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Abstract

We study lower bounds for testing membership in families of linear/affine-invariant Boolean
functions over the hypercube. A family of functions P ⊆ {{0, 1}n → {0, 1}} is linear/affine
invariant if for any f ∈ P , it is the case that f ◦L ∈ P for any linear/affine transformation L of
the domain. Motivated by the recent resurgence of attention to the permutation isomorphism
problem, we first focus on families that are linearly/affinely isomorphic to some fixed function.
A function f : {0, 1}n → {0, 1} is called linear isomorphic to a fixed Boolean function g if
f = g ◦ A for some non-singular transformation A.

Our main result is a tight adaptive, two-sided Ω(n2) lower bound for testing linear iso-
morphism to the inner-product function. This is the first lower bound for testing linear iso-
morphism to a specific function that matches the trivial upper bound. Our proof exploits the
elegant connection between testing and communication complexity discovered by Blais et al.
(Computational Complexity, 2012.) Our results are also the first instance of this connection
that gives better than Ω(n) lower bound for any property of Boolean functions. These re-
sults extend to testing linear isomorphism to any fixed function in the larger class of so-called
Maiorana-McFarland bent functions.

Our second result shows an Ω(2n/4) query lower bound for any adaptive, two-sided tester for
membership in the Maiorana-McFarland class of bent functions. This class of Boolean functions
is also affine-invariant and its rich structure and pseudorandom properties have been well-studied
in mathematics, coding theory and cryptography.
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1 Introduction

A property P is a set of objects that share some common features. A local test for a property
P is a randomized algorithm which can distinguish inputs that belong to P from inputs that are
very different from every element in P , by making only a few queries to the input. In this work
we focus on families of boolean functions P ⊆ {Fn

2 → F2}, where F2 = {0, 1} is the field on
two elements. Formally, a (δ, k)-tester for P is a randomized algorithm that has oracle access
to a function f : Fn

2 → F2, makes k queries, and accepts w.p. at least 2/3 if f ∈ P , while
rejecting w.p. at least 2/3 if f is δ-far from P . The notion of distance to a property is given

by the relative Hamming distance, namely for f, g : Fn
2 → F2, dist(f, g) =

1
2n

|{x : f(x) 6= g(x)}|

and dist(f,P) = ming∈P dist(f, g). If a test always accepts function f ∈ P it is called one-
sided, otherwise it is two-sided. If the test must send the queries all at once it is called non-
adaptive, otherwise, namely when the queries could depend on answers to previous queries, the test
is adaptive.

The field of property testing was pioneered by Blum, Luby, and Rubinfeld [14], Rubinfeld
and Sudan [39] and Goldreich, Goldwasser and Ron [24] who introduced two major directions in
property testing: testing algebraic properties and testing combinatorial (e.g. graph) properties. To
a large extent, the focus of property testing so far has been to characterize what properties admit
testers that make only a constant number of queries (these properties are called strongly testable).
Alon et al. [2] and Borgs et al. [15] already showed a complete characterization of strongly testable
properties of dense graphs. Very recently, Bhattacharyya et al. [8] announced a characterization
of one-sided strongly testable boolean families that are invariant under “affine” transformations of
the domain.

A systematic study of strongly testable properties that are invariant under natural transfor-
mations of the domain was first proposed by Kaufman and Sudan [30]. The most studied and at
the same time most natural group of invariances for properties defined over structured, discrete
objects such as fields or vector spaces are linear and affine transformations of the domain. A linear
transformation LC : Fn

2 → Fn
2 is a mapping LC(x) = Cx, where C ∈ Fn×n

2 . An affine transforma-
tion LC,b : Fn

2 → Fn
2 is a mapping LC,b(x) = Cx + b, where C ∈ Fn×n

2 and b ∈ Fn
2 . A property

P ⊂ {Fn
2 → F2} is linear-invariant if f ∈ P if and only if f ◦LC ∈ P , for any linear transformation

LC , where f ◦LC(x) = f(LC(x)). Similarly, P is affine-invariant if f ∈ P if and only if the function
f ◦ LC,b ∈ P , for any affine LC,b, where f ◦ LC,b(x) = f(LC,b(x)). Following [30] linear/affine
invariant families have been intensely studied on two fronts: properties that arise in the setting
of linear codes [30, 28, 27, 6, 4, 3, 31, 5, 29], and properties that arise more often in the study
of boolean functions [26, 32, 40, 9, 8]. All these works study properties that are testable with a
constant number of queries.

Here we work in a somewhat complementary direction: we study linear/affine-invariant proper-
ties that are hard to test. Partly motivated by the recent resurgence of interest in the permutation
isomorphism problem [11, 1, 20, 19, 12, 10], we focus on testing linear/affine isomorphism to a
single function. This study, in a certain sense, combines the directions of testing linear/affine-
invariance and testing permutation isomorphism. As isomorphism defines an equivalence relation
among functions in the family, we restrict our attention to non-singular linear/affine transforma-
tions in this paper1 (non-singular transformations lead to permutations of a function while singular
transformations do not). More specifically, the orbit of a function f under the set of non-singular

1The reason of such a choice is explained later in Remark 1.2.
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linear transformations of Fn
2 is given by L(f) = {f ◦LC |C ∈ Fn×n

2 , det(C) = 1}; a function g is said
to be linearly isomorphic to f if g ∈ L(f). Similarly, the orbit of f under affine transformations
is the family A(f) = {f ◦ LC,b|C ∈ Fn×n

2 , det C = 1, b ∈ Fn
2} and g is affinely isomorphic to f if

g ∈ A(f). For instance, when f = x1 is a dictator function, L(f) is just the set of non-constant,
linear functions, and A(f) is the set of non-constant, affine functions.

