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Abstract

We present an explicit pseudorandom generator for oblivious, read-once, permutation branching pro-
grams of constant width that can read their input bits in any order. The seed length is O(log2 n),
where n is the length of the branching program. The previous best seed length known for this model
was n1/2+o(1), which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman
(FOCS 2012) (which gives a seed length of s1/2+o(1) for arbitrary branching programs of size s). Our
techniques also give seed length n1/2+o(1) for general oblivious, read-once branching programs of width

2no(1)

, which is incomparable to the results of Impagliazzo et al.
Our pseudorandom generator is similar to the one used by Gopalan et al. (FOCS 2012) for read-once

CNFs, but the analysis is quite different; ours is based on Fourier analysis of branching programs. In
particular, we show that an oblivious, read-once, regular branching program of width w has Fourier mass
at most (2w2)k at level k, independent of the length of the program.
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1 Introduction

A major open problem in the theory of pseudorandomness is to construct an “optimal” pseudorandom gen-
erator for space-bounded computation. That is, we want an explicit pseudorandom generator that stretches
a uniformly random seed of length O(log n) to n bits that cannot be distinguished from uniform by any
O(log n)-space algorithm (which receives the pseudorandom bits one at a time, in a streaming fashion, and
may be nonuniform).

Such a generator would imply that every randomized algorithm can be derandomized with only a constant-
factor increase in space (RL = L), and would also have a variety of other applications, such as in streaming
algorithms [15], deterministic dimension reduction and SDP rounding [29], hashing [7], hardness amplifi-
cation [12], almost k-wise independent permutations [16], and cryptographic pseudorandom generator con-
structions [11].

Unfortunately, for fooling general logspace algorithms, there has been essentially no improvement since the
classic work of Nisan [21], which provided a pseudorandom generator of seed length O(log2 n). Instead, a
variety of works have improved the seed length for various restricted classes of logspace algorithms, such
as algorithms that use no(1) random bits [22, 23], combinatorial rectangles [9, 18, 2, 19] random walks
on graphs [24, 25], branching programs of width 2 or 3 [27, 3, 32], and regular or permutation branching
programs (of bounded width) [5, 6, 17, 8, 30].

The vast majority of these works are based on Nisan’s generator or its variants by Impagliazzo, Nisan, and
Wigderson [14] and Nisan and Zuckerman [22], and show how the analysis (and hence the final parameters)
of these generators can be improved for logspace algorithms that satisfy the additional restrictions. All three
of these generators are based on recursive use of the following principle: if we consider two consecutive time
intervals I1, I2 in a space s computation and use some randomness r to generate the pseudorandom bits fed
to the algorithm during interval I1, then at the start of I2, the algorithm will ‘remember’ at most s bits of
information about r. So we can use a randomness extractor to extract roughly |r| − s almost uniform bits
from r (while investing only a small additional amount of randomness for the extraction). This paradigm
seems unlikely to yield pseudorandom generators for general logspace computations that have a seed length
of log1.99 n (see [6]).

Thus, there is a real need for a different approach to constructing pseudorandom generators for space-
bounded computation. One new approach has been suggested in the recent work of Gopalan et al. [10],
which constructed improved pseudorandom generators for read-once CNF formulas and combinatorial rect-
angles, and hitting set generators for width 3 branching programs. Their basic generator (e.g. for read-once
CNF formulas) works as follows: Instead of considering a fixed partition of the bits into intervals, they pseu-
dorandomly partition the bits into two groups, assign the bits in one group using a small-bias generator [20],
and then recursively generate bits for the second group. While it would not work to assign all the bits using
a single sample from a small-bias generator, it turns out that generating a pseudorandom partial assignment
is a significantly easier task.

An added feature of the Gopalan et al. generator is that its pseudorandomness properties are independent
of the order in which the output bits are read by a potential distinguisher. In contrast, Nisan’s generator
and its variants depend heavily on the ordering of bits (the intervals I1 and I2 above cannot be interleaved),
and in fact it is known that a particular instantiation of Nisan’s generator fails to be pseudorandom if the
(space-bounded) distinguisher can read the bits in a different order [31, Corollary 3.18]. Recent works [4, 13]
have constructed nontrivial pseudorandom generators for space-bounded algorithms that can read their bits
in any order, but the seed length achieved is larger than

√
n.

In light of the above, a natural question is whether the approach of Gopalan et al. can be extended to a
wider class of space-bounded algorithms. We make progress on this question by using the same approach
to construct a pseudorandom generator with seed length O(log2 n) for constant-width, read-once, oblivious
permutation branching programs that can read their bits in any order. In analysing our generator, we
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develop new Fourier-analytic tools for proving pseudorandomness against space-bounded algorithms.

1.1 Models of Space-Bounded Computation

A (layered) branching program B is a nonuniform model of space-bounded computation. The program
maintains a state from the set [w] = {1, . . . , w} and, at each time step i, reads one bit of its input x ∈ {0, 1}n
and updates its state according to a transition function Bi : {0, 1} × [w] → [w]. The parameter w is called
the width of the program, and corresponds to a space bound of logw bits. We allow the transition function
Bi to be different at each time step i. We consider several restricted forms of branching programs:

• Read-once branching programs read each input bit at most once.

• Oblivious branching programs choose which input bit to read depending only on the time step i,
and not on the current state

• Ordered branching programs (a.k.a. streaming algorithms) always read input bit i in time step i
(hence are necessarily both read-once and oblivious).

To derandomize randomized space-bounded computations (e.g. prove RL = L), it suffices to construct
pseudorandom generators that fool ordered branching programs of polynomial width ( w = poly(n)), and
hence this is the model addressed by most previous constructions (including Nisan’s generator). However,
the more general models of oblivious and read-once branching programs are also natural to study, and, as
discussed above, can spark the development of new techniques for reasoning about pseudorandomness.

As mentioned earlier, Nisan’s pseudorandom generator [21] achieves O(log2 n) seed length for ordered branch-
ing programs of polynomial width. It is known how to achieve O(log n) seed length for ordered branching
programs width 2 [3], and for width 3, it is only known how to construct “hitting-set generators” (a weaker
form of pseudorandom generators) with seed length O(log n) [32, 10]. (The seed length is Õ(log n) if we want
the error of the hitting set generator to be subconstant.) For pseudorandom generators for width w ≥ 3 and
hitting-set generators for width w ≥ 4, there is no known construction with seed length o(log2 n).

The study of pseudorandomness against non-ordered branching programs started more recently. Tzur [31]
showed that there are oblivious, read-once, constant-width branching programs that can distinguish the
output of Nisan’s generator from uniform. Bogdanov, Papakonstantinou, and Wan [4] exhibited a pseudo-
random generator with seed length (1 − Ω(1)) · n for oblivious read-once branching programs of width w
for w = 2Ω(n). Impagliazzo, Meka, and Zuckerman [13] gave a pseudorandom generator with seed length
s1/2+o(1) for arbitrary branching programs of size s; note that s = O(nw) for a read-once branching program
of width w and length n.

We consider two further restrictions on branching programs:

• Regular branching programs are oblivious branching programs with the property that, if the
distribution on states in any layer is uniformly random and the input bit read by the program at
that layer is uniformly random, then the resulting distribution on states in the next layer is uniformly
random. This is equivalent to requiring that the bipartite graph associated with each layer of the
program, where we have edges from each state u ∈ [w] in layer i to the possible next-states u0, u1 ∈ [w]
in layer i+ 1 (if the input bit is b, the state goes to ub), is a regular graph.

• Permutation branching programs are a further restriction, where we require that for each setting
of the input string, the mappings between layers are permutations. This is equivalent to saying that
(regular) bipartite graphs corresponding to each layer are decomposed into two perfect matchings, one
corresponding to each value of the current input bit being read.
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The fact that pseudorandomness for permutation branching programs might be easier than for general
branching programs was suggested by the proof that Undirected S-T Connectivity is in Logspace [24] and its
follow-ups [25, 26]. Specifically, the latter works construct “pseudorandom walk generators” for “consistently
labelled” graphs. Interpreted for permutation branching programs, these results ensure that if an ordered
permutation branching program has the property that every layer has a nonnegligible amount of “mixing”
— meaning that the distribution on states becomes closer to uniform, on a truly random input — then the
overall program will also have mixing when run on the output of the pseudorandom generator (albeit at a
slower rate). The generator has a seed length of O(log n) even for ordered permutation branching programs
of width poly(n). Reingold, Trevisan, and Vadhan [25] also show that if a generator with similar properties
could be constructed for (ordered) regular branching programs of polynomial width, then this would suffice
to prove RL = L. Thus, in the case of polynomial width, regularity is not a significant constraint.

Recently, there has been substantial progress on constructing pseudorandom generators for ordered regular
and permutation branching programs of constant width. Braverman, Rao, Raz, and Yehudayoff [5] and
Brody and Verbin [6] gave pseudorandom generators with seed length Õ(log n) for ordered regular branching
programs of constant width. Koucký, Nimbhorkar and Pudlák [17] showed that the seed length could be
further improved to O(log n) for ordered, permutation branching programs of constant width; see [8, 30] for
simplifications and improvements.

All of these generators for ordered regular and permutation branching programs are based on refined analyses
of the pseudorandom generator construction of Impagliazzo, Nisan, and Wigderson [14].

