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Abstract

Let P be an affine invariant property of functions Fn
p → [R] for fixed p and R. We show that

if P is locally testable with a constant number of queries, then one can estimate the distance of
a function f from P with a constant number of queries. This was previously unknown even for
simple properties such as cubic polynomials over F2.

Our test is simple: take a restriction of f to a constant dimensional affine subspace, and
measure its distance from P. We show that by choosing the dimension large enough, this
approximates with high probability the global distance of f from P. The analysis combines the
approach of Fischer and Newman [SIAM J. Comp 2007] who established a similar result for
graph properties, with recently developed tools in higher order Fourier analysis, in particular
those developed in Bhattacharyya et al. [STOC 2013].

1 Introduction

Blum, Luby, and Rubinfeld [BLR93] observed that given a function f : Fnp → Fp, it is possible to
inquire the value of f on a few random points, and accordingly probabilistically distinguish between
the case that f is a linear function and the case that f has to be modified on at least ε > 0 fraction
of points to become a linear function. Inspired by this observation, Rubinfeld and Sudan [RS93]
defined the concept of property testing which is now a major area of research in theoretical computer
science. Roughly speaking, to test a function for a property means to examine the value of the
function on a few random points, and accordingly (probabilistically) distinguish between the case
that the function has the property and the case that it is not too close to any function with that
property.

The focus of our work is on testing properties of multivariate functions over finite fields. Fix a
prime p > 2 and an integer R > 2 throughout. Let F = Fp be a prime field and [R] = {0, . . . , R−1}.
We consider properties of functions f : Fn → [R]. We are interested in testing the distance of a
function f : Fn → [R] to a property. Here the distance corresponds to the minimum fraction of
the points on which the function can be modified in order to satisfy the property. Fischer and
Newman [FN07] showed that it is possible to estimate the distance from a graph to any given
testable graph property. In this article we extend this result to the algebraic setting of affine-
invariant properties on functions f : Fn → [R]. Furthermore we show that the Fischer-Newman
test can be replaced by a more natural one: pick a sufficiently large subgraph H randomly and
estimate the distance of H to the property. Analogously, in our setting, we pick a sufficiently large
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affine subspace of Fn randomly, and measure the distance of the restriction of the function to this
subspace from the property.

1.1 Testability

Given a property P of functions in {Fn → [R] | n ∈ N}, we say that f : Fn → [R] is ε-far from P if

min
g∈P

Pr
x∈Fn

[f(x) 6= g(x)] > ε,

and we say that it is ε-close otherwise.

Definition 1.1 (Testability). A property P is said to be testable (with two-sided error) if there is
a function q : (0, 1) → N and an algorithm T that, given as input a parameter ε > 0 and oracle
access to a function f : Fn → [R], makes at most q(ε) queries to the oracle for f , accepts with
probability at least 2/3 if f ∈ P and rejects with probability at least 2/3 if f is ε-far from P.

Note that if we do not require any restrictions on P, then the algebraic structure of Fn becomes
irrelevant, and Fn would be treated as a generic set of size |F|n. To take the algebraic structure
into account, we have to require certain “invariance” conditions.

We say that a property P ⊆ {Fn → [R] | n ∈ N} is affine-invariant if for any f ∈ P and
any affine transformation A : Fn → Fn, we have Af := f ◦ A ∈ P (an affine transformation
A is of the form L + c where L is linear and c is a constant vector in Fn). Some well-studied
examples of affine-invariant properties include Reed-Muller codes (in other words, bounded degree
polynomials) [BFL91, BFLS91, FGL+96, RS96, AKK+05] and Fourier sparsity [GOS+09]. In fact,
affine invariance seems to be a common feature of most interesting properties that one would classify
as “algebraic”. Kaufman and Sudan in [KS08] made explicit note of this phenomenon and initiated
a general study of the testability of affine-invariant properties (see also [GK11]). In particular, they
asked for necessary and sufficient conditions for the testability of affine-invariant properties. This
question initiated an active line of research, which have led to a near complete characterization
of testable affine invariant properties, at least in the regime of one-sided error [BCSX11, KSV12,
Sha09, BGS10, BFL12, BFH+13].

It is not difficult to see that for affine-invariant properties testability has an equivalent “non-
algorithmic” definition through the distribution of restrictions to affine subspaces. We will describe
a restriction of Fn to an affine subspace of dimension k by an affine embedding A : Fk → Fn (an
affine embedding is an injective affine transformation). The restriction of f : Fn → [R] to the
subspace is then given by Af : Fk → [R].

Proposition 1.2. An affine-invariant property P is testable if and only if for every ε > 0, there
exist a constant k and a set H ⊆ {Fk → [R]}, such that for a function f : Fn → [R] and a random
affine embedding A : Fk → Fn the following holds. If f ∈ P, then

Pr[Af ∈ H] > 2/3,

and if f is ε-far from P, then
Pr[Af 6∈ H] > 2/3.
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1.2 Our contribution

For a property P and a positive real δ, let Pδ denote the set of all functions that are δ-close to the
property. Our main result is the following theorem.

Theorem 1.3. For every testable affine-invariant property P and every δ > 0, the property Pδ is
testable.

Theorem 1.3 says that for every ε, δ > 0 one can probabilistically distinguish between functions
that are δ-close to the property and the functions that are (δ + ε)-far from the property using
only a constant number of queries. In fact the test is very natural. We show that there exists a
constant kε,δ,P such that for a random affine embedding A : Fk → Fn, with probability at least
2/3, dist(Af,P) provides a sufficiently accurate estimate of dist(f,P). Hence our test will be the
following: Pick a random affine embedding A : Fk → Fn. If dist(Af,P) < δ + ε

2 accept, otherwise
reject. This corresponds to taking H =

{
h : Fk → [R] | dist(h,P) 6 δ + ε

2

}
in Proposition 1.2.

We note that previously it was unknown if one can test distance to even simple properties, such
as cubic polynomials over F2. The reason was that one specific natural test (the Gowers norm, or
derivatives test) was shown not to perform well for such properties. Our work shows that a natural
test indeed works, albeit the number of queries have to grow as a function of ε. We do not know
if this is necessary for simple properties, such as cubic polynomials over F2, and leave this as an
open problem.

On a technical level, our work combines two technologies developed in previous works. The
first is the work of Fischer and Newman [FN07] which obtained similar results for graph properties.
The second is higher order Fourier analysis, in particular a recent strong equidistribution theorem
established in Bhattacharyya et al. [BFH+13]. From a high level, the approach for the graph
case and the affine-invariant case are similar. One applies a regularization process, which allows
to represent a graph (or a function) by a small structure. Then, one argues that a large enough
random sample of the graph or function should have a similar small structure representing it.
Hence, properties of the main object can be approximated by properties of a large enough sample
of it. Fischer and Newman [FN07] implemented this idea in the graph case. We follow a similar
approach in the algebraic case, which inevitably introduces some new challenges. One may see this
result as an outcome of the large body of work on higher-order Fourier analysis developed in recent
years. Once the machinery was developed, we can now apply it in various frameworks which were
not accessible previously.

1.3 Proof overview

Let R = 2 for the simplicity of exposition, e.g. we consider functions f : Fn → {0, 1}. Let P be
an affine invariant property of functions {Fn → {0, 1} : n ∈ N} which is locally testable, and fix
ε, δ > 0. We want to show that there exists an m (which depends only on P, ε, δ) such that the
following holds. Let f : Fn → {0, 1} be a function, and let f̃ be the restriction of the function to a
random m-dimensional affine subspace of Fn. Then

• Completeness: If f is δ-close to P then, with high probability, f̃ is (δ + ε/2)-close to P.

• Soundness: If f is (δ + ε)-far from P then, with high probability, f̃ is (δ + ε/2)-far from P.

Once we show that we are done, as the local test computes the distance of f̃ from P. If it is below
δ + ε/2 we declare that f is δ-close to P; otherwise we declare it is (δ + ε)-far from P. The test
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correctness follows immediately from the completeness and soundness. We next argue why these
hold.