We exhibit a large family of functions for which testing linear/affine isomorphism to every
function in the family requires Θ(n2) many queries. Our explicit functions arise from families
of Boolean bent functions. Bent functions are the functions that are the most ‘uncorrelated’ with
linear functions (see Section 2 for the precise definition that we use). A most common example
of bent functions, which is also an object of interest in this work, is the inner-product function
IPn : Fn

2 → F2 defined by IPn(x1, x2, . . . , xn) =
∑n/2

i=1 x2i−1x2i (here and in what follows we will
assume that n is a multiple of 4).

Bent functions have been well-investigated in mathematics, coding theory and combinatorial
design [35, 38, 18, 21, 22] for their rich structure, and in differential cryptography [16, 17] for their
pseudorandom and non-linearity properties that make them applicable to building hash-functions;
see e.g. [36] for a comprehensive survey. In property testing they were used before in [7] to show
lower bounds for testing triangle freeness.

In this work we also show exponential lower bounds for testing membership in the class of bent
functions, which is invariant under non-singular affine transformations of the domain. Hence, our
results reveal yet some novel uses of bent functions in property testing, suggesting that they have
some inherent feature that make them hard for local testing algorithms.

1.1 Our results

Lower bounds for testing linear/affine isomorphisms. We start with the family P = L(IPn)
that has size |P| = 2O(n2). We show that the query complexity of the trivial algorithm (which simply
picks O(n2) random inputs and checks if there is a function in P that agrees with the answers to
the queries) is in fact asymptotically optimal, even for adaptive, 2-sided tests. Since the query
complexity of the single-sided, non-adaptive tester is no less than that of the 2-sided, adaptive
tester, this result shows that L(IP) is an example of a family that is the hardest to test for linear
isomorphism.

Theorem 1.1. Any 2-sided, adaptive (1/4, k)-test for L(IPn) and A(IPn) requires k = Ω(n2)
queries.

We remark that a lower bound of Ω(n) follows from the results of Chakraborty et al. [20], since
the functions in these families have Fourier dimension n, and can be shown to be far from having
(Fourier) dimension n − 1.

Remark 1.2. Note that since P = L(IPn) is a collection of polynomials of degree 2, it is a subset of
Reed-Muller codes of order 2, RM(2). However, using Dickson’s theorem, one can show that, if L is
not restricted to non-singular linear transformations, then the set of functions L(IPn) is identical
to RM(2). The latter is well-known to be testable with 8 queries by a single-sided non-adaptive
tester. What we show here is that testing a subset of RM(2), L(IPn), is much harder.

We generalize this result to a broader class of bent functions commonly known as Maiorana-
McFarland bent functions, denoted MMn. Formally, a function in this family is f : Fn

2 → F2
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defined by f(x, y) = 〈x, y〉 + g(y), where x, y ∈ Fn/2
2 and g : Fn/2

2 → F2 is arbitrary, and 〈x, y〉
denotes the inner product (standard dot product) of x and y.

Notice that these functions are no longer low-degree polynomials, and in fact, since g is arbitrary
they could be polynomials of degrees as high as n/2. For these families too, we show that testing
isomorphism is hard.

Theorem 1.3. Any 2-sided, adaptive (1/4, k)-test for L(f) and A(f) where f is a Maiorana-
McFarland bent function in n variables requires k = Ω(n2) queries.

We remark that the arguments of Alon and Blais from [1] for testing isomorphism under the
symmetric group can be easily adapted to testing isomorphism under the group of non-singular
transformations to show that testing linear isomorphism to almost all functions requires Ω(n)
queries.

To the best of our knowledge, no superlinear (in n) 2-sided error lower bounds have been
previously established for testing any explicitly given function under some class of isomorphisms.
More generally, let f : D → F2 be a function, and G be a group acting on D, where D is some
finite domain; (informally, the elements of the group can be identified with bijections from D to
itself). The original question of (permutation) isomorphism considers D = Fn

2 and G = Sn, the
symmetric group, acting on D in the natural way. Linear isomorphism, which is the focus of this
paper, has D = Fn

2 and G = GL(n,F2), the group of invertible matrices over F2, acting on D in the
natural way. The easy upper bound for a testing isomorphism algorithm is log |G|, but for technical
reasons, many recent lower bounds and their analyses get bottlenecked by log |D|. For permutation
isomorphism, this gap is still open. For linear isomorphism, we close this gap in this paper.

In the case that D = G and the group action is simply the group operation, we remark that
the proof of [1] can be easily modified to yield the following:

Theorem 1.4. Let G be a finite group, and choose a random function f : G → {0, 1}. Testing
isomorphism to f under the group action of multiplying by an element of G requires Ω(log |G|)
queries with high probability.

We omit the details of this proof. In this case, almost every function requires as many queries
for testing isomorphism as the most simple algorithm.

Lower bounds for testing bentness and Maiorana-McFarland families. We then turn
to analyzing bent functions in general. The number of boolean bent functions is known to be at
least 22n/2+Ω(log n)

and the current upper bound is larger than 22n−1
[42]. We show a lower bound of

Ω(2n/4) queries for testing bentness. A lower bound of significantly more than 2n/2+Ω(log n) queries
for the testing problem would improve the current status regarding the number of boolean bent
functions, a long standing open problem in mathematics. We note that no non-trivial test (that
makes substantially fewer than 2n queries) for bentness is currently known.

