism π ∈ ⋂dmult

j=1 Aut(Cj) such that π(α) = β.

Distance of Multiplication codes. For each j ≤ dmult, the code Cj has relative distance at least
δ.

Remark 3.14 The appendix states the above result a bit differently. More specifically, in the
appendix, the codes are not defined for every message length, but only for an infinite sequence
k1, k2, . . . of message lengths that satisfies ki+1 ≤ cq · ki for every i. On the other hand, the
appendix states a better trade-off between ρ, δ, d, for those message lengths, namely,

d · ρ+ δ < 1− 1√
q − 1

.

The parameters in Theorem 3.13 are weaker because we are asking for codes for every message
length k. For the “missing message lengths”, we use a code corresponding to the smallest ki larger
than k.

3.4 The AG Combinatorial Nullstellensatz

In our proof we will face a problem which generalizes the “zero-testing” problem of previous PCPs.
In this problem we have a function g : Dm → F which is a codeword of C⊗m where C is an AG
code. (g actually belongs to (Cd)⊗m but Cd is essentially an AG code too.) Our goal is to test
whether g vanishes on a set Hm, i.e., whether g(x) = 0 for all x ∈ Hm. As shown in [BS08, Lemma
4.9], the zero-testing problem for the case of multivariate polynomials can be solved using Alon’s
Combinatorial Nullstellensatz, stated next.

Theorem 3.15 (Combinatorial Nullstellensatz [Alo99]) For H ⊂ Fq let ξH(Y) =
∏

α∈H(Y −α) be the nonzero monic polynomial of degree |H| that vanishes on H. Let f(X1, . . . ,Xm)
be a polynomial over Fq of individual degree at most d. Then f(X1, . . . ,Xm) vanishes on Hm if
and only if there exist m polynomials f ′1, . . . , f

′
m ∈ Fq[X1, . . . ,Xm] of individual degree at most d

such that

f(X1, . . . ,Xm) =
m∑

i=1

f ′i(X1, . . . ,Xm) · ξH(Xi). (3)

14

The importance of this theorem to PCP constructions is that it reduces the problem of testing
many constraints — each constraint is of the form f(x1, . . . , xm) = 0 and there are |H|m of them
— to that of checking that each of f ′1, . . . , f

′
m are low-degree polynomials along with a consistency

check that indeed, f =
m∑

i=1
f ′i · ξH(Xi).

In Section 7 we shall properly define and prove the AG combinatorial Nullstellensatz. Next we state
a special case of it using the minimal AG formalities and tailored for the purpose of proving Theo-
rem 2.3. Comparing it to the previous theorem one main difference is that we require two auxiliary
functions ξ, ξ′ as opposed to only one above. The full-generality result is stated in Theorem 7.4.

Theorem 3.16 (Special case of AG Combinatorial Nullstellensatz) Let C = {f : D → F}
and ~C = (C1, . . . , Cdmult

) be the codes from Theorem 3.13 with multiplication degree dmult = 6d, rate
parameter ρ, and distance parameter δ satisfying

cq · dmult · ρ+ δ <
1

2
− dmult√

q − 1
. (4)

Then for every H ⊂ D with

|H| <
(

1

12
− δ

6
− 2√

q − 1

)

· |D|, (5)

there exist ξ(X) = ξH(X) ∈ C2d and ξ′(X) = ξ′H(X) ∈ C3d satisfying the following. Suppose
f(X1, . . . ,Xm) ∈ (Cd)

⊗m. Then f vanishes on Hm if and only if there exist f ′1, . . . , f
′
m : Dm → Fq,

with f ′i ∈ (C4d)
⊗m for each i ∈ [m], such that:

f(X1, . . . ,Xm) ·
m∏

i=1

ξ′(Xi) =
m∑

i=1

f ′i(X1, . . . ,Xm) · ξ(Xi). (6)

In Section 7, we show how to instantiate parameters in Stichtenoth’s code construction and in our
AG Combinatorial Nullstellensatz to get the precise statements of Theorem 3.13 and Theorem 3.16.

4 Proof of Main Theorem 2.3

4.1 From circuit-SAT to Hypercube-CSP

Our first reduction is from circuit-SAT to a family of constraint satisfaction problems on sub-graphs
of the hypercube. We start by recalling the notions of graph CSP and the hypercube, then state
the main step in this reduction (Theorem 4.5). The proof of this theorem is deferred to Section 5.
It follows similar reductions that were used in previous works in the PCP literature starting from
[BFLS91, PS94], which were in turn based on routing techniques (see, e.g., [Lei92]). We start by
defining constraint satisfaction problems on graphs and on the hypercube graph formally.

Definition 4.1 (Constraint graph) A constraint graph G is a graph (V,E) coupled with a finite
alphabet Σ, and, for each edge (u, v) ∈ E, a binary constraint cu,v ⊆ Σ × Σ. The size of G,
denoted |G|, is the number of edges of G.

An assignment to G is a function σ : V → Σ. We say that an assignment σ satisfies an edge
(u, v) ∈ E if (σ(u), σ(v)) ∈ cu,v, and otherwise we say that σ violates (u, v).

We say that σ is a satisfying assignment for G if it satisfies all the edges of G. If G has a satisfying
assignment, we say that G is satisfiable, and otherwise we say that it is unsatisfiable.

15

Definition 4.2 (Graph CSP) The graph constraint satisfaction problem, graph-CSP, is the
problem of deciding whether a constraint graph G is satisfiable. Formally,

graph-CSP
def
= {G : G is a satisfiable constraint graph} .

Definition 4.3 (The hypercube graph) The m-dimensional k-ary hypercube, denoted Hk,m, is
the graph whose vertex set is [k]m, and whose edges are defined as follows: For each pair of distinct
vertices u, v ∈ [k]m, the vertices u and v are connected by an edge if and only if the Hamming
distance between uand v (when viewed as strings) is exactly 1. In other words, u and v are connected
by an edge if and only if there exists i ∈ [d] such that uj = vj for all j 6= i.

Definition 4.4 (Hypercube CSP) Hypercube-CSP is the sub-language of graph-CSP consisting
of satisfiable constraint satisfaction problems over graphs that are sub-graphs of a hypercube. We
say that G is a sub-graph of H, denoted G ≤ H, if G can be obtained by deleting edges and vertices
of H. Formally,

Hypercube-CSP
def
=

G : G ∈ graph-CSP and G ≤ H for some H ∈

⋃

k,m

Hk,m

.

We now state the first step in our reduction, its proof appears in Section 5.

Theorem 4.5 (From circuit-SAT to Hypercube-CSP) There exists a polynomial time procedure
that maps every circuit ϕ of size n and integer m ∈ N to a constraint graph Gϕ,m over an alphabet Σ
of size 4 that is satisfiable if and only if ϕ is satisfiable, and whose size is at most 2m4m+2 · n.
Furthermore, the graph Gϕ,m is a 4-regular subgraph of the m-dimensional k-ary hypercube, where
k ≤ 4((4 · n)1/m + 1).

4.2 From Hypercube-CSP to aggregate-AGCSP

We now discuss the second part of our reduction. The starting point is a hypercube CSP problem
obtained from Theorem 4.5. The end point will be an instance of a generalization of algebraic CSPs
(cf. [BS08]) to AG code settings.

Aggregated Algebraic Geometry Constraint Satisfaction Problems All previous alge-
braic PCPs, starting with [AS98, ALM+98, BFLS91], reduce instances of circuit-SAT to various
aggregated algebraic CSPs (ACSP) (cf. [BS08, Sec. 3.2] for a definition and examples). These AC-
SPs are designed for Reed-Muller and Reed-Solomon codes, which are special (and simple) cases of
AG codes. When working with AG codes we require a proper generalization of ACSPs to the AG
setting, and we define this generalization next. The following notation will be useful for defining
our algebraic CSP.

Notation 4.6 (Axis-parallel composition with automorphism) Let C = {f : D → F}, let π
be an automorphism of C, and let g : Dm → F be a codeword of the tensor code C⊗m. Then, for
each i ∈ [m], we define the function gπ,i : Dm → F by

gπ,i(x1, . . . , xm) = g(x1, . . . , xi−1, π(xi), xi+1, . . . , xm).

16

Moreover, if π1, . . . , πt are automorphisms of C, then we define the function g(π1,...,πt) : Dm →
F1+t·m to be the function obtained by aggregating the 1+t ·m functions g, gπ1,1, . . . , gπt,m. Formally,

g(π1,...,πt)(x) =
(
g(x), gπ1,1(x), . . . , gπt,m(x)

)
.

Definition 4.7 (Aggregated Algebraic Geometry CSP (aggregate-AGCSP)) An instance
of the aggregate-AGCSP problem is a tuple

ψ = (m,d, t,F, ~C,H, π1, . . . , πt, Q(ψ))

where

• m,d, t are integers

• ~C = (C1, . . . , Cd) is a multiplication code family.

• C
def
= C1 is a systematic linear evaluation code that encodes messages h : H → F to codewords

f : D → F.

• π1, . . . , πt are automorphisms of Cj for every j ∈ [d].

• Q(ψ) : Dm × F1+t·m → F is a function that is represented by a Boolean circuit and satisfies
the following property

– For every codeword g ∈ C⊗m, it holds that Q(ψ)(x, g(π1,...,πt)(x)) is a codeword of (Cd)
⊗m.

An assignment to ψ is a function g : Dm → F. Denote by f (ψ,g) the function

f (ψ,g) : Dm → F, f (ψ,g)(x)
def
= Q(ψ)(x, g(π1,...,πt)(x)). (7)

We say g satisfies the instance if and only if g is a codeword of C⊗m for which f (ψ,g) vanishes on
Hm, i.e., f (ψ,g)(x) = 0 for all x ∈ Hm.

The problem of aggregate-AGCSP is the problem of deciding whether an instance is satisfiable , i.e.,
if it has a satisfying assignment.

Remark 4.8 (Non-aggregated AGCSP) A constraint satisfaction problem is defined as a set
of constraints whereas in the definition above (as well as in all previous definitions of algebraic
CSPs) the constraint-set is “captured” by a single object. In our case this object is the function
Q(ψ). The reduction of Hypercube-CSP to aggregate-AGCSP stated next and proved in Section 6
will clarify that Q(ψ) really is an aggregate of a large set of constraints (as was done in previous
ACSPs).

The second step in our reduction is stated next. It gives a non-uniform reduction mapping an
instance of Hypercube-CSP derived from Theorem 4.5 to an instance of aggregate-AGCSP. The
proof appears in Section 6.

Theorem 4.9 There exists a polynomial-time procedure with the following input-output behavior:

• Input:

17

– A number m ∈ N.

– An alphabet Σ.

– A constraint graph G over Σ whose underlying graph is a 4-regular subgraph of Hk,m.

– A finite field F.

– Bases for all the codes in a multiplication code family ~C = (C1, . . . , Cdmult
) of transitive

evaluation codes Cj = {f : D → F}, where C def
= C1 has message length at least 2 ·k, and

dmult ≥ |Σ|.
– For each α, β ∈ D, a permutation π of D that (1) maps α to β, and (2) is an automor-

phism of Cj for each j ∈ [d].

• Output: An instance of aggregate-AGCSP

ψ = (m,d
def
= |Σ| , t,F, ~C,H, π1, . . . , πt, Q(ψ))

with |H| ≤ 2k, that is satisfiable if and only if G is satisfiable.

Remark 4.10 Note that in Theorem 4.9, the assignments to G are of length O(km ·log |Σ|) and the
assignments to ψ are of length |D|m · log |F|. In our settings, we will have |Σ| = O(1), |F| = O(1),
m = O(1) and |D| = O(k), so the reduction will preserve the length of the assignments up to a
constant factor.

Remark 4.11 Note that the fact that the procedure in Theorem 4.9 runs in polynomial time implies
in particular that the length of ψ is polynomial in the length of the inputs to the procedure. This
in particular implies that the size of the circuit computing Q(ψ) is polynomial in the length of the
inputs to the procedure.

The next two sections provide two different proofs of our main theorem, one based on the AG
combinatorial Nullstellensatz and one based on the sum-check protocol. Before going into those
proofs, we first prove the following lemma, which is used in both proofs. Intuitively, the lemma
says: Suppose we have an assignment g to ψ that is not a codeword of C⊗m, but is close to some
codeword ĝ. We would have liked to argue that in such a case f (ψ,g) and f (ψ,ĝ) are close to each
other. While this is not necessarily true, the lemma says that f (ψ,g) and f (ψ,ĝ) agree on most points
that are “locally legal”, which is a condition that can be checked by the verifier using relatively few
queries.

Let ψ, C, m, and Q(ψ) be as in the definition of aggregate-AGCSP, and let δC be the relative
distance of C. Let g : Dm → F be an assignment to ψ and let f (ψ,g) be as in the definition of
aggregate-AGCSP. We say that a point x ∈ Dm is locally legal for g if for every i ∈ [m], it holds that
g|i,x ∈ C (i.e. g restricted to the axis-parallel line that goes through x in direction i is a codeword
of C). We have the following result.

Lemma 4.12 Let ĝ : Dm → F be a codeword of Cm that is τ -close to g for some 0 < τ < 1 (i.e.,
g and ĝ disagree on at most τ fraction of the points in Dm). Let x be a uniformly distributed point
in Dm. Then

P
x∈Dm

[

x is locally legal for g and f (ψ,g)(x) 6= f (ψ,ĝ)(x)
]

≤ m · τ/δC . (8)

18

Proof: We begin by fixing some point x that is both locally legal and satisfies f (ψ,g)(x) 6= f (ψ,ĝ)(x).
Recall that f (ψ,g) is computed by evaluating g on all the axis-parallel lines that pass through x,
and the same goes for f (ψ,ĝ) and ĝ. Thus, the assumption that f (ψ,g)(x) 6= f (ψ,ĝ)(x) implies that
there exists some i ∈ [m] such that g|i,x 6= ĝ|i,x. Moreover, since we assume that g is locally
legal, we get that g|i,x is a legal codeword. Note that also ĝ|i,x is a legal codeword, due to the
assumption that ĝ is a codeword of Cm and to Fact 3.5. We conclude that if x is both locally legal
and satisfies f (ψ,g)(x) 6= f (ψ,ĝ)(x), it must lie on some axis-parallel line L ⊆ Dm such that g|L and
ĝ|L are distinct codewords of C. We refer to such an axis-parallel line L as a faulty line.

Therefore, in order to upper bound the probability in Equation 8, it suffices to upper bound the
fraction of points that are contained in faulty lines L. To this end, it suffices to show that for every
direction i ∈ [m], the fraction of points that are contained in faulty lines in direction i is at most
τ/δC , and this will imply the required upper bound by the union bound.

Fix a direction i ∈ [m]. Observe that every faulty line L in direction i contains at least δC ·|D| points
on which g and ĝ differ, since g|L and ĝ|L are distinct codewords of C. On the other hand, since
g is τ -close to ĝ, the total number of points on which g and ĝ differ is at most τ · |D|m. Since
distinct lines in direction i are disjoint, we get that the total number of faulty lines in direction i
is at most τ

δC
|D|m−1. Finally, since every line contains exactly |D| points, it follows that the total

number of points that are contained in faulty lines in direction i is at most τ
δC

·|D|m, as required.

4.3 A proof of Main Theorem 2.3 using AG combinatorial Nullstellensatz

Applying the pair of reductions described in the previous sections (cf. (1)) converts a circuit ϕ of size
n to an instance ψ of aggregate-AGCSP whose assignments are of length O(n). Using the notation
of Theorem 4.9 and Definition 4.7, we see that ϕ is satisfiable if and only if there exists g ∈ C⊗m for
which f (ψ,g) defined in (7) vanishes on Hm. The AG combinatorial Nullstellensatz (Theorem 3.16)
says that this holds if and only if there exist m auxiliary functions f ′1, . . . , f

′
m that “prove” that

f (ψ,g) vanishes on Hm. The verifier thus expects to see the functions g, f (ψ,g), f ′1, . . . , f
′
m and checks

their internal consistency and that each of them indeed belongs to the tensor of an AG code, using
Theorem 3.10. Details follow.

Proof of Theorem 2.3: We may assume ε < 1, otherwise the statement is trivial. Let m be the
smallest integer that is strictly greater than 2/ε. Our proof will start by describing the verifier’s
operation on input ϕ of size n, followed by an analysis of its proof length, completeness, soundness,
randomness complexity, query complexity, verifier complexity and decision complexity.

Verifier’s operation The verifier V applies the reductions in (1), i.e., the reduction of Theo-
rem 4.5 followed by the reduction of Theorem 4.9. The first reduction maps ϕ to an instance G of
Hypercube-CSP over a subgraph of Hk,m where k ≤ 4((4 · n)1/m + 1).