Let us first fix notations. Let A : Fm → Fn be a random full rank affine transformation. Then,
a restriction of f to a random m-dimensional affine subspace can be equivalently described by
f̃ = Af . The proof of the completeness is simple. If f is δ-close to a function g : Fn → {0, 1} which
is in P, then with high probability over a random restriction, the distance of Af and Ag is also at
most δ+om(1). This is true because a random affine subspace is pairwise independent with regards
to whether an element is contained in it. This, combined with Chebyshev’s inequality implies the
result. Then, by choosing m large enough we get the error term down to ε/2.

The main work (as in nearly all works in property testing) is to establish soundness. That is,
we wish to show that if a function f is far from P then, with high probability, a random restriction
of it is also from from the property. The main idea is to show that if for a typical restriction Af
is δ-close to a function h : Fm → {0, 1} which is in P, then h can be “pulled back” to a function
g : Fn → {0, 1} which is both roughly δ-close to f and also very close to P. This will contradict
our initial assumption that f is (δ + ε)-far from P. In order to do so we apply the machinery of
higher order Fourier analysis. The first description will hide various “cheats” but will present the
correct general outline. We then note which steps need to be fixed to make this argument actually
work.

First, we apply the assumption that P is locally testable to derive there exist a constant dimen-
sion k = k(P, ε) so that a random restriction to a k-dimensional subspace can distinguish functions
in P from functions which are ε/4-far from P. We want to decompose f to “structured” parts
which we will study, and “pseudo-random” parts which do not affect the distribution of restrictions
to k-dimensional subspaces. In order to do so, for a function f : Fn → {0, 1} define by µf,k the
distribution of its restriction to k-dimensional subspaces. That is, for v : Fk → {0, 1} let

µf,k[v] = Pr
A

[Af = v].

We need to slightly generalize this definition to functions where the output f(x) can be random.
In our context, a randomized function is a function f : Fn → [0, 1], which describes a distribution
over functions f ′ : Fn → {0, 1}, where for all x independently Pr[f ′(x) = 1] = f(x). We extend
the definition of µf,k to randomized functions by µf,k[v] = EA,f ′ µf ′,k[v]. By our definition, if two
functions f, g : Fn → [0, 1] have distributions µf,k and µg,k close in statistical distance, then random
restrictions to k-dimensional affine subspaces cannot distinguish f from g. This will be useful in
the analysis of the soundness.

We next decompose our function f based on the above intuition. The formal notion of pseud-
randomness we use is that of Gowers uniformity. Informally, the d-th Gowers uniformity measures
correlation with polynomials of degree less than d. However, it turns to capture much more than
that. For example, one can show that by choosing d large enough (d = pk suffices) then for any
functions f, g : Fn → [0, 1], if ‖f − g‖Ud is small enough then µf,k and µg,k are close in statistical
distance. Thus, it makes sense to approximate f as

f = f1 + f2

where f1 is structured (to be explained soon) and ‖f2‖Ud is small enough. This will allow us to
replace f with f1 for the purposes of analyzing its restrictions to k-dimensional subspaces. The
structure of f1 is as follows: it is a function of a constant number C = C(P, ε) of polynomials of
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degree less than d. That is,
f1(x) = Γ(P1(x), . . . , PC(x)),

where P1, . . . , PC are polynomials and Γ : FC → {0, 1} is some function (not necessarily a low degree
polynomial). The benefit of this decomposition is that f1 is “dimension-less” in the sense that Γ
does not depend on n; however, the polynomials P1, . . . , PC do depend on n. One can however
“regularize” these polynomials in order to obtain “random-looking” (or high rank) polynomials. It
can be shown that all properties of high rank polynomials are governed just by their degree (which
is at most d), hence essentially the entire description of f1 does not depend on n.

The next step is to show that the same type of decomposition can be applied to the restriction
Af of f . Clearly, Af = Af1 +Af2. We show that with high probability over the choice of A,

• Af1 = Γ(Q1(x), . . . , QC(x)) where Qi = APi are the restrictions of P1, . . . , PC ; and
Q1, . . . , QC are still of “high enough rank” to behave like random polynomials.

• ‖Af2‖Ud≈ ‖f2‖Ud so we can still approximate Af ≈ Af1 with respect to the distribution of
their restrictions to random k-dimensional subspaces.

We next apply the same decomposition process to h, which we recall is the assumed function (in
m variables) which is (δ + ε/2)-close to Af . By choosing the conditions of regularity of h slightly
weaker than those of f (but still strong enough), we get that we can decompose

h = h1 + h2

where
h1(x) = Γ′(Q1(x), . . . , QC′(x))

for some C ′ > C and ‖h2‖Ud is very small. The important aspect here is that, we can approximate
h by the structured function h1, and moreover that the polynomials Q1, . . . , QC which compose
Af1 are part of the description of h1. That is, both Af1 and h1 can be defined in terms of the same
basic building blocks (high rank polynomials Q1, . . . , QC).

The next step is to “pull back” h to a function defined on Fn. An easy first step is to pull back
h1. We need to define for C < i 6 C ′ pullback polynomials Pi : Fn → {0, 1} of Qi : Fn → {0, 1}
such that both Qi = APi; and such that P1, . . . , PC′ are of high rank. This can be done for example
by letting Pi = DQi for any affine map D : Fn → Fm for which AD is the identity map on Fm. This
provides a pull-back φ of the “coarse” description of f1 of h1, but does not in general generate a
function close to f (it makes sense, since we still haven’t used the finer “pseudo-random” structure
of f). Formally, we set φ(x) = Γ′(P1(x), . . . , PC′(x)). However, we can already show something
about φ: it is very close to P. More concretely, its distribution over restrictions to d-dimensional
subspaces is very close to that of h. Hence, the tester which distinguishes function in P from those
(ε/4)-far from P cannot distinguish φ from functions in P, hence φ must be (ε/4)-close to P.

The next step is to define a more refined pull-back of f . Define an atom as a subset {x ∈
Fn : P1(x) = a1, . . . , PC′(x) = aC′} for values a1, . . . , aC′ ∈ F. Note that the functions f1, h1 are
constant over atoms. We next define ψ : Fn → [0, 1] by redefining φ inside each atom, so that the
average over the atoms of φ, ψ is the same, but such that ψ is as close as possible to f given this
constraint. For example, if in an atom the average of f is higher than the value φ assigns to this
atom (and so it needs to be reduced to match φ), we set for all x in this atom ψ(x) = 0 if φ(x) = 0
and ψ(x) = α if f(x) = 1, where α is appropriately chosen so that the averages match. We then
show that ψ is a proper pull-back of h in the sense that
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• The distance between f, ψ is very close to the distance between Af, h, which we recall is at
most δ + ε/2.

• ψ is nearly ε+ 4 close to P in the distributional sense.

To finalize, we show that sampling a function g : Fn → {0, 1} based on ψ has the same properties,
which shows that f is not (δ + ε)-far from P.

Let us remark on a few technical points overlooked in the above description. First, there are the
exact notions of “high rank polynomials”. It turns that in order to make this entire argument work,
one needs to consider more general objects, called non-classical polynomials. We rely on a series of
results on the distributional properties of high-rank non-classical polynomials, in particular these
recently established in [BFH+13]. Also, the decomposition theorems are actually to three parts,

f = f1 + f2 + f3,

where f1 is structured as before, ‖f2‖2 is somewhat small (but not very small) and ‖f3‖Ud is very
small. This requires a somewhat more refined analysis to make the argument work, but does not
create any significant change in the proof outline as described above.

1.4 Comparison with graph property testing

The main outline of our proof follows closely that of Fischer and Newman [FN07]. They study
graph properties, where decompositions are given by the Szemerédi regularity lemma. Their test,
in the notation above, can be described as measuring the distance between Γ and all potential Γ′

which can be achieved from graphs that have the property. Our argument (when applied to graph
properties instead of affine invariant properties) shows that a much more natural test achieves the
same behaviour: choose a random small subgraph and measure its distance from the property. In
quantitative terms it is hard to compare the two results, as both get outrageous bounds coming
from the bounds in the regularity lemma. So, we view this part of our work as having contribution
in the simplicity of the test, and not in terms of the simplicity of the proof or the quantitative
bounds (which are both very similar).