Theorem 1.5. Any 2-sided, adaptive (1/4, k)-test for the class of boolean bent functions in n
variables requires k = Ω(2n/4) queries.

Theorem 1.5 is in fact an immediate consequence of a same lower bound for testing the Maiorana-
McFarland family. Let L(MMn) be the linear closure of the family MMn, i.e. L(MMn) =⋃

f∈MMn
L(f).
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Theorem 1.6. Any 2-sided, adaptive (1/4, k)-test for testing membership in L(MMn) requires
k = Ω(2n/4) queries.

We remark that exponential lower bounds for testing affine-invariant properties were known
before. For example, testing the Reed-Muller code of degree n/2 requires at least 2n/2 − 1 queries,
as 2n/2 is the minimum distance of its dual code.2 Hence this lower bound is interesting mainly in
the context of testing bent functions and their generalization Maiorana-McFarland families. These
results appear in Section 4.

Finally, we remark that all our results generalize to non-boolean functions over prime fields Fp

(See the Appendix.)

1.2 Previous related work

Recently there has been intense interest in testing isomorphism of functions (with respect to the
symmetric group). Some initial results of this type can be attributed to [37] who showed the strong
testability of dictators and monomials. The problem of testing isomorphism was first explicitly
introduced by [23]. In recent years the interest in testing function isomorphism has revived [11,
1, 20, 19, 12, 10] prompted by the works of Blais and O’Donnell [11] and Alon and Blais [1]. The
main motivation of many of these works (including the original motivation of [23]) involves testing
isomorphism to functions with few relevant variables.

Testing linear isomorphism has been less studied. It has been considered by Chakraborty et
al. [20] who show a lower bound of Ω(k) for testing L(f) for a function f that is far from having
(Fourier) dimension k − 1. In line with testing juntas, a previous result of [25] implicitly proves an
upper bound of O(k2k) for linear isomorphism to functions that are very close to having dimension
k; the “very” here is exponentially small in k. Wimmer and Yoshida [43] give an constant-query
algorithm for linear isomorphism to any function close to having dimension k by giving a tolerant
tester for functions of dimension k. The technique is an extension of the work of [25], and it applies
to functions close to having low spectral norm. They also show lower bounds for testing linear
isomorphism, but these lower bounds are no better than Ω(n) for any fixed function.

1.3 Our techniques

Testing linear/affine isomorphisms to IP. Our lower bounds for testing linear/affine isomor-
phism are proved using reductions from communication complexity protocols, a powerful technique
introduced by Blais et al. [13]. In the communication complexity model there are two parties
holding inputs x and y, respectively, who are trying to compute a function f(x, y) with as little
communication between them as possible. In [13], the authors show an ingenious generic technique
to prove lower bounds for property testing, by exploiting the strength of the lower bounds obtained
in communication complexity.

The crux of our argument is the observation that one can reduce testing linear isomorphism to
IP (and more generally, to any Maiorana-McFarland bent function) from the following natural ran-
domized communication protocol: Alice holds the top half of a matrix C, Bob holds the remaining
half of C, and their goal is to determine if C is singular. The main feature of bent functions that
we make use of here is the fact that when composed with singular linear transformations they not
only become functions that are not bent, but they become functions that are far from bent (See

2We thank an anonymous referee for pointing this out.
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Proposition 2.3). To complete the proof we resort to the recent results of Sun and Wang [41] who
show a lower bound of Ω(n2) for the randomized communication complexity for this problem.

Testing bentness. To show the lower bound for testing bentness we use Yao’s principle, where
the Yes distribution is the (linear closure of) Maiorana-McFarland family of functions and the No
distribution is supported on random n/2 dimensional functions. Our argument that these two
distributions are indistinguishable resembles the work of [25]. We show that, for any fixed set Q
of Ω(2n/4) queries and for most (n/2)-dimensional subspaces H, every vector in Q is in a distinct
coset of H. This fact is the statement one would expect given the famous “birthday paradox”. Our
results shows there are at least Ω(2n/4) “degrees of freedom” in selecting a linear transformation
of a Maiorana-McFarland function. This lower bound translates upward to the class of all bent
functions, since every bent function is far from the class of (n/2)-dimensional functions.

2 Preliminaries

Let n ≥ 1 be a natural number. We use [n] to denote the set {1, . . . , n}. F2 = {0, 1} is the field
with 2 elements, where addition and multiplication are performed mod 2. We view elements in
Fn

2 as n-bit binary strings – that is elements of {0, 1}n – alternatively. If x and y are two n-bit
strings, then x + y (or x − y) denotes bitwise addition (i.e. XOR) of x and y. We view Fn

2 as a
vector space equipped with an inner product 〈x, y〉, which we take to be the standard dot product:
〈x, y〉 =

∑n
i=1 xiyi, where all operations are performed in F2.

We start by recalling a basic fact that we have referred to earlier.

Theorem 2.1 (folklore). Let P ⊆ {f : D → R} (for some finite domain D and range R) be a
property of size |P|. Then there is a one-sided error testing algorithm which tests P with distance
parameter ε using O(1

ε log |P|) queries.