For the second reduction let d = |Σ| = 4 where Σ is the alphabet stated in Theorem 4.5. We give
one possible way of fixing parameters. Set q = 216, and note that cq = 2255. Set dmult = 6d = 24.
Set δ = 1

100 and ρ = 1
100cq

, and note that Equation (4) is satisfied.

Thus we may take a transitive AG code C = {f : D → Fq} and multiplication code family ~C =
(C1, . . . , Cdmult

) as in Theorem 3.13, such that C has message length 200k, blocklength |D| ∈
[200k, 200kρ], and each Cj has relative distance δ. We will be using Theorem 3.16 on this code. Note

19

that every set H ⊆ D of size ≤ 2k satisfies Equation (5), because

2k <

(
1

100

)

· 200k ≤ (
1

12
− δ

6
− 2√

q − 1
) · |D|.

Now V applies Theorem 4.9 to G with the multiplication code family ~C (all other input parameters
needed there are clear from context). For this part (and for the next) we assume that the following
are hardwired into the verifier V = Vε,n (this is where we assume non-uniformity of the verifier):

• A basis for each Cj, j ∈ [dmult].

• For every α, β ∈ D, a permutation π of D that (1) is an automorphism of each Cj, j ∈ [dmult],
and (2) maps α to β.

• The pair of functions ξ = ξH , ξ
′ = ξ′H : D → Fq defined in Theorem 3.16 where H ⊂ D, |H| ≤

2k is part of the aggregate-AGCSP instance ψ and defined in Theorem 4.9. (Note that our
earlier discussion showed that Equation (5) is satisfied and thus Theorem 3.16 does apply
here.)

Denote by ψ the resulting instance of aggregate-AGCSP. As a proof oracle, the verifier V expects
a total of m + 1 functions, denoted g, f ′1, . . . , f

′
m. All of them have domain Dm and range Fq.

The verifier expects g to be the assignment satisfying ψ, and f ′1, . . . , f
′
m should “prove” that f (ψ,g)

(cf. (7)) vanishes on Hm as per the AG combinatorial Nullstellensatz Theorem 3.16. The verifier
performs the following checks while recycling randomness.

1. Tensor test: Invoke the local tester of Theorem 3.10 to test that g ∈ C⊗m and f ′ℓ ∈ (C4d)
⊗m

for each ℓ ∈ [m], using the same randomness for all the invocations.

2. Zero test: Choose a uniformly distributed point x = (x1, . . . , xm) ∈ Dm and check that

(a) f (ψ,g)(x) · ∏m
r=1 ξ

′(xr) =
∑m

j=1 f
′
j(x) · ξ(xj), where f (ψ,g)(x) is computed by making

1 +m · t queries to g.
(b) x is a locally legal for g. That is, for every direction t ∈ [m], the axis-parallel line g|t,y

is a codeword of C.

If one of those checks fail, the verifier rejects, and otherwise it accepts.

Proof Length. The proof contains m + 2 functions with domain size |D|m and range size q.
Recalling the concrete parameters from earlier on in the proof (these parameters are not necessarily
optimal)

2/ε < m ≤ 2/ε+ 1, |D| ≤ 200k

ρ
≤ 2270 · (n1/m + 1)

we conclude that the proof bit-length, for sufficiently large n, is at most

(m+ 2) · log2 q · |D|m <

(
2

ε
+ 3

)

· 16 · 2540/ε+270 · n ≤ cε · n (9)

where, asymptotically (i.e., as ε→ 0), cε ≤ 2c
′/ε for c′ < 600.

20

Completeness. Suppose ϕ is satisfiable. Then by the completeness of Theorem 4.5 and Theo-
rem 4.9 we know that ψ is satisfiable. This means there exists g ∈ C⊗m such that the function
f (ψ,g) defined in (7) belongs to (Cd)

⊗m and vanishes on Hm. Hence, by the AG-Nullstellensatz
Theorem 3.16 there exist f ′1, . . . , f

′
m ∈ (C4d)

⊗m such that (13) holds with respect to f = f (ψ,g).
Inspection reveals that all of the verifier tests pass with probability 1 and we conclude the PCP
system has perfect completeness as claimed.

Soundness. Suppose ϕ is not satisfiable. Then by the soundness of Theorem 4.5 and Theorem 4.9
we conclude ψ is not satisfiable, i.e., there does not exist g ∈ C⊗m such that f (ψ,g), as defined in
(7), vanishes on Hm. Suppose the verifier is given the proof g, f ′1, . . . , f

′
m. We show that the verifier

rejects with probability Ωm(1).

Let δ be the minimum of the relative distances of Cd and C4d and note that δ does not depend
on n. If g is (δm+1/2m)-far from (Cd)

⊗m or any of f ′1, . . . , f
′
m is (δm+1/2m)-far from (C4d)

⊗m,
the tensor test rejects with probability at least γm · δm+1/2m = Ωm(1) (where γm is as defined
in Theorem 3.10). Thus, we may focus on the case in which g is (δm+1/2m)-close to (Cd)

⊗m and
all of f ′1, . . . , f

′
m are (δm+1/2m)-close to (C4d)

⊗m. In this case, g, f ′1, . . . , f
′
m are close to unique

codewords ĝ, f̂ ′1, . . . , f̂
′
m of (Cd)

⊗m and (C4d)
⊗m respectively.

Observe that by the union bound, we get that with probability at least 1−δm+1/2, all of f ′1, . . . , f
′
m

agree with f̂ ′1, . . . , f̂
′
m on x respectively. Let us focus on this case for now. Also observe that since

ψ is not satisfiable, f (ψ,ĝ) does not vanish on Hm.

Let f̂ ′ =
∑m

i=1 f̂
′
i(x) · ξ(xi) and f̂ ′′(x) = f (ψ,ĝ)(x) ·∏m

r=1 ξ
′(xr), noticing f̂ ′, f̂ ′′ ∈ (C6d)

⊗m. Since

f (ψ,ĝ) does not vanish on Hm and by the AG-Nullstellensatz Theorem 3.16 we know that f̂ ′ 6= f̂ ′′.
So by the distance property of (C6d)

⊗m = (Cdmult
)⊗m, we conclude f̂ ′ and f̂ ′′ differ on x with

probability at least δm. Now, by Lemma 4.12, we get that with probability at least

1−m · δm+1/2m · δ ≥ 1− δm/2

one of the following cases occur:

1. x is not locally legal for g, so the zero test rejects.

2. f (ψ,g)(x) = f (ψ,ĝ)(x), so

f (ψ,g)(x) ·
m∏

r=1

ξ′(xr) = f̂ ′′(x) 6=
m∑

i=1

f̂ ′i(x) · ξ(xi).

Since we assumed that all of f ′1, . . . , f
′
m agree with f̂ ′1, . . . , f̂

′
m on x, we get that

f (ψ,g)(x) ·
m∏

r=1

ξ′(xr) 6=
m∑

i=1

f ′i(x) · ξ(xi),

and therefore the zero test rejects.

We conclude that the test rejects if f̂ ′ and f̂ ′′ differ on x, all of f ′1, . . . , f
′
m agree with f̂ ′1, . . . , f̂

′
m on

x, and either x is not locally legal for g or f (ψ,g)(x) = f (ψ,ĝ)(x). This happens with probability at
least δm − δm+1/2− δm/2 = Ωm(1), as required.

This soundness analysis only ensured a rejection probability of Ω(δm). If we want to make the
rejection probability in the NO case be ≥ 1/2, then we would have to repeat the verifier’s opera-
tion O(1

δm) times. The randomness for these repetitions can be somewhat reduced using by-now-
standard randomness-efficient samplers, e.g., based on expander-walks (cf. [Gol11]).

21

Randomness complexity. Each invocation of the local tester of Theorem 3.10 requires
log2 (|D|m) + O(logm) random bits, and choosing x requires log2 (|D|m) random bits. Since the
verifier recycles the randomness, all the operation requires a total of log2 (|D|m) + O(logm) =
log2 n+Om(1) random bits.

For the case of rejection probability ≥ 1/2, the randomness complexity is log2 n+O(logm+ 1
δm) =

log2 n+ 2O(1
ε
).

Query complexity. Each invocation of the local tester of Theorem 3.10 requires |D|2 queries,
for a total of (m+1) · |D|2 queries. The zero test uses 1+m ·t = O(m · |D|2) queries to g to compute
f (ψ,g)(x), another m queries to f ′1, . . . , f

′
m, and another m · |D| queries to verify that x is locally

legal for g. All in all, the verifier uses O(m · |D|2) queries. Now, recall that |D| = O(k) and that
k = O(n1/m), and therefore the query complexity of the verifier is O(m ·n2/m). By setting m to be
sufficiently large constant, we can ensure that the query complexity is smaller than O(poly(1ε) ·nε).
For the case of rejection probability ≥ 1/2, the query complexity is O

(
1
δm · nε

)
= 2O(1

ε
) · nε.

Verifier complexity. The verifier clearly runs in time Oε(1) · poly(n).

Decision complexity. The decision predicate of the verifier consists of:

1. poly(|D|) arithmetic operations on the field elements it queries.

2. Verifying membership in the code C, which can also be done using poly(|D|) arithmetic
operations since C is linear.

3. Invoking the local tester of Theorem 3.10, which uses poly(|D|) operations.

Since q = O(1), we conclude that the running time of V is polynomial in |D|. Since |D| = O(n)O(ε),
we get that the decision complexity is at most nO(ε) for sufficiently large n.

4.4 A proof of Main Theorem 2.3 using the sum-check protocol

In this section, we give an alternative proof of our main theorem (Theorem 2.3) using the sum-
check protocol. The PCP constructed this way is less efficient in terms of randomness, but has
the advantage that it requires less sophisticated algebraic machinery. In particular, it requires only
the multiplication property and transitivity property of the codes, and does not require the AG
combinatorial Nullstellensatz (Theorem 3.16).

Theorem 4.13 (2.3, restated with larger randomness complexity) For every ε > 0 and
every n ∈ N, there exists a (non-uniform) PCP verifier Vn for instances of circuit-SAT of size n
with query complexity Oε(n

ε), proof length Oε(n), rejection probability Ωε(1), verifier complexity
Oε(1) · nO(1), randomness complexity 2 log n+Oε(1), and decision complexity Oε(n

ε).

The verifier works by applying the generalization of the sum-check protocol to general codes
of [Mei10]. We describe this protocol below, both for the sake of completeness and in order to an-
alyze the resulting proof length (which is not specified by [Mei10]). Fix ε > 0, and let m = O(1/ε)

22

be an integer to be chosen later. Fix an instance ϕ of circuit-SAT of size n. We describe the action

of the PCP verifier V
def
= Vn on the instance ϕ. The verifier V starts by applying the reduction of

Theorem 4.5 to ϕ, which results in an instance G of Hypercube-CSP of size Om(n) over a subgraph
of Hk,m for k = O(n1/m). Next, V applies to G the reduction of Theorem 4.9 with d = |Σ| = 4
(where Σ is the alphabet ofG), with C being the good code of Theorem 3.13 with message length 2k,
and with the other parameters chosen such that they satisfy the requirements below. We assume
that the code C is hardwired to the verifier (this is where we use the non-uniformity of the verifier).
The latter reduction results in an instance of aggregate-AGCSP

ψ = (m,d, t,F, ~C,H, π1, . . . , πt, Q(ψ))

satisfying the following properties:

• ψ is satisfiable if and only if ϕ is satisfiable.

• |F| = Om(1).

• ~C = (C1, . . . , Cd) is a multiplication code family.

• C
def
= C1 has block length equal to ℓ

def
= Om(n

1/m).

• The assignments to ψ are of bit-length O(ℓm · log |F|) = Om(n).

• t ≤ ℓ2.

• For each j ∈ [d], the code Cj has relative distance at least δC
def
= 1− 1

10m .

Note that these parameters satisfy Equation (2) (by choosing |F| = q = poly(m), δ = 1 − 1
10m ,

dmult = d = 4, and ρ = O(1
dmultcqm

)).

As usual, we view the codewords of each Cj as functions from D to F, and its messages as functions
from H to F.

The verifier V checks that ψ is satisfiable roughly as follows: V expects to be given in the proof
string a satisfying assignment g to ψ, and needs to check that f (ψ,g) vanishes on Hm. To this end,
V considers an encoding G of f (ψ,g)|Hm via a tensor code (C ′)m, and wishes to verify that G(x) = 0
for a random coordinate x. In order to do the latter verification, the verifier V uses Claim 3.7 to
write G(x) in the following “sum-check form”:

G(x) =
∑

z1∈H
α1,z1 · . . .

∑

zm∈H
αm,zm · f (ψ,g)(z1, . . . , zm).

Then, V uses the sum-check protocol to verify that the latter exponential sum evaluates to zero.
This can be done by requiring the prover to provide all the partial sums of the form

∑

zt+1∈H
αt+1,zt+1

· . . .
∑

zm∈H
αm,zm · f (ψ,g)(y1, . . . , yt−1, w, zt+1, . . . , zm).

In the rest of this section, we give a more formal and rigorous description of how V verifies that ψ

is satisfiable. We first describe how the proof strings of satisfiable instances ψ look like, and then
describe the action of V on ψ.

23

The proof strings of V . Suppose that ψ is satisfiable. We describe the proof string that
convinces V to accept ψ with probability 1. The proof string contains a satisfying assignment g
to ψ. Recall that the function f (ψ,g) : Dm → F is defined by

f (ψ,g) = Q(ψ)(x, g(π1,...,πt)(x)).

Recall that g is a codeword of C⊗m, and therefore, by the property of the function Q(ψ) (see
Definition 4.7), it holds that f (ψ,g) is a codeword of (Cd)

⊗m.

Let C ′ = {f ′ : D′ → F} be a linear systematic evaluation code of relative distance 1− 1
10m and rate

Ωm(1), whose messages are functions h′ : H → F. Note that (C ′)⊗m has relative distance ≥ 9
10 .

Let G : (D′)m → F be the encoding of f (ψ,g)|Hm by C ′, and recall that since g is satisfying, G is
the all-zeros codeword (as f (ψ,g) vanishes on Hm).

Notation 4.14 For every x ∈ (D′)m and t ∈ [m], define by x<t (respectively, x>t) the pre-
fix (x1, . . . , xt−1) (respectively, the suffix (xt+1, . . . , xm)). In particular, x<1 and x>m are the empty
vectors. We use the same notation for vectors y ∈ Dm.

Recall that by Claim 3.7, for every x ∈ (D′)m we can write

G(x) =
∑

z1∈H
α1,z1 · . . .

∑

zm∈H
αm,zm · f (ψ,g)(z1, . . . , zm).

Now, the proof string π contains, for each such x, for every y ∈ Dm, and for each t ∈ [m], the
function fy<t,x>t : D → F defined by

fy<t,x>t(w) =
∑

zt+1∈H
αt+1,zt+1

· . . .
∑

zm∈H
αm,zm · f (ψ,g)(y1, . . . , yt−1, w, zt+1, . . . , zm).

Note that by Claim 3.9, the function fy<t,x>t is a codeword of Cd. Also note that the func-
tion fy<t,x>t is indeed determined by y<t, and x>t since the scalars αj,zj are determined by xj for
each t+ 1 ≤ j ≤ m by Claim 3.7. In particular, the function fy<t,x>t is independent of x1, . . . , xt
and yt, . . . , ym.

We show that π is of length Om(ℓ
m) = Om(n). To this end, note that since |F| = Om(1), it does

not matter whether we measure its length in field elements or in bits. Thus, it suffices to analyze
length of g and the functions fy<t,x>t. It is easy to see that the assignment g is of length ℓm.
As for the functions fy<t,x>t , observe that the length of each function fy<t,x>t (represented by its
truth table) is |D| = ℓ. We show that there are at most Om(ℓ

m−1) such functions, so all those
functions contribute a total of Om(ℓ

m) field elements. To this end, note that for each t ∈ [m],
the total number of functions fy<t,x>t is |D|t−1 · |D′|m−t = Om(ℓ

m−1), since fy<t,x>t is determined
by y1, . . . , yt−1, xt+1, . . . , xm. Thus, the total number of such functions for all t ∈ [m] is at most
m ·Om(ℓm−1) = Om(ℓ

m−1). We conclude that the length of π is Om(ℓ
m) = Om(n), as required.

The action of V on ψ. We turn to describe the action of the verifier V on arbitrary instance ψ
and proof string π. We partition π to truth tables of functions g and fy<t,x>t, though now we have
no guarantee on the relationships between those functions. Let ĝ be the codeword of C⊗m closest

to g, breaking ties arbitrarily, and let us denote f̂
def
= f (ψ,ĝ). The verifier starts by applying the

local testing procedure of Theorem 3.10 to g.

24

Next, define a code C ′ as before, and let G be the encoding of f̂ |Hm via (C ′)⊗m. The verifier V
chooses a uniformly distributed point x ∈ (D′)m. By Claim 3.7, there are scalars αt,z satisfying

G(x) =
∑

z1∈H
α1,z1 · . . .

