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Abstract

A propositional proof system is weakly automatizable if there is a
polynomial time algorithm which separates satisfiable formulas from
formulas which have a short refutation in the system, with respect to
a given length bound. We show that if the resolution proof system
is weakly automatizable, then parity games can be decided in poly-
nomial time. We give simple proofs that the same holds for depth-1
propositional calculus (where resolution has depth 0) with respect to
mean payoff and simple stochastic games. We define a new type of
combinatorial game and prove that resolution is weakly automatizable
if and only if one can separate, by a set decidable in polynomial time,
the games in which the first player has a positional winning strategy
from the games in which the second player has a positional winning
strategy.

Our main technique is to show that a suitable weak bounded arith-
metic theory proves that both players in a game cannot simultaneously
have a winning strategy, and then to translate this proof into proposi-
tional form.
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1 Introduction

Parity games, mean payoff games and simple stochastic games are three
classes of two player games, played by moving a token around a finite graph.

Parity games have important applications in automata theory, logic, and
verification [17]—for example, the model checking problem for the modal p-
calculus is polynomial time equivalent to solving parity games [14]. To the
best of our knowledge, they originated in the study of the non-emptiness
problem for parity automata, a notion to which they are equivalent [14].
Mean payoff games were introduced by Ehrenfeucht and Mycielski [12], and
are useful in design and analysis for various on-line problems [33]. Con-
don initiated the study of simple stochastic games for analysing randomised
space-bounded alternating Turing machines [10]. They are restrictions of
stochastic games, which were introduced by Shapley [29].

The main computational problem for all of these games is to decide,
given an instance of a game, which player has a positional winning strategy.
From this point of view, parity games are reducible to mean payoff games,
and mean payoff games are reducible to simple stochastic games [27, 33]. It
is known that the decision problem for simple stochastic games is reducible
to a search problem in the intersection of the classes PLS and PPAD, which
are believed to be incomparable [11, 19, 6]. None of the decision problems is
known to be in P, despite intensive research work on developing algorithms
for them. For several of the existing algorithms, exponential lower bounds
on their runtime have been given recently [15, 16].

Automatizability is an important concept for automated theorem prov-
ing. Call a propositional proof system automatizable if there is an algorithm
which, given a tautology, produces a proof in time polynomial in the size
of its smallest proof—this time condition is the best we can hope for, as-
suming NP # coNP. Automatizability is a very strict notion. For example,
Alekhnovich and Razborov [1] have shown that resolution is not automa-
tizable under a reasonable assumption in parameterised complexity theory.
Weak automatizability is a relaxation of automatizability, where proofs of
tautologies can be given in an arbitrary proof system, and only the time
of finding such proofs is restricted to polynomial in the size of the smallest
proof in a given proof system. This characterisation of weak automatiz-
ability is equivalent to the existence of a polynomial time algorithm which
separates satisfiable formulas from formulas which have a short refutation
in the system with respect to a given length bound.

Two recent papers have shown a connection between weak automatiz-
ability and the above mentioned games. Atserias and Maneva showed that
if a certain proof system (called PK; in our notation) is weakly automatiz-
able in polynomial time, then the decision problem for mean payoff games
is in P [3]. Huang and Pitassi strengthened this to the decision problem for
simple stochastic games [18]. In this paper we extend and simplify these



results.

In Section 2 below we show that if resolution is weakly automatizable,
then parity games can be decided in polynomial time.

In Section 3 we give a proof that if PK; is weakly automatizable, then
mean payoff games can be decided in polynomial time. This is the main
result of [3], and also follows from [18] or from our Section 4 by the re-
ducibility of mean payoff games to simple stochastic games. However these
proofs are rather indirect. Here we give a direct, natural proof of this result,
using the approach from the previous section and the development of binary
arithmetic from Appendix B.

In Section 4 we show a similar result for PK; and simple stochastic
games. This is the main result of [18] but again we hope that our proof is
simpler.

Finally in Section 5 we define a new game, the point-line game, about
moving a token around a finite graph. We show that its complexity is
equivalent to that of resolution, in a certain sense. Namely, resolution is
weakly automatizable if and only if one can separate, by a set in P, the
games in which the first player has a positional winning strategy from the
games in which the second player has a positional winning strategy.

The essential part of the argument in Sections 2, 3 and 4, together with
one direction of Section 5, is to show that there is a polynomial-size propo-
sitional proof that winning strategies cannot exist simultaneously for both
players in a game. Propositional proofs are complicated combinatorial ob-
jects, and constructing them by hand can be difficult. Instead, we work
with weak first-order bounded arithmetic theories which capture the logical
content of these proof systems, and rely on known translations of these to
do the hard work of actually constructing the propositional proofs for us.
These translations go back to Paris and Wilkie [25]. Later work has given
finer results about the logical depth of the propositional proofs. The main
result we need, a first order-theory which translates into polynomial-size
resolution, is due to Krajicek [22, 20, 21]; however as far as we know there
is no paper with a self-contained presentation of the proof (and our theory
is slightly different). For these reasons we include our own presentation of
these translations as Appendix A.

The remaining parts of Section 1 contain some necessary preliminar-
ies about propositional proofs, bounded arithmetic, disjoint NP pairs