Proof. The testing algorithm is: on input function f , pick q points in the domain independently
and uniformly at random, query f ’s values at these points, and check if there exists some function
in P that agrees with f on all these points. If so, the algorithm accepts; otherwise rejects. Clearly
if f ∈ P , the algorithm accepts f with probability 1. On the other hand, if f is ε-far from P , then
for any fixed member g ∈ P , Prx[f(x) = g(x)] ≤ 1 − ε. Therefore, the probability that f and g
agree on all independently and randomly chosen q points is at most (1 − ε)q < 1/(3|P|), if we set
q ≥ c

ε log |P| for some constant c. Finally, applying a union bound over all members in P gives that
the testing algorithm accepts f with probability at most 1/3.

Linear/affine isomorphism. We say that two functions f, g : Fn
2 → F2 are linearly isomorphic

(or linear isomorphic) if there exists a non-singular linear transformation C : Fn
2 → Fn

2 such that
g(x) = f(Cx) for all x ∈ Fn

2 . Equivalently, g is linearly isomorphic to f if and only if there exist
n linearly independent linear functions `i(x) : Fn

2 → F2 such that g(x) = f(`1(x), `2(x), . . . , `n(x))
(a linear function, is a function of the form `(x) =

∑
j∈[n] ljxj , where lj ∈ F2). Similarly, two

functions f, g : Fn
2 → F2 are affinely isomorphic (or affine isomorphic) if there exists a non-singular

linear transformation C : Fn
2 → Fn

2 and a vector b ∈ Fn
2 such that g(x) = f(Cx + b) for all

x ∈ Fn
2 . We define L(f) to be the set of functions linearly isomorphic to f : L(f) = {f ◦ LC |C ∈

Fn×n
2 , det(C) = 1}. Similarly, we define A to be the set of functions affinely isomorphic to f :

A(f) = {f ◦ LC,b|C ∈ Fn×n
2 , det C = 1 and b ∈ Fn

2}.
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Bent functions. There are many equivalent definitions of bent functions, for example as functions
farthest away from any affine functions, or functions whose Fourier coefficients have the same
magnitude. Here we will use another standard definition, due to Rothaus [38].

Definition 2.2. A Boolean function f : Fn
2 → F2 is bent if for every nonzero vector h ∈ Fn

2 , we
have Prx[f(x) = f(x + h)] = 1/2.

Given a Boolean function f : Fn
2 → F2, we define Inv(f) := {h : f(x) = f(x + h) for all x}.

The set Inv(f) forms a subspace of Fn
2 , and we define the dimension of f to be the codimension of

Inv(f). We use dim(f) to denote the dimension of f . If dim(f) ≤ k, we say that f is k-dimensional.
This notion of dimensionality is equivalent to the notion of Fourier dimension used in [25]. From
their definition it immediately follows that the dimension of any bent function f : Fn

2 → F2 is n.
The following proposition will be of great importance to us.

Proposition 2.3. Suppose f : Fn
2 → F2 is a bent function and dim(g) < n. Then Prx[f(x) 6=

g(x)] ≥ 1/4.

Proof. Since dim(g) < n, we have Inv(g) 6= {0}, so there exists a nonzero vector h ∈ Fn
2 such that

g(x) = g(x + h) for all x ∈ Fn
2 . From Proposition 2.2, we know that Prx[f(x) 6= f(x + h)] = 1/2.

We have

Pr
x

[f(x) 6= g(x)] =
1
2
(Pr
x

[f(x) 6= g(x)] + Pr
x

[f(x + h) 6= g(x + h)])

=
1
2
(Pr
x

[f(x) 6= g(x)] + Pr
x

[f(x + h) 6= g(x)])

≥
1
2
(Pr
x

[f(x) 6= f(x + h)] = 1/4.

One well-known class of bent functions are the Maiorana-McFarland functions defined as follows.
Let x ∈ Fn/2

2 , y ∈ Fn/2
2 , and let g : Fn/2

2 → F2 be any Boolean function on n/2 variables. Then
MMg

n : Fn
2 → F2 given by MMg

n(x, y) = 〈x, y〉 + g(y) is called a Maiorana-McFarland function.
As mentioned before, a formula for the number of bent functions on n variables is unknown.

It is worth noting that there are 22n/2
distinct bent Maiorana-McFarland functions, so this class

accounts for a significant portion of the bent functions known.
We next list a few basic facts about bent functions that will be useful to us later.

Lemma 2.4.

1. The inner product function IPn is bent.

2. Any Maiorana-McFarland function MMg
n is bent.

3. If f : Fn
2 → F2 is bent, C ∈ Fn×n

2 is non-singular and b ∈ Fn
2 , then f ◦ LC and f ◦ LC,b are

bent.

4. If f : Fn
2 → F2 is bent, C ∈ Fn×n

2 is singular and b ∈ Fn
2 , then f ◦LC and f ◦LC,b are 1/4-far

from bent.
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Proof. Recall that IPn(x1, x2, . . . , xn) =
∑n/2

i=1 x2i−1x2i and MMg
n =

∑n/2
i=1 xixi+n/2+g(xn/2+1, . . . , xn).