1.2 Our Results and Techniques

Our main result is a pseudorandom generator for read-once, oblivious, (unordered) permutation branching
programs of constant width:

Theorem 1.1 (Main Result). For every constant w, there is an explicit pseudorandom generator G :

{0, 1}O(log2 n) → {0, 1}n fooling oblivious, read-once (but unordered), permutation branching programs of
width w and length n.

To be precise, the seed length and space complexity of the pseudorandom generator is

O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε))

for oblivious, read-once, permutation branching programs of length n and width w, where ε is the error.

Previously, it was only known how to achieve a seed length of n1/2+o(1) for this model, as follows from
the aforementioned results of Impagliazzo, Meka, and Zuckerman [13] (which actually holds for arbitrary
branching programs).

Our techniques also achieve seed length n1/2+o(1) for arbitrary read-once, oblivious branching programs of

width up to 2n
o(1)

:

Theorem 1.2. There is an explicit pseudorandom generator G : {0, 1}Õ(
√
n logw) → {0, 1}n fooling oblivious,

read-once (but unordered) branching programs of width w and length n.

This result is incomparable to that of Impagliazzo et al. [13]. Their seed length depends polynomially on
the width w, so require width w = no(1) to achieve seed length n1/2+o(1). On the other hand, our result is
restricted to read-once, oblivious branching programs.

Our construction of the generator in Theorem 1.1 is essentially the same as the generator of Gopalan et al. [10]
for read-once CNF formulas, but with a new analysis (and different setting of parameters) for read-once,
oblivious, permutation branching programs. The generator works by selecting a subset T ⊂ [n] of output
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coordinates in a pseudorandom way, assigning the bits in T using another pseudorandom distribution X,
and then recursively assigning the bits outside T . We generate T using an almost O(log n)-wise independent
distribution, including each coordinate i ∈ T with a constant probability pw depending only on the width w.
We assign the bits in T using a small-bias distribution X on {0, 1}n [20]; such a generator has the property
that for every nonempty subset S ⊂ [n], the parity ⊕i∈SXi of bits in S has bias at most ε. Generating T
requires O(log n) random bits, generating X requires O(log n) bits (even for ε = 1/poly(n)), and we need
O(log n) levels of recursion to assign all the bits. This gives us our O(log2 n) seed length.

Let B : {0, 1}n → {0, 1} be a function computed by an oblivious, read-once, permutation branching program
of width w. Following [10], to show that our pseudorandom generator fools B, it suffices to show that the
partial assignment generated in a single level of recursion approximately preserves the acceptance probability
of B (on average). To make this precise, we need a bit of notation. For a set t ⊂ [n], a string x ∈ {0, 1}n,
and y ∈ {0, 1}n−|t|, define Select(t, x, y) ∈ {0, 1}n as follows:

Select(t, x, y)i =

{
xi if i ∈ t
y|{j≤i:j /∈t}| if i /∈ t

Once we choose a set t← T and an assignment x← X to the variables in t, the residual acceptance probability
of B is P

U
[B(Select(t, x, U)) = 1], where U is the uniform distribution on {0, 1}n. So, the average acceptance

probability over t ← T and x ← X is P
T,X,U

[B(Select(T,X,U)) = 1]. We would like this to be close to the

acceptance probability under uniformly random bits, namely P
U

[B(U) = 1] = P
T,U ′,U

[B(Select(T,U ′, U) = 1].

That is, we would like our small-bias distribution X to fool the function B′(x) := E
T,U

[B(Select(T, x, U))].

The key insight in [10] is that B′ can be a significantly easier function to fool than B, and even than fixed
restrictions of B (like B(Select(t, ·, y)) for fixed t and y). We show that the same phenomenon holds for
oblivious, read-once, regular branching programs. (The reason that the analysis of our overall pseudorandom
generator applies only for permutation branching programs is that regularity is not preserved under restriction
(as needed for the recursion), whereas the permutation property is.)

To show that a small-bias space fools B′(x), it suffices to show that the Fourier mass of B′, namely∑
s∈{0,1}n,s 6=0 |B̂′[s]|, is bounded by poly(n). (Here B̂′[s] = E

U

[
B′[U ] · (−1)s·U

]
is the standard Fourier

transform over Zn2 . So B̂′[s] measures the correlation of B′ with the parity function defined by s.) We show
that this is indeed the case (for most choices of the set t← T ):

Theorem 1.3 (Main Lemma). For every constant w, there are constants pw > 0 and dw ∈ N such that the
following holds. Let B : {0, 1}n → {0, 1} be computed by an oblivious, read-once, regular branching program
of width w and length n ≥ dw. Let T ⊂ [n] be a randomly chosen set so that every coordinate i ∈ [n] is
placed in T with probability pw and these choices are n−dw -almost (dw log n)-wise independent. Then with
high probability over t← T B′(x) = E

U
[B(Select(t, x, U))] has Fourier mass at most ndw .

As a warm-up, we begin by analysing the Fourier mass in the case the set T is chosen completely at random,
with every coordinate included independently with probability pw. In this case, it is more convenient to

average over T and work with B′(x) = E
T,U

[B(Select(T, x, U))]. Then it turns out that B̂′[s] = p
|s|
w · B̂[s],

where |s| denotes the Hamming weight of the vector s. Thus, it suffices to analyse the original program B
and show that for each k ∈ {1, · · · , n}, the Fourier mass of B restricted to s of weight k is at most ckw, where
cw is a constant depending only on w (not on n). We prove that this is indeed the case for regular branching
programs:

Theorem 1.4. Let B : {0, 1}n → {0, 1} be a function computed by an oblivious, read-once, regular branching
program of width w. Then for every k ∈ {1, . . . , n}, we have∑

s∈{0,1}n:|s|=k

|B̂[s]| ≤ (2w2)k.
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Our proof of Theorem 1.4 relies on the main lemma of Braverman et al. [5], which intuitively says that
in a bounded-width, read-once, oblivious, regular branching program, only a constant number of bits have
a significant effect on the acceptance probability. More formally, if we sum, for every time step i and all
possible states v at time i, the absolute difference between the acceptance probability after reading a 0 versus
reading a 1 from state v, the total will be bounded by poly(w) (independent of n). This directly implies a
bound of poly(w) on the Fourier mass of B at the first level: the correlation of B with a parity of weight 1 is
bounded by the effect of a single bit on the output of B. We then bound the correlation of B with a parity
of weight k by the correlation of a prefix of B with a parity of weight k− 1 times the effect of the remaining
bit on B. Thus we inductively obtain the bound on the Fourier mass of B at level k.

Our proof of Theorem 1.3 for the case of a pseudorandom restriction T uses the fact that we can decompose
the high-order Fourier coefficients of an oblivious, read-once branching program B′ into products of low-order
Fourier coefficients of “subprograms” (intervals of consecutive layers) of B′. Using an almost O(log n)-wise
independent choice of T enables us to control the Fourier mass at level O(log n) for all subprograms of B′,
which suffices to control the total Fourier mass of B′.

1.3 Organization

In Section 2 we introduce the definitions and tools we use in our proof. In Section 2.1 we formally define
branching programs and explain our view of them as matrix-valued functions. In Sections 2.3 and 2.5 we
define the matrix-valued Fourier transform and explain how we use it.

Our results use Fourier analysis of regular branching programs to analyse pseudorandom generators. In
Section 3, we give a bound on the low-order Fourier coefficients of a read-once, oblivious, regular branching
program (Theorem 1.4) using the main lemma of Braverman et al. [5]. This yields a result about random
restrictions, which we define and discuss in Section 4. We extend the results about random restrictions to
pseudorandom restrictions in Section 5 and prove our main lemma (Theorem 1.3). Finally, in Section 6 we
construct and analyse our pseudorandom generator, which proves the main result (Theorem 1.1).

In Section 7 we show how to extend our techniques to general read-once, oblivious branching programs
(Theorem 1.2). We conclude in Section 8 by discussing directions for further work.

2 Preliminaries

2.1 Branching Programs

We define a length-n, width-w program to be a function B : {0, 1}n × [w]→ [w], which takes a start state
u ∈ [w] and an input string x ∈ {0, 1}n and outputs a final state B[x](u).

Often we think of B as having a fixed start state u0 and a set of accept states S ⊂ [w]. Then B accepts
x ∈ {0, 1}n if B[x](u0) ∈ S. We say that B computes the function f : {0, 1}n → {0, 1} if f(x) = 1 if and
only if B[x](u0) ∈ S.

In our applications, the input x is randomly (or pseudorandomly) chosen, in which case a program can
be viewed as a Markov chain randomly taking initial states to final states. For each x ∈ {0, 1}n, we let
B[x] ∈ {0, 1}w×w be a matrix defined by

B[x](u, v) = 1 ⇐⇒ B[x](u) = v.

For a random variable X on {0, 1}n, we have E
X

[B[X]] ∈ [0, 1]w×w, where E
R

[f(R)] is the expectation of a

function f with respect to a random variable R. Then the entry in the uth row and vth column E
X

[B[X]] (u, v)
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is the probability that B takes the initial state u to the final state v when given a random input from the
distribution X—that is,

E
X

[B[X]] (u, v) = P
X

[B[X](u) = v] ,

where P
R

[e(R)] is the probability of an event e with respect to the random variable R.