∑

zm∈H
αm,zm · f̂(z1, . . . , zm). (10)

The verifier V computes the scalars αt,z. Now, V chooses a uniformly distributed y ∈ Dm, and
checks that the following conditions hold:

1. y is locally legal for g. That is, for every direction t ∈ [m], the axis-parallel line g|t,y is a
codeword of C.

2. For every t ∈ [m], the function fy<t,x>t is a codeword of Cd.

3.
∑

z1∈H α1,z1fy<1,x>1
(z1) = 0.

4. For every 1 ≤ t ≤ m− 1, it holds that fy<t,x>t(yt) =
∑

zt∈H αt,zt · fy<t+1,x>t+1
(zt+1).

5. fy<m ,x>m(ym) = f (ψ,g)(y) (where the right hand side is computed by making 1+ t ·m accesses
to g).

The verifier accepts if all the above conditions hold, and rejects otherwise. We note that the
verifier chooses the points x, y using the same randomness that was used to invoke the local testing
procedure of Theorem 3.10, in order to save randomness.

This concludes the description of the verifier. We turn to analyze its completeness, soundness,
query complexity, and decision complexity.

Completeness. Suppose that ψ is satisfiable. We choose the proof string π as explained above.
In this case, we get that g = ĝ, and hence f (ψ,g) = f (ψ,ĝ) = f̂ . Since g is a codeword of C⊗m,
it follows by Fact 3.5 that all the axis-parallel lines of g are codewords of C, hence Condition 1
holds. It holds that f (ψ,g) is a codeword of (Cd)

⊗m by the property of Q(ψ) (see Definition 4.7), and
therefore, all the functions fy<t,x>t are codewords of Cd, so Condition 2 above holds. Condition 3
above holds since G is the all-zeros codeword (because f (ψ,g)|Hm is all-zeros), and since the sum on
the left-hand side is equal to G(x) due to the definition of fx>1

, and to Equation 10. Condition 4
above holds by the definition of the functions fy<t,x>t. Finally, it is not hard to see that the function
fy<m(·) is, by definition, equal to the function f (ψ,g)(y1, . . . , ym−2, ym−1, ·), so Condition 5 holds as
well. We conclude that for this choice of π, the verifier V accepts with probability 1.

Soundness. Suppose that ψ is unsatisfiable. We first note that if g is δmC /2m-far from the
code C⊗m, the local tester of C⊗m rejects g with probability at least γm · δmC /2m = Ωm(1) (where
γm is defined as in Theorem 3.10). We thus focus on the case where g is δmC /2m-close to C⊗m, and

in particular, to the unique codeword ĝ. Since ψ is unsatisfiable, we get that f̂
def
= f (ψ,ĝ) can not

vanish on Hm. This implies that G is a non-zero codeword of (C ′)⊗m, and in particular, G(x) 6= 0
with probability at least δ(C′)⊗m =

(
1− 1

10m

)m ≥ 9
10 .

Let us focus now on the case where G′(x) 6= 0, and assume that V errs otherwise. For each t ∈ [m]
and y1, . . . , yt−1 ∈ D define a function f̂y<t,x>t : D → F by

f̂y<t,x>t(yt)
def
=

∑

zt+1∈H
αt+1,zt+1

· . . .
∑

zm∈H
αm,zm · f̂(y1, . . . , yt, zt+1, . . . , zm).

Now, let y be the vector chosen by the verifier. One of the following three cases must occur:

25

1. fy<1,x>1
= f̂y<1,x>1

: In this case, the verifier rejects immediately since

∑

z1∈H
α1,z1 f̂y<t,x>t(z1) = G(x) 6= 0,

which means that Condition 3 is violated.

2. fy<m,x>m 6= f̂y<m,x>m: In this case, fy<m,x>m and f̂y<m,x>m are two distinct codewords of Cd,
and therefore they disagree on at least 1− 1

10m of their inputs. In particular, with probability
at least 1− 1

10m it holds that

fy<m,x>m(ym) 6= f̂y<m,x>m(ym) = f̂(y<m, ym).

Note that we used here the fact that ym is a uniformly distributed element of D that is
independent of fy<m,x>m and f̂y<m,x>m.

Now, suppose the latter equality holds. Then, in order for the verifier not to reject, the
following two conditions must hold:

• f (ψ,g)(y) 6= f̂(y), since otherwise it would hold that fy<m,x>m(ym) 6= f (ψ,g)(y), in which
case the verifier would reject since Condition 5 would be violated.

• y is locally legal for g, since otherwise the verifier would reject since Condition 1 would
be violated.

Finally, by Lemma 4.12, the probability that both conditions hold is at mostm·δmC /(2m·δC) ≤
1
2 (recall that f̂

def
= f (ψ,ĝ)). Thus, the probability that the verifier does not reject in this case

is at most 1
10m + 1

2 ≤ 2
3 .

3. For some t ∈ [m− 1] it holds that fy<t,x>t 6= f̂y<t,x>t and fy<t+1,x>t+1
= f̂y<t+1,x>t+1

: In this

case, fy<t,x>t and f̂y<t,x>t are two distinct codewords of Cd, and therefore they disagree on
at least 1− 1

10m of their inputs. In particular, with probability at least 1− 1
10m it holds that

fy<t,x>t(yt) 6= f̂y<t,x>t(yt)

=
∑

zt∈H
αt,zt f̂y<t+1,x>t+1

(zt+1)

=
∑

zt∈H
αt,ztfy<t+1,x>t+1

(zt+1),

in which case the verifier rejects. Here we again used the fact yt is a uniformly distributed
element of D that is independent of fy<t,x>t and f̂y<t,x>t.

Taking union bound over all the above cases, we get that the verifier rejects with probability at
least 1 − 2

3 − 1
10m ·m ≥ 2

10 . After subtracting from it the probability that G(x) = 0, we conclude
that the verifier rejects with probability 1

10 = Ωm(1), as required.

Query complexity. The verifier V queries its oracle for three purposes:

1. Testing that g is close to C⊗m - this uses ℓ2 queries.

2. Checking that y is locally legal for g - this requires at most m · ℓ queries, since there are
m lines, each containing ℓ points.

26

3. Reading the truth tables of the functions fy<t,x>t - this requires m · ℓ queries - there are
m such functions, and the truth table of each of them is of length ℓ (since it supposed to be
a codeword of Cd).

4. Computing f (ψ,g)(y) - this requires 1 +m · t = Om(ℓ
2) queries to g.

We conclude that the total number of queries is Om(ℓ
2) = Om(n

O(1/m)). By choosing m to be
sufficiently large, we get that latter bound is at most nε for sufficiently large n.

Verifier complexity. The verifier clearly runs in time Oε(1) · poly(n).

Decision complexity. The decision predicate of the verifier consists of:

1. poly(ℓ) arithmetic operations on the field elements of g and the functions fy<t,x>t.

2. Verifying membership in the code C, which can also be done using poly(ℓ) arithmetic opera-
tions since C is linear.

3. Invoking the local tester of Theorem 3.10, which uses poly(ℓ) operations.

Since |F| = O(1), we conclude that the running time of V is polynomial in the number of its queries,
which is O(n1/m). Thus, by setting m to be sufficiently large, we get that the decision complexity
is at most nε for sufficiently large n.

Randomness complexity. Invoking the local testing procedure of Theorem 3.10 requires at
most logOm(n) = log n + Om(1) random bits. Choosing the points x and y requires 2 log n +
Om(1) random bits, since each of those points requires logOm(n). Since the verifier recycles the
randomness complexity used for the local testing, we get that the total number of random bits used
by the verifier is 2 log n+Om(1).

5 Hypercube CSPs — Proof of Theorem 4.5

In this section we prove the first step in the reduction (1) — Theorem 4.5. In particular, we
show that every instance of circuit-SAT can be reduced to an instance Hypercube-CSP with only
a constant factor blowup in the length. Such a reduction is useful since arithmetization is more
efficient when applied to instances of Hypercube-CSP.

The reduction goes in two steps. First, in Proposition 5.1, we reduce the circuit-SAT problem to
graph-CSP (see Definition 4.2). This reduction yields a constraint graph whose underlying graph
resembles the topology of the original circuit-SAT instance. Then, in Lemma 5.2, we embed the
latter constraint graph into the hypercube, thus reducing graph-CSP to Hypercube-CSP. This part
follows similar reductions that were used in previous works in the PCP literature starting from
[BFLS91, PS94], which were in turn based on routing techniques (see, e.g., [Lei92]).

Proposition 5.1 (Reduction from circuit-SAT to graph-CSP) There exists a polynomial time
procedure that maps every circuit ϕ of size n to a constraint graph Gϕ of size n over alphabet
Σ = {0, 1}2 such that Gϕ is satisfiable if and only if ϕ is satisfiable.

27

Proof: Fix a circuit ϕ. We describe the construction of the corresponding constraint graph Gϕ.
For each gate g of ϕ, the graph Gϕ has a corresponding vertex vg, and for each wire (g1, g2) of ϕ
the graph Gϕ has a corresponding edge (vg1 , vg2). The alphabet of Gϕ is Σ = {0, 1}2. Intuitively,
an assignment σ : V → Σ should label a vertex vg with a symbol b1b2 ∈ {0, 1}2 if the first input
wire of the gate g carries the value b1, and the second input wire carries the value b2 (if g has only
one input wire, the extra bit in the symbol can be chosen arbitrarily). The constraint of an edge
(vg1 , vg2) of G will verify that σ(vg2) contains the output of g1 on the inputs contained in σ(vg1).

More formally, for each edge e = (vg1 , vg2) of Gϕ, we define the constraint ce that corresponds to
e as follows. Without loss of generality, assume that (g1, g2) is the first input wire of g2. Then, ce
contains a pair of symbols (a1a2, b1b2) ∈

(
{0, 1}2

)2
if and only if the following conditions hold:

1. b1 is the output of the gate g1 when fed with inputs a1, a2.

2. if g2 is the output gate, then it outputs 1 when fed with inputs b1, b2.

It is not hard to see that Gϕ is satisfiable if and only if ϕ is satisfiable.

We now turn to the second step of the reduction. Recall that we denote by Hk,m the m-dimensional
k-ary hypercube.

Lemma 5.2 There exists a polynomial time procedure when given as input

• A constraint graph G = (V,E) of size n and alphabet Σ; and

• An integer m ∈ N,

outputs a constraint graph G′ of size ≤ 2m · 4m+2n and alphabet Σ, whose underlying graph is a
4-regular subgraph of H4⌈(4n)1/m⌉,m, such that G′ is satisfiable if and only if G is satisfiable.

By combining Proposition 5.1 and Lemma 5.2, Theorem 4.5 follows immediately:

Theorem 5.3 (4.5, restated) There exists a polynomial time procedure that maps every circuit ϕ
of size n and integer m ∈ N to a constraint graph Gϕ,m over an alphabet Σ of size 4 that is satisfiable
if and only if ϕ is satisfiable, and whose size is at most 2m4m+2 · n. Furthermore, the graph Gϕ,m
is a 4-regular subgraph of the m-dimensional k-ary hypercube, where k ≤ 4((4 · n)1/m + 1).

The proof of Lemma 5.2 is based on the following proposition, whose proof is deferred to end of
this section.

Proposition 5.4 There exists a polynomial time procedure that takes as input a permutation π on
[k]m and outputs a collection P of vertex-disjoint paths on H2k,m of length 2m that connect every
vertex v ∈ [k]m to π(v) (note that the paths are on the 2k-ary hypercube and not on the k-ary
hypercube). Here, we allow a vertex v to be both the first vertex of one path in P and the last vertex
of another path in P, but other than that we require the paths to be vertex disjoint.

Remark 5.5 Proposition 5.4 is a generalization of known results for the Boolean hypercube (see,
e.g., [Lei92]), and the particular proof we use follows closely the proof of [DM11, Fact 4.5].

28

We turn to prove Lemma 5.2.

Proof of Lemma 5.2: We describe the action of the procedure on inputs G = (V,E) and m. We
first observe that without loss of generality, we may assume that the graph G is 4-regular, since one
can use standard techniques to transform any constraint graph of size n into a 4-regular constraint
graph of size 4n in polynomial time5. This is similar to the reduction of 3SAT to the special case of
3SAT in which every variable appears at most three times. Since G is 4-regular, we can partition
its edges to four disjoint matchings M1, . . . ,M4 in polynomial time (see, e.g., [Cam98, Proposition
18.1.2]).

Let k = ⌈|V |1/m⌉ ≤ (4n)1/m + 1, and let us identify the vertices V of G with [k]m. The procedure

will construct the constraint graph G′ by embedding G in the hypercube H def
= H4k,m. More

specifically, observe that the graph H contains four copies of the hypercube H2k,m: the first copy
is the induced subgraph over the vertices in [2k]m, the second over ([k] ∪ ([3k]− [2k]))m, etc. Let
us denote these induced subgraphs by H1, . . . ,H4 respectively. The procedure will embed the
edges of the matchings M1, . . . ,M4 on vertex-disjoint paths in H1, . . . ,H4 respectively by applying
Proposition 5.4 to each of those matchings, and those paths will form the edges of G′. Details
follow.

The constraint graph G′ will be a subgraph of the graph H. In what follows, we describe how
the edges of G′ are constructed. For each j ∈ [4], the procedure acts as follows. The procedure
views Mj as a permutation π on [k]m (recall that we identify the vertices of G with [k]m). The
procedure then applies Proposition 5.4 to the permutation π and the graph Hj, thus obtaining
a collection P of vertex-disjoint paths in Hj that connect every pair of vertices in [k]m that are
matched by π. In particular, for each edge e = (u.v) ∈Mj there is a path pe ∈ P whose first vertex
is u and whose last vertex is v. Now, for each edge e = (u.v) ∈ Mj , the procedure adds all the
edges in pe to G

′, where all the edges in pe except for the last one are associated with the equality
constraint, and the last edge in pe is associated with the same constraint ce of the edge e in G.

It should be clear that G′ is satisfiable if and only if G is satisfiable. Moreover, since G′ contains
at most 2m edges for each edge of G (as each path pe is of length at most 2m), we get that G′ is
of size at most

2m(4⌈(4n)1/m⌉)m ≤ 2m4m+2n.

It is also easy to see that the degree of G′ is upper bounded by 4, and by adding dummy edges, we
can make it 4-regular. Finally, it is not hard to see that the procedure runs in polynomial time, as
required.

Finally, we prove Proposition 5.4.

Proof of Proposition 5.4: The procedure works by recursion on m. For m = 1, finding the re-
quired collection P is trivial - the procedure simply outputs the edges of the form (v, π(v)). Assume
that m > 1. Consider the bipartite graph G whose two sides are copies of [k]n−1, and in which two
vertices (i1, . . . , im−1), (j1, . . . , jm−1) ∈ [k]m−1 are connected by an edge if and only if there exist
im, jm ∈ [k] such that π(i1, . . . , im) = (j1, . . . , jm). Clearly, G is a k-regular graph, and therefore
by [Cam98, Proposition 18.1.2] it is possible to partition the edges of G to matchings π1, . . . , πk in
polynomial time.

5The factor-4 blowup comes from first reducing out-degree of the circuit by doubling the number of gates, and
then making the graph 4-regular by doubling the number of gates again.

29

Now, the procedure views the matchings π1, . . . , πk as permutations on [k]m−1, and invokes itself
recursively to find corresponding collections of vertex-disjoint paths P1, . . . ,Pk in H2k,m−1. Finally,
in order to construct the output collection P, the procedure constructs a path for each vertex
(i1, . . . , id) ∈ [k]m as follows: Let (j1, . . . , jm) = π(i1, . . . , im). Recall that in the graph G there is
an edge between the vertices (i1, . . . , im−1) and (j1, . . . , jm−1), and suppose that this edge belongs to
the matching πt. Let p = (v1, . . . , vl) be the path in Pt that connects (i1, . . . , im−1) to (j1, . . . , jm−1)
in H2k,m−1 where v1 = (i1, . . . , im−1) and vl = (j1, . . . , jm−1). Now, we choose the path p′ that
connects (i1, . . . , im) to (j1, . . . , jm) in H2k,m to be (v′0, . . . , v

′
l+1) where v′0 = (i1, . . . , im), v

′
l+1 =

(j1, . . . , jm), and for each i ∈ [l], the vertex v′i ∈ [2k]m is obtained from the vertex vi ∈ [2k]m−1 by
appending k+ t to vi. In other words, for each i ∈ [l], we define v′i by setting (v′i)j = (vi)j for every
j ∈ [d− 1] and (v′i)m = k + t.