The more challenging aspect of our work is to take this approach and carry it out in the affine
invariant settings. The main reason is that in the affine invariant setup the structural parts have
more structure in them than in the graph setting. In the graph setup, the structure of a graph
can be represented by a constant size graph with weighted edges. In the affine invariant case,
the structured part is a constant size function applied to polynomials. However there will be no
constant bound on the number of variables, and they can grow as n grows. So, at first glance, these
“compact descriptions” have sizes which grow with the input size; this is very different from the
graph case. The reason these compact descriptions are useful is because, as long as the polynomials
participating in them are “random enough”, then their exact definitions do not matter, just a
few simple properties of them (their degree, and “depth” for non-classical polynomials). This is
fueled by the recent advances on higher-order Fourier analysis. In essence, the state of the art has
reached a stage where these tools are powerful enough to simulate the counterpart arguments which
were initially developed in the context of graph properties. Still, the affine invariant case is more
complex, and there are some problems which we do not know yet how to handle. For example,

• A complete classification of one-sided testable properties (e.g. can properties of “infinite
complexity” be locally testable?); See [BFH+13]
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• A complete classification of two-sided testable properties.

• Properties where any non-trivial distance from them can be witnessed by a constant number
of queries (also called correlation testing [HL11]). For example, can one test correlation to
cubics over F2 using a constant number of queries?

2 Background

We need to recall some definitions and results about higher order Fourier analysis. Most of the
material in this section is directly quoted from the full version of [BFH+13].

Notation We shorthand F = Fp for a prime finite field. For f : Fn → C we denote ‖f‖1=
E[|f(x)|], ‖f‖22= E[|f(x)|2] where x ∈ Fn is chosen uniformly and ‖f‖∞= max|f(x)|. Note that
‖f‖16 ‖f‖26 ‖f‖∞. The expression om(1) denotes quantities which approach zero as m grows.
We shorthand x± ε for any quantity in [x− ε, x+ ε].

2.1 Uniformity norms and non-classical polynomials

Definition 2.1 (Multiplicative Derivative). Given a function f : Fn → C and an element h ∈ Fn,
define the multiplicative derivative in direction h of f to be the function ∆hf : Fn → C satisfying
∆hf(x) = f(x+ h)f(x) for all x ∈ Fn.

The Gowers norm of order d for a function f : Fn → C is the expected multiplicative derivative
of f in d random directions at a random point.

Definition 2.2 (Gowers norm). Given a function f : Fn → C and an integer d > 1, the Gowers
norm of order d for f is given by

‖f‖Ud=
∣∣∣∣ E
y1,...,yd,x∈Fn

[(∆y1∆y2 · · ·∆ydf)(x)]

∣∣∣∣1/2d .
Note that as ‖f‖U1= |E [f ] | the Gowers norm of order 1 is only a semi-norm. However for

d > 1, it is not difficult to show that ‖·‖Ud is indeed a norm.
If f = e2πiP/p where P : Fn → F is a polynomial of degree < d, then ‖f‖Ud= 1. If d < p

and ‖f‖∞6 1, then in fact, the converse holds, meaning that any function f : Fn → C satisfying
‖f‖∞6 1 and ‖f‖Ud= 1 is of this form. But when d > p, the converse is no longer true. In
order to characterize functions f : Fn → C with ‖f‖∞6 1 and ‖f‖Ud= 1, we define the notion of
non-classical polynomials.

Non-classical polynomials might not be necessarily F-valued. We need to introduce some nota-
tion. Let T denote the circle group R/Z. This is an abelian group with group operation denoted
+. For an integer k > 0, let Uk denote 1

pk
Z/Z, a subgroup of T. Let ι : F → U1 be the injection

x 7→ |x|
p mod 1, where |x| is the standard map from F to {0, 1, . . . , p− 1}. Let e : T → C denote

the character e (x) = e2πix.
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Definition 2.3 (Additive Derivative). Given a function1 P : Fn → T and an element h ∈ Fn,
define the additive derivative in direction h of f to be the function DhP : Fn → T satisfying
DhP (x) = P (x+ h)− P (x) for all x ∈ Fn.

Definition 2.4 (Non-classical polynomials). For an integer d > 0, a function P : Fn → T is said
to be a non-classical polynomial of degree 6 d (or simply a polynomial of degree 6 d) if for all
y1, . . . , yd+1, x ∈ Fn, it holds that

(Dy1 · · ·Dyd+1
P )(x) = 0. (1)

The degree of P is the smallest d for which the above holds. A function P : Fn → T is said to be a
classical polynomial of degree 6 d if it is a non-classical polynomial of degree 6 d whose image is
contained in ι(F).

It is a direct consequence that a function f : Fn → C with ‖f‖∞6 1 satisfies ‖f‖Ud+1= 1 if and
only if f = e (P ) for a (non-classical) polynomial P : Fn → T of degree 6 d.

Lemma 2.5 (Lemma 1.7 in [TZ11]). A function P : Fn → T is a polynomial of degree 6 d if and
only if P can be represented as

P (x1, . . . , xn) = α+
∑

06d1,...,dn<p;k>0:
0<

∑
i di6d−k(p−1)

cd1,...,dn,k|x1|d1 · · · |xn|dn
pk+1

mod 1,

for a unique choice of cd1,...,dn,k ∈ {0, 1, . . . , p− 1} and α ∈ T. The element α is called the shift
of P , and the largest integer k such that there exist d1, . . . , dn for which cd1,...,dn,k 6= 0 is called the
depth of P . Classical polynomials correspond to polynomials with 0 shift and 0 depth.

Also, for convenience of exposition, we will assume throughout this paper that the shifts of all
polynomials are zero. This can be done without affecting any of the results in this work. Hence,
all polynomials of depth k take values in Uk+1.

2.2 Uniformity over linear forms

A linear form in k variables is L = (`1, . . . , `k) ∈ Fk. We interpret it as a linear operator L :
(Fn)k → Fn given by L(x1, . . . , xk) =

∑k
i=1 `ixi.

Definition 2.6 (Cauchy-Schwarz complexity, [GT10]). Let L = {L1, . . . , Lm} be a set of linear
forms. The Cauchy-Schwarz complexity of L is the minimal s such that the following holds. For
every i ∈ [m], we can partition {Lj}j∈[m]\{i} into s+ 1 subsets such that Li does not belong to the
linear span of each subset.

Following is a lemma due to Green and Tao [GT10] based on repeated applications of the
Cauchy-Schwarz inequality.

1We try to adhere to the following convention: upper-case letters (e.g. F and P ) to denote functions mapping
from Fn to T or to F, lower-case letters (e.g. f and g) to denote functions mapping from Fn to C, and upper-case
Greek letters (e.g. Γ and Σ) to denote functions mapping TC to T. By abuse of notation, we sometimes conflate F
and ι(F).
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Lemma 2.7. Let f1, . . . , fm : Fn → [−1, 1]. Let L = {L1, . . . , Lm} be a system of m linear forms
in k variables of Cauchy-Schwarz complexity s. Then:∣∣∣∣∣ E

x1,...,xk∈Fn

[
m∏
i=1

fi(Li(x1, . . . , x`))

]∣∣∣∣∣ 6 min
i∈[m]
‖fi‖Us+1

We would need to apply Lemma 2.7 in this paper in the special case when L corresponds to
all pk linear forms describing all points in an affine subspace of dimension k. We would care only
about some upper bound on the Cauchy-Schwarz complexity of the system. The following claim
follows immediately from the definitions.

Claim 2.8. Let L = {(1, a1, . . . , ak) : a1, . . . , ak ∈ F}. Then the Cauchy-Schwarz complexity of L
is at most pk.

2.3 Polynomial factors and rank

Definition 2.9 (Factors). If X is a finite set then by a factor B we mean simply a partition of X
into finitely many pieces called atoms.

A function f : X → C is called B-measurable if it is constant on atoms of B. For any function
f : X → C, we may define the conditional expectation

E[f |B](x) = E
y∈B(x)

[f(y)],

where B(x) is the unique atom in B that contains x. Note that E[f |B] is B-measurable.
A finite collection of functions φ1, . . . , φC from X to some other finite space Y naturally define

a factor B = Bφ1,...,φC whose atoms are sets of the form {x : (φ1(x), . . . , φC(x)) = (y1, . . . , yC)}
for some (y1, . . . , yC) ∈ Y C . By an abuse of notation we also use B to denote the map x 7→
(φ1(x), . . . , φC(x)), thus also identifying the atom containing x with (φ1(x), . . . , φC(x)).