A branching program reads one bit of the input at a time (rather than reading x all at once) maintaining
only a state in [w] = {1, 2, · · · , w} at each step. We capture this restriction by demanding that the program
be composed of several smaller programs, as follows.

Let B and B′ be width-w programs of length n and n′ respectively. We define the concatenation B ◦B′ :
{0, 1}n+n′ × [w]→ [w] of B and B′ by

(B ◦B′)[x ◦ x′](u) := B′[x′](B[x](u)),

which is a width-w, length-(n + n′) program. That is, we run B and B′ on separate inputs, but the final
state of B becomes the start state of B′. Concatenation corresponds to matrix multiplication—that is,
(B ◦B′)[x ◦ x′] = B[x] ·B′[x′], where the two programs are concatenated on the left hand side and the two
matrices are multiplied on the right hand side.

A length-n, width-w, ordered branching program is a program B that can be written B = B1◦B2◦· · ·◦Bn,
where each Bi is a length-1 width-w program. We refer to Bi as the ith layer of B. We denote the
subprogram of B from layer i to layer j by Bi···j := Bi ◦Bi+1 ◦ · · · ◦Bj .

General read-once, oblivious branching programs (a.k.a. unordered branching programs) can be reduced
to the ordered case by a permutation of the input bits. Formally, a read-once, oblivious branching
program B is an ordered branching program B′ composed with a permutation π. That is, B[x] = B′[π(x)],
where the ith bit of π(x) is the π(i)th bit of x

For a program B and an arbitrary distribution X, the matrix E
X

[B[X]] is stochastic—that is,

∑
v

E
X

[B[X]] (u, v) = 1

for all u and E
X

[B[X]] (u, v) ≥ 0 for all u and v. A program B is called a regular program if the matrix

E
U

[B[U ]] is doubly stochastic—that is, both E
U

[B[U ]] and its transpose E
U

[B[U ]]
∗

are stochastic. A program

B is called a permutation program if B[x] is a permutation matrix for every x or, equivalently, B[x] is
doubly stochastic. Note that a permutation program is necessarily a regular program and, if both B and B′

are regular or permutation programs, then so is their concatenation.

A regular program B has the property that the uniform distribution is a stationary distribution of the
Markov chain E

U
[B[U ]], whereas, if B is a permutation program, the uniform distribution is stationary for

E
X

[B[X]] for any distribution X.

A regular branching program is a branching program where each layer Bi is a regular program and
likewise for a permutation branching program.

2.2 Norms

We are interested in constructing a random variable X (the output of the pseudorandom generator) such
that E

X
[B[X]] ≈ E

U
[B[U ]], where U is uniform on {0, 1}n. Throughout we use U to denote the uniform

distribution. The error of the pseudorandom generator will be measured by the norm of the matrix
E
X

[B[X]]− E
U

[B[U ]].
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For a matrix A ∈ Rw×w, define the ρ operator norm of A by

||A||ρ = max
x

||xA||ρ
||x||ρ

,

where ρ specifies a vector norm (usually 1, 2, or ∞ norm). Define the Frobenius norm of A ∈ Rw×w by

||A||2Fr =
∑
u,v

A(u, v)2 = trace(A∗A) =
∑
λ

|λ|2,

where A∗ is the (conjugate) transpose of A and the last sum is over the singular values λ of A. Note that
||A||2 ≤ ||A||Fr for all A.

We almost exclusively use the Euclidean norm (||x||2 =
√∑

i x(i)2) and the corresponding spectral norm
(||A||2 = maxλ |λ|). This is not crucial; our results would work with any reasonable norm.

2.3 Fourier Analysis

Let B : {0, 1}n → Rw×w be a matrix-valued function (such as given by a length-n, width-w branching

program). Then we define the Fourier transform of B as a matrix-valued function B̂ : {0, 1}n → Rw×w
given by

B̂[s] := E
U

[B[U ]χs(U)] ,

where s ∈ {0, 1}n (or, equivalently, s ⊂ [n]) and

χs(x) = (−1)
∑

i x(i)·s(i) =
∏
i∈s

(−1)x(i).

We refer to B̂[s] as the sth Fourier coefficient of B. The order of a Fourier coefficient B̂[s] is |s|—the
Hamming weight of s, which is the size of the set s or the number of 1s in the string s. Note that this is
equivalent to taking the real-valued Fourier transform of each of the w2 entries of B separately, but we will
see below that this matrix-valued Fourier transform is nicely compatible with matrix algebra.

For a random variable X over {0, 1}n we define its sth Fourier coefficient as

X̂(s) := E
X

[χs(X)] ,

which, up to scaling, is the same as taking the real-valued Fourier transform of the probability mass function
of X. We have the following useful properties.

Lemma 2.1. Let A,B : {0, 1}n → Rw×w be matrix valued functions. Let X, Y , and U be independent
random variables over {0, 1}n, where U is uniform. Let s, t ∈ {0, 1}n. Then we have the following.

• Decomposition: If C[x ◦ y] = A[x] ·B[y] for all x, y ∈ {0, 1}n, then Ĉ[s ◦ t] = Â[s] · B̂[t].

• Expectation: E
X

[B[X]] =
∑
s B̂[s]X̂(s).

• Fourier Inversion for Matrices: B[x] =
∑
s B̂[s]χs(x).

• Fourier Inversion for Distributions: P
X

[X = x] = E
U

[
X̂(U)χU (x)

]
.

• Convolution for Distributions: If Z = X ⊕ Y , then Ẑ(s) = X̂(s) · Ŷ (s).
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• Parseval’s Identity:
∑
s∈{0,1}n

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣2
Fr

= E
U

[
||B[U ]||2Fr

]
.

• Convolution for Matrices: If, for all x ∈ {0, 1}n, C[x] = E
U

[A[U ] ·B[U ⊕ x]], then Ĉ[s] = Â[s] · B̂[s].

The Decomposition property is what makes the matrix-valued Fourier transform more convenient than
separately taking the Fourier transform of the matrix entries as done in [4]. If B is a length-n width-w
branching program, then, for all s ∈ {0, 1}n,

B̂[s] = B̂1[s1] · B̂2[s2] · · · · · B̂n[sn].

2.4 Small-Bias Distributions

The bias of a random variable X over {0, 1}n is defined as

bias(X) := max
s6=0
|X̂(s)|.

A distribution is ε-biased if it has bias at most ε. Note that a distribution has bias 0 if and only if it is
uniform. Thus a distribution with small bias is an approximation to the uniform distribution. We can sample
an ε-biased distribution X on {0, 1}n with seed length O(log(n/ε)) and using space O(log(n/ε)) [20, 1].

Small-bias distributions are useful pseudorandom generators: A ε-biased random variable X is indistin-
guishable from uniform by any linear function (a parity of a subset of the bits of X). That is, for any

s ⊂ [n], we have
∣∣∣E
X

[⊕
i∈sXi

]
− 1/2

∣∣∣ ≤ 2ε. Small bias distributions are known to be good pseudorandom

generators for width-2 branching programs [3], but not width-3. For example, the uniform distribution over
{x ∈ {0, 1}n : |x| mod 3 = 0} has bias 2−Ω(n), but does not fool width-3, ordered, permutation branching
programs.

2.5 Fourier Mass

We analyse small bias distributions as pseudorandom generators for branching programs using Fourier analy-
sis. Intuitively, the Fourier transform of a branching program expresses that program as a linear combination
of linear functions (parities), which can then be fooled using a small-bias space.

Define the Fourier mass of a matrix-valued function B to be

Lρ(B) :=
∑
s6=0

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣
ρ
.

Also, define the Fourier mass of B at level k as

Lkρ(B) :=
∑

s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣
ρ
.

Note that Lρ(B) =
∑
k≥1 L

k
ρ(B).

The Fourier mass is unaffected by order:

Lemma 2.2. Let B,B′ : {0, 1}n → Rw×w be matrix-valued functions satisfying B[x] = B′[π(x)], where

π : [n] → [n] is a permutation. Then, for all s ∈ {0, 1}n, B̂[s] = B̂′[π(s)]. In particular, Lρ(B) = Lρ(B
′)

and Lkρ(B) = Lkρ(B′) for all k and ρ.
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Lemma 2.2 implies that the Fourier mass of any read-once, oblivious branching program is equal to the
Fourier mass of the corresponding ordered branching program.

If Lρ(B) is small, then B is fooled by a small-bias distribution:

Lemma 2.3. Let B be a length-n, width-w branching program. Let X be a ε-biased random variable on
{0, 1}n. For any matrix norm ||·||ρ, we have

∣∣∣∣∣∣E
X

[B[X]]− E
U

[B[U ]]
∣∣∣∣∣∣
ρ

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
s 6=0

B̂[s]X̂(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
ρ

≤ Lρ(B)ε.

In the worst case L2(B) = 2Θ(n), even for a length-n width-3 permutation branching program B. For
example, the program Bmod 3 that computes the Hamming weight of its input modulo 3 has exponential
Fourier mass.

We show that, using ‘restrictions’, we can ensure that Lρ(B) is small.

3 Fourier Analysis of Regular Branching Programs

We use a result by Braverman et al. [5]. The following is a Fourier-analytic reformulation of their result.

Lemma 3.1 ([5, Lemma 4]). Let B be a length-n, width-w, ordered, regular branching program. Then∑
1≤i≤n

∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]
∣∣∣∣∣∣

2
≤ 2w2.