We prove that the paths in P constructed this way are vertex disjoint and of length at most 2m by
induction on m. For d = m the proof is trivial. For m > 1, consider two paths p′1 and p′2. We show
that p′1 and p′2 are vertex-disjoint. Let p1 and p2 be the paths in H2k−1,m from which p′1 and p′2
were obtained. If p1 and p2 belong to two distinct collections Pt1 and Pt2 , then it is clear that p′1
and p′2 must be vertex-disjoint, since the last coordinate of all the vertices in p′1 (resp. p′2) except
for the first and the last vertices will be equal to k + t1 (resp. k + t2), and k + t1 6= k + t2. If p1
and p2 belong to the same collection Pt, then they are vertex-disjoint by the induction assumption,
and therefore p′1 and p′2 must be vertex-disjoint as well. Finally, observe that by the induction
assumption, the paths p1 and p2 are of length at most 2(m− 1), and since p′1 and p′2 only add two
edges to p1 and p2, we get that they are of length at most 2m, as required.

We conclude by observing that the procedure runs in polynomial time. It is not hard to see that
the running time of the procedure is described by the recursion formula T (k,m) = k · T (k,m −
1) + poly(km), or in other words, T (k,m) ≤ k ·T (k,m− 1) + kc0·m for some constant c0. We prove
that there exists a constant c1 ∈ N such that T (k,m) ≤ kc1·m by induction on m: For m = 1 this
is trivial, and for m > 1, it holds that

T (k,m) = k · T (k,m− 1) + kc0·m ≤ k · kc1·(m−1) + kc0·m ≤ kc1·m,

where the first inequality holds by the induction assumption and the second inequality holds for
sufficiently large choice of c1.

6 From Hypercube-CSP to aggregate-AGCSP

In this section we prove the second step in Reduction (1) — Theorem 4.9. First we reduce the
Hypercube-CSP problem to a non-aggregated AG constraint satisfaction problem (AGCSP), one
that is, indeed, a CSP according to the standard definition of the term. Then, in Section 6.2,
we apply an aggregation step to reach the language aggregate-AGCSP that is the end-point of the
reduction stated in Theorem 4.9.

6.1 A non-aggregated algebraic CSP

We turn to define our algebraic constraint satisfaction problem. We first recall some necessary
notation, and then define the AGCSP problem.

Notation 6.1 (4.6, restated) Let C = {f : D → F}, let π be an automorphism of C, and let
g : Dm → F be a codeword of the tensor code C⊗m . Then, for each i ∈ [m], we define the function

30

gπ,i : Dm → F by
gπ,i(x1, . . . , xm) = g(x1, . . . , xi−1, π(xi), xi+1, . . . , xm).

Moreover, if π1, . . . , πt are automorphisms of C, then we define the function g(π1,...,πt) : Dm →
F1+t·m to be the function obtained by aggregating the 1+t ·m functions g, gπ1,1, . . . , gπt,m. Formally,

g(π1,...,πt)(x) =
(
g(x), gπ1,1(x), . . . , gπt,m(x)

)
.

Definition 6.2 (AGCSP) An instance of the AGCSP problem is a tuple

ψ = (m,d, t,F, C,H, π1, . . . , πt, {Qv | v ∈ Hm})

where

• m,d, t are integers

• C is a systematic linear code that encodes messages h : H → F to codewords f : D → F.

• π1, . . . , πt are automorphisms of C.

• For each v ∈ Hm, the function Qv is a polynomial of degree < d over 1+ t ·m variables. The
polynomials Qv will serve as the constraints.

An assignment is a function g : Dm → F. We say g satisfies the instance if and only if

• g is a codeword of C⊗m, and

• for every v ∈ Hm it holds that

Qv

(

g(π1,...,πt)(v)
)

= 0.

The problem of AGCSP is the problem of deciding whether an instance is satisfiable , i.e., if it has
a satisfying assignment.

We now show how to reduce the hypercube CSP from Definition 4.4 (cf. Section 5) to our algebraic
CSP.

Theorem 6.3 There exists a polynomial time procedure with the following input-output behavior:

• Input:

– A number m ∈ N.

– An alphabet Σ.

– A constraint graph G over Σ whose underlying graph is a 4-regular subgraph of Hk,m.

– A finite field F.

– A basis for the transitive evaluation code C = {f : D → F} of message length at least
2k.

– For each α, β ∈ D, a permutation π of D that (1) maps α to β, and (2) is an automor-
phism of C.

31

• Output: An instance of AGCSP

ψ = (m,d
def
= |Σ| , t,F, C,H, π1, . . . , πt, {Qv | v ∈ Hm})

with |H| ≤ 2k, that is satisfiable if and only if G is satisfiable.

Proof: Since C is linear, we may assume without loss of generality that it is systematic. Let
H ⊆ D be such that the messages of C can be viewed as functions h : H → F, and such that the
encoding f : D → F of a message h satisfies f |H = h. Note that |H| ≥ 2k. Let π1, . . . , πt be a
sequence of automorphisms of Ci such that for every α, β ∈ H there exists some automorphism πj
such that πj(α) = β - those automorphisms are just a subset of the automorphisms given in the
input.

We define the instance ψ of AGCSP that is the output of the procedure. We set

ψ = (m,d, t,F, C,H, π1, . . . , πt, {Qv | v ∈ Hm})

where d
def
= |Σ|, t = O(k2), and where the polynomials {Qv | v ∈ Hm} are defined as follows. Let

H0 ⊆ H be an arbitrary subset of size k, and let us identify Hm
0 with the vertices of G (i.e., the

vertices ofHk,m). Let us identify Σ with some subset of F. We will have two kinds of polynomialsQv:

1. Those Qv’s for which v ∈ (H −H0) ×Hm−1
0 . Those polynomials will check that the assign-

ment g assigns to Hm
0 values that are in Σ.

2. Those Qv’s for which v ∈ Hm
0 . Those polynomials will check that the assignment g, when

restricted to Hm
0 , is a satisfying assignment for G.

All the rest of the polynomials Qv will be equal to the zero polynomial.

We start by defining the polynomials Qv of the second kind, i.e., for v ∈ Hm
0 . For each vertex v

of G, the polynomial Qv verifies that the assignment g satisfies the constraints of v in G, and is
constructed by arithmetizing those constraints. Fix v = (v1, . . . , vm) ∈ Hm

0 , and let u1, u2, and u3
be its neighbors in G. Observe that we can express u1, u2, and u3 as

u1 = (v1, . . . , vj1−1, πl1(vj1), vj1+1, . . . , vm)

u2 = (v1, . . . , vj2−1, πl2(vj2), vj2+1, . . . , vm)

u3 = (v1, . . . , vj3−1, πl3(vj3), vj3+1, . . . , vm)

for some l1, l2, l3 ∈ [t] and j1, j2, j3 ∈ [m]. Now, we denote variables of the polynomial Qv by
z and {yl,j}t,ml=1,j=1, and define Qv to be the unique polynomial that satisfies the following two
requirements:

1. Qv involves only the variables z, yl1,j1 , yl2,j2 , and yl3,j3 , and has degree at most |Σ| − 1 < d
in each of them.

2. For every assignment σ to G, the polynomial Qv evaluates to 0 when z, yl1,j1, yl2,j2 , yl3,j3 are
assigned σ(v), σ(u1), σ(u2), σ(u3) respectively if and only if σ satisfies the constraints (v, u1),
(v, u2), and (v, u3).

Note that such a polynomial Qv indeed exists, since it can be constructed using interpolation. This
concludes the definition of polynomial Qv for v ∈ Hm

0 .

32

We turn to define the polynomial Qv of the first kind, i.e., for v ∈ (H − H0) × Hm−1
0 . Let

η : (H −H0) → H0 be a surjection onto H0. Fix v = (H −H0)×Hm−1
0 , and let

u = (η(v1), v2, . . . , vm) ∈ Hm
0 .

The polynomial Qv verifies that the assignment g assigns to u a value in Σ, and is constructed as
follows. Let πl0 be an automorphism of Ci that maps v1 to η(v1). Again, we denote variables of the
polynomial Qv by z and {yl,j}t,ml=1,j=1. Now, we define Qv to be the unique polynomial that involves
only the variable yl0,1, and whose roots are exactly the values in Σ. Note that such a polynomial
Qv indeed exists, since it can be constructed using interpolation

Completeness. Suppose that G has a satisfying assignment σ : Hm
0 → Σ. Let g : Dm → Σ be a

codeword of C⊗m such that g|Hm
0

= σ: such a codeword exists since C is systematic, and therefore
C⊗m is systematic with messages being functions from Hm to F. We claim that g is satisfying
assignment of ψ. To this end, let us consider the two kinds of polynomials Qv separately:

• Let v ∈ Hm
0 , and let u1, u2, u3, l1, l2, l3, j1, j2, j3 be defined as before. We need to show that

Qv(g
(π1,...,πt)(v)) = 0. Observe that in the expression Qv(g

(π1,...,πt)(v)), the variables z, yl1,j1 ,
yl2,j2 , yl3,j3 are assigned g(v), gπl1,j1 (v), gπl2,j2 (v), gπl3,j3 (v) respectively, that g(v) = σ(v),
and that for each s ∈ [3] it holds that gπls,js (v) = g(us) = σ(us). Now, since σ satisfies the
constraints of v, we get that Qv(g

(π1,...,πt)(v)) = 0 by the definition of Qv.

• Let v ∈ (H − H0) × Hm−1
0 , and let u ∈ Hm

0 be defined as before. We need to show that
Qv(g

(π1,...,πt)(v)) = 0. Observe that in the expression Qv(g
(π1,...,πt)(v)), the variable yl0,1 is

assigned gπl0 ,1(v) = g(u) = σ(u). Since σ(u) ∈ Σ, we get that Qv(g
(π1,...,πt)(v)) = 0 by the

definition of Qv.

Soundness. Suppose that ψ has a satisfying assignment g : Dm → F. We show that σ
def
= g|Hm

0

is a satisfying assignment of G. First, observe that the image of σ is indeed contained in Σ: Let
u ∈ Hm

0 . We show that g(u) ∈ Σ. Let v ∈ (H −H0) ×Hm−1
0 be such that u = (η(v1), v2, . . . , vm)

(such a v must exist since η is a surjection), and let l0 be defined as before. Then, in the expression
Qv(g

(π1,...,πt)(v)), the variable yl0,1 is assigned g(u). Since Qv(g
(π1,...,πt)(v)) = 0, we get by the

definition of Qv that g(u) ∈ Σ (as Qv is of the first type).

Next, to show that σ is indeed a satisfying assignment for ψ, we show that for each v ∈ Hm
0 , the

assignment σ satisfies the constraints of v in G. Fix v and let u1, u2, u3, l1, l2, l3, j1, j2, j3 be defined
as before. Then, in the expression Qv(g

(π1,...,πt)(v)), the variables z, yl1,j1 , yl2,j2 , yl3,j3 are assigned
σ(v), σ(u1), σ(u2), and σ(u3). Since Qv(g

(π1,...,πt)(v)) = 0, we get by the definition of Qv that
σ satisfies the constraints of v (as Qv is of the second type).

6.2 Aggregating the constraint polynomials

The difference between AGCSP and aggregate-AGCSP is that (1) an instance of AGCSP contains a
list of constraint polynomials, while an instance of aggregate-AGCSP contains a single constraint
function Q(ψ), and (2) the code C in the AGCSP instance needs to be part of a multiplication
code family ~C. In this section we show how to reduce AGCSP to aggregate-AGCSP, thus proving
Theorem 4.9.

33

Definition 6.4 (4.7, aggregate-AGCSP, restated) An instance of the aggregate-AGCSP prob-
lem is a tuple

ψ = (m,d, t,F, ~C,H, π1, . . . , πt, Q(ψ))

where

• m,d, t are integers

• ~C = (C1, . . . , Cd) is a multiplication code family.

• C
def
= C1 is a systematic linear evaluation code that encodes messages h : H → F to codewords

f : D → F.

• π1, . . . , πt are automorphisms of Cj for every j ∈ [d].

• Q(ψ) : Dm × F1+t·m → F is a function that is represented by a Boolean circuit and satisfies
the following property

– For every codeword g ∈ C⊗m, it holds that Q(ψ)(x, g(π1,...,πt)(x)) is a codeword of (Cd)
⊗m.

An assignment to ψ is a function g : Dm → F. Denote by f (ψ,g) the function

f (ψ,g) : Dm → F, f (ψ,g)(x)
def
= Q(ψ)(x, g(π1,...,πt)(x)) (11)

We say g satisfies the instance if and only if g is a codeword of C⊗m for which f (ψ,g) vanishes on
Hm, i.e., f (ψ,g)(x) = 0 for all x ∈ Hm.

The problem of aggregate-AGCSP is the problem of deciding whether an instance is satisfiable , i.e.,
if it has a satisfying assignment.

Theorem 6.5 (4.9, restated) There exists a polynomial-time procedure with the following input-
output behavior:

• Input:

– A number m ∈ N.

– An alphabet Σ.

– A constraint graph G over Σ whose underlying graph is a 4-regular subgraph of Hk,m.

– A finite field F.

– Bases for all the codes in a multiplication code family ~C = (C1, . . . , Cdmult
) of transitive

evaluation codes Cj = {f : D → F}, where C def
= C1 has message length at least 2 ·k, and

dmult ≥ |Σ|.
– For each α, β ∈ D, a permutation π of D that (1) maps α to β, and (2) is an automor-

phism of Cj for each j ∈ [d].

• Output: An instance of aggregate-AGCSP

ψ = (m,d
def
= |Σ| , t,F, ~C,H, π1, . . . , πt, Q(ψ))

with |H| ≤ 2k, that is satisfiable if and only if G is satisfiable.

34

In order to prove Theorem 4.9 we will make use of the following two propositions, which follow
easily from the characterization of tensor codes (Fact 3.5).

Proposition 6.6 If (C1, . . . , Cd) is a multiplication code family, then the code ((C1)
⊗m)d (which

is the d-fold multiplication of the code (C1)
⊗m, see Definition 3.11) is contained in (Cd)

⊗m.

Proposition 6.7 For every codeword g ∈ C⊗m, an automorphism π of C and i ∈ [m], it holds
that the function gπ,i is a codeword of C⊗m. Recall that gπ,i : Dm → F is defined by

gπ,i(x1, . . . , xm)
def
= g(x1, . . . , xi−1, π(xi), xi+1, . . . , xm).

Proof of Theorem 4.9: The procedure of Theorem 4.9 works as follows. First, it invokes the
procedure of Theorem 6.3, giving it the code C = C1 as input. This results in an instance

ψ0 = (m,d
def
= |Σ| , t,F, C,H, π1, . . . , πt, {Qv | v ∈ Hm})

of AGCSP. Then, the procedure constructs its output ψ from ψ0 by replacing the polynomials Qv
with a corresponding function Q(ψ) (and also includes the entire multiplication code family ~C in
ψ). Roughly, we construct Q(ψ) by summing all the terms of the form 1v · Qv, where 1v is the
indicator function of v. Details follow.

We will need some notation. For every v ∈ Hm, let 1v : H
m → F be the indicator function of v, i.e.,

the function that takes the value 1 on v and 0 everywhere else. In addition, let 1Hm : Hm → F be the
all-ones function, i.e., the function that takes the value 1 everywhere in Hm. We let 1̃v : D

m → F
be any codeword of C⊗m such that 1̃v|Hm = 1v (i.e., its restriction to Hm equals 1v), and we let
1̃Hm : Dm → F be any codeword of C⊗m such that 1̃Hm |Hm = 1Hm (i.e., its restriction to Hm

equals 1Hm). Note that such codewords exist because C is a systematic code whose set of message
coordinates contains H.

We first modify the polynomials Qv such that they are homogeneous, i.e., such that all their
monomials are of degree exactly d − 1. Fix v ∈ Hm, and consider the polynomial Qv : F1+t·m →
F. Let us denote the variables of this polynomial by z and {yl,j}t,ml,j=1 as before. To make Qv
homogeneous, we add a new variable s, and multiply each monomial of Qv by the appropriate
power of s to increase its degree to d − 1. Let us denote by Q′

v(z, (yl,j)
t,m
l,j=1, s) the resulting

polynomial.

Next, consider the function Pv : D
m×F1+t·m → F, which is constructed by plugging 1̃Hm(x) to the

variable s:
Pv(x, z, (yl,j)

t,m
l,j=1) = Q′

v

(

z, (yl,j)
t,m
l,j=1, 1̃Hm(x)

)

.

Observe that for every v ∈ Hm, it holds that Pv(v, z, (yl,j)
t,m
l,j=1) = Qv(z, (yl,j)

t,m
l,j=1), since 1̃Hm(v) =

1 for every such v.

Finally, we define the function Q(ψ) : Dm × F1+t·m → F by

Q(ψ)(x, z, (yl,j)
l,t
l=1,j=1)

def
=

∑

u∈Hm

1̃u(x) · Pu(x, z, (yl,j)t,ml,j=1).