First note that IPn = MMg
n ◦ LC , where g : Fn/2

2 → F2, g = 0 and LC is the full-rank linear
transformation that performs the following change of variables: xi 7→ x2i−1 and xn/2+i 7→ x2i for
1 ≤ i ≤ n/2. Therefore, Item 1 follows from Item 2 and Item 3, and we will show now the latter two.
The proof follows from the simple observation that if ` is a nonzero linear function `(x) = 〈a, x〉

and b ∈ F2 then Pr[`(x) = b] = 1/2. We have that for x, y, h1, h2 ∈ Fn/2
2

Pr
x,y

[〈x, y〉 + g(y) = 〈x + h1, y + h2〉 + g(y + h2)]

= Pr
x,y

[〈x, h2〉 = g(y) + g(y + h2) + 〈h1, y〉 + 〈h1, h2〉] = 1/2

Item 3 follows by the observation that if f : Fn
2 → F2 is bent and C is non-singular then Cx = Fn

2

and so the functions f ◦LC and f ◦LC,b are permutations of f . Finally, if C is singular, there exists
h ∈ Fn

2 , h 6= 0 such that Ch = 0 and so Cx = C(x + h), ∀x ∈ Fn
2 implying that dim(f ◦ LC) < n

and similarly dim(f ◦ LC,b) < n. The distance to bentness now follows from Proposition 2.3.

Basic communication complexity facts. In communication complexity Alice holds an input
x and Bob holds an input y and they want to compute a function f(x, y) by exchanging a small
number of bit messages. A randomized protocol with ε error for computing f is an algorithm whose
random bits are known to both the players, and which outputs f(x, y) for any x, y w.p. at least
1 − ε over the choice of random bits. In this paper we will fix ε = 1/3. The complexity of the
protocol is the maximum over all x, y of the number of bits exchanged by Alice and Bob. The
number of random bits used in the protocol does not affect the complexity measure of the protocol.
For a comprehensive survey on communication complexity, see [34].

3 Lower Bounds for Testing Isomorphism to Inner-Product and
Related Functions

We prove Theorem 1.1 and Theorem 1.3 in this section.
As previously mentioned, the main idea of our proofs is an adaption of a technique of proving

property testing query lower bounds via communication lower bounds (See Lemma 2.4 of [13]) to
the setting of testing linear isomorphisms. Specifically, Alice and Bob are each given half of a linear
transformation matrix C, and their goal is to determine if C is singular or not. They can apply
their halves, A and B respectively, of matrix C to an arbitrary input x to the inner product function
IPn(x). Using the fact that IPn(x1, x2, . . . , xn) = IPn/2(x1, . . . , xn/2)+IPn/2(xn/2+1, . . . , xn), Alice
computes IPn/2(Ax), Bob computes IPn/2(Bx), and both exchange their bits. Now Alice and Bob
both know IPn(Cx) = IPn(Ax,Bx) = IPn/2(Ax) + IPn/2(Bx).

Clearly, if the matrix C has full rank, then IPn(Cx) ∈ L(IPn); on the other hand, one can
show that if C does not have full rank, then IPn(Cx) is far from L(IPn). Therefore, if there
is a tester for linear isomorphism of IPn with q queries, then one can turn such a tester into a
communication protocol for Alice and Bob to determine if C has full rank or not, using at most 2q
bits of communication. The lower bound of Sun and Wang [41] implies that 2q = Ω(n2), finishing
the proof. We formally state their lower bound here.

Theorem 3.1 (Theorem 3, [41]). The randomized communication complexity of computing det(A+
B), where Alice holds the matrix A ∈ Fn×n

2 and Bob holds the matrix B ∈ Fn×n
2 is Ω(n2).
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We will use two corollaries of this result, the first of which is implicit in [41].

Corollary 3.2. Let A and B be matrices in Fn/2×n
2 such that the last n/2 columns form a basis for

Fn/2
2 . Let C be the matrix

[
A
B

]

. The randomized communication complexity of computing det(C)

where A is held by Alice and B is held by Bob is Ω(n2).

Proof. By assumption, both Alice and Bob can reduce A and B to A′ = [A′′, In/2×n/2] and B′ =
[B′′, In/2×n/2], where In/2×n/2 is the identity matrix. Then it can be checked that

det(C) = det

([
A
B

])

= det

([
A′

B′

])

= det
(
A′′ + B′′) ,

which needs Ω(n2) bits of communication by Theorem 3.1.

Corollary 3.3. Let C ∈ Fn×n
2 be that C =




An/4×n/2 0n/4×n/2

Bn/4×n/2 0n/4×n/2

0n/2×n/2 In/2×n/2.



, where Alice holds A, Bob holds

B and matrices A and B are under the same assumptions as in Corollary 3.2. Then the randomized
communication complexity of computing det(C) is Ω(n2).

Proof. The statement follows from Corollary 3.2 by noticing that det(C) = det

([
A
B

])

.

As mentioned before, it will be convenient to think of the rows of a linear transformation
C ∈ Fn×n

2 as a sequence of linear maps `1, `2, . . . , `n : Fn
2 → F2, where `i(x) =

∑n
j=1 aijxj , and so

IPn(Cx) =
∑n/2

i=1 `2i−1(x)`2i(x). Similarly, an affine transformation (C, b) of IPn can be represented

by IPn(Cx + b) =
∑n/2

i=1(`2i−1(x) + b2i−1)(`2i(x) + b2i).

3.1 Proof of Theorem 1.1

We are now ready to complete the proof of Theorem 1.1 by formalizing the reduction to testing
L(IPn) (A(IPn), respectively) from computing det(A + B) as in Theorem 3.1.