Braverman et al. instead consider the sum, over all i ∈ [n] and all states u ∈ [w] at layer i, of the difference
in acceptance probabilities if we run the program starting at v with a 0 followed by random bits versus a 1
followed by random bits. They refer to this quantity as the weight of B. Their result can be expressed in
Fourier-analytic terms by considering subprograms Bi···n that are the original program with the first i − 1
layers removed: ∑

1≤i≤n

∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]q
∣∣∣∣∣∣

1
≤ 2(w − 1)

for any q ∈ {0, 1}w with
∑
u q(u) = 1. (The vector q can be used to specify the accept states of B, and

the vth row of B̂i···n[1 ◦ 0n−i]q is precisely the difference in acceptance probabilities mentioned above.) By
summing over all w possible q, we obtain∑

i∈[n]

∑
u

∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i](·, u)
∣∣∣∣∣∣

1
≤ 2w(w − 1).

This implies Lemma 3.1, as the spectral norm of a matrix is bounded by the sum of the 1-norms of the
columns. For completeness, we include a direct proof of Lemma 3.1 in Appendix A.

Lemma 3.1 is similar (but not identical) to a bound on the first-order Fourier coefficients of a regular

branching program: The term B̂i···n[1 ◦ 0n−i] measures the effect of the ith bit on the output of B when we

start the program at layer i, whereas the ith first-order Fourier coefficient B̂[0i−1 ◦ 1 ◦ 0n−i] measures the
effect of the ith bit when we start at the first layer and run the first i − 1 layers with random bits. This
difference allows us to use Lemma 3.1 to obtain a bound on all low-order Fourier coefficients of a regular
branching program:
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Theorem 3.2. Let B be a length-n, width-w, read-once, oblivious, regular branching program. Then

Lk2(B) :=
∑

s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2
≤ (2w2)k.

The key point is that the bound does not depend on n, even though we are summing
(
n
k

)
terms.

Proof. By Lemma 2.2, we may assume that B is ordered. We perform an induction on k. If k = 0, then there
is only one Fourier coefficient to bound—namely, B̂[0n] = E

U
[B[U ]]. Since E

U
[B[U ]] is doubly stochastic, the

base case follows from the fact that every doubly stochastic matrix has spectral norm 1. Now suppose the
bound holds for k and consider k + 1. We split the Fourier coefficients based on where the last 1 is:∑

s∈{0,1}n:|s|=k+1

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2

=
∑

1≤i≤n

∑
s∈{0,1}i−1:|s|=k

∣∣∣∣∣∣B̂[s ◦ 1 ◦ 0n−i]
∣∣∣∣∣∣

2

=
∑

1≤i≤n

∑
s∈{0,1}i−1:|s|=k

∣∣∣∣∣∣B̂1···i−1[s] · B̂i···n[1 ◦ 0n−i]
∣∣∣∣∣∣

2
(by Lemma 2.1 (Decomposition))

≤
∑

1≤i≤n

∑
s∈{0,1}i−1:|s|=k

∣∣∣∣∣∣B̂1···i−1[s]
∣∣∣∣∣∣

2
·
∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣∣∣∣
2

≤
∑

1≤i≤n

(2w2)k ·
∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣∣∣∣
2

(by the induction hypothesis)

≤(2w2)k · 2w2 (by Lemma 3.1)

=(2w2)k+1,

as required.

4 Random Restrictions

Our results involve restricting branching programs. However, our use of restrictions is different from elsewhere
in the literature. Here, as in [10], we use (pseudorandom) restrictions in the usual way, but we analyse them
by averaging over the unrestricted bits. Formally, we define a restriction as follows.

Definition 4.1. For t ∈ {0, 1}n and a length-n branching program B, let B|t be the restriction of B to
t—that is, B|t : {0, 1}n → Rw×w is a matrix-valued function given by B|t[x] := E

U
[B[Select(t, x, U)]], where

U is uniform on {0, 1}n.

Here Select takes a set t ⊂ [n], a string x ∈ {0, 1}n, and a string y of length at least n− |t| and produces a
string of length n given by

Select(t, x, y)(i) =

{
x(i) i ∈ t

y(|[i]\t|) i ∈ [n]\t

}
.

Intuitively, Select(t, x, y) ‘stretches’ y by ‘skipping’ the bits in t and using bits from x instead. For example,
Select(0101000, 1111111, 00001) = 0101001.

The most important aspect of restrictions is how they relate to the Fourier transform: For all B, s, and t,

we have B̂|t[s] = B̂[s] if s ⊂ t and B̂|t[s] = 0 otherwise. The restriction t ‘kills’ all the Fourier coefficients
that are not contained in it. This means that a restriction significantly reduces the Fourier mass:
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Lemma 4.2. Let B be a length-n, width-w program. Let T be n independent random bits each with expec-
tation p. Then

E
T

[L2(B|T )] =
∑
s6=0

p|s|
∣∣∣∣∣∣B̂[s]

∣∣∣∣∣∣
2
.

Proof.

E
T

[L2(B|T )] = E
T

 ∑
s6=0:s⊂T

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2

 =
∑
s6=0

P
T

[s ⊂ T ]
∣∣∣∣∣∣B̂[s]

∣∣∣∣∣∣
2

=
∑
s 6=0

p|s|
∣∣∣∣∣∣B̂[s]

∣∣∣∣∣∣
2
.

We will overload notation as follows. Let B = B′ ◦B′′ be a branching program, where B′ has length n′ and
B′′ has length n′′ and B has length n = n′ + n′′. For t ∈ {0, 1}n, we define B′|t = B′|t′ and B′′|t = B′|t′′
where t′ ∈ {0, 1}n′ , t′′ ∈ {0, 1}n′′ and t = t′ ◦ t′′. Then B|t = B′|t′ ◦B′′|t′′ = B′|t ◦B′′|t.

Now we use Theorem 3.2 to prove a result about random restrictions of regular branching programs:

Proposition 4.3. Let B be a length-n, width-w, read-once, oblivious, regular branching program. Let T be
n independent random bits each with expectation p < 1/2w2. Then

E
T

[L2(B|T )] ≤ 2w2 · p
1− 2w2 · p

.

In particular, if p ≤ 1/4w2, then E
T

[L2(B|T )] ≤ 1.

Proof. By Lemma 4.2, we have,

E
T

[L2(B|T )] =
∑
s6=0

p|s| ·
∣∣∣∣∣∣B̂[s]

∣∣∣∣∣∣
2

=
∑

1≤k≤n

pk ·
∑

s:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2

≤
∑

1≤k≤n

pk · (2w2)k (by Theorem 3.2)

≤
∑
k≥1

(2w2 · p)k

=
2w2 · p

1− 2w2 · p
.

Relation to Coin Theorem The Coin Theorem of Brody and Verbin [6] shows that general (non-regular)
oblivious, read-once branching programs of width w cannot distinguish n independent and unbiased coin
flips from ones with bias 1/(log n)Θ(w), and they show that this bound is the best possible. Braverman et
al. [5] show that regular, oblivious, read-once branching programs of width w cannot distinguish coins with
bias Θ(1/w) from unbiased ones. (They state this result in terms of α-biased spaces.)
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If Z is n independent coin flips with bias p and B is a branching program, then

∣∣∣∣∣∣E
Z

[B[Z]]− E
U

[B[U ]]
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
s 6=0

B̂[s]Ẑ(s)

∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
s6=0

p|s|B̂[s]

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Thus Proposition 4.3 implies a Coin Theorem showing that read-once, oblivious, regular branching programs
cannot distinguish coins with bias p for some p = Θ(1/w2) from unbiased ones. This Coin Theorem is weaker
than the Braverman et al. result, which gives p = Θ(1/w). However, Proposition 4.3 gives more than a Coin
Theorem, as the sum is taken outside the norm—that is, we bound∑

s 6=0

p|s|
∣∣∣∣∣∣B̂[s]

∣∣∣∣∣∣
2
.

This distinction is important for our purposes, as it will allow us to reason about small-bias distributions
and restrictions together.

5 Pseudorandom Restrictions

To analyse our generator, we need a pseudorandom version of Proposition 4.3. That is, we need to prove
that, for a pseudorandom T (generated using few random bits), L2(B|T ) is small. We will generate T using
an almost O(log n)-wise independent distribution:

Definition 5.1. A random variable X on Ωn is δ-almost k-wise independent if, for any
I = {i1, i2, · · · , ik} ⊂ [n] with |I| = k, the coordinates (Xi1 , Xi2 , · · · , Xik) ∈ Ωk are δ statistically close to
being independent—that is, for all T ⊂ Ωk,∣∣∣∣∣∣

∑
x∈T

P
X

[(Xi1 , Xi2 , · · · , Xik) = x]−
∏
l∈[k]

P
X

[Xil = xl]

∣∣∣∣∣∣ ≤ δ.
We say that X is k-wise independent if it is 0-almost k-wise independent.

We can sample a random variable X on {0, 1}n that is δ-almost k-wise independent such that each bit has
expectation p = 2−d using O(kd+ log(1/δ) + d log(nd)) random bits. See Lemma B.2 for more details.

Our main lemma (stated informally as Theorem 1.3) is as follows.