We now establish the soundness of the reduction. Fix an codeword g : Dm → F of C⊗m and let
v ∈ Hm. We show that f (ψ,g)(v) = Qv(g

(π1,...,πt)(v)). Note that this in particular implies that g

35

satisfies ψ if and only if it satisfies ψ0. It holds that

f (ψ,g)(v) =
∑

u∈Hm

1̃u(v) · Pu(v, g(π1,...,πt)(v))

(Since 1̃u(v) = 0 for all u ∈ Hm − {v}) = Pv(v, g
(π1,...,πt)(v))

(Since Pv = Qv on all x ∈ Hm) = Qv(g
(π1,...,πt)(v)),

as required.

We turn to show that Q(ψ) satisfy the requirements of Definition 4.7. Fix an assignment g : Dm →
F. We show that the function f (ψ,g) is a codeword of (Cd)

⊗m. To this end, first note that by

Proposition 6.6, it suffices to prove that f (ψ,g) is a codeword of (C⊗m)d. Furthermore, it suffices to

prove that each Pv(x, g
(π1,...,πt)(x)) is a codeword of (C⊗m)d−1

, since this would imply that each

1̃u(x) · Pu(x, g(π1,...,πt)(x))

is a codeword of (C⊗m)d (being the coordinate-wise multiplication of codewords of C⊗m and

(C⊗m)d−1
, respectively). This, in turn, would imply that f (ψ,g) is a codeword of (Cd)

⊗m (be-

ing the sum of codewords of (C⊗m)d).

We thus focus on proving that each Pv(x, g
(π1,...,πt)(x)) is a codeword of (C⊗m)d−1

. It suffices to
observe that Pv(x, g

(π1,...,πt)(x)) is a sum of coordinate-wise multiplications of (d − 1) codewords
of C⊗m. To see this, observe that Pv(x, g

(π1,...,πt)(x)) is obtained from Q′
v by substituting the

variables z, yl,j and s with g(x), gπ,j(x), and 1̃Hm(x). Each of the latter functions are codewords
of C⊗m (the functions gπ,j(x) are codewords of C⊗m due to Proposition 6.7). Now, each monomial
of Q′

v contributes to Pv a coordinate-wise multiplication of exactly d− 1 of those functions, so each

such monomial contributes a codeword of (C⊗m)d−1
. Finally, Pv is the sum of all those monomials,

and therefore Pv(x, g
(π1,...,πt)(x)) is a codeword of (C⊗m)d−1

, as required.

It remains to show that Q(ψ) can be computed in polynomial time given the polynomials Qv, and
this will imply that Q(ψ) can be represented by a small circuit. This follows from the fact that the
codewords 1̃v and 1̃Hm can be computed in time poly(Dm) by using the generator matrix of C⊗m,
which we can compute from the generator matrix of C (the rest of the analysis of the running time
is obvious).

7 Combinatorial Nullstellensatz over algebraic curves

This section formally states and proves the Combinatorial Nullstellensatz over algebraic curves (AG
Combinatorial Nullstellensatz). In our proof of the PCP theorem a special case of it (Theorem 3.16)
is used to solve the “zero-testing” problem over tensors of AG codes.

7.1 Terms and notation

We start with a brief reminder of the important terms and notation from the theory of AG codes.
We must stress that this section is only a reminder and will not serve as an introduction to AG
codes for readers who aren’t already familiar with them. We refer readers to [Sti93] for a full
introduction to this area.

36

F/K is the function field F over the base field K. There is an associated projective, irreducible,
non-singular algebraic curve C.
K(x) is the rational function field of K in the variable x. Its associated algebraic curve is the
projective line PK.

P F is the set of places of F/K. Each place corresponds to a set of K-equivalent points on the
algebraic curve C. If K is algebraically closed, this set is of size 1, and we will use the terms point
and place interchangeably.

OP is the local ring of the place P .

FP is the residue field of P .

vP is the discrete valuation associated with the place P .

f(P) ∈ FP is the evaluation of the function f at the place P .

A function f is regular at a place P if vP (f) ≥ 0 (equivalently, if f ∈ OP).

tP is a local parameter of P (i.e. vP (tP) = 1)

For a divisor G, vP (G) denotes the coefficient of P in G.

Princ (z) is the principal divisor of z.

Poles (z) is the pole divisor of z.

Zeros (z) is the zero divisor of z

Support(G) is the set of places P for which vP (G) 6= 0.

L(G) is the Riemann-Roch space of the divisor G.

ℓ(G) is the dimension of the Riemann-Roch space associated with G.

g(C) is the genus of the curve C.
Aut(F/K) is the group of automorphisms of the function field.

P ′|P means that P ′ ∈ P F ′ lies over P ∈ P F in the function field extension F ′/F

The Riemann-Roch Theorem states that for any divisor G:

• dim(L(G)) ≥ deg(G) + 1− g.

• If deg(G) ≥ 2g − 2, then dim(L(G)) = deg(G) + 1− g.

Lemma 7.1 (Basic facts about divisors) Let G,G′ be divisors over a curve C. We denote
G ≥ G′ if for each place P we have vP (G) ≥ vP (G

′). We denote by G > G′ if G ≥ G′ and there is
at least one place P on which vP (G) > vP (G

′). Then

1. If G ≥ G′ then L(G) ⊇ L(G′).

2. If f is a function and Princ(f) ≥ −G then f ∈ L(G).

7.2 Formal statements of Nullstellensätze

We start with an AG code defined by a projective nonsingular curve C over Fq, a set D of Fq-rational
points and a positive divisor G whose support does not intersect D. The AG code C = CL(C,D,G)
consists of evaluations of functions in the Riemann-Roch space L(G) at the set of points D. The
m-dimensional tensor code of C is naturally viewed as a set of “multivariate” algebraic functions

37

defined on the m-dimensional variety Cm, and evaluated at the set of points Dm. Let us first
describe this interpretation concretely.

We will use the formal variables X1, . . . ,Xm to represent the m coordinates of a point of Cm. Thus
for a function f ∈ L(G), the function f(Xi) represents a rational function on Cm which “ignores”
all coordinates except the ith. For divisors G1, . . . , Gm on C, define the space L(G1, . . . , Gm) of
multivariate algebraic functions on Cm as follows:

L(G1, . . . , Gm)
def
= span

{
m∏

i=1

fi(Xi) | fi ∈ L(Gi)
}

.

Note that L(G1, . . . , Gm) is isomorphic to the tensor product L(G1)⊗ . . . ⊗ L(Gm) (and thus the
dimension of L(G1, . . . , Gm) equals

∏m
i=1 dim(L(Gi))).

Lemma 7.2 (Tensored AG codes) Let Ci = CL(Ci,Di, Gi), i = 1, . . . ,m be m AG codes over
Fq. The codewords of the tensor product code

⊗m
i=1 Ci are the evaluations of functions in

L(G1, . . . , Gm) over
∏

iDi:

m⊗

i=1

Ci =
{

〈f(x1, . . . , xm)〉(x1,...,xm)∈∏m
i=1

Di
| f ∈ L(G1, . . . , Gm)

}

.

Proof: By induction on m. The base case m = 1 follows immediately from the definition of a
tensor code. Form > 1 fix xm ∈ Dm. Notice that if f ∈ L(G1, . . . , Gm) then f(X1, . . . ,Xm−1, xm) ∈
L(G1, . . . , Gm−1), hence by induction

〈f(x1, . . . , xm)〉xi∈Di for i=1,...,m−1 ∈
m−1⊗

i=1

Ci.

Similarly, fixing x1, . . . , xm−1 we see f(x1, . . . , xm−1,Xm) ∈ L(Gm) implying that each row parallel
to the mth axis belongs to Cm and this completes the proof.

For a divisor G we use Lm(G) to denote the space L(G,G, . . . , G). To perform zero test-
ing of tensored AG codes we will be interested in an algebraic characterization of functions
f(X1, . . . ,Xm) ∈ Lm(G) that vanish on all the points of Hm, for some given subset H ⊆ D.
As explained in the introduction, the problem we deal with is a generalization of Alon’s Combina-
torial Nullstellensatz (Theorem 3.15). When generalizing it to arbitrary AG codes over curves of
strictly positive genus a certain problem emerges, one that does not appear in the case of genus-zero
codes. There we may assume that for any H ⊂ Fq there exists a function ξH(X) whose degree
equals |H| and which vanishes precisely on H with multiplicity 1. On a general curve the existence
of such a ξH holds only for rather special sets H which we call splitting sets. For splitting sets we
obtain the following analog of Theorem 3.15, which will be proved in section 7.4.

Theorem 7.3 (AG Combinatorial Nullstellensatz for splitting sets) Let C be an algebraic
curve over a field K, G be a divisor on it, and H ⊆ C be a set of K-rational points, disjoint
from Support(G), satisfying degG ≥ |H|+ 2g(C) − 1. Suppose H is such that there exists ξ(X) =
ξH(X) ∈ L(G) satisfying (1) ξ(x) = 0 for each x ∈ H, and (2) degZeros (ξ(X)) = |H|. (Thus
H = Support (Zeros (ξ)), and ξ has only zeros of multiplicity 1.) Let f(X1, . . . ,Xm) ∈ Lm(G). Then

38

f vanishes at each point of Hm if and only if for each i ∈ [m] there exists f ′i(X1, . . . ,Xm) ∈ Lm(G)
such that

f(X1, . . . ,Xm) =
m∑

i=1

f ′i(X1, . . . ,Xm)ξ(Xi). (12)

When H does not have this special property, this form of Combinatorial Nullstellensatz cannot
hold. Instead, we prove a generalization of the Combinatorial Nullstellensatz that gives an algebraic
characterization of vanishing functions. It holds for any set H over any curve C but requires two
auxiliary functions ξH and ξ′H .

Theorem 7.4 (AG Combinatorial Nullstellensatz for arbitrary sets) Let C be an algebraic
curve over a perfect field K, G be a K-divisor on it, and H ⊆ C be a set of K-rational points, disjoint
from Support(G), satisfying degG ≥ |H| + 2g(C) − 1. Then there exists ξ(X) = ξH(X) ∈ L(2G),
ξ′(X) = ξ′H(X) ∈ L(3G) satisfying the following. Suppose f(X1, . . . ,Xm) ∈ Lm(G). Then f
vanishes on Hm if and only if there exist f ′1, . . . , f

′
m ∈ Lm(4G) such that

f(X1, . . . ,Xm) ·
m∏

i=1

ξ′(Xi) =

m∑

i=1

f ′i(X1, . . . ,Xm) · ξ(Xi). (13)

Remark 7.5 The codes described in the appendix do contain splitting sets. As x0 − a, when
Trace(a) 6= 0, has exactly n

l(l−1) zeros (where n is the length of the code over Fl2), all of multiplicity
1 and on rational points, and those are its only zeros. Bigger sets can be gotten by looking at the
zeros of products of such functions.

This means that Lemma 7.3 is sufficient for our purposes. However, Theorem 7.4 allows for
substituting any transitive AG code and using any set H in the PCP construction, and furthermore
we believe the extended theorem and its proof (notably, theorem 7.10) to be of independent interest.

7.3 Instantiating parameters

We now show how to instantiate parameters into Theorem A.14 (and Lemma A.17) to get Theo-
rem 3.13, and then how to use Theorem 7.3 to get Theorem 3.16.

Proof of Theorem 3.13: Let ε > 0 be a constant (independent of k) such that:

cq · dmult · ρ+ δ < 1− ε− dmult√
q − 1

.

Theorem A.14 and Lemma A.17 give us, for any n′, an AG curve C with a special set of Fq-rational
points D whose cardinality ∈ [n′, cq · n′]. Choose:

n′ =
dmult · k

1− ε− δ − dmult√
q−1

,

and consider the AG curve given as above. From Theorem A.14 and Lemma A.17, we have the
following properties.

1. There is a group Γ of automorphisms of C which acts transitively on D.

39

2. n
def
= |D| ≤ n′ · cq < k · 1

ρ .

3. C has genus at most n√
q−1 .

4. There is a divisor G∗ on C, invariant under the action of Γ, with:

(a)
deg(G∗)

n
∈
[
1− ε− δ

dmult

,
1− δ

dmult

]

,

(this follows by taking G∗ to be a suitable multiple of the divisor Ai from Equation (32),
for k sufficiently large)

(b) The support of G∗ is disjoint from D.

(c) If we let C be the AG code CL(C,D,G∗), then C is an AG code of length n, invariant
under the action of Γ.

5. For j ∈ [dmult], we define Cj to be the AG code CL(C,D, jG∗). Then ~C = (C1, . . . , Cdmult
) is

a multiplication code family. Furthermore, each Cj is invariant under the action of Γ.

6. For j ∈ [dmult], Cj has distance at least

1− deg(jG∗)
n

≥ δ.

7. By the Riemann-Roch theorem,

dim(C) ≥ deg(G∗)− n√
q − 1

≥
(
1− ε− δ

dmult

− 1√
q − 1

)

· n

≥
(
1− ε− δ

dmult

− 1√
q − 1

)

· dmult · k
1− ε− δ − dmult√

q−1

≥ k.

This concludes the proof of Theorem 3.13.

Now we show that these codes also satisfy the conclusion of Theorem 3.16.

Proof of Theorem 3.16: We keep the notation of the proof of Theorem 3.13. We take the code
given by Theorem 3.13 with the parameter ε = 1

2 . We simply have to check that the hypotheses of
Theorem 7.4 are satisfied.

Put G = dG∗. We have C = CL(C,D,G∗), and Cd = CL(C,D,G).
The hypothesis of Theorem 3.16 has a set H ⊆ D with

|H| ≤
(
1

6

(
1

2
− δ

)

− 2√
q − 1

)

· n.

40

This implies that

|H| ≤ d

dmult

(
1

2
− δ

)

n− 2n√
q − 1

=
d

dmult

(1− ε− δ)n− 2n√
q − 1

≤ deg(G)− 2g(C).
Thus we may apply Theorem 3.16. This gives us functions ξH ∈ L(2G) and ξ′H ∈ L(3G), which we
may view as elements of C2d and C3d respectively.

Now take an element f(X1, . . . ,Xm) ∈ (Cd)
⊗m, which we view as an element of Lm(G). By

Theorem 7.4, f vanishes on Hm if and only if there exists f ′1, . . . , f
′
m ∈ Lm(4G) (which we view as

elements of (C4d)
⊗m) such that:

f(X1, . . . ,Xm) ·
m∏

i=1

ξ′(Xi) =

m∑

i=1

f ′i(X1, . . . ,Xm) · ξ(Xi).

This implies the desired result.

7.4 Proof of the AG Combinatorial Nullstellensatz for splitting sets

We begin with a lemma on interpolation. It is a special case of the upcoming Lemma 7.11, and we
omit the proof.

Lemma 7.6 (Interpolation) Let C be a curve over K and let G be a K-divisor on C. For
every set of K-rational points H ⊆ C disjoint from Support(G) and function a : H → K, if
deg(G) ≥ |H|+ 2g − 1, there exists f(X) ∈ L(G) with f(x) = a(x) for each x ∈ H.

We now prove the AG Combinatorial Nullstellensatz for splitting sets.

Proof of Theorem 7.3: We start with the easier part of the implication: Suppose

f(X1, . . . ,Xm) =
m∑

i=1
f ′i(X1, . . . ,Xm)ξ(Xi). If (x1, . . . , xm) ∈ Hm, then we have that ξ(xi) = 0

for each i ∈ [m], and so each term in f(x1, . . . , xm) vanishes on (x1, . . . , xm) ∈ Hm and so f too
vanishes on Hm.

The other direction of the implication is proved by induction on m.

For the base case of m = 1 suppose f(x1) = 0 for each x1 ∈ H. We take f ′1(X1) =
f(X1)
ξ(X1)

, clearly

(12) holds so we only have to prove that f ′1 ∈ L(G). In other words, we have to show

Princ(f ′) +G ≥ 0.

By definition

Princ(f ′) = Princ

(
f(X1)

ξ(X1)

)

= Princ (f(X1))− Princ (ξ(X1)) ≥ Princ(f)− Zeros(ξ).

By assumption the support of Zeros(ξ) is H and furthermore vx1(ξ) = 1 for every place x1 ∈ H.

By assumption f vanishes on H so vx1(f) ≥ vx1(ξ) for every x1 ∈ H = Supp(Zeros(ξ)). So f(X1)
ξ(X1)

has no poles on the zeros of ξ(X1) and this implies

Princ(f)− Zeros(ξ) ≥ Poles(f).

41

By assumption Poles(f) +G ≥ 0 so we conclude Princ(f ′) +G ≥ 0 as required.

For the inductive case of m > 1 suppose f(x1, . . . , xm) = 0 for each (x1, . . . , xm) ∈ Hm. For every
x ∈ H, we have that f(X1, . . . Xm−1, x) vanishes on H

m−1. So by induction,

fx
def
= f(X1, . . . ,Xm−1, x) =

m−1∑

i=1

f ′x,i(X1, . . . ,Xm−1)ξ(Xi),

with f ′x,i(X1, . . . ,Xm−1) ∈ Lm−1(G).