Definition 2.10 (Polynomial factors). If P1, . . . , PC : Fn → T is a sequence of polynomials, then
the factor BP1,...,PC is called a polynomial factor.

The complexity of B, denoted |B|, is the number of defining polynomials C. The degree of B
is the maximum degree among its defining polynomials P1, . . . , PC . If P1, . . . , PC are of depths
k1, . . . , kC , respectively, then ‖B‖=

∏C
i=1 p

ki+1 is called the order of B.
Notice that the number of atoms of B is bounded by ‖B‖.
Next we need to define the notion of the rank of a polynomial or a polynomial factor.

Definition 2.11 (Rank of a polynomial). Given a polynomial P : Fn → T and an integer d > 1,
the d-rank of P , denoted rankd(P ), is defined to be the smallest integer r such that there exist
polynomials Q1, . . . , Qr : Fn → T of degree 6 d − 1 and a function Γ : Tr → T satisfying P (x) =
Γ(Q1(x), . . . , Qr(x)). If d = 1, then 1-rank is defined to be ∞ if P is non-constant and 0 otherwise.

The rank of a polynomial P : Fn → T is its deg(P )-rank.

A high-rank polynomial of degree d is, intuitively, a “generic” degree-d polynomial. There are
no unexpected ways to decompose it into lower degree polynomials. The following theorem shows
that a high rank polynomial is distributed close to uniform.
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Theorem 2.12 (Theorem 4 of [KL08]). For any ε > 0 and integer d > 0, there exists r = r2.12(d, ε)
such that the following is true. If P : Fn → T is a degree-d polynomial with rank greater than r,
then |Ex[e (P (x))]|< ε.

Next, we will formalize the notion of a generic collection of polynomials. Intuitively, it should
mean that there are no unexpected algebraic dependencies among the polynomials.

Definition 2.13 (Rank and Regularity). A polynomial factor B defined by a sequence of polynomi-
als P1, . . . , PC : Fn → T with respective depths k1, . . . , kC is said to have rank r if r is the least inte-
ger for which there exist (λ1, . . . , λC) ∈ ZC so that (λ1 mod pk1+1, . . . , λC mod pkC+1) 6= (0, . . . , 0)
and the polynomial Q =

∑C
i=1 λiPi satisfies rankd(Q) 6 r where d = maxi deg(λiPi).

Given a polynomial factor B and a function r : N → N, we say B is r-regular if B is of rank
larger than r(|B|).

Note that since λ can be a multiple of p, rank measured with respect to deg(λP ) is not the
same as rank measured with respect to deg(P ). So, for instance, if B is the factor defined by a
single polynomial P of degree d and depth k, then

rank(B) = min
{
rankd(P ), rankd−(p−1)(pP ), · · · , rankd−k(p−1)(pkP )

}
.

Regular factors indeed do behave like generic collections of polynomials, and thus, given any
factor B that is not regular, it will often be useful to regularize B, that is, find a refinement B′ of
B that is regular up to our desires. We distinguish between two kinds of refinements.

Definition 2.14 (Semantic and syntactic refinements). A polynoial factor B′ is called a syntactic
refinement of B, and denoted B′ �syn B, if the sequence of polynomials defining B′ extends that
of B. It is called a semantic refinement, and denoted B′ �sem B if the induced partition is a
combinatorial refinement of the partition induced by B. In other words, if for every x, y ∈ Fn,
B′(x) = B′(y) implies B(x) = B(y).

The following lemma shows that every polynomial factor can be refined to be arbitrarily regular
without increasing its complexity by more than a constant.

Lemma 2.15 (Polynomial Regularity Lemma, Lemma 2.19 of [BFH+13]). Let r : N → N be a

non-decreasing function and d > 0 be an integer. Then, there is a function C
(r,d)
2.15 : N→ N such that

the following is true. Suppose B is a factor defined by polynomials P1, . . . , PC : Fn → T of degree
at most d. Then, there is an r-regular factor B′ consisting of polynomials Q1, . . . , QC′ : Fn → T of

degree 6 d such that B′ �sem B and C ′ 6 C(r,d)
2.15 (C).

The first step towards showing that regular factors behave like generic collections of polynomials
is to show that they are almost equipartitions.

Lemma 2.16 (Size of atoms, Lemma 3.2 of [BFH+13]). Given ε > 0, let B be a polynomial factor
of degree d > 0, complexity C, and rank r2.12(d, ε), defined by a tuple of polynomials P1, . . . , PC :
Fn → T having respective depths k1, . . . , kC . Suppose b = (b1, . . . , bC) ∈ Uk1+1× · · · ×UkC+1. Then

Pr
x

[B(x) = b] =
1

‖B‖
± ε.

In particular, for ε < 1
‖B‖ , B(x) attains every possible value in its range and thus has ‖B‖ atoms.

10



Finally we state the regularity lemma, the basis of the higher order Fourier analysis.

Theorem 2.17 (Theorem 4.4 of [BFL12]). Suppose ζ > 0 is a real and d, k > 1 are integers.
Let η : N → R+ be an arbitrary non-increasing function, and let r : N → N be an arbitrary non-
decreasing function. Let B0 be a polynomial factor of degree d and complexity C0. Then, there exist
C = C2.17(η, r, ζ, C0, d) such that the following holds.

Every function f : Fn → {0, 1} has a decomposition f = f1 + f2 + f3 such that the following is
true:

• f1 = E[f |B1] for a polynomial factor B1 �sem B0 of degree d and complexity C1 6 C.
• ‖f2‖2< ζ and ‖f3‖Ud+1< η(|B|).
• The functions f1 and f1 + f3 have range [0, 1]; f2 and f3 have range [−1, 1].
• B1 is r-regular.

Furthermore if rank(B0) > r2.17(η, r, ζ, C0, d), then one can assume that B1 �syn B0.

2.4 Useful claims

We prove in this subsection a few useful claims relating to polynomial factors.
Sometimes one needs to refine the decomposition given by the factor B1 in Theorem 2.17. The

following simple lemma is useful in such situations.

Lemma 2.18. Let B be a polynomial factor of complexity C and degree d, and let f : Fn → {0, 1}
be decomposed into f = E[f |B] + f2 + f3 for f2, f3 : Fn → [−1, 1]. If B′ �sem B is a polynomial
factor of degree d and complexity C ′, then∥∥E [f |B]−E

[
f |B′

]∥∥
1
6 ‖f2‖2 + pdC

′‖f3‖Ud+1 .

Proof. We have∥∥E [f |B]−E
[
f |B′

]∥∥
1

=
∥∥E [f2|B′]+ E

[
f3|B′

]∥∥
1
6 ‖f2‖1 +

∥∥E [f3|B′]∥∥1 .
The claim follows since ‖f2‖1 6 ‖f2‖2 and Claim 2.20 below shows that ‖E [f3|B′]‖1 6 pdC

′‖f3‖Ud+1 .
�

Claim 2.19. Let f : Fn → [−1, 1], and let B be a polynomial factor of degree d and complexity C.
Then for any atom b of B,

‖f(x)1B(x)=b‖Ud+16 ‖f‖Ud+1 .

Proof. Let B be defined by polynomials P1, . . . , PC of depths k1, . . . , kC , respectively. An atom
b ∈ B is defined by b = {x ∈ Fn : Pi(x) = bi}. So

‖f(x)1B(x)=b‖Ud+1 =

∥∥∥∥∥∥f(x)

C∏
i=1

1

pki+1

pki+1−1∑
λi=0

e (λi(Pi(x)− bi))

∥∥∥∥∥∥
Ud+1

6
C∏
i=1

p−(ki+1) ·
∑

(λ1,...,λC )

∈
∏
i[0,p

ki+1−1]

∥∥∥∥∥f(x)e

(∑
i

λi(Pi(x)− bi)

)∥∥∥∥∥
Ud+1

=

(
C∏
i=1

p−(ki+1)

)
·

(
C∏
i=1

pki+1‖f‖Ud+1

)
= ‖f‖Ud+1 .

Let us �
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Claim 2.20. Let f : Fn → [−1, 1], and let B be a polynomial factor of degree d and complexity C.
Then ‖E [f |B]‖1 6 pdC‖f‖Ud+1.