Theorem 5.2 (Main Lemma). Let B be a length-n, width-w, read-once, oblivious, regular branching program.
Let T be a random variable over {0, 1}n where each bit has expectation p and the bits are δ-almost 2k-wise
independent. Suppose p ≤ (2w)−2 and δ ≤ (2w)−4k. Then

P
T

[
L2(B|T ) ≤ (2w2)k

]
≥ 1− n4 · 2

2k
.

In particular, we show that, for w = O(1), k = O(log n), and δ = 1/poly(n), we have L2(B|T ) ≤ poly(n)
with probability 1− 1/poly(n).

First we show that the Fourier mass at level O(log n) is bounded by 1/n with high probability. This also
applies to all subprograms—that is,

P
T

[
∀i, j Lk2(Bi···j |T ) ≤ 1/n

]
≥ 1− 1/poly(n).
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Lemma 5.3. Let B be a length-n, width-w, ordered, regular branching program. Let T be a random variable
over {0, 1}n where each bit has expectation p and the bits are δ-almost k-wise independent. If p ≤ (2w)−2

and δ ≤ (2w)−2k, then, for all β > 0,

P
T

[
∀1 ≤ i ≤ j ≤ n Lk2(Bi···j |T ) ≤ β

]
≥ 1− n2 2

2kβ
.

Proof. By Theorem 3.2, for all i and j,

E
T

[
Lk2(Bi···j |T )

]
=

∑
s⊂{i···j}:|s|=k

P
T

[s ⊂ T ]
∣∣∣∣∣∣B̂i···j [s]∣∣∣∣∣∣

2
≤ (2w2)k(pk + δ) ≤ 2

2k
.

The result now follows from Markov’s inequality and a union bound.

Now we use Lemma 5.3 to bound the Fourier mass at higher levels. We decompose high-order (k′ ≥ 2k)
Fourier coefficients into low-order (k ≤ k′ < 2k) ones:

Lemma 5.4. Let B be a length-n, ordered branching program and t ∈ {0, 1}n. Suppose that, for all i, j,
and k′ with 1 ≤ i ≤ j ≤ n and k ≤ k′ < 2k, Lk

′

2 (Bi···j |t) ≤ 1/n. Then, for all k′′ ≥ k and all i and j,

Lk
′′

2 (Bi···j |t) ≤ 1/n.

Proof. Suppose otherwise and let k′′ be the smallest k′′ ≥ k such that Lk
′′

2 (Bi···j |t) > 1/n for some i and j.
Clearly k′′ ≥ 2k. So, by minimality, the result holds for k′′ − k. Fix i and j. Now

Lk
′′

2 (Bi···j |t) =
∑

s∈{0,1}j−i+1:|s|=k′′

∣∣∣∣∣∣B̂i···j [s]∣∣∣∣∣∣
2

≤
∑

l∈{i···j}

∑
s∈{0,1}l−i+1:|s|=k

∑
s′∈{0,1}j−l:|s′|=k′′−k

∣∣∣∣∣∣B̂i···l[s] · B̂l+1···j [s
′]
∣∣∣∣∣∣

2

≤
∑

l∈{i···j}

 ∑
s∈{0,1}l−i+1:|s|=k

∣∣∣∣∣∣B̂i···l[s]∣∣∣∣∣∣
2

 ∑
s′∈{0,1}j−l:|s′|=k′′−k

∣∣∣∣∣∣B̂l+1···j [s
′]
∣∣∣∣∣∣

2


≤

∑
l∈{i···j}

1

n2

≤ 1

n
.

Since i and j were arbitrary, this contradicts our supposition and proves the result.

Proof of Theorem 5.2. By Lemma 2.2, we may assume that B is ordered. By Lemma 5.3 and a union bound,

P
T

[
∀k ≤ k′ < 2k ∀1 ≤ i ≤ j ≤ n Lk

′

2 (Bi···j |T ) ≤ 1

n

]
≥ 1− n4 · 2

2k
.

Lemma 5.4 thus implies that

P
T

[
∀k′′ ≥ k ∀1 ≤ i ≤ j ≤ n Lk

′′

2 (Bi···j |T ) ≤ 1

n

]
≥ 1− n4 · 2

2k
.

Thus

P
T

∑
k′′≥k

Lk
′′

2 (B|T ) ≤ 1

 ≥ 1− n4 · 2

2k
.
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By Theorem 3.2,∑
0<k′<k

Lk
′

2 (B|T ) ≤
∑

0<k′<k

Lk
′

2 (B) ≤
∑

0≤k′≤k−1

(2w2)k
′

=
(2w2)k − 1

2w2 − 1
≤ (2w2)k − 1.

The result now follows.

6 The Pseudorandom Generator

Our main result Theorem 1.1 is stated more formally as follows.

Theorem 6.1 (Main Result). There exists a pseudorandom generator family Gn,w,ε : {0, 1}sn,w,ε → {0, 1}n
with seed length

sn,w,ε = O(w2 log(w) log(n) log(nw/ε) + w4 log2(w/ε))

such that, for any length-n, width-w, read-once, oblivious (but unordered), permutation branching program
B and ε > 0, ∣∣∣∣∣∣∣∣ E

Usn,w,ε

[
B[Gn,w,ε(Usn,w,ε)]

]
− E
U

[B[U ]]

∣∣∣∣∣∣∣∣
2

≤ ε.

Moreover, Gn,w,ε can be computed in space O(sn,w,ε).

The following lemma gives the basis of our pseudorandom generator.

Lemma 6.2. Let B be a length-n, width-w, read-once, oblivious, regular branching program. Let ε ∈ (0, 1).
Let T be a random variable over {0, 1}n that is δ-almost 2k-wise independent and each bit has expectation
p, where we require

p ≤ 1/4w2, k ≥ log2

(
4
√
wn4/ε

)
, and δ ≤ (2w)−4k.

Let U be uniform over {0, 1}n. Let X be a µ-biased random variable over {0, 1}n with µ ≤ ε(2w2)−k. Then∣∣∣∣∣∣∣∣ E
T,X,U

[B[Select(T,X,U)]]− E
U

[B[U ]]

∣∣∣∣∣∣∣∣
2

≤ 2ε.

Theorem 5.2 says that with high probability over T , B|T = E
U

[B[Select(T, ·, U)]] has small Fourier mass.

This implies that B|T is fooled by small bias X and thus

E
T,X,U

[B[Select(T,X,U)]] ≈ E
T,U,U ′

[B[Select(T,U ′, U)]] = E
U

[B[U ]] .

Proof. For t ∈ {0, 1}n, we have∣∣∣∣∣∣∣∣ EX,U [B[Select(t,X,U)]]− E
U

[B[U ]]

∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣E
X

[B|t[X]]− E
U

[B[U ]]
∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
s 6=0

B̂|t[s]X̂(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤
∑
s6=0

∣∣∣∣∣∣B̂|t[s]∣∣∣∣∣∣
2
|X̂(s)|

≤L2(B|t)µ.
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We apply Theorem 5.2 and, with probability at least 1− 2 · n4/2k over T , we have L2(B|T )µ ≤ ε. Thus∣∣∣∣∣∣∣∣ E
T,X,U

[B[Select(T,X,U)]]− E
U

[B[U ]]

∣∣∣∣∣∣∣∣
2

≤P
T

[L2(B|T )µ > ε] max
t

∣∣∣∣∣∣∣∣ EX,U [B[Select(t,X,U)]]− E
U

[B[U ]]

∣∣∣∣∣∣∣∣
2

+ P
T

[L2(B|T )µ ≤ ε] ε

≤2n4/2k · 2
√
w + ε

≤2ε.

Now we use the above results to construct our pseudorandom generator for a read-once, oblivious, permuta-
tion branching program B.

Lemma 6.2 says that, if we define Bt,x[y] := B[Select(t, x, y)], then E
T,X,U

[
BT,X [U ]

]
≈ E

U
[B[U ]], where T is

almost k-wise independent with each bit having expectation p and X has small bias. So now we need only
construct a pseudorandom generator for Bt,x, which is a length-(n − |t|) permutation branching program.
Then

E
T,X,Ũ

[
BT,X [Ũ ]

]
≈ E
T,X,U

[
BT,X [U ]

]
≈ E

U
[B[U ]] ,

where Ũ is the output of the pseudorandom generator for Bt,x. We construct Ũ ∈ {0, 1}n−|T | recursively;
each time we recurse, the required output length is reduced to n − |T | ≈ n(1 − p). Thus after O(log(n)/p)
levels of recursion the required output length is constant.

The only place where the analysis breaks down for regular branching programs is when we recurse. If B
is only a regular branching program, Bt,x may not be regular. However, if B is a permutation branching
program, then Bt,x is too. Essentially, the only obstacle to generalising the analysis to regular branching
programs is that regular branching programs are not closed under restrictions.

The pseudorandom generator is formally defined as follows.

Algorithm for Gn,w,ε : {0, 1}sn,w,ε → {0, 1}n.

Parameters: n ∈ N, w ∈ N, ε > 0.

Input: A random seed of length sn,w,ε.