Recalling degG ≥ |H|+ 2g(C) − 1, Lemma 7.6 implies the existence of a function δx(Xm) ∈ L(G)
satisfying

δx(y) =

{

1 y = x

0 y ∈ H \ {x}

Define

h(X1, . . . ,Xm) = f(X1, . . . ,Xm)−
∑

x∈H
δx(Xm)fx(X1, . . . ,Xm−1).

Note that
∀x ∈ H, h(X1, . . . ,Xm−1, x) ≡ 0. (14)

Since f ∈ Lm(G) and δx(Xm)fx(X1, . . . ,Xm−1) ∈ Lm(G), we have h(X1, . . . ,Xm) ∈ Lm(G). Let
β1(X1, . . . ,Xm−1), . . . , βℓ(X1, . . . ,Xm−1) be a basis for Lm−1(G). Then we can write

h(X1, . . . ,Xm) ≡
ℓ∑

i=1

βi(X1, . . . ,Xm−1) · ai(Xm), (15)

for some ai(Xm) ∈ L(G).
Evaluating Xm at x ∈ H we get from (14) that ai(x) = 0 for each i ∈ [ℓ], x ∈ H. By the m = 1
case, we have that

ai(Xm) ≡ bi(Xm) · ξ(Xm), for some bi(Xm) ∈ L(G) (16)

Define

f ′m(X1, . . . ,Xm) ≡
ℓ∑

i=1

βi(X1, . . . ,Xm−1) · bi(Xm),

and notice that (15) and (16) imply h(X1, . . . ,Xm) ≡ f ′m(X1, . . . ,Xm) · ξ(Xm).

Thus

f(X1, . . . ,Xm) ≡
∑

x∈H
fx(X1, . . . ,Xm−1)δx(Xm) + h(X1, . . . ,Xm)

which can be rewritten as

f(X1, . . . ,Xm) ≡
m−1∑

i=1

(
∑

x∈H
f ′x,i(X1, . . . ,Xm−1)δx(Xm)

)

· ξ(Xi) + f ′m(X1, . . . ,Xm) · ξ(Xm),

thereby completing the proof.

42

7.5 Local Derivatives and multiplicities

Our strategy for proving the AG Combinatorial Nullstellensatz for general sets is as follows. Recall
that we want to show the existence of functions ξ, ξ′ ∈ L(G) such that if f(X1, . . . ,Xm) vanishes on
all the points of Hm, then there exist f ′1(X1, . . . ,Xm), f

′
2(X1, . . . ,Xm), . . . , f

′
m(X1, . . . ,Xm) such

that

f(X1, . . . ,Xm) ·
m∏

j=1

ξ′(Xi) =

m∑

i=1

f ′i(X1, . . . ,Xm) · ξ(Xi).

Even though the given H may not be a splitting set, we can still find a low degree function ξ (of
degree not much more than |H|) that vanishes on H. For the moment let us assume that all the
zeros of ξ are of multiplicity 1. Let J be the zeros of ξ not in H. Then we take ξ′ to be a function
that vanishes at all the points of J but not at any of the points of H. Notice f(X1, . . . ,Xm) vanishes
on Hm iff the function f(X1, . . . ,Xm) ·

∏m
i=1 ξ

′(Xi) vanishes on (H ∪ J)m. Assuming H ∪ J is a
splitting set (it is the set of zeros of ξ), we may apply the AG Combinatorial Nullstellensatz for
splitting sets (Theorem 7.3) and complete the proof.

In general, however, ξ may vanish at some points with multiplicity > 1. Because of this possibility,
we will need to show a version of the AG Combinatorial Nullstellensatz for splitting sets with multi-
plicities. This will require us to use several properties of derivatives, multiplicities and power-series
representations of algebraic functions on curves and products of curves. We briefly review these
notions next. In the next subsection we will use these to prove the AG Combinatorial Nullstel-
lensatz for splitting sets with multiplicities. Finally we use this to prove the AG Combinatorial
Nullstellensatz for general sets.

For the rest of this section we assume that we are working with an algebraic curve C over an
algebraically closed base field K. Our strategy will be to first prove the AG Combinatorial Null-
stellensatz for splitting sets with multiplicities and the AG Combinatorial Nullstellensatz for general
sets over algebraically closed fields. Finally we will use a linear algebra argument to deduce the AG
Combinatorial Nullstellensatz for general sets over all fields (and in particular, over finite fields,
which we need for the proof of the main PCP Theorem 2.3).

Let x be a point on C and let tx be a local parameter for x. Every rational function f on C which is
regular at x can be written as f =

∑∞
i=0 ait

i
x, with each ai ∈ K, where the meaning of this equality

is that for every k ≥ 0, we have vx(f −∑k
i=0 ait

i
x) > k (equivalently, this equality holds in Ôx, the

completion of the local ring Ox).

Having fixed a local parameter, we now define local derivatives with respect to that local parameter.
Suppose f is regular at x. Let f =

∑∞
i=0 ait

i
x be the power series representation of f at x. Then

we define the ith local Hasse derivative of f at x w.r.t. tx, denoted f (i)(x), to equal ai (see also
[GV87]). Note that f (0)(x) is simply f(x), and is independent of the choice of the local parameter.
On the other hand, for i ≥ 1, f (i)(x) depends on the choice of the local parameter. We say that f
vanishes at x with multiplicity ≥ e if f (i)(x) = 0 for each i < e. This is equivalent to vx(f) ≥ e,
and thus the property of vanishing at x with multiplicity ≥ e is independent of the choice of local
parameter.

Remark 7.7 Notice that f (i) is not a rational function! Suitably defined, it is an “i-fold differential
form”, and it cannot be assigned a value at a point x without a choice of a local parameter tx. In
our arguments we will never treat f (i) as an element of the function field, i.e., as a “global” function
on C, we will only look at f (i)(x) at a specific place x where we have already fixed a choice of local
parameter tx.

43

Now we deal with multivariate functions. Cm is the m-fold product variety of the curve C.
Let (x1, . . . , xm) be a point on Cm. Every rational function f on Cm which is regular at (x1, . . . , xm)
can be written as:

f(X1, . . . ,Xm) =
∑

i∈Zm,i≥0

ai

m∏

j=1

t
ij
xj(Xj),

with ai ∈ K (again this equality is in the completion Ô(x1,...,xm) of the local ring O(x1,...,xm)). The
completion is isomorphic to the formal power series field in m variables K[[Y1, . . . , Ym]]. Then we
define the i ∈ Zm local derivative of f at the point (x1, . . . , xm) with respect to (tx1 , . . . , txm) by:

f (i1,...,im)(x1, . . . , xm) = a(i1,...,im).

We say f(X1, . . . ,Xm) vanishes at (x1, . . . , xm) with individual multiplicity ≥ (e1, . . . , em) if for
every nonzero ai in the above representation, there exists some j for which ij ≥ ej. Note that
(1) if some ej = 0, the condition that f(X1, . . . ,Xm) vanishes at some point with individual
multiplicity ≥ (e1, . . . , em) is vacuous, and (2) this definition does not allow us to speak about
the individual multiplicity with which f vanishes at (x1, . . . , xm), but only about the relation
“individual multiplicity ≥ (e1, . . . , em)”. We next show that the statement “individual multiplicity
≥ (e1, . . . , em)” is independent of choice of local parameters.

Theorem 7.8 (Consistency of individual multiplicity) For f ∈ Lm(G) and (e1, . . . , em), the
property of f vanishing at (x1, . . . , xm) with individual multiplicity ≥ (e1, . . . , em) is independent of
the choice of local parameters chosen at x1, . . . , xm.

Proof: Represent f as a power series in the local parameters t1, t2, . . . , tm at x1, . . . , xm. We
want to shift from this representation to a power series in t′1, t

′
2, . . . , t

′
m. To do this we utilize the

fact that ti = t′i · ui for some ui with vxi(ui) = 0, and get a power series in t′1, t
′
2, . . . , t

′
m where the

coefficient to ti
′ is aiui. We then represent the u′is as power series in t′1, t

′
2, . . . , t

′
m (note that they

have a non-zero free coefficient) and get that any minimal term with a non-zero coefficient still has
a non-zero coefficient and added terms can only be greater (in at least one of the powers) than
already existing terms with non-zero coefficients. Thus individual multiplicity does not depend on
the choice of local parameters.

Recall from Remark 7.7 that derivatives of a rational function are not rational functions. An
important exception is when we take the derivative of a function with respect to a subset of
variables X1, . . . ,Xm′ at the point (x1, . . . , xm′); In this case, the resulting object is a rational
function in the remaining variables (Xm′+1, . . . ,Xm). Suppose x1, . . . , xm′ ∈ C. Write:

f(X1, . . . ,Xm) =
∑

i∈Zm′ ,i≥0

ai(Xm′+1, . . . ,Xm)

m′
∏

j=1

t
ij
xj (Xj).

Then we define:

f (i1,...,im′ ,0,...,0)(x1, . . . , xm′ ,Xm′+1, . . . ,Xm) = a(i1,...,im′)(Xm′+1, . . . ,Xm).

(This slight overload of notation should not cause confusion in our future use of it.)

Taking derivatives in one set of variables, followed by derivatives in another set of
variables, is equivalent to taking derivatives in both sets of variables in one shot.

44

Concretely, let m = m1 + m2 + m3, and rename the variables X1, . . . ,Xm as
A1, . . . , Am1

, B1, . . . , Bm2
, C1, . . . Cm3

. Suppose f(A1, . . . , Am1
, B1, . . . , Bm2

, C1, . . . Cm3
) is a reg-

ular function at (a1, . . . , am1
, b1, . . . , bm2

, c1, . . . , cm3
) ∈ Cm. Let

g(B1, . . . , Bm2
, C1, . . . , Cm3

) = f (i1,...,im1
,0,...,0)(a1, . . . , am1

, B1, . . . , Bm2
, C1, . . . , Cm3

),

h(C1, . . . , Cm3
) = g(j1,...,jm2

,0,...,0)(b1, . . . , bm2
, C1, . . . , Cm3

).

Then:

h(C1, . . . , Cm3
) = f (i1,...,im1

,j1,...,jm2
,0,...,0)(a1, . . . , am1

, b1, . . . , bm2
, C1, . . . , Cm3

).

The following consequence of this discussion will be used later on.

Proposition 7.9 If f vanishes at (x1, . . . , xm) with individual multiplicity at least (e1, . . . , em),
then for every j < em, f

(0,0,...,j)(X1, . . . ,Xm−1, xm) vanishes at (x1, . . . , xm−1) with individual
multiplicity at least (e1, . . . , em−1).

7.6 AG Combinatorial Nullstellensatz for splitting sets with multiplicity

We now state the AG Combinatorial Nullstellensatz for splitting sets with multiplicity. It extends
the statement of the AG Combinatorial Nullstellensatz for splitting sets (without multiplicity)
to the case where the function ξ may have zeros of multiplicity > 1. The equivalent result for
polynomials was shown in [KR12].

Theorem 7.10 (AG combinatorial Nullstellensatz for splitting sets with multiplicity)
Let C be an algebraic curve over a field K, G be a divisor on it, and D be a divisor whose support is
disjoint from the support of G, with deg(G) ≥ deg(D) + 2g − 1. Suppose there exists ξ(X) ∈ L(G)
such that D = Zeros(ξ(X)). Let f(X1, . . . ,Xm) ∈ Lm(G).
Then f(X1, . . . ,Xm) vanishes at (x1, . . . , xm) with individual multiplicity at least
(vx1(D), vx2(D), . . . , vxm(D)) for each (x1, . . . , xm) ∈ Support(D)m iff:

∃f ′1(X1, . . . ,Xm), . . . , f
′
m(X1, . . . ,Xm) ∈ Lm(G) such that:

f(X1, . . . ,Xm) =

m∑

i=1

f ′i(X1, . . . ,Xm) · ξ(Xi).

As in the case of Theorem 7.3, we will need a lemma on interpolation, this time with multiplicity.

Lemma 7.11 (Interpolation with multiplicity) Let G,D be divisors such that degG ≥
degD + 2g(C) − 1, D ≥ 0 and Support(D) ∩ Support(G) = ∅. Suppose we are given, for each
x ∈ Support(D) and each j < vx(D) an element cx,j ∈ K. Then there exists f(X) ∈ L(G) such
that for each x ∈ Support(D) and each j < vx(D), we have f (j)(x) = cx,j .

Proof: Consider the mapping ϕ : L(G) → ∏

x∈Support(D)

Kvx(D) defined by

ϕ(f) =

((

f (i)x

)vx(D)−1

i=0

)

x∈Support(D)

45

i.e., the mapping that takes f to its first vx(D) derivatives at each x ∈ Support(D).

The dimension of L(G) equals deg(G) + 1− g, by the Riemann-Roch theorem.

The mapping ϕ is linear and has kernel L(G−D), so by the Riemann-Roch theorem, the dimension
of the kernel is deg(G − D) + 1 − g. So the dimension of the image of ϕ is exactly degD, which

equals the dimension (as a vector space over K) of the space
∏

x∈Support(D)

F
vx(D)
x .

Thus ϕ is surjective, and the result follows.

We now prove Theorem 7.10. The proof closely follows the proof in the case of splitting sets without
multiplicity (Theorem 7.4).

Proof of Theorem 7.10: First suppose there exist f ′1(X1, . . . ,Xm), . . . , f
′
m(X1, . . . ,Xm) ∈

Lm(G) such that:

f(X1, . . . ,Xm) =

m∑

i=1

f ′i(X1, . . . ,Xm) · ξ(Xi).

Notice that the right hand side vanishes at each (x1, . . . , xm) ∈ Support(D)m with individual
multiplicity at least (vx1(ξ(X1)), . . . , vxm(ξ(Xm))) = (vx1(D), . . . , vxm(D)). Thus so does the left
hand side, as desired.

For m = 1: Suppose f(X1) vanishes at each x1 with multiplicity at least vx1(D) = vx1(ξ(X1)).

We have Princ
(
f(X1)
ξ(X1)

)

= Princ (f(X1)) − Princ (ξ(X1)). So f(X1)
ξ(X1)

∈ L(G + Princ(ξ)) =

L (G+ Zeros (ξ)− Poles (ξ)). But our hypothesis implies that f(X1) vanishes whenever ξ(X1) van-

ishes (and with at least as high multiplicity), and so f(X1)
ξ(X1)

has no poles on the zeros of ξ(X1). So
f(X1)
ξ(X1)

∈ L(G− Poles (ξ)) ⊆ L(G). Thus we may take f ′1(X1) =
f(X1)
ξ(X1)

.

For general m suppose f(X1, . . . ,Xm) ∈ Lm(G) vanishes at each (x1, . . . , xm) ∈ Cm with individual
multiplicity at least (vx1(D), vx2(D), . . . , vxm(D)).

For every x ∈ C and every j < vx(D), we deduce from Proposition 7.9 that
f (0,0,...,0,j)(X1, . . . Xm−1, x) vanishes at each (x1, . . . , xm−1) ∈ Cm−1 with individual multiplicity
at least (vx1(D), . . . , vxm−1

(D)). So by induction,

fx,j
def
= f (0,0,...,0,j)(X1, . . . ,Xm−1, x) =

m−1∑

i=1

f ′x,j,i(X1, . . . ,Xm−1)ξ(Xi), (17)

with f ′x,j,i(X1, . . . ,Xm−1) ∈ Lm−1(G).

For each x ∈ Support(D) and each j < vx(D), let δx,j(Xm) ∈ L(G) be such that for each y ∈
Support(D) and each j′ < vy(D):

δ
(j′)
x,j (y) =

{

1 y = x and j′ = j

0 otherwise

Such a δx,j exists by Lemma 7.11, since degG ≥ degD + 2g(C) − 1. Define

h(X1, . . . ,Xm) = f(X1, . . . ,Xm)−
∑

x∈Support(D)

∑

j<vx(D)

δx,j(Xm)fx,j(X1, . . . ,Xm−1). (18)

46

Note that ∀x ∈ Support(D), j < vx(D), we have h(0,0,...,0,j)(X1, . . . ,Xm−1, x) = 0 (formally, as
an element of Lm−1(G)). Since f ∈ Lm(G) and δx,j(Xm)fx,j(X1, . . . ,Xm−1) ∈ Lm(G), we have
h(X1, . . . ,Xm) ∈ Lm(G), Let β1(X1, . . . ,Xm−1), . . . , βℓ(X1, . . . ,Xm−1) be a basis for Lm−1(G).
Then we can write

h(X1, . . . ,Xm) =

ℓ∑

i=1

βi(X1, . . . ,Xm−1) · ai(Xm) (19)

for some ai(Xm) ∈ L(G).
Then for each x ∈ Support(D), j < vx(D), we have:

0 = h(0,0,...,0,j)(X1, . . . ,Xm−1, x) =

ℓ∑

i=1

βi(X1, . . . ,Xm−1) · a(j)i (x).