Proof. By the monotonicity of the Gowers norms and Claim 2.19, for every atom b ∈ B∣∣E [f(x)1B(x)=b
]∣∣ 6 ∥∥f(x)1B(x)=b

∥∥
Ud+1 6 ‖f‖Ud+1 .

Hence
‖E [f |B]‖1 =

∑
b∈B
|E
[
f(x)1B(x)=b

]
|6 pdC‖f‖Ud+1 .

�

We need a simple bound on Gowers uniformity norms in terms of L1 norm.

Claim 2.21. Let f : Fn → [−1, 1]. For any d > 1,

‖f‖Ud6 ‖f‖
1/2d

1 .

Proof. By the definition of the Ud norm and the boundedness of f ,

‖f‖2dUd6 E
x,y1,...,yd

∏
I⊆[d]

|f(x+
∑
i∈I

yi)|6 E|f(x)|= ‖f‖1.

�

We will also need the following lemma about restrictions of high rank polynomials to affine
subspaces.

Lemma 2.22. For ε > 0 and positive d, e, r, if m > m2.22(ε, d, e, r) and n > m then the following
holds. For every polynomial P : Fn → T of degree d, depth e and rank > r, a random affine
embedding A : Fm → Fn satisfies that

Pr[deg(P ) < d or (rankd(BP ) < r) or depth(P ) < e] < ε.

Proof. Let P ′ denote the property of “bad” restrictions of P . That is, P ′ is the property of
functions which are either polynomials of degree less than d; or polynomials of degree d and rank
less than r; or polynomials of degree d and depth less than e. By assumption P /∈ P ′. Theorem
1.7 in [BFH+13] shows that any degree-structural property, and in particular P ′, is locally defined.
Theorem 1.2 in [BFH+13] shows that any such property is locally testable. Furthermore, as all
elements in P ′ are polynomials of degree d, then P is η-far from P ′, where η > p−dd/(p−1)e is
the minimal distance of polynomials of degree d (it is not hard to see that the minimal distance
for non-classical polynomials of a given degree is achieved by a classical polynomial). Hence, by
Proposition 1.2 there exists m = m(η, d, e, r) such that for a random affine embedding A : Fm → Fn,
Pr[AP ∈ P ′] < ε. �
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3 Some remarks on testability

Let us discuss some results related to testablity of affine-invariant properties. To simplify the
presentation we focus on the special case of R = 2. The proof easily generalizes to R > 2, by
decomposing every function f : Fn → [R] as f = f (1) + . . . f (R) where f (i) is the indicator function
of the set {x : f(x) = i}.

Consider a function f : Fn → {0, 1}, and a positive integer k 6 n. Let A : Fk → Fn be a random
affine embedding. Let µf,k denote the distribution of Af : Fk → {0, 1}. So via this sampling, every
function f : Fn → {0, 1} defines a probability measure µf,k on the set of functions {Fk → {0, 1}}.
We denote by µf,k[v] the probability that µf,k assigns to v : Fk → {0, 1}.

This can be generalized to functions f : Fn → [0, 1]. We view such functions as distribution
over functions f ′ : Fn → {0, 1}, where Pr[f ′(x) = 1] = f(x) independently for all x ∈ Fn. Let
again A : Fk → Fn be a random affine embedding, and we denote by µf,k the distribution of
Af ′ : Fk → {0, 1}. This is a generalization of the former case as a function f : Fn → {0, 1} can be
identified with the function that maps every x ∈ Fn to the point-mass probability distribution over
{0, 1} which is concentrated on f(x).

The following simple corollary follows easily from the definition of testability.

Corollary 3.1. If an affine-invariant property P is testable, then for every ε > 0, there exist k > 1
so that the following holds. For any function f : Fn → {0, 1} with dist(f,P) > ε, and any function
g : Fn → {0, 1} in P, the statistical distance between µf,k and µg,k is at least 1/3.

Proof. From the definition of testability in Proposition 1.2, there exist k > 1 and a family H ⊆
{Fk → {0, 1}}, such that for a random affine embedding A : Fk → Fn, Pr[Ag ∈ H] > 2/3 and
Pr[Af ∈ H] 6 1/3. Hence, the statistical distance between µf,k and µg,k is at least 1/3. �

We can deduce the following useful corollary. If f : Fn → {0, 1} has a distribution µf,k which
is very close to µg,k for a function g ∈ P, then f must be close to P. In fact, the same holds for
f : Fn → [0, 1], except now the results holds with high probability over f ′ : Fn → {0, 1} sampled
from f .

Corollary 3.2. For ε > 0 let k > 1 be given by Corollary 3.1, and assume that n > n3.2(k, ε). Let
f : Fn → [0, 1] and g : Fn → {0, 1} so that g ∈ P and the statistical distance between µf,k, µg,k is at
most 1/4. Let f ′ : Fn → {0, 1} be sampled by taking f ′(x) = 1 with probability f(x) independently
for all x ∈ Fn. Then with probability at least 99% over the choice of f ′,

dist(f ′,P) 6 ε.

Proof. We will show that by choosing n large enough, the distribution µf,k and µf ′,k are very close
in statistical distance (say, distance 6 1/12) with high probability (say, 99%). The corollary then
follows from Corollary 3.1 applied to f ′ and g. Let v : Fk → {0, 1} be a function. By definition

µf,k[v] = E
A,f ′

Pr[Af ′ = v] = E
f ′
µf ′,k[v].

Moreover, for two affine embeddings A1, A2 : Fk → Fn, if their images are disjoint then A1f
′ and

A2f
′ are independent. Since the probability over a random choice of A1, A2 that their images

intersect is at most p2k−n, we get that

Var[µf ′,k[v]] 6 p2k−n = on(1).
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This means that µf ′,k[v] = µf,k[v] + on(1) with probability 1− on(1). The result now follows from
applying the union bound over all possible values of v. �

We next argue that for two functions f, g : Fn → [0, 1], for any k > 1, there exists a d > 1 such
that, if ‖f − g‖Ud is small enough, then the statistical distance of µf,k, µg,k is arbitrarily small.
This is useful, since it shows that in this case if g ∈ P then f must be close to P provided that k
is large enough.

Lemma 3.3. For every ε > 0, k > 1, there exists ρ > 0, d > 1 such that the following holds. If
f, g : Fn → [0, 1] are functions such that ‖f − g‖Ud6 ρ, then the statistical distance between µf,k
and µg,k is at most ε.

Proof. Let A : Fk → Fn be a random affine embedding. Consider v : Fk → {0, 1}. For y ∈ Fk,
define fy(x) = 1− v(y)− (−1)v(y)f(x). The probability that µf,k samples v is given by

µf,k[v] = E
A,f ′

Pr[Af ′ = v] = E
A

∏
y∈Fk

fy(Ay).

Similarly define gy(x) = 1− v(y)− (−1)v(y)g(x) to obtain

µg,k[v] = E
A

∏
y∈Fk

gy(Ay).

Let < define an arbitrary ordering on Fk. We rewrite µf,k[v]− µg,k[v] as a telescopic sum

µf,k[v]− µg,k[v] =
∑
z∈Fk

E
A

(∏
y<z

fy(Ay)

)
· (fz(Az)− gz(Az)) ·

(∏
y>z

gy(Ay)

)
.

We bound each term in the sum. To do so, we will apply Lemma 2.7. Note that the set of linear
forms {Ay : y ∈ Fk} is exactly that given in Claim 2.8 and its Cauchy-Schwarz complexity is at
most pk. Note that ‖fy‖∞6 1. Hence for d = pk + 1 we get that∣∣∣∣∣EA

(∏
y<z

fy(Ay)

)
· (fz(Az)− gz(Az)) ·

(∏
y>z

gy(Ay)

)∣∣∣∣∣ 6 ‖fz − gz‖Ud= ‖f − g‖Ud .
We conclude that |µf,k[v] − µg,k[v]|6 pk‖f − g‖Ud and hence the statistical distance between µf,k
and µg,k is bounded by 2p

k
pk‖f − g‖Ud . The lemma follows for ρ = 2−p

k
p−kε. �

The following corollary is immediate.

Corollary 3.4. For every ε > 0 there exist d > 1, ρ > 0 such that the following holds. Let
f, g : Fn → {0, 1} be functions and assume that g ∈ P. If ‖f − g‖Ud6 ρ then f is ε-close to P.