1. Compute appropriate values of p ∈ [1/8w2, 1/4w2], k ≥ log2

(
4
√
wn4/ε

)
, δ = ε(2w)−4k, and

µ = ε(2w2)−k.1

2. If n ≤ (4 · log2(2/ε)/p)2, output n truly random bits and stop.

3. Sample T ∈ {0, 1}n where each bit has expectation p and the bits are δ-almost 2k-wise
independent.

4. If |T | < pn/2, output 0n and stop.

5. Recursively sample Ũ ∈ {0, 1}bn(1−p/2)c. i.e. Ũ = Gbn(1−p/2)c,w,ε(U).

6. Sample X ∈ {0, 1}n from a µ-biased distribution.

7. Output Select(T,X, Ũ) ∈ {0, 1}n.

The analysis of the algorithm proceeds roughly as follows.

1For the purposes of the analysis we assume that p, k, δ, and µ are the same at every level of recursion. So if Gn,w,ε is being
called recursively, use the same values of p, k, δ, and µ as at the previous level of recursion.
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• Every time we recurse, n is decreased to bn(1 − p/2)c. After O(log(n)/p) recursions, n is reduced to
O(1). So the maximum recursion depth is r = O(log(n)/p).

• The probability of failing because |T | < pn/2 is small by a Chernoff bound for limited independence.
(This requires that n is not too small and, hence, step 2.)

• The output is pseudorandom, as

E
U

[B[Gn,w,ε(U)]] = E
T,X,Ũ

[
B[Select(T,X, Ũ)]

]
≈ E
T,X,U

[B[Select(T,X,U)]] ≈ E
U

[B[U ]] .

The first approximate equality holds because we inductively assume that Ũ is pseudorandom. The
second approximate equality holds by Lemma 6.2.

• The total seed length is the seed length needed to sample X and T at each level of recursion and
O((log(1/ε)/p)2) truly random bits at the last level. Sampling X requires seed length O(log(n/µ)) =
O(log(n/ε)+k log(w)) and sampling T requires seed lengthO(k log(1/p)+log(log(n)/δ)) = O(k log(w)+
log(log(n)/ε)) so the total seed length is

O(r · (k log(w) + log(n/ε)) + w4 log2(1/ε)) = O(w2 log(w) log(n) log(nw/ε) + w4 log2(1/ε)).

Lemma 6.3. The probability that Gn,w,ε fails at step 4 is bounded by 2ε—that is, P
T

[|T | < pn/2] ≤ 2ε.

Proof. By a Chernoff bound for limited independence (see Lemma B.1),

P
T

[|T | < pn/2] ≤
(

k′2

4n(p/2)2

)bk′/2c
+

δ

(p/2)k′
,

where k′ ≤ 2k is arbitrary. Set k′ = 2dlog2(1/ε)e. Step 2 ensures that n > (4 · log2(2/ε)/p)2 > (2k′/p)2.
Thus we have

P
T

[|T | < pn/2] ≤
(

k′2

4(2k′/p)2(p/2)2

)log2(1/ε)

+
ε(2w)−4k

(p/2)k
≤ 2ε.

The following bounds the error of Gn,w,ε.

Lemma 6.4. Let B be a length-n, width-w, read-once, oblivious, permutation branching program. Then∣∣∣∣∣∣∣∣ E
Usn,w,ε

[
B[Gn,w,ε(Usn,w,ε

)]
]
− E
U

[B[U ]]

∣∣∣∣∣∣∣∣
2

≤ 6
√
wrε = O(w2.5 log(n)ε),

where r = O(log(n)/p) is the maximum recursion depth of Gn,w,ε.

Proof. For 0 ≤ i < r, let ni, Ti, Xi, and Ũi be the values of n, T , X, and Ũ at recursion level i. We have
ni+1 = bni(1− p/2)c ≤ n(1− p/2)i+1 and Ũi−1 = Select(Ti, Xi, Ũi). Let ∆i be the error of the output from
the ith level of recursion—that is,

∆i := max
B′

∣∣∣∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti, Xi, Ũi)]

]
− E
U

[B′[U ]]

∣∣∣∣∣∣∣∣
2

,

where the maximum is taken over all length-ni, width-w, read-once, oblivious, permutation branching pro-
grams B′.
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Since the last level of recursion outputs uniform randomness, ∆r = 0. For 0 ≤ i < r, we have, for some B′,

∆i ≤
∣∣∣∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti, Xi, Ũi)]

]
− E
U

[B′[U ]]

∣∣∣∣∣∣∣∣
2

· P
T

[|T | ≥ pn/2]

+ 2
√
w · P

T
[|T | < pn/2]

≤
∣∣∣∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti, Xi, Ũi)]

]
− E
Ti,Xi,U

[B′[Select(Ti, Xi, U)]]

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣ E
Ti,Xi,U

[B′[Select(Ti, Xi, U)]]− E
U

[B′[U ]]

∣∣∣∣∣∣∣∣
2

+ 2
√
w · P

T
[|T | < pn/2]

By Lemma 6.2, ∣∣∣∣∣∣∣∣ E
Ti,Xi,U

[B′[Select(Ti, Xi, U)]]− E
U

[B′[U ]]

∣∣∣∣∣∣∣∣
2

≤ 2ε.

By Lemma 6.3,
P
T

[|T | < pn/2] ≤ 2ε.

We claim that ∣∣∣∣∣∣∣∣ E
Ti,Xi,Ũi

[
B′[Select(Ti, Xi, Ũi)]

]
− E
Ti,Xi,U

[B′[Select(Ti, Xi, U)]]

∣∣∣∣∣∣∣∣
2

≤ ∆i+1.

Before we prove the claim, we complete the proof: This gives ∆i ≤ ∆i+1 + 2ε + 2
√
w · 2ε. It follows that

∆0 ≤ 6
√
wrε, as required.

Now to prove the claim. In fact, we prove a stronger result: for every fixed Ti = t and Xi = x. We have∣∣∣∣∣∣∣∣Ẽ
Ui

[
B′[Select(t, x, Ũi)]

]
− E
U

[B′[Select(t, x, U)]]

∣∣∣∣∣∣∣∣
2

≤ ∆i+1.

Consider Bx,t[y] := B′[Select(t, x, y)] as a function of y ∈ {0, 1}ni−|t|. Then Bx,t is a width-w, length-
(ni− |t|), read-once, oblivious, permutation branching program—Bx,t is obtained from B′ by fixing the bits
in t to the values from x and ‘collapsing’ those layers. (If B′ is a regular branching program, then Bx,t is
not necessarily a regular branching program. This is the only part of the proof where we need to assume
that B is a permutation branching program.)

We inductively know that Ũi is pseudorandom for Bx,t—that is,

∣∣∣∣∣∣∣∣Ẽ
Ui

[
Bx,t[Ũi]

]
− E
U

[
Bx,t[U ]

]∣∣∣∣∣∣∣∣
2

≤ ∆i+1.

Thus ∣∣∣∣∣∣∣∣Ẽ
Ui

[
B′[Select(t, x, Ũi)]

]
− E
U

[B′[Select(t, x, U)]]

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣Ẽ
Ui

[
Bx,t[Ũi]

]
− E
U

[
Bx,t[U ]

]∣∣∣∣∣∣∣∣
2

≤ ∆i+1,

as required.

Proof of Theorem 6.1. Choose ε′ = Θ(ε/w2.5 log(n)) such that Gn,w,ε′ has error ε. The seed length is

sn,w,ε′ = O(w2 log(w) log(n) log(nw/ε) + w4 log2(w log(n)/ε)),

as required.
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7 General Read-Once, Oblivious Branching Programs

With a different setting of parameters, our pseudorandom generator can fool arbitrary oblivious, read-once
branching programs, rather than just permutation branching programs.

Theorem 7.1. There exists a pseudorandom generator family G′n,w,ε : {0, 1}s
′
n,w,ε → {0, 1}n with seed

length s′n,w,ε = O(
√
n log3(n) log(nw/ε)) such that, for any length-n, width-w, oblivious, read-once branching

program B and ε > 0, ∣∣∣∣∣
∣∣∣∣∣ E
Us′n,w,ε

[
B[G′n,w,ε(Us′n,w,ε

)]
]
− E
U

[B[U ]]

∣∣∣∣∣
∣∣∣∣∣
2

≤ ε.

Moreover, G′n,w,ε is computable in space O(sn,w,ε).

Theorem 7.1 implies Theorem 1.2.

Compared to Theorem 6.1, the seed length has a worse dependence on the length (
√
n versus log2 n), but

has a much better dependence on the width (logw versus poly(w)).

Impagliazzo, Meka, and Zuckerman [13] obtain the seed length
√
s · 2O(

√
log s) = s1/2+o(1) for arbitrary

branching programs of size s. For a width-w, length-n, read-once branching program, s = O(wn). Our
result is incomparable to that of Impagliazzo et al. Our result only covers oblivious, read-once branching
programs, while that of Impagliazzo et al. covers non-read-once and non-oblivious branching programs.
However, our seed length depends logarithmically on the width, while theirs depends polynomially on the

width; we can achieve seed length n1/2+o(1) for width 2n
o(1)

while they require width no(1).

The key to proving Theorem 7.1 is the following Fourier mass bound for arbitrary branching programs.

Lemma 7.2. Let B be a length-n, width-w, read-once, oblivious branching program. Then, for all k ∈ [n],

Lk2(B) :=
∑

s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2
≤

√
w

(
n

k

)
≤
√
wnk.