Therefore for each i, x, j we have a
(j)
i (x) = 0. Thus for each i ∈ [ℓ], we have that ai(X) vanishes at

each x with multiplicity at least vD(x). By the m = 1 case, we have that ai(Xm) = bi(Xm) · ξ(Xm)
for some bi(Xm) ∈ L(G).
Define

f ′m(X1, . . . ,Xm) =

ℓ∑

i=1

βi(X1, . . . ,Xm−1) · bi(Xm), (20)

and notice that h(X1, . . . ,Xm) = f ′m(X1, . . . ,Xm) · ξ(Xm).

Thus from (17) and (18) we get

f(X1, . . . ,Xm) =
∑

x∈Support(D)

∑

j<vD(x)

fx,j(X1, . . . ,Xm−1)δx,j(Xm) + h(X1, . . . ,Xm)

and using (19) and (20) we conclude

f(X1, . . . ,Xm) =
m−1∑

i=1

∑

x∈Support(D)

∑

j<vD(x)

f ′x,j,i(X1, . . . ,Xm−1)δx,j(Xm)

·ξ(Xi)+f
′
m(X1, . . . ,Xm)·ξ(Xm),

as desired.

Remark 7.12 A virtually identical proof would work for the case where we have m different ξ’s
with m different zero divisors, one for each variable. Additionally, a more accurate accounting
of degree bounds through the proof would give a tighter bound on the coefficients fi, specifically:
fiξ(Xi) ∈ Lm(G).

7.7 Proof of the AG Combinatorial Nullstellensatz for general sets

In this section we’ll prove the AG Combinatorial Nullstellensatz for general sets, Theorem 7.4. We
start by proving an additional interpolation lemma.

Lemma 7.13 (Interpolation with a nonzeroness condition) Let G be a nonnegative divisor
and H a set of points satisfying H ∩ Support(G) = ∅ and degG ≥ |H| + 2g(C) − 1. Then there
exists ξ ∈ L(2G) such that ξ|H = 0 and Support(Zeros(ξ)) ∩ Support(G) = ∅.

47

Proof: Suppose G =
∑k

i=1 niPi. For each i ∈ [k], define Gi = G+ Pi.

By the Riemann-Roch theorem, we have:

dim(L(G−H)) = deg(G)− |H|+ 1− g,

and for each i ∈ [k], we have:

dim(L(Gi −H)) = deg(Gi)− |H|+ 1− g.

Thus for each i, we have dim(L(Gi−H)) > dim(L(G−H)). Let ξi ∈ L(Gi−H) \L(G−H). Note
that each ξi vanishes on H, and that for each i, ξi must have a pole at Pi of order ni + 1.

Now consider ξ =
∑k

i=1 ξi. First notice that ξ vanishes on H (since each ξi does). Next notice that
ξ has a pole of order exactly ni+1 at each Pi (because ξi has such a pole, and all the ξj with j 6= i

have poles of order ≤ ni at Pi). Finally notice that ξ ∈ L(G+
∑k

i=1 Pi) ⊆ L(2G).

Proof of Theorem 7.4: We begin by proving the theorem over an algebraically closed field K.

Let ξ ∈ L(2G) be given by Lemma 7.13 such that ξ(x) = 0 for each x ∈ H and Support(Zeros(ξ))∩
Support(G) = ∅. Let D = Zeros(ξ). Let ξ′ ∈ L(3G) be given by Lemma 7.11 be such that

vx(ξ
′) =

{

vx(D)− 1 x ∈ H

vx(D) x ∈ Support(D) \H

Such a ξ′ exists because deg(3G) ≥ deg(2G) + 2g − 1 ≥ deg(D) + 2g − 1.

For each x ∈ H, the local expansion of ξ′(X) begins with atx(X)vx(D)−1, for some nonzero a ∈ K.
For each x ∈ Support(D) \ H, the local expansion of ξ′(X) begins with atx(X)vx(D), for some
(possibly zero) a ∈ K.

Define ξ′m(X1, . . . ,Xm) =
∏m
j=1 ξ

′(Xi). Notice that ξ′m(X1, . . . ,Xm) ∈ Lm(3G).
First suppose that f(X1, . . . ,Xm) ∈ Lm(G) is such that f(x1, . . . , xm) = 0 for each (x1, . . . , xm) ∈
Hm. Observe that f(X1, . . . ,Xm) · ξ′m(X1, . . . ,Xm) ∈ Lm(4G).
We now show that for all (x1, . . . , xm) ∈ Support(D)m, f(X1, . . . ,Xm) · ξ′m(X1, . . . ,Xm) vanishes
at (x1, . . . , xm) with individual multiplicity at least (vx1(D), . . . , vxm(D)).

1. For (x1, . . . , xm) ∈ Support(D)m \ Hm, we have that ξ′m(X1, . . . ,Xm) vanishes at
(x1, . . . , xm) with individual multiplicity at least (vx1(D), . . . , vxm(D)). Thus f(X1, . . . ,Xm) ·
ξ′m(X1, . . . ,Xm) also has this property.

2. For (x1, . . . , xm) ∈ Hm, the local expansion of ξ′m(X1, . . . ,Xm) at (x1, . . . , xm) is of the form

ξ′m(X1, . . . ,Xm) = a
m∏

j=1

txj (Xj)
vxj (D)−1 + . . . , (21)

where a 6= 0, and all the remaining terms vanish with individual multiplicity ≥
(vx1(D), . . . , vxm(D)).

Since f vanishes at (x1, . . . , xm), the local expansion of f(X1, . . . ,Xm) at (x1, . . . , xm) has a
0 constant term. Combined with Equation (21), we get that f(X1, . . . ,Xm) · ξ′m(X1, . . . ,Xm)
vanishes at (x1, . . . , xm) with individual multiplicity at least (vx1(D), . . . , vxm(D)).

48

Thus by the Multiplicity Nullstellensatz (Theorem 7.10), we conclude that there exist
f ′1(X1, . . . ,Xm), . . . , f

′
m(X1, . . . ,Xm) ∈ Lm(4G) such that:

f(X1, . . . ,Xm) · ξ′(X1, . . . ,Xm) =

m∑

j=1

f ′j(X1, . . . ,Xm) · ξ(Xj),

as desired.

We now show the other direction. Suppose there exist f ′1(X1, . . . ,Xm), . . . , f
′
m(X1, . . . ,Xm) ∈

Lm(4G) such that:

f(X1, . . . ,Xm) · ξ′(X1, . . . ,Xm) =

m∑

j=1

f ′j(X1, . . . ,Xm) · ξ(Xj).

Observe that the right hand side vanishes at each (x1, . . . , xm) ∈ Support(D)m with individual
multiplicity ≥ (vx1(D), . . . , vxm(D)). Thus the left hand side should too.

Fix (x1, . . . , xm) ∈ Hm. If f(x1, . . . , xm) equals some nonzero a′, then by Equation (21) the local
expansion of f(X1, . . . ,Xm) · ξ′m(X1, . . . ,Xm) at (x1, . . . , xm) is of the form:

f(X1, . . . ,Xm) · ξ′m(X1, . . . ,Xm) = a′ · a
m∏

j=1

txj(Xj)
vxj (D)−1 + . . . ,

and thus f(X1, . . . ,Xm) · ξ′m(X1, . . . ,Xm) would not vanish at (x1, . . . , xm) with individual multi-
plicity ≥ (vx1(D), . . . , vxm(D)). Thus f(x1, . . . , xm) must equal 0 for each (x1, . . . , xm) ∈ Hm.

This completes the proof over an algebraically closed field K.

We now show how to deduce theorems 7.4 and 7.10 over an arbitrary perfect field K0.

Indeed, given a curve C0 defined over K0, a K0-rational divisor G0 on C0, an f0 ∈ Lm(G0), and
a set of K0-rational places H0 ⊆ C0 we lift all this to the algebraic closure K (formally, we are
extending the field of constants of C0 from K0 to K, see [Sti93, Section 3.6]). We get an algebraic
curve C defined over K, a K-rational divisor G with deg(G) = deg(G0) (the high-degree points in
G0 split into many degree 1 points in G), an f ∈ Lm(G), and a set of rational points H ⊆ C (with
|H| = |H0|). A crucial fact is that any K0-basis of L(G0) is also a K-basis of L(G) (see [Sti93,
Proposition 3.6.3]), and thus any K0-basis of Lm(G0) is also a K-basis of Lm(G).
The functions f and f0 are intimately related. By basic properties of the lifting, we have that
f vanishes on Hm if and only if f0 vanishes on Hm

0 . Furthermore, if we express f0 as a linear
combination of a certain basis of Lm(G0), then viewing that basis of Lm(G0) as a basis of Lm(G),
we have that f is the same linear combination of that basis.

In the proof of theorem 7.4 over algebraically closed field K, observe that one can choose the
functions ξ, ξ′ to be rational over K0. This is because the proof of existence of ξ and ξ′ only used
the Riemann-Roch theorem, and the genus of C and C0 are equal (again, by [Sti93, Proposition
3.6.3]). Let ℓ1, . . . , ℓL be a basis for Lm(4G0). Let (Aij | i ∈ [m], j ∈ [L]) be formal variables. Write
f ′0,i(X1, . . . ,Xm) =

∑

j∈[L]Aijℓj. Consider the equation:

f0(X1, . . . ,Xm) ·
m∏

i=1

ξ′(Xi) =

m∑

i=1

ξ(Xi) · f ′0,i(X1, . . . ,Xm). (22)

Both sides of the equation are in Lm(6G0) (here we use the K0-rationality of ξ and ξ′). Thus we
can represent both sides in terms of a basis for Lm(6G0), with the coefficients of the basis for the

49

RHS of the equation being K0-linear combinations of the Aij , and the coefficients of the basis for
the LHS of the equation being elements of K0.

Thus there exist f ′0,1, . . . , f
′
0,m ∈ Lm(4G0) satisfying Equation (22) if and only if a certain system

of linear equations over K0 in the variables Aij has a solution in K0.

Now view ℓ1, . . . , ℓL as a basis for Lm(4G). Write f ′i(X1, . . . ,Xm) =
∑

j∈[L]Aijℓj . Consider the
equation:

f(X1, . . . ,Xm) ·
m∏

i=1

ξ′(Xi) =

m∑

i=1

ξ(Xi) · f ′i(X1, . . . ,Xm). (23)

As before, we have that there exist f ′1, . . . , f
′
m ∈ Lm(4G) satisfying Equation (23) if and only if the

same system of linear equations over K0 in the variables Aij has a solution in K. But clearly such
a system has a solution in K if and only if it has a solution in K0.

Thus Equations (22) and (23) either both have solutions or both do not have solutions. We now
complete the proof of the general AG Combinatorial Nullstellensatz. By the AG Combinatorial
Nullstellensatz over algebraically closed fields, Equation (23) has a solution if and only if f vanishes
on Hm, and this happens if and only if f0 vanishes on Hm

0 . Thus Equation (22) has a solution if
and only if f0 vanishes on Hm

0 , as desired.

Acknowledgements

This work was partially done at the Oberwolfach Workshop on Complexity Theory, 2012. We are
grateful to the organizers for the chance to attend the workshop, and to the center for the wonderful
hospitality.

50

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy,
Proof verification and intractability of approximation problems, Journal of ACM 45
(1998), no. 3, 501–555, Preliminary version in FOCS 1992.

[Alo99] Noga Alon, Combinatorial nullstellensatz, Combinatorics Probability and Computing
8 (1999), no. 1, 7–30.

[Aro02] Sanjeev Arora, How NP got a new definition: a survey of probabilistically checkable
proofs, ICM ’02: Proceedings of the 2002 International Congress of Mathematicians,
vol. 3, 2002, pp. 637–648.

[AS98] Sanjeev Arora and Shmuel Safra, Probabilistic checkable proofs: A new characteriza-
tion of NP, Journal of ACM volume 45 (1998), no. 1, 70–122, Preliminary version in
FOCS 1992.

[BCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer, Fast reductions
from RAMs to delegatable succinct constraint satisfaction problems, Proceedings of the
4th Innovations in Theoretical Computer Science Conference, ITCS ’13, 2013.

[BCGT13b] , On the concrete efficiency of probabilistically-checkable proofs, Proceedings of
the 45th ACM Symposium on the Theory of Computing, STOC ’13, 2013.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy, Checking compu-
tations in polylogarithmic time, STOC, 1991, pp. 21–31.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan,
Short PCPs verifiable in polylogarithmic time, CCC ’05: Proceedings of the 20th An-
nual IEEE Conference on Computational Complexity (Washington, DC, USA), IEEE
Computer Society, 2005, pp. 120–134.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan,
Robust PCPs of proximity, shorter PCPs and applications to coding, SIAM Journal of
Computing 36 (2006), no. 4, 120–134.

[BGK+13] Eli Ben-Sasson, Ariel Gabizon, Yohay Kaplan, Swastik Kopparty, and Shubhangi
Saraf, A new family of locally correctable codes based on degree-lifted algebraic ge-
ometry codes, STOC, 2013.

[BS06] Eli Ben-Sasson and Madhu Sudan, Robust locally testable codes and products of codes,
Random Struct. Algorithms 28 (2006), no. 4, 387–402.

[BS08] , Short PCPs with polylog query complexity, SIAM J. Comput. 38 (2008), no. 2,
551–607, Preliminary version in STOC 2005.

[BSV09] Eli Ben-Sasson and Michael Viderman, Tensor products of weakly smooth codes are
robust, Theory of Computing 5 (2009), no. 1, 239–255.

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson, Randomness-
efficient low degree tests and short pcps via epsilon-biased sets, Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, STOC ’03, 2003, pp. 612–621.

51

[BV09] Eli Ben-Sasson and Michael Viderman, Composition of semi-ltcs by two-wise tensor
products, APPROX-RANDOM (Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P.
Rolim, eds.), Lecture Notes in Computer Science, vol. 5687, Springer, 2009, pp. 378–
391.

[Cam98] Peter J. Cameron, Combinatorics: Topics, techniques, algorithms, Cambridge Univer-
sity Press, Cambridge CB2 2RU, MA, USA, 1998.

[CR05] Don Coppersmith and Atri Rudra, On the robust testability of tensor products of codes,
Electronic Colloquium on Computational Complexity (ECCC) (2005), no. 104.

[Din07] Irit Dinur, The PCP theorem by gap amplification, Journal of ACM 54 (2007), no. 3,
241–250, Preliminary version in STOC 2006.

[DM11] Irit Dinur and Or Meir, Derandomized parallel repetition via structured PCPs, Com-
putational Complexity 20 (2011), no. 2, 207–327.

[DR06] Irit Dinur and Omer Reingold, Assignment testers: Towards combinatorial proof of
the PCP theorem, SIAM Journal of Computing 36 (2006), no. 4, 155–164.

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson, Robust local testability of tensor prod-
ucts of ldpc codes, APPROX-RANDOM, 2006, pp. 304–315.

[GM12] Oded Goldreich and Or Meir, The tensor product of two good codes is not necessarily
locally testable, Inf. Proces. Lett. 112 (2012), no. 8-9, 351–355.

[GO05] Venkatesan Guruswami and Ryan O’Donnell, The PCP theo-
rem and hardness of approximation, 2005, Available online at
http://www.cs.washington.edu/education/courses/533/05au/.

[Gol11] Oded Goldreich, A sample of samplers: A computational perspective on sampling,
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Ran-
domness and Computation, Springer, 2011, pp. 302–332.

[GS96] Arnaldo Garcia and Henning Stichtenoth, On the Asymptotic Behaviour of Some Tow-
ers of Function Fields over Finite Fields, Journal of Number Theory 61 (1996), 248–
273.

[GS06] Oded Goldreich and Madhu Sudan, Locally testable codes and pcps of almost-linear
length, J. ACM 53 (2006), no. 4, 558–655.

[GV87] Arnaldo Garcia and JF Voloch, Wronskians and linear independence in fields of prime
characteristic, manuscripta mathematica 59 (1987), no. 4, 457–469.

[HS00] Prahladh Harsha and Madhu Sudan, Small PCPs with low query complexity, Compu-
tational Complexity 9 (2000), no. 3–4, 157–201, Preliminary version in STACS ’91.

[KR12] Géza Kós and Lajos Rónyai, Alon’s nullstellensatz for multisets, Combinatorica 32
(2012), no. 5, 589–605.

[KS08] Tali Kaufman and Madhu Sudan, Algebraic property testing: the role of invariance,
STOC (Cynthia Dwork, ed.), ACM, 2008, pp. 403–412.

52

[KSY11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin, High-rate codes with
sublinear-time decoding, STOC, 2011, pp. 167–176.