Structured parts obtained from the decomposition theorems are of the form f(x) =
Γ(P1(x), . . . , PC(x)) where P1, . . . , PC are polynomials. We would argue that if they have large
enough rank, then µf,k essentially depends just on Γ and the degrees and depths of P1, . . . , PC , and
not on the specific polynomials.
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Lemma 3.5. For any ε > 0 and k, d > 1, there exists r = r3.5(k, d, ε) : N → N such the following
holds. Let P1, . . . , PC be an r-regular factor over Fn of degree at most d. Let Q1, . . . , QC be an
r-regular factor over Fm of degree at most d. Assume that both Pi, Qi have degree di 6 d and depth
ki, for all i 6 C. Let Γ :

∏C
i=1Uki+1 → [0, 1] be a function. Let f : Fn → [0, 1] be defined as

f(x) = Γ(P1(x), . . . , PC(x)) and g : Fm → [0, 1] be defined as g(x) = Γ(Q1(x), . . . , QC(x)). Then
µf,k and µg,k have statistical distance at most ε.

Proof. Let A : Fk → Fn be a random affine embedding. For y ∈ Fk define Γy :
∏C
i=1Uki+1 → [0, 1]

as
Γy(z1, . . . , zC) = 1− v(y)− (−1)v(y)Γ(z1, . . . , zC).

The probability that µf,k samples v : Fk → {0, 1} is

µf,k[v] = E
A

∏
y∈Fk

Γy(P1(Ay), . . . , PC(Ay)).

Expanding each Γy in the Fourier basis gives

Γy(z1, . . . , zC) =
∑

α∈
∏C
i=1 Uki+1

Γ̂y(α)e

 C∑
j=1

αjzj

.
Note that ‖ΓyΓ̂y‖∞6 1. Plugging this into the equation for µf,k[v] and expanding gives

µf,k[v] =
∑

α:Fk→
∏C
i=1 Uki+1

cα E
A
e

∑
y∈Fk

C∑
j=1

α(y)jPj(Ay)

,
where cα :=

∏
y∈Fk Γ̂y(α(y)). Note that |cα|6 1 and that it depends only on Γ and the depths of

the polynomials, and not on the specific polynomials. We will apply the same expansion to g and
obtain

µg,k[v] =
∑

α:Fk→
∏C
i=1 Uki+1

cα E
A
e

∑
y∈Fk

C∑
j=1

α(y)jQj(Ay)

.
We next apply Theorem 3.3 in [BFH+13]. It states that linear combination of systems of high

rank polynomials evaluated over affine linear forms, such as
∑

y∈Fk
∑C

j=1 α(y)jPj(Ay), are either
identically zero or very close to uniformly distributed. Concretely, the theorem states that for any
parameter γ(C) > 0, if we choose r(C) large enough, then for any polynomials P1, . . . , PC of degrees
d1, . . . , dC and depths k1, . . . , kC and rank at least r(C), either

∑
y∈Fk

C∑
j=1

α(y)jPj(Ay) ≡ 0

or ∣∣∣∣∣∣EA e

∑
y∈Fk

C∑
j=1

α(y)jPj(Ay)

∣∣∣∣∣∣ 6 γ(C).
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Note that we can apply this theorem both to P1, . . . , PC and to Q1, . . . , QC , obtaining the same
results. Hence, we conclude that

|µf,k[v]− µg,k[v]|6

(
C∏
i=1

pki+1

)
γ(C) 6 pdCγ(C).

Choosing γ(C) := p−dC2−p
k
ε we obtain that µf,k and µg,k have statistical distance at most ε. �

4 Proof of Theorem 1.3

To simplify the presentation we prove the theorem for the special case of R = 2. The proof easily
generalizes to R > 2, by decomposing every function f : Fn → [R] as f = f (1) + . . . f (R) where f (i)

is the indicator function of the set {x : f(x) = i}.
Let P ⊆ {f : Fn → {0, 1} : n ∈ N} be a testable affine-invariant property, and let δ, ε > 0 be the

parameters given in Theorem 1.3. We will show that a local test can distinguish between functions
which are δ-close to P to functions which are δ + ε far from P.

Let m = m(P, δ, ε) be a sufficiently large integer to be determined later, and let A : Fm → Fn
be a random affine embedding. We will establish the following two statements.

(i) If f : Fn → {0, 1} is δ-close to P, then

Pr[dist(Af,P) < δ + (ε/2)] > 2/3.

(ii) If f : Fn → {0, 1} is (δ + ε)-far from P, then

Pr[dist(Af,P) > δ + (ε/2)] > 2/3.

4.1 Proof of (i)

Since f is δ-close to P, there exists a function g ∈ P such that α := ‖f − g‖16 δ. Note that

E
A

[‖Af −Ag‖1] = E
x∈Fm,A

[|Af(x)−Ag(x)|] = E
x∈Fn

[|f(x)− g(x)|] = α.

Furthermore

E
A

[
‖Af −Ag‖21

]
= E

x,y∈Fm,A
[|Af(x)−Ag(x)||Af(y)−Ag(y)|] 6 α2 + Pr[x = y] 6 α2 +

1

pm
.

Hence Var[dist(Af,P)] 6 1
pm , and thus by Chebyshev’s inequality

Pr[dist(Af,P) > δ + (ε/2)] <
4

pmε2
< 1/3,

provided that m is sufficiently large.
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4.2 Proof of (ii)

We apply Corollary 3.2 and Corollary 3.4 with parameter ε/8 to obtain k, d > 1 and ρ > 0, so that
the following two statements hold.

• If f : Fn → {0, 1}, g : Fm → {0, 1} are functions, g ∈ P, and µf,k and µg,k have statistical
distance at most 1/4, then f is (ε/8)-close to P.

• If f, g : Fn → {0, 1} are functions and ‖f − g‖Ud< ρ, then µf,k and µg,k have statistical
distance at most 1/100.

Let f : Fn → {0, 1} be a function which is (δ + ε)-far from P. We start by decomposing f to a
structured part and a pseudo-random part. Our decompositions will use a number of parameters.
We already fixed ε, δ and d. Let γ > 0, η0, η1 : N → R+ and r0, r1 : N → N be parameters to be
determined later. For the reader who wishes to verify that these definitions are not cyclical, we
note that γ will depend just on ε, δ, d; that η1, r1 will depend just on ε, δ, d, γ; and that η0, r0 will
depend on ε, δ, d, γ, η1, r1.

We apply Theorem 2.17 to f with parameters d, γ, r0, η0 and a trivial initial factor, and obtain
an r0-regular polynomial factor B0 of degree less than d, and a decomposition

f = f1 + f2 + f3,

where f1 = E[f |B0], ‖f2‖2< γ, ‖f3‖Ud< η0(|B0|). Next, we project this decomposition to Af .
Suppose that B0 is defined by polynomials P1, . . . , PC . Denote by Qi := APi for i = 1, . . . , C, and
let B̃0 be the polynomial factor over Fm defined by the Qi’s. We decompose

Af = Af1 +Af2 +Af3.

The following claim argues that Af1, Af2, Af3 have similar properties to f1, f2, f3 with high
probability, assuming that m is chosen large enough and that r0 is chosen to grow fast enough.

Claim 4.1. Assume that r0(C) > r2.12(d, 1/(2p
dC)). If m > m4.1(d, γ, r0, η0), then the following

events hold with probability at least 99%.

(E1) The polynomials Q1, . . . , QC have the same degrees and depths as P1, . . . , PC , respectively,
and B̃0 is r0-regular.

(E2) We have ‖Af2‖2 6 2γ and ‖Af3‖Ud 6 2η0(|B0|).

(E3)
∥∥∥E[Af |B̃0]−AE[f |B0]

∥∥∥
∞
6 γ.

Proof. Lemma 2.22 shows that the probability that (E1) does not hold can be made arbitrarily
small by setting the parameters properly. To prove that (E2) holds with high probability, we will
show that Pr [‖Af3‖Ud > ‖f3‖Ud+om(1)] = om(1) and Pr [‖Af2‖2> ‖f‖2+om(1)] = om(1). We
only prove the former, as the proof of the latter is easy and similar. To do so, We will establish

that EA ‖Af3‖2
d

Ud = ‖f3‖2
d

Ud + om(1) and that Var(‖Af3‖2
d

Ud) = om(1), and apply Chebyshev’s
inequality.