Proof. By Parseval’s Identity,∑
s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣2

2
≤

∑
s∈{0,1}n

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣2

Fr
= E

U

[
||B[U ]||2Fr

]
= w.

The result follows from Cauchy-Schwartz.

The bound of Lemma 7.2 is different that of Theorem 3.2. This leads to the different seed length in Theorem
7.1 versus Theorem 6.1.

Lemma 7.2 gives a different version of our main lemma (Theorem 5.2).

Lemma 7.3. Let B be a length-n, width-w, read-once, oblivious branching program. Let T be a random
variable over {0, 1}n where each bit has expectation p and the bits are 2k-wise independent. Suppose p ≤
1/
√

4n. Then

P
T

[
L2(B|T ) ≤

√
w · nk/2

]
≥ 1− k ·

√
w · n3 · 2−k.

Using Lemma 7.3, we can construct a pseudorandom generator fooling general read-once, oblivious branching
programs (Theorem 7.1), similarly to the proof of Theorem 6.1. For more details, see Appendix C.
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8 Further Work

One open problem is to extend the main result (Theorem 6.1) to regular or even non-regular branching
programs while maintaining polylog(n) seed length. As discussed in Section 6, the only part of our analysis
that fails for regular branching programs is the recursive analysis. The problem is that regular branching
programs are not closed under restriction—that is, setting some of the bits of a regular branching program
does not necessarily yield a regular branching program. In particular, we cannot bound∣∣∣∣∣∣∣∣Ẽ

U

[
B[Select(t, x, Ũ)]

]
− E
U

[B[Select(t, x, U)]]

∣∣∣∣∣∣∣∣
for fixed t and x by the distinguishability of Ũ and U by another read-once, oblivious, regular branching
program Bx,t. We have two options:

• Find another way to bound

∣∣∣∣∣∣∣∣ E
T,X,Ũ

[
B[Select(T,X, Ũ)]

]
− E
T,X,

[B[Select(T,X,U)]]

∣∣∣∣∣∣∣∣.
• Extend the main lemma (Theorem 5.2) to non-regular branching programs.

Towards the latter option, we have the following conjecture.

Conjecture 8.1. For every constant w, the following holds. Let B be a length-n, width-w, read-once,
oblivious branching program. Then

Lk2(B) =
∑

s∈{0,1}n:|s|=k

∣∣∣∣∣∣B̂[s]
∣∣∣∣∣∣

2
≤ nO(1)(log n)O(k)

for all k ≥ 1.

This conjecture relates to the Coin Theorem of Brody and Verbin (see the discussion in Section 4). Specifi-
cally, if we remove the nO(1) factor, this conjecture implies the Coin Theorem.

Conjecture 8.1 would suffice to construct a pseudorandom generator for constant-width, read-once, oblivious
branching programs with seed length polylog(n).

The seed length of our generators is worse than that of generators for ordered branching programs. Indeed, for
ordered permutation branching programs of constant width, it is known how to achieve seed length O(log n)
[17], whereas we only achieve seed length O(log2 n) in Theorem 6.1. For general ordered branching programs,
Nisan [21] obtains seed length O(log(nw) log(n)), whereas Theorem 7.1 gives seed length Õ(

√
n log(w)). It

would be interesting to close these gaps.
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A Proof of Lemma 3.1

Lemma 3.1. Let B be a length-n, width-w, ordered, regular branching program. Then∑
1≤i≤n

∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]
∣∣∣∣∣∣

2
≤ 2w2.

This proof is adapted from [5, Lemma 4].

Proof. Define ρ : Rw×w → R by

ρ(X) :=
∑

1≤u<v≤w

||X(u, ·)−X(v, ·)||2 ,

where X(u, ·) and X(v, ·) are the uth and vth rows of X respectively. We claim that, for all i ∈ [n] and
X ∈ Rw×w, ∣∣∣∣∣∣B̂i[1]X

∣∣∣∣∣∣
2
≤ 2(ρ(X)− ρ(B̂i[0]X)).

It follows that∑
i∈[n]

∣∣∣∣∣∣B̂i[1]B̂i+1···n[0n−i]
∣∣∣∣∣∣

2
≤ 2

∑
i∈[n]

ρ(B̂i+1···n[0n−i])− ρ(B̂i···n[0n−i+1]) = 2(ρ(I)− ρ(B̂[0n])).

Noting that ρ(I) ≤ w2, we obtain the result.

Intuitively, ρ(B̂i···n[0n]) measures the ‘correlation’ between the state at layer i and the state at the last
layer when run on uniform randomness; ρ measures how much the distribution of the final state changes if
the state at layer i is changed from u to v and this is summed over all pairs {u, v}. On the other hand,∣∣∣∣∣∣B̂i···n[1 ◦ 0n−i]

∣∣∣∣∣∣
2

measures the correlation between bit i and the final state; the Fourier coefficient shows

how much Bi···n correlates with bit i. Our claim simply states that this correlation is ‘conserved’—that is,
the correlation of the state at layer i plus the correlation of bit i is bounded by the correlation of the state
at layer i+ 1. This makes sense as the state at layer i+ 1 is determined by the state at layer i and bit i.

Now we prove our claim: Consider the rows of X and B̂i[0]X as points in Rw. We start with 2w points
corresponding to each row of X repeated twice and we move these points one by one until they correspond
to the rows of B̂i[0]X repeated twice: In step u ∈ [w], we take one point corresponding to row Bi[0](u) of
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X (that is, Bi[0](u, ·)X) and one point corresponding to row Bi[1](u) of X (Bi[1](u, ·)X) and move both to

their midpoint B̂i[0](u, ·)X = (Bi[0](u, ·)X +Bi[1](u, ·)X)/2.

Let Pu be the multiset of points at step u ∈ [w] ∪ {0}. That is,

P0 =
⋃
u∈[w]

{X(u, ·), X(u, ·)}

and, for all u ∈ [w],

Pu = (Pu−1\{Bi[0](u, ·)X,Bi[1](u, ·)X}) ∪ {B̂i[0](u, ·)X, B̂i[0](u, ·)X}.

By regularity, we have Pw =
⋃
u∈[w]{B̂i[0](u, ·)X, B̂i[0](u, ·)X}.

Now we can consider ρ as a function on the collection of points Pu:

ρ′(Pu) :=
∑

x,y∈Pu:x≺y
||x− y||2 ,

where the comparison x ≺ y is with respect to some arbitrary ordering on the multiset of points. (We simply

do not want to double count pairs.) We have ρ′(P0) = 4ρ(X) and ρ′(Pw) = 4ρ(B̂i[0]X). Note that the 4
factor comes from the fact that every pair of rows (X(u, ·), X(v, ·)) becomes four pairs of points in P0, as
every row corresponds to two points.

Fix u ∈ [w]. Now we bound ρ′(Pu−1)− ρ′(Pu): Let x = Bi[0](u, ·)X, y = Bi[1](u, ·)X, and z = B̂i[0](u, ·)X.
Then Pu = (Pu−1\{x, y}) ∪ {z, z} and z = (x+ y)/2. We have

ρ′(Pu−1)− ρ′(Pu) = ||x− y||2 +
∑

w∈(Pu−1\{x,y})

||w − x||2 + ||w − y||2 − 2 ||w − z||2 .

By the triangle inequality,

2 ||w − z||2 = ||2w − (x+ y)||2 ≤ ||w − x||2 + ||w − y||2 .

So
ρ′(Pu−1)− ρ′(Pu) ≥ ||x− y||2 = ||Bi[0](u, ·)X −Bi[1](u, ·)X||2 =

∣∣∣∣∣∣2B̂i[1](u, ·)X
∣∣∣∣∣∣

2
.

It follows that

4ρ(X)− 4ρ(B̂i[0]X) = ρ′(P0)− ρ′(Pw) =
∑
u∈[w]

ρ′(Pu−1)− ρ′(Pu) ≥ 2
∑
u∈[w]

∣∣∣∣∣∣B̂i[1](u, ·)X
∣∣∣∣∣∣

2
≥ 2

∣∣∣∣∣∣B̂i[1]X
∣∣∣∣∣∣

2
.

B Limited Independence

We use the following fact.

Lemma B.1 (Chernoff Bound for Limited Independence). Let X1 · · ·X` be δ-almost k-wise independent
random variables with 0 ≤ Xi ≤ 1 for all i. Set X =

∑
iXi. Then, for all ζ ∈ (0, 1),

P
X

[∣∣∣X − E
X

[X]
∣∣∣ ≥ `ζ] ≤ ( k2

4`ζ2

)bk/2c
+

δ

ζk
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The following proof is based on [28, Theorem 4]. The only difference is that we extend to almost k-wise
independence from k-wise independence.

Proof. Assume, without loss of generality, that k is even. Let µ = E
X

[X] and µi = E
X

[Xi]. We have

E
X

[
(X − µ)k

]
= E
X


 ∑

1≤i≤`

Xi − µi

k
 = E

X

 ∑
S∈[`]k

∏
i∈S

(Xi − µi)

 =
∑
S∈[`]k

E
X

[∏
i∈S

(Xi − µi)

]
.

Note that E
X

[Xi − µi] = 0 for all i. By δ-almost k-wise independence, each term in the product
∏
i∈S(Xi −

µi) is almost independent unless it is a repeated term. Thus, unless every term is a repeated term,∣∣∣E
X

[∏
i∈S(Xi − µi)

]∣∣∣ ≤ δ. If every term is repeated, then there are at most k/2 different terms. This

means we need only consider
(
`
k/2

)
(k/2)k values of S.