Lemma 3.4. Suppose there exists a 2-sided, adaptive (1/4, k)-test for L(IPn) (or A(IPn), respec-
tively), then there exists a randomized communication protocol with public coins, error 1/3, and

communication complexity O(k) for computing det(C), where Alice holds the top half A ∈ Fn/2×n
2

of C and Bob holds the bottom half B ∈ Fn/2×n
2 of C.

Proof. We will show the reduction to L(IPn) only, as the reduction to A(IPn) follows from a very

similar argument. Let C =

[
A
B

]

and let T be a (1/4, k)-tester for L(IPn). We will use it to

construct a communication protocol for det(C). Let `1, . . . , `n/2 be the linear forms representing
the rows of A and `n/2+1, . . . , `n be the linear forms corresponding to the rows of B. Let f(x) =

IPn(Cx) =
∑n/2

i=1 `2i−1(x)`2i(x).

Claim 3.5. If det(C) = 0 then f(x) = IPn(Cx) is 1/4-far from L(IPn).
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Proof. By Items 1 and 3 of Lemma 2.4, every function in L(IPn) is bent. By Item 4 of Lemma 2.4
f(x) = IPn(Cx) is 1/4-far from L(IPn).

In other words, if det(C) = 1 then f ∈ L(IPn); and if det(C) = 0 then f is 1/4-far from L(IPn).
Let q1, q2, . . . , qk be the set of (possibly adaptive) queries performed by the tester T on input f .

The protocol for Alice and Bob is to communicate in k rounds. Since Alice and Bob have access to
unlimited shared randomness and they exchange bits after generating each query qi, we can assume
that both of them know qi+1 given q1, q2, . . . , qi and f(q1), f(q2), . . . , f (qi). (Initially, Alice and Bob
both know q1.)

We claim that the following protocol computes det(C) with probability at least 2/3. Alice

computes Aq1, namely `1(q1), . . . , `n/2(q1) and sends to Bob
∑n/4

i=1 `2i−1(q1)`2i(q1). Bob computes

Bq1 and also
∑n/2

i=n/4+1 `2i−1(q1)`2i(q1). Using Alice’s bit he can now simulate the query f(q1) by

now computing IPn(Cq1) =
∑n/2

i=1 `2i−1(q1)`2i(q1), and Bob can send f(q1) to Alice. By repeating
this protocol for the remaining queries q2, . . . , qk, Bob can finally output the answer that the tester
T would output on f . Since T succeeds w.p. at least 2/3 on f , it follows that the protocol correctly
computes det(C) w.p. at least 2/3. Notice that the total number of bits exchanged is O(k).

Proof of Theorem 1.1. Suppose T is a 2-sided, adaptive (1/4, k)-test for L(IPn) (or A(IPn) re-
spectively). Then, in particular, it should distinguish functions f = IPn(Cx) (here C is a matrix

C =

[
A
B

]

with A,B ∈ Fn/2×n
2 such that their last n/2 columns form a basis for Fn/2

2 ) from

functions that are 1/4-far from L(IPn). By Lemma 3.4, there exists a communication protocol
computing det(C) of complexity O(k). Finally, by Corollary 3.2 it must be that k = Ω(n2).

3.2 Proof of Theorem 1.3

The reduction from Lemma 3.4 can be tweaked to work for the much more general class of Maiorana-
McFarland bent functions. Recall that every function in the Maiorana-McFarland MMn family
of bent functions can be expressed as MMg

n(x) =
∑n/2

i=1 xixi+n/2 + g(xn/2+1, . . . , xn) for some

g : Fn/2
2 → F2, and so L(MMg

n) = {MMg
n(Ax)| A ∈ Fn×n, det(A) = 1}.

Our reduction in the previous section can not be directly used, since Alice would have half of
the (linear functions acting as) inputs to g and Bob would have the other half. Thus, answering
queries might require more than constant communication, degrading the lower bound. In this
case, we reduce from a scenario where Alice and Bob will both always know the inputs to g; this
preserves the lower bound of Ω(n2). The reduction now uses matrices of the special form described
in Corollary 3.3.

We note that MM0
n = IPn, where 0 is the constant 0 function, but our previous reduction to

inner product is not equivalent to the following reduction setting g = 0.

Lemma 3.6. Suppose there exists a 2-sided, adaptive (1/4, k)-test for L(f) (or A(f), respectively),
where f ∈ MMn. Then there exists a randomized communication protocol with public coins, error

at most 1/3 and communication complexity O(k) for computing det








An/4×n/2 0n/4×n/2

Bn/4×n/2 0n/4×n/2

0n/2×n/2 In/2×n/2.







,

where Alice holds A and Bob holds B.
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Proof. Once again, we will only show the proof assuming the existence of a tester for L, since the
remaining part of the proof follows by similar arguments.

Let T be a (1/4, k)-tester for L(MMg
n), where MMg

n ∈ M. Let f be the function defined by
f(x) = MMg

n(Cx). Alice and Bob can simulate queries to the function f as before. Let q1, . . . , qk

be a set of (possibly adaptive) queries that T would make on f . As before, the protocol runs in k
rounds, Alice and Bob have unlimited shared randomness, and we may assume that both of them
know qi+1 given q1, . . . , qi and f(q1), f(q2), . . . , f (qi).

As before, we view the rows of C as linear transformations `1, `2, . . . , `n. The last n/2 rows of C
are known to both Alice and Bob, so each of them know `n/2+1, . . . , `n. Each of these transformation
is a projection on to a single coordinate.