We first establish the first moment calculation. Let y1, . . . , yd, x be uniform random variables
taking values in Fm. Note that if y1, . . . , yd, x are linearly independent then Ay1, . . . , Ayd, Ax are
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linearly independent uniform random variables taking values in Fn. The probability that they are
not linearly independent is at most pd+1−m = om(1). Combining this with the fact that ‖f3‖∞6 1
we get

E
A
‖Af3‖2

d

Ud = E [A∆y1,...,ydf3(x)] = E [∆Ay1,...,Aydf3(Ax)] = ‖f3‖2
d

Ud±p
d+1−m.

We proceed to the second moment calculation. Let y′1, . . . , y
′
d, x
′ be independent uniform

random variables taking values in Fm uniformly and independently of y1, . . . , yd, x. Similarly, if
y1, . . . , yd, x, y

′
1, . . . , y

′
d, x
′ are linearly independent then Ay1, . . . , Ayd, Ax,Ay

′
1, . . . , Ay

′
d, Ax

′ are lin-
early independent uniform random variables taking values in Fn. Hence same as before,

E
A
‖Af3‖2

d+1

Ud = E
[
(A∆y1,...,ydf3(x))

(
A∆y′1,...,y

′
d
f3(x

′)
)]

= ‖f3‖2
d+1

Ud ±p
2d+2−m.

Thus, Var(‖Af3‖2
d

Ud) = om(1) and by Chebyshev’s inequality (E2) holds with high probability
assuming m is chosen large enough.

We next establish that (E3) holds with high probability. Similarly to the previous calculation,
this will also be shown by performing a first and second moment calculation and applying Cheby-
shev’s inequality. Consider an atom b0 ∈ TC of B0. Since B̃0 is defined by AP1, . . . , APC , we have
that E[Af(y)|B̃0(y) = b0] = E[Af(y)|B0(Ay) = b0], hence

E
A

[E[Af(y)|B0(Ay) = b0]] = E
x∈Fn

[f(x)|B0(x) = b0],

and

E
A

[
E[Af(y)|B0(Ay) = b0]

2
]

= E
y1,y2∈Fm,A

[f(Ay1)f(Ay2)|B0(Ay1) = B0(Ay2) = b0]

= E[f(x)|B0(x) = b0]
2 ±Pr[y1 = y2|B0(Ay1) = B0(Ay2) = b0]

= E[f(x)|B0(x) = b0]
2 ± p−m/(|{x ∈ Fm : B0(x) = b0}|p−n)2

= E[f(x)|B0(x) = b0]
2 ± 4|B0|2p−m,

where in the last step we applied Theorem 2.12 and the assumption on the rank of B0 to lower
bound the size of the atom defined by b0. So by Chebyshev’s inequality E[Af(y)|B̃0(y) = b0] is
concentrated around Ex[f(x)|B0(x) = b0]. Since the number of atoms is bounded by ‖B0‖, we
obtain that with probability 1− om(1) this holds of every atom. �

Claim 4.1 shows that 99% of the affine embeddings A satisfy (E1), (E2), (E3). Let us assume
towards contradiction that PrA[dist(Af,P) > δ + (ε/2)] 6 1/3. So, we can fix an embedding A so
that (E1), (E2), (E3) hold, and find a function h : Fm → {0, 1} in P for which dist(Af, h) 6 δ+(ε/2).
We fix A and h for the reminder of the proof.

The next step is to decompose h. However, we wish to maintain the regular factor B̃0 we
obtained for Af . So, we apply Theorem 2.17 to h with parameters d, γ, r1, η1 and initial factor B̃0,
and obtain an r1-regular polynomial factor B̃1 of degree d, and a decomposition

h = h1 + h2 + h3,

where h1 = E[h|B̃1], ‖h2‖2< γ, ‖h3‖Ud< η1(|B1|). Furthermore, we will assume that r0 is much
larger than r1, so that by Theorem 2.17 we get that B̃1 is a syntactic refinement of B̃0 (which we
recall that by Claim 4.1 is r0-regular). Concretely, this will require us to assume that r0(C) >
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r2.17(η1, r1, γ, C, d). So, B̃1 is defined by polynomials Q1, . . . , QC′ for a constant C ′ > C, where we
recall that B̃0 was defined by Q1, . . . , QC . Our construction so far guarantees that for i 6 C we
have that Qi = APi and that Pi, Qi have the same depth and degree. We would like to guarantee
this also for i > C. That is, we would like to find polynomials Pi for C < i 6 C ′ defined over Fn
for which Qi = APi as well, and such that P1, . . . , PC′ is of high rank.

Let A′ : Fn → Fm be any affine transformation satisfying AA′ = Im. For i = C + 1, . . . , C ′ set
Pi := A′Qi. Note that applying an affine transformation cannot increase degree, depth, or rank.
Hence, since Pi = A′Qi and Qi = APi we must have that Pi, Qi have the same degree and depth
for C < i 6 C ′. Moreover, by (E1) we know that this also holds for i 6 C, hence it holds for all
1 6 i 6 C ′. Furthermore, since by construction Q1, . . . , QC′ are r1-regular than so are P1, . . . , PC′ .
We denote by B1 the polynomial factor defined by P1, . . . , PC′ . The following claim summarizes
the notation and the facts we established so far.

Claim 4.2. The factor B0 is an r0-regular factor over Fn defined by P1, . . . , PC . The factor B̃0 is
an r0-regular factor over Fm defined by Q1, . . . , QC . The factor B1 is an r1-regular factor over Fn
defined by P1, . . . , PC′. The factor B̃1 is an r1-regular factor over Fm defined by Q1, . . . , QC′. We
further have:

• Qi = APi.

• Pi, Qi have the same degree and depth.

• f = f1 + f2 + f3 where f1 = E[f |B0], ‖f2‖26 γ, ‖f3‖Ud6 η0(C).

• h : Fm → {0, 1} is a function in P to Af for which dist(Af, h) 6 δ + ε/2.

• h = h1 + h2 + h3 where h1 = E[h|B̃1], ‖h2‖26 γ, ‖h3‖Ud6 η1(C ′).

We already know that the property that h is in P does not actually depend on h3. We will
shortly show that for a small enough choice of γ, it also does not depend on h2, hence all the
information is essentially just in h1. We would like to lift h1 from Fm to Fn in order to get a
function g : Fn → {0, 1} which is close to P. Moreover, we would like to do so in a way so that
‖f −g‖1≈ dist(Af, h), hence this lifting must be done carefully. We start by lifting h1 : Fm → [0, 1]
to a function φ : Fn → [0, 1] which has a similar structure. We would later use φ to define the
required function g as discussed above.

The two factors B1 and B̃1 are both of large rank (at least r1(C
′)) and their defining polynomials

are in a degree and depth preserving one-to-one correspondence. This naturally defines an operator
T that maps functions φ : Fn → C measurable with respect to B1 to functions T φ : Fm → C
measurable with respect to B̃1. More precisely, T : Γ(P1, . . . , PC′) 7→ Γ(Q1, . . . , QC′) for every
function Γ. Note that T is invertible. So, recalling that h1 = Fm → [0, 1] is measurable with
respect to B̃1, it is natural to define φ : Fn → [0, 1] by

φ := T −1h1.

We first argue that φ is close to E[f |B1] assuming the underlying parameters are properly
chosen.

Claim 4.3. Assume that η0(C) 6 p−dC2.17(η1,r1,γ,C,d)γ and r1(C) > r2.12(d, p−dCγ). Then

‖E[f |B1]− φ‖16 δ + ε/2 + 9γ.
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Proof. By Lemma 2.16 and the condition on r1, every function φ : Fn → [−1, 1] satisfies

|‖T φ‖1−‖φ‖1|6 γ. (2)

We can thus write

‖E[f |B1]− T −1 E[h|B̃1]‖1 6 ‖T E[f |B1]−E[h|B̃1]‖1+γ
6 ‖T E[f |B1]− T E[f |B0]‖1+‖T E[f |B0]−E[Af |B̃0]‖1+

+‖E[Af |B̃0]−E[Af |B̃1]‖1+‖E[Af |B̃1]−E[h|B̃1]‖1+γ. (3)

We will show that each of the terms is bounded by O(γ), except for the fourth term for which

‖E[Af |B̃1]−E[h|B̃1]‖16 ‖Af − h‖16 δ + ε/2.