Also |Xi − µi| ≤ 1, so E
X

[∏
i∈S(Xi − µi)

]
≤ 1. Thus

E
X

[
(X − µ)k

]
≤
(

`

k/2

)
(k/2)k + `kδ ≤

(
(k/2)2`

)k/2
+ `kδ.

And, by Markov’s inequality,

P
X

[|X − µ| ≥ `ζ] = P
X

[
(X − µ)k ≥ (`ζ)k

]
≤

E
X

[
(X − µ)k

]
(`ζ)k

≤
(
k2

4`ζ2

)k/2
+

δ

ζk
,

as required.

Lemma B.2. We can sample a δ-almost k-wise independent random variable T over {0, 1}n with each bit
having expectation p = 2−d using O(kd+ log(log(n)/δ)) random bits.

Proof. The algorithm is as follows.

1. Sample X ∈ {0, 1}nd that is δ-almost kd-wise independent.

2. Sample Y ∈ {0, 1}d uniformly at random.

3. Let Z = X ⊕ (Y, Y, · · · , Y ). That is, XOR X with n copies of Y .

4. Let T (i) =
∏

(i−1)d<j≤id Z(j) for all i.

5. Output T .

Sampling X requires O(kd + log(log(n)/δ)) random bits [20, 1]. Sampling Y requires d random bits. By
XORing, Z has the property that it is both δ-almost kd-wise independent and every block of d consecutive
bits is independent. The latter property ensures that, for all i,

P
T

[T (i) = 1] = P
Z

[Z((i− 1)d+ 1) = Z((i− 1)d+ 2) = · · · = Z(id) = 1] = 2−d = p.

The former property ensures that T is δ-almost k-wise independent, as required.
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C General Read-Once, Oblivious Branching Programs

First we prove the main lemma for general branching programs:

Lemma 7.3. Let B be a length-n, width-w, read-once, oblivious branching program. Let T be a random
variable over {0, 1}n where each bit has expectation p and the bits are 2k-wise independent. Suppose p ≤
1/
√

4n. Then

P
T

[
L2(B|T ) ≤

√
w · nk/2

]
≥ 1− k ·

√
w · n3 · 2−k.

Proof. Fix i, j, and k′ with 1 ≤ i ≤ j ≤ n and k ≤ k′ < 2k. Then

E
T

[
Lk
′

2 (Bi···j |T )
]

=
∑

s⊂[n]:|s|=k′
P
T

[s ⊂ T ]
∣∣∣∣∣∣B̂i···j [s]∣∣∣∣∣∣ ≤ √wnk′pk′ ≤ √w2−k

′
≤
√
w2−k.

By Markov’s inequality and a union bound,

P
T

[
∀1 ≤ i ≤ j ≤ n ∀k ≤ k′ < 2k Lk

′

2 (Bi···j |T ) ≤ 1/n
]
≥ 1−

√
w · n4 · 2−k.

Lemma 5.4 now implies that

P
T

[
∀1 ≤ i ≤ j ≤ n ∀k′ ≥ k Lk

′

2 (Bi···j |T ) ≤ 1/n
]
≥ 1−

√
w · n4 · 2−k.

Thus

P
T

∑
k′≥k

Lk
′

2 (B|T ) ≤ 1

 ≥ 1−
√
w · n4 · 2−k.

Note that ∑
1≤k′<k

Lk
′

2 (B|T ) ≤
∑

1≤k′<k

√
wnk′ =

√
wn

n(k−1)/2 − 1√
n− 1

≤
√
w · nk/2 − 1.

The result follows.

Now we prove the result for general read-once, oblivious branching programs:

Theorem 7.1. There exists a pseudorandom generator family G′n,w,ε : {0, 1}s
′
n,w,ε → {0, 1}n with seed

length s′n,w,ε = O(
√
n log3(n) log(nw/ε)) such that, for any length-n, width-w, oblivious, read-once branching

program B and ε > 0, ∣∣∣∣∣
∣∣∣∣∣ E
Us′n,w,ε

[
B[G′n,w,ε(Us′n,w,ε

)]
]
− E
U

[B[U ]]

∣∣∣∣∣
∣∣∣∣∣
2

≤ ε.

Moreover, G′n,w,ε is computable in space O(sn,w,ε).

The pseudorandom generator is formally defined as follows.

Algorithm for G′n,w,ε : {0, 1}s
′
n,w,ε → {0, 1}n.

Parameters: n ∈ N, w ∈ N, ε > 0.

Input: A random seed of length s′n,w,ε.

1. Compute appropriate values of p ∈ [1/4
√
n, 1/2

√
n], k ≥ log2

(
2wn4/ε

)
, and µ = ε/

√
wnk.2

2For the purposes of the analysis we assume that p, k, and µ are the same at every level of recursion. So if G′n,w,ε is being
called recursively, use the same values of p, k, and µ as at the previous level of recursion.
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2. If n ≤ 16 log2(2/ε)/p, output n truly random bits and stop.

3. Sample T ∈ {0, 1}n where each bit has expectation p and the bits are 2k-wise independent.

4. If |T | < pn/2, output 0n and stop.

5. Recursively sample Ũ ∈ {0, 1}bn(1−p/2)c. i.e. Ũ = G′bn(1−p/2)c,w,ε(U).

6. Sample X ∈ {0, 1}n from a µ-biased distribution.

7. Output Select(T,X, Ũ) ∈ {0, 1}n.

Lemma C.1. The probability that G′n,w,ε fails at step 4 is bounded by ε—that is, P
T

[|T | < pn/2] ≤ ε.

We need the following Chernoff bound for limited independence, which gives a better dependence on p than
Lemma B.1.

Lemma C.2 ([28, Theorem 4 III]). Let X1, X2, · · · , Xn be k-wise independent random variables on [0, 1].
Let X =

∑
iXi. Let µ = E

X
[X] and σ2 ≥ Var[X]. If k ≥ 2 is even, then

P
X

[|X − µ| ≥ α] ≤
(
k ·max{k, σ2}

e2/3α2

)k/2
.

Proof of Lemma C.1. We have Var[|T |] = nVar[T (i)] = np(1− p) ≤ np. By Lemma C.2,

P
T

[|T | < pn/2] ≤
(

2k′np

e2/3(pn/2)2

)k′
,

where k′ ≤ k is arbitrary. Set k′ = dlog2(1/ε)e. Step 2 ensures that n > 16 log2(2/ε)/p > 16k′/p. Thus we
have

P
T

[|T | < pn/2] ≤
(

8k′

e2/3np

)log2(1/ε)

≤
(

8k′

e2/3(16k′)

)log2(1/ε)

≤ ε

.

Lemma C.3. Let B be a length-n, width-w, read-once, oblivious branching program. Let ε ∈ (0, 1). Let T be
a random variable over {0, 1}n that is 2k-wise independent and each bit has expectation p, where we require

p ≤ 1/
√

4n, k ≥ log2

(
2wn4/ε

)
.

Let U be uniform over {0, 1}n. Let X be a µ-biased random variable over {0, 1}n with µ ≤ ε/
√
wnk. Then∣∣∣∣∣∣∣∣ E

T,X,U
[B[Select(T,X,U)]]− E

U
[B[U ]]

∣∣∣∣∣∣∣∣
2

≤ 2ε.

Proof. For t ∈ {0, 1}n, we have∣∣∣∣∣∣∣∣ EX,U [B[Select(t,X,U)]]− E
U

[B[U ]]

∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣E
X

[B|t[X]]− E
U

[B[U ]]
∣∣∣∣∣∣

2
≤ L2(B|t)µ.

We apply Lemma 7.3 and with probability at least 1−
√
wn4/2k over T , we have L2(B|T )µ ≤ ε. Thus∣∣∣∣∣∣∣∣ E

T,X,U
[B[Select(T,X,U)]]− E

U
[B[U ]]

∣∣∣∣∣∣∣∣
2

≤P
T

[L2(B|T )µ > ε] 2
√
w + P

T
[L2(B|T )µ ≤ ε] ε

≤
√
wn4/2k · 2

√
w + ε

≤2ε.
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Lemma C.4. Let B be a length-n, width-w, read-once, oblivious branching program. Then∣∣∣∣∣
∣∣∣∣∣ E
Us′n,w,ε

[
B[G′n,w,ε(Us′n,w,ε

)]
]
− E
U

[B[U ]]

∣∣∣∣∣
∣∣∣∣∣
2

≤ 4
√
wrε,

where r = O(log(n)/p) is the recursion depth of G′n,w,ε.

The proof of this lemma is exactly as before (Lemma 6.4), except we no longer need the assumption that B
is a permutation branching program.

Setting ε′ = O(ε/
√
nw log(n)) we can ensure that that G′n,w,ε′ has error at most ε. The overall seed length is

O(
√
n log3(n) log(nw/ε)): Each of the r = O(

√
n log(n)) levels of recursion requires O(log(w/ε) + k log(n))

random bits to sample X and O(k log2 n) bits to sample T . Finally we need O(log(1/ε)/p) random bits at
the last level. Since k = O(log(nw/ε)), this gives the required seed length.
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