Alice computes [A 0]q1, namely `1(q1), . . . , `n/4(q1) and then she sends to Bob
∑n/4

i=1 `i(q1)`i+n/2(q1).
Bob computes [B 0]q1, namely `n/4+1(q1) . . . , `n/2(q1), and uses the result to compute the bit
∑n/2

i=n/4+1 `i(q1)`i+n/2(q1). Now Bob can simulate the query f(q1) by computing

MMg
n(Cq1) =

n/2∑

i=1

`i(q1)`i+n/2(q1) + g(`n/2+1(q1), `n/2+2(q1), . . . , `n−1(q1), `n(q1)).

He can then send this bit back to Alice. After simulating all the queries Bob can output the output
of T on f when the test performed these queries. If det(C) = 1 then f ∈ L(MMg

n) and the test
accepts w.p. at least 2/3, and otherwise, by Lemma 2.4 f is 1/4-far from L(MMg

n) and the test
rejects w.p. at least 2/3. Therefore, the communication protocol succeeds w.p. at least 2/3.

The proof of Theorem 1.3 follows by a similar argument as in the proof of Theorem 1.1 but
where now we use Lemma 3.6 and Corollary 3.3 instead.

4 Testing Linear Isomorphism to the Class of Maiorana-McFarland
Bent Functions

Our lower bounds will be established via Yao’s minimax principle. We denote the total variation
distance between two distributions D1 and D2 as ‖D1 − D2‖TV := 1

2

∑

x

|D1(x) − D2(x)|, and our

goal is to show that the query responses over a “yes” distribution and a “no” distribution are close
in total variation distance.

We define DYES to be the uniform distribution over L(MMn), and DNO to be the uniform
distribution over (n/2)-dimensional functions. We remind the reader that every function in the
support of DYES is (1/4)-far from every function in DNO. In fact, since by Proposition 2.3 every
bent function is (1/4)-far from every function in DNO, this same argument establishes a lower
bound for testing bentness3, and thus prove Theorem 1.5.

We can simulate random draws from DYES and DNO in the following way. In both experiments,
we pick a random function g : Fn

2 → F2 and a random full rank n/2 × n matrix Ab. A draw
f ∼ DNO is the function defined by f(x) = g(Abx), where a draw f ∼ DYES is the function defined

by f(x) = IPn(

[
At

Ab

]

x)+g(Abx), where At is a random full rank n/2×n matrix such that

[
At

Ab

]

3The 1/4 can be replaced by any positive constant less than 1/2; we omit the details.
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is nonsingular (chosen dependently on Ab, the distribution on At given Ab will not matter as long
as the nonsingularity condition is satisfied). Our approach here is very reminiscent of the approach
in [25] for showing a lower bound for testing functions of Fourier dimension k.

In the following, when we refer to a random matrix in Fn/2×n
2 , we mean a matrix whose entries

are chosen to be 0 or 1 independently and uniformly at random.

Lemma 4.1. Let Ab be a random matrix in Fn/2×n
2 . Then Ab is full rank (in the F2 sense) except

with probability at most (n/2)2−n/2.

Proof. The probability that Ab is full rank is
n/2∏

i=1

(1− 2i−n) ≤ (1− 2−n/2)n/2 ≤ 1− (n/2)2−n/2.

Because this probability is subconstant, for the sake of conciseness we will treat this event as
always occurring. From now on, we will assume Ab has rank n/2 with certainty.

Lemma 4.2. Let q1 and q2 be two distinct vectors in Fn
2 , and Ab be a random matrix in Fn/2×n

2 .
Then PrAb

[Abq1 = Abq2] = 2−n/2.

Proof. The event is equivalent to Ab(q1−q2) = 0, where q1−q2 is a fixed nonzero vector. Since q1−q2

is nonzero and the rows of Ab are chosen independently and uniformly from Fn
2 , the distribution

over Ab(q1 − q2) is uniform. Thus, PrAb
[Ab(q1 − q2) = 0] = PrAb

[Abq1 = Abq2] = 2−n/2.

Lemma 4.3. Let Q be a set of k = 2n/4/10 vectors in Fn
2 . Let Ab be a random {0, 1} matrix of

dimensions n/2 × n. Then PrAb
[∃q1, q2 ∈ Q such that Abq1 = Abq2] ≤ 1/100.

Proof. We use the previous lemma and the union bound. There are at most
(
k
2

)
≤ k2 = 2n/2/100

pairs of vectors, and

Pr
Ab

[∃q1, q2 ∈ Q such that Abq1 = Abq2] ≤
∑

q1,q2∈Q

Pr
Ab

[Abq1 = Abq2] ≤ k22−n/2 = 1/100.

Lemma 4.4. Let f be a random draw from DYES. Let Q = {q1, q2, . . . , qk} be a set of k = 2n/4/10
queries. Now, if the conditions in Lemmas 4.1 and 4.3 hold, then the vector [f(q1), f(q2), . . . , f (qk)]
is uniformly distributed.

Proof. We choose a random matrix Ab ∈ F
n/2×n
2 , and we extend to a full rank matrix A uniformly

over all possible choices. Assuming the event from Lemma 4.3 holds, the vectors Abqi are all
distinct. Since g is a uniformly random function, the values of g(Abqi) are all independent and
uniformly distributed, and it follows that the values of f(qi) are all independent and uniformly
distributed as well.

Lemma 4.5. Let f be a random draw from DNO. Let Q be a set of 2n/4/10 queries. If the condition
in Lemma 4.3 holds, the answers to the queries are uniformly distributed.