[Lei92] F. Thomson Leighton, Introduction to parallel algorithms and architectures: array,
trees, hypercubes, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan, Algebraic methods
for interactive proof systems, J. ACM 39 (1992), no. 4, 859–868.

[Mei10] Or Meir, IP = PSPACE using error correcting codes, Electronic Colloquium on Com-
putational Complexity (ECCC) (2010), no. 137, To appear in SIAM Journal on Com-
puting.

[Mei12a] , Combinatorial PCPs with short proofs, IEEE Conference on Computational
Complexity, 2012, pp. 345–355.

[Mei12b] , On the rectangle method in proofs of robustness of tensor products, Inf. Pro-
cess. Lett. 112 (2012), no. 6, 257–260.

[Mie09] Thilo Mie, Short PCPPs verifiable in polylogarithmic time with o(1) queries, Annals
of Mathematics and Artificial Intelligence 56 (2009), 313–338.

[MS88] Florence Jessie MacWilliams and Neil James Alexander Sloane, The theory of error
correcting codes, Elsevier/North-Holland, Amsterdam, 1988.

[PF79] Nicholas Pippenger and Michael J. Fischer, Relations among complexity measures, J.
ACM 26 (1979), no. 2, 361–381.

[PS94] Alexander Polishchuk and Daniel A. Spielman, Nearly-linear size holographic proofs,
STOC, 1994, pp. 194–203.

[Sti93] Henning Stichtenoth, Algebraic function fields and codes, Universitext, Springer, 1993.

[Sti06] , Transitive and self-dual codes attaining the Tsfasman-Vlǎduţ-Zink bound,
IEEE Transactions on Information Theory 52 (2006), no. 5, 2218–2224.

[Sud01] Madhu Sudan, Algorithmic introduction to coding theory (lecture notes), 2001.

[Sud10] Madhu Sudan, Invariance in property testing, Property Testing (Oded Goldreich, ed.),
Lecture Notes in Computer Science, vol. 6390, Springer, 2010, pp. 211–227.

[TVZ82] M.A. Tsfasman, S.G. Vladut, and T. Zink, Modular curves, shimura curves, and goppa
codes, better than varshamov-gilbert bound, math. Nachr. 109 (1982), 21–28.

[Val05] Paul Valiant, The tensor product of two codes is not necessarily robustly testable,
APPROX-RANDOM, 2005, pp. 472–481.

[Vid12] Michael Viderman, A combination of testability and decodability by tensor products,
APPROX-RANDOM, 2012, pp. 651–662.

53

Appendix: Dense families of transitive codes

Henning Stichtenoth

We use standard notation of coding theory such as in [4]. By a code C we mean a linear code over
the finite field Fq. The parameters (length, dimension, minimum distance) of C are denoted by
n = n(C), k = k(C) and d = d(C), respectively. The relative parameters of C (rate and relative
minimum distance) are R = R(C) = k(C)/n(C) and δ = δ(C) = d(C)/n(C).

The symmetric group Sn acts on the space Fnq via π(c1, . . . , cn) = (cπ(1), . . . , cπ(n)), for π ∈ Sn, and
the automorphism group of the code C ⊆ Fnq is defined as Aut(C) = {π ∈ Sn | π(C) = C}. The
code C is called transitive if its automorphism group is a transitive subgroup of Sn, i.e., for any
two indices i, j ∈ {1, . . . , n} there exists π ∈ Aut(C) such that π(i) = j.

A family of codes (Ci)
∞
i=1 with increasing lengths n(Ci) → ∞ is called asymptotically good if

lim inf
i→∞

R(Ci) > 0 and lim inf
i→∞

δ(Ci) > 0. (24)

The family (Ci)
∞
i=1 is dense if there is a real constant A > 0 such that n(Ci+1) ≤ A · n(Ci) holds

for all i ≥ 1. The aim of this note is to prove the following result.

Theorem A.14 Assume that q = ℓ2 > 4 is a square. Then there exist asymptotically good dense
families of transitive codes over Fq.

Theorem A.14 is a refinement of [8, Theorem 1.5] where the existence of asymptotically good
families of transitive codes was shown (without the property of being dense). Our proof follows the
same lines as the proof in [8]. The main ingredient is an appropriate tower of function fields over
Fq (see Lemma A.17 below) and the construction of algebraic geometry codes from function fields.

For the theory of algebraic function fields, algebraic curves and algebraic geometry codes we refer to
[7, 9]. In particular we need the following notions: for a function field F/Fq, g(F) denotes its genus
and N(F) denotes its number of rational places. A tower of function fields over Fq is a sequence
F = (F0 $ F1 $ F2 $ · · ·) of function fields Fi/Fq with the following properties: (i) Fq is the full
constant field of Fi, for all i ≥ 0; (ii) all extensions Fi+1/Fi are separable; (iii) the genus g(Fi)
tends to ∞, for i → ∞. It is well-known that the limit of a tower, λ(F) := limi→∞N(Fi)/g(Fi)
exists and is bounded by the Drinfeld-Vladuţ bound λ(F) ≤ √

q − 1.

In order to prove Theorem A.14 we start with a specific tower over Fq (with q = ℓ2) as follows. Let
G0 := Fq(x0) be the rational function field. For i ≥ 1 we define recursively the fields Gi := Gi−1(xi)
where xi satisfies the equation

xℓi − xi = xℓi−1/(1 − xℓ−1
i−1). (25)

Consider the subfields

Fq(u) ⊆ Fq(t) ⊆ Fq(x0) where t := xℓ0 − x0 and u := tℓ−1 + 1. (26)

Let Hi be the Galois closure of Gi over Fq(u). The sequence

H = (Fq(u) ⊆ Fq(t) ⊆ H0 ⊆ H1 ⊆ H2 ⊆ . . .) (27)

is then a tower over Fq; some of its properties are listed in Lemma A.15 below. We denote by p
the characteristic of Fq; i.e., q = p2µ for some integer µ ≥ 1.

54

Lemma A.15 (i) All extensions Hi/Fq(u) are Galois.

(ii) The extension Fq(t)/Fq(u) is Galois of degree [Fq(t) : Fq(u)] = ℓ− 1.

(iii) The extension Hi/Fq(t) is a Galois p-extension of degree [Hi : Fq(t)] ≥ ℓi+1.

(iv) The place (u = 0) of Fq(u) splits completely in Hi; hence there are exactly [Hi : Fq(u)] distinct
places of Hi which are zeros of u. All of these places are rational.

(v) The place (u = ∞) of Fq(u) has exactly one extension in Fq(t), namely the place (t = ∞), with

ramification index ℓ− 1. The ramification index e
(i)
∞ of (t = ∞) in Hi/Fq(t) is ≥ ℓi+1, its different

exponent in Hi/Fq(t) is d
(i)
∞ = 2(e

(i)
∞ − 1).

(vi) The place (u = 1) of Fq(u) has exactly one extension in Fq(t), namely the place (t = 0), with

ramification index ℓ − 1. The ramification index e
(i)
0 of (t = 0) in Hi/Fq(t) is ≥ ℓi, its different

exponent in Hi/Fq(t) is d
(i)
0 = 2(e

(i)
0 − 1).

(vii) All places of Fq(u) except (u = ∞) and (u = 1) are unramified in Hi.

Proof: See [7, Section 7.4]

The next step in the proof of Theorem A.14 is to refine the tower H in order to get a dense tower.
We need a lemma from Galois theory:

Lemma A.16 Consider finite separable field extensions H ⊆ L ⊆ M ⊆ N ⊆ Ñ ⊆ S and assume
that (a)-(c) hold:

(a) [L : H] = n and [N :M] = m.

(b) The extensions M/H, S/H and N/L are Galois.

(c) Ñ/H is the Galois closure of N/H.

Then [Ñ :M] ≤ mn.

Proof: Let Γ be the Galois group of S/H and fix λ1, . . . , λn ∈ Γ whose restrictions λj|L are
pairwise distinct. For any σ ∈ Γ there is a unique j ∈ {1, . . . , n} such that σ|L = λj |L. It follows
that λ−1

j ◦ σ is an automorphism of S/L, and hence (λ−1
j ◦ σ)(N) = N (since N/L is Galois).

Therefore σ(N) = λj(N) =: Nj. The Galois closure Ñ of N/H is the composite field of the fields
σ(N), over all σ ∈ Γ, so

Ñ =
n∏

j=1

Nj.

As M/H is Galois, M ⊆ Nj and [Nj :M] = [N :M] = m. This implies that [Ñ :M] ≤ mn.

Let Hi ⊆ Hi+1 be two consecutive fields in the tower H = (Fq(u) ⊆ Fq(t) ⊆ H0 ⊆ H1 ⊆ H2 ⊆ . . .).
We can break the extension Hi+1/Hi into steps of degree ≤ pℓ−1 as follows. Set Hi,0 := Hi. The
extension Hi+1/Fq(t) is a Galois p-extension, we denote its Galois group by ∆. The Galois group
∆0 of Hi+1/Hi is a normal subgroup of ∆, as Hi/Fq(t) is Galois. By a well-known result from
group theory, there exists a subgroup ∆1 ⊆ ∆0 of index (∆0 : ∆1) = p which is normal in ∆, see
[2, Kap. III, Satz 7.2 d)]. Denote by T the fixed field of ∆1. Now we apply Lemma A.16 (setting
H := Fq(u), L := Fq(t), M := Hi, N := T and S := Hi+1), and we obtain a field Ñ =: Hi,1 such
that Hi,0 ⊆ Hi,1 ⊆ Hi+1, [Hi,1 : Hi,0] ≤ pℓ−1, and the extension Hi,1/Fq(u) is Galois. Repeating

55

this process, we construct intermediate fields Hi = Hi,0 ⊆ Hi,1 ⊆ · · · ⊆ Hi,si = Hi+1 where all
fields Hi,j are Galois over Fq(u) and each step Hi,j+1/Hi,j is of degree ≤ pℓ−1.

The extensions Hi,j/Fq(t) are Galois p-extensions, and the two places (t = 0) and (t = ∞) of Fq(t)

are the only ramified places in Hi,j; call their ramification indices ε
(i,j)
0 and ε

(i,j)
∞ , resp. By Lemma

A.15, the corresponding different exponents are 2(ε
(i,j)
0 − 1) and 2(ε

(i,j)
∞ − 1). The Hurwitz genus

formula, applied to the extension Hi,j/Fq(t), gives then

g(Hi,j) = 1 + [Hi,j : Fq(t)]
(
1− 1

ε
(i,j)
0

− 1

ε
(i,j)
∞

)
≤ [Hi,j : Fq(t)].

In order to avoid double indices i, j we rename the fields in the ‘refined’ tower. In the next lemma
we put together the properties of this tower that will be used in the proof of Theorem A.14.

Lemma A.17 There exists a tower T = (Fq(u) ⊆ Fq(t) ⊆ T0 ⊆ T1 ⊆ T2 ⊆ . . .) over Fq (with
q = ℓ2) having the following properties:

(i) All extensions Ti/Fq(u) are Galois; the extension Fq(t)/Fq(u) is Galois of degree ℓ− 1, and the
extensions Ti/Fq(t) are Galois p-extensions.

(ii) The ramification indices e(i) of the place (u = ∞) in the extensions Ti/Fq(u) tend to ∞ as
i→ ∞.

(iii) g(Ti) ≤ [Ti : Fq(t)], for all i ≥ 0.

(iv) The element u has exactly (ℓ− 1)[Ti : Fq(t)] zeros in Ti; all of them are rational places of Ti.

(v) For all i ≥ 0 we have [Ti+1 : Ti] ≤ pℓ−1; i.e., the tower T is ‘dense’.

Proof: Items (i),(iii),(v) follow from the discussion above. Item (ii) follows from Lemma A.15(v).
Item (iv) follows from Lemma A.15(iv).

Proof of Theorem A.14. Let δ be a real number with 0 < δ < 1 − (ℓ − 1)−1. Define R by the
equation

R+ δ = 1− 1

(ℓ− 1)
, (28)

then both δ and R are > 0. We will construct a dense sequence of transitive codes (Ci)
∞
i=0 over Fq

such that
lim inf
i→∞

R(Ci) ≥ R and lim inf
i→∞

δ(Ci) ≥ δ. (29)

In what follows, we assume the reader to be familiar with the definition and basic properties of
algebraic geometry (AG) codes (see [7, Chapter 2] or [9]). Consider the tower T as in Lemma A.17.
For i ≥ 0 let ni := [Ti : Fq(u)] and define the divisor

Di :=

ni∑

j=1

P
(i)
j (30)

where the places P
(i)
j are all zeros of the element u− 1 in Ti. Let e

(i) be the ramification index of
the place (u = ∞) in the extension Ti/Fq(u) and set

Ai :=
∑

Q, where Q runs over all poles of u in Ti. (31)

56

Then ni = e(i) · degAi, and it follows from Lemma A.17(ii) that deg(Ai)/ni → 0 as i→ ∞. Define
the integers ri by

1− δ − degAi
ni

< ri ·
degAi
ni

≤ 1− δ. (32)

Define Ci as the AG code corresponding to the divisors Di an riAi; i.e.,

Ci := CL(Di, riAi). (33)

The Galois group Γi of the field extension Ti/Fq(u) acts transitively on the places P
(i)
1 , . . . , P

(i)
ni

(since these are all places of Ti lying above the place (u = 1)), and Γi fixes the divisor Ai. Therefore
the codes Ci are transitive codes, see [7, Section 8.2]. By Lemma A.17(v) we have

n(Ci+1)

n(Ci)
=

[Ti+1 : Fq(u)]
[Ti : Fq]

≤ pℓ−1, (34)

hence the family (Ci)
∞
i=0 is dense. It remains to verify the conditions (29). Given ε > 0, for all

sufficiently large i holds by (32)

1− δ − ε <
deg riAi
ni

≤ 1− δ. (35)

The standard estimates for the parameters of an AG code (see [7, Section 2.2]) yield the inequalities

k(Ci) ≥ ri degAi + 1− g(Ti) and d(Ci) ≥ ni − ri degAi. (36)

We divide by ni and obtain (using Lemma A.17(iv),(v) and (32)) for the relative parameters of Ci
the estimates

R(Ci) ≥
ri degAi

ni
− g(Ti)

ni
> 1− δ − ε− 1

ℓ− 1
= R− ε (37)

and

δ(Ci) ≥ 1− ri degAi
ni

≥ 1− (1− δ) = δ. (38)

This finishes the proof of Theorem A.14. �

Remark A.18 In Theorem A.14 we have constructed dense families of transitive codes with asymp-
totic parameters on or above the Tsfasman-Vlăduţ-Zink bound R+ δ = 1− (

√
q − 1)−1, for every

δ ∈ (0, 1 − (
√
q − 1)−1).

Remark A.19 For an explicit description of the codes Ci = CL(Di, riAi) one needs an explicit
construction of a basis of the Riemann-Roch spaces L(riAi). In [3, 5, 6] polynomial-time algorithms
are given for some specific towers. We believe that it is possible to provide such a polynomial time
algorithm also for the tower T , and hence to obtain an explicit construction of the codes Ci in
polynomial time.

References

[1] Garcia, A. and Stichtenoth, H.: On the asymptotic behavior of some towers of function
fields over finite fields, J. Number Theory 61, (1996), 248-273.

57

[2] Huppert, B.: Endliche Gruppen I, Springer-Verlag, 1967. Grundlehren der mathematischen
Wissenschaften No. 134.

[3] Katsman, G.L., Tsfasman, M.A. and Vlăduţ, S.G.: Modular curves and codes with a
polynomial construction, IEEE Trans. Inform. Theory 30, no. 2, part 2, (1984), 353–355.

[4] van Lint, J.H.: Introduction to coding theory, 2nd Edition. Springer-Verlag, 1992. Graduate
Texts in Mathematics No. 86.

[5] Noseda, F., Oliveira, G. and Quoos, L.: Bases for Riemann-Roch spaces of one-point
divisors on an optimal tower of function fields, IEEE Trans. Inform. Theory 58 (2012), 2589-
2598.

[6] Shum, K.W., Aleshnikov, I., Kumar, V.P., Stichtenoth, H. and Deolalikar, V.:
A low-complexity algorithm for the construction of algebraic-geometric codes better than the
Gilbert-Varshamov bound, IEEE Trans. Inform. Theory 47, (2001), 2225-2241.

[7] Stichtenoth, H.: Algebraic function fields and codes, 2nd Edition. Springer-Verlag, 2009.
Graduate Texts in Mathematics No. 254.

[8] Stichtenoth, H.: Transitive and self-dual codes attaining the Tsfasman-Vlăduţ-Zink bound,
IEEE Trans. Inform. Theory, 52, (2006), 2218-2224.

[9] Tsfasman, M.A. and Vlăduţ, S.G.: Algebraic-geometric codes, Kluwer, 1991.

58

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