To bound the first term, we apply (2) and Lemma 2.18,

‖T E[f |B1]− T E[f |B0]‖16 ‖E[f |B1]−E[f |B0]‖1+γ 6 ‖f2‖2+pdC
′‖f3‖Ud+γ 6 3γ.

To bound the second term, by (E3)

‖T E[f |B0]−E[Af |B̃0]‖1= ‖AE[f |B0]−E[Af |B̃0]‖16 ‖AE[f |B0]−E[Af |B̃0]‖∞6 γ.

To bound the third term, by Lemma 2.18 and (E2),

‖E[Af |B̃0]−E[Af |B̃1]‖16 ‖Af2‖2+pdC
′‖Af3‖Ud6 2γ + 2γ 6 4γ.

�

The function φ is defined over Fn and has the same structure as h1, however we only guaranteed
that it is close to E[f |B1]. This cannot be avoided since φ is B1-measurable, and thus it cannot
approximate f inside the atoms. The next step is to define a function whose average on atoms
is φ, and that simultaneously has a small distance from f . It will be obtained by perturbing f
inside each atom in order to obtain the right average while making the changes minimal. It will
be convenient to first define such a function ψ mapping Fn to [0, 1]. Later we will use it to sample
g : Fn → {0, 1} with the required properties.

Define a function ψ : Fn → [0, 1] as follows. Fix x ∈ Fn and let b1 = B1(x) be its corresponding
atom in B1. Let α = E[f |B1](b1) be the average of f over the atom and β = φ(b1) be the value φ
attains on the atom. We set

ψ(x) =


β−α
1−α If α 6 β and f(x) = 0

1 If α 6 β and f(x) = 1
0 If α > β and f(x) = 0
β
α If α > β and f(x) = 1

The following claim summarizes the properties of ψ, assuming the underlying parameters are
properly chosen.

Claim 4.4. Assume that η0(C) 6 p−dC2.17(η1,r1,γ,C,d)γ. Then

(i) E[ψ|B1] = φ.
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(ii) ‖f − ψ‖1= ‖E[f |B1]− φ‖1.

(iii) ‖ψ − φ‖Ud6 γ + 3γ1/2
d
.

Proof. Items (i),(ii) follow immediately from the definition of ψ. To establish (iii), decompose
ψ − φ to the atoms of B1,

ψ(x)− φ(x) =
∑
b1∈B1

(ψ(x)− φ(b1)) 1B1(x)=b1 .

Fix an atom b1 of B1 and set α = E[f |B1](b1) and β = φ(b1). If α 6 β, then

(ψ(x)− β) 1B1(x)=b1 =

(
f(x) +

β − α
1− α

(1− f(x))− β
)

1B1(x)=b1 =
1− β
1− α

(f(x)− α)1B1(x)=b1 .

If α > β then

(ψ(x)− β) 1B1(x)=b1 =

(
β

α
f(x)− β

)
1B1(x)=b1 =

β

α
(f(x)− α)1B1(x)=b1 .

Recall that f = f1+f2+f3 with f1 = E[f |B0], ‖f‖26 γ, ‖f3‖Ud6 η0(|B0|). Define f ′i = fi−E[fi|B1].
Note that f(x)−E[f |B1](x) = f ′1(x) + f ′2(x) + f ′3(x). Furthermore, f ′1 = 0 since B1 is a refinement
of B0. Define ξ(x) = (1 − β)/(1 − α) if x belongs to an atom b1 with α 6 β, and ξ(x) = β/α
otherwise. We thus get that

ψ(x)− φ(x) =
∑
b∈B1

ξ(x)(f ′2(x) + f ′3(x))1B1(x)=b1 = ξ(x)(f ′2(x) + f ′3(x)).

We now bound ‖ψ − φ‖Ud . Now, by Claim 2.21 and the fact that ‖ξ‖∞6 1,

‖ξ · f ′2‖2
d

Ud6 ‖ξ · f
′
2‖16 ‖f2‖1+‖E[f2|B1]‖16 2‖f2‖16 2‖f2‖26 2γ.

By Claim 2.20 , we have

‖ξ ·E[f3|B1]‖2
d

Ud6 ‖ξ ·E[f3|B1]‖16 ‖E[f3|B1]‖16 pd|B1|‖f3‖Ud6 pd|B1|η0(|B0|) 6 γ.

Thus recalling that ‖B1‖ is an upper-bound on the number of atoms of B1, by Claim 2.19 we have

‖ξ · f ′3‖Ud 6 ‖ξ · E[f3|B1]‖Ud+‖ξ · f3‖Ud6 γ1/2
d

+
∑
b1∈B1

‖f3(x)1B1(x)=b1‖Ud

6 γ1/2
d

+ ‖B1‖‖f3‖Ud6 γ1/2
d

+ ‖B1‖η0(|B0|) 6 γ1/2
d

+ γ.

�

We are ready to conclude the proof. Let g : Fn → {0, 1} be sampled with Pr[g(x) = 1] = ψ(x)
independently for all x ∈ Fn. The following simple claim states that with high probability, g
behaves like ψ.

Claim 4.5. If n is large enough then with probability at least 99% over the choice of g,

• ‖f − g‖16 ‖f − ψ‖1+γ.

21



• ‖g − ψ‖Ud6 γ.

Proof. Both items are simple. The first item holds since Eg‖f −g‖1= ‖f −ψ‖1, and Var‖f −g‖16
p−n. Hence by Chebyshev’s inequality, ‖f − g‖1= ‖f − ψ‖1+γ with probability 1− on(1). For the
second item,

E
g
‖g − ψ‖2dUd= E

x,y1,...,yd∈Fn

∏
I⊆[d]

E
g

[g(x+
∑
i∈I

yi)− ψ(x+
∑
i∈I

yi)].

The inner expectation is zero if all the sums x +
∑

i∈I yi are distinct. In particular this holds if
y1, . . . , yd are linearly independent, which happens with probability at least 1− pd−n. Hence

E
g
‖g − ψ‖2dUd6 p

d−n = on(1),

and so by choosing n large enough we get that with high probability ‖g − ψ‖Ud6 γ. �

Fix g : Fn → {0, 1} satisfying Claim 4.5. Let us summarize the facts that we know so far. By
Claim 4.3, Claim 4.4 and Claim 4.5 we know that f and g are close. By choosing γ 6 ε/40 we get
that

‖f − g‖16 δ + ε/2 + 10γ 6 δ + 3ε/4.

We next argue that g is very close to P. Recall that h ∈ P and h1 = E[h|B̃1]. We have that

‖h− h1‖Ud6 ‖h2‖Ud+‖h3‖Ud6 ‖h2‖
1/2d

2 +‖h3‖Ud6 γ1/2
d

+ η1(C
′),

where we applied Claim 2.21 and the assumptions on h2, h3. By choosing γ 6 (ρ/2)2
d

and η1(C
′) 6

ρ/2, we get that ‖h − h1‖Ud6 ρ. Hence by Lemma 3.3 the statistical distance between µh,k and
µh1,k is at most 1/100. Next, by definition h1 = Γ(Q1, . . . , QC′) and φ = Γ(P1, . . . , PC′), where
both Q1, . . . , QC and P1, . . . , PC are r1-regular. Making sure that r1(C

′) > r3.5(C) guarantees that
conditions of Lemma 3.5 are satisfied, and hence µh1,k and µφ,k also have statistical distance at
most 1/100. Next, by Claim 4.4 and Claim 4.5 we have

‖g − φ‖Ud6 2γ + 3γ1/2
d
.

Choosing γ so that 2γ + 3γ1/2
d
6 ρ, we get that also the statistical distance between µg,k and µφ,k

is at most 1/100. Hence, combining all these together gives that

The statistical distance between µg,k and µh,k is at most 3/100.

Applying Corollary 3.4 we establish that

dist(g,P) 6 ε/8.

Hence we reached a contradiction, since f is (δ+ 3ε/4)-close to a function g which is (ε/8)-close to
P, that is f is (δ+ 7ε/8)-close to P, contradicting our initial assumption that f is (δ+ ε)-far from
P.
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