Proof. Essentially the same as the latter portion of Lemma 4.4.
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In order to prove a lower bound for adaptive testers, we can’t assume that Q is a fixed query set,
since for example q2 depends on f(q1). A deterministic adaptive k-query algorithm is equivalent
to a decision tree T of depth at most k. The internal nodes of T are labeled by query strings,
and the leaves are labeled by “accept” and “reject”. However, the best labeling of the leaves is
easy to discuss. Given a decision tree T with unlabeled leaves, the best distinguisher one can get
by labeling the leaves is exactly ‖LYES − LNO‖TV ; this is the result of labeling every leaf v with
“accept” if LYES(v) > LNO(v) and “reject” otherwise. As in [25], we define LYES and LNO to be
distribution on leaves of T induced by a draw from DYES and DNO, respectively.

We fix a deterministic adaptive tester making at most k queries; equivalently, we fix a decision
tree T of depth k ≤ 2n/4/10. Without loss of generality, we can assume that no string appears
twice on any root-to-leaf path and the depth of every path is exactly k. It suffices to prove
‖LYES − LNO‖TV ≤ 1/3.

Define LUNIF to be the uniform distribution over the leaves of T . Consider a draw f ∼ DYES.
Drawing Ab is the same as drawing a random (n/2)-dimensional subspace of Fn

2 . Consider the strings
on nodes of a root-to-leaf path in T ending at the leaf v. By Lemma 4.4, all the strings on this path
lie in different buckets, except with probability at most 1/100 over the choice of Ab. Conditioned
on this happening, the probability that f is consistent with the root-to-leaf path to v is exactly
2−k, since g is a drawn uniformly at random. Thus, for each leaf v, we have PrLYES

[v is reached] ≥
(1 − 1/100)2−k. A similar argument shows that PrLNO

[v is reached] ≥ (1 − 1/100)2−k as well.
The following lemma essentially appears in [25]:

Lemma 4.6. Let D be a distribution over Fm
2 that becomes the uniform distribution U conditioned

on an event that happens with probability at least 99/100. Then ‖D − U‖TV ≤ 1/100, where U is
the uniform distribution over Fm

2 .

Proof. Due to the conditioning, each element of Fm
2 has probability mass at least (99/100)2−m, so

the elements with probability mass less than 2−m contribute at most 1/2(1/100) = 1/200 in total to
the total variation distance. This lower bounding already takes up 99/100 of the probability mass,
so the elements with probability mass at least 2−m contribute at most the remaining 1/2(1/100) =
1/200 to the total variation distance. Thus ‖D − U‖TV ≤ (1/2)(1/100 + 1/100) = 1/100.

Theorem 4.7. Any (1/4, k)-tester for testing membership in L(MMn) requires 2n/4/10 queries;
that is, k ≥ 2n/4/10. This lower bounds holds for two-sided adaptive testers.

Proof. The proof is via Yao’s minimax principle. Let T be a decision tree of depth 2n/4/10 rep-
resenting an adaptive deterministic tester, and let LYES and LNO be the distributions of leaves
obtained by taking random draws from DYES and DNO respectively. The distributions LYES and
LNO satisfy the conditions of Lemma 4.6 (by Lemmas 4.4 and 4.5), so ‖LYES −LUNIF‖TV ≤ 1/100
and ‖LNO − LUNIF‖TV ≤ 1/100. By the triangle inequality, ‖LYES − LNO‖TV ≤ 2/100 < 1/3. It
follows that the two distributions can not be distinguished using the adaptive tester characterized
by decision tree T .

We can now prove Theorem 1.6:

Proof of Theorem 1.6. By Lemma 2.4, every function in L(MMn) is bent. By Proposition 2.3,
every bent function is (1/4)-far from every n/2-dimensional function. Thus, we can use Yao’s
minimax principle and the same distributions DYES and DNO as before to establish the theorem.
The result now follows from mimicking the proof of Theorem 4.7.
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A Generalization to Fp

In this section we describe how our results generalize to families of functions f : Fn
p → Fp. The

generalization is straightforward, since the properties of bent functions (and of Maiorana-McFarland
functions in particular) generalize to non-boolean fields. Moreover, the reduction of [13] requires
O(log p) bits of communication for each sample, but since the results in [41] hold over Fp with an
additional multiplicative factor of Ω(log p), combining them together yields the same query lower
bounds as in the F2 case. The following definition extends Boolean bent functions to general bent
functions.

Definition A.1 (Rothaus [38]). A function f : Fn
p → Fp is bent if for every nonzero vector h ∈ Fn

p

and every a ∈ Fp, we have
Pr
x

[f(x) − f(x + h) = a] = 1/p.

It can be easily checked that Proposition 2.3 can be modified to give that if f, g : Fn
p → Fp

are bent and dim(g) < n then Prx[f(x) 6= g(x)] ≥ 1
2(1 − 1/p) ≥ 1

4 . The definition of Maiorana-
McFarland remains the same and the statement of Lemma 2.4 follows by essentially the same
argument as before. (See also [33]).

In conclusion, our results can be extended to the following formal statements.

Theorem A.2. Any 2-sided, adaptive (1/4, k)-test for L(f) and A(f) where f is a Maiorana-
McFarland bent function in n variables over Fp requires k = Ω(n2) queries.

Theorem A.3. Any 2-sided, adaptive (1/4, k)-test for the class of bent functions in n variables
over Fp requires k = Ω(pn/4) queries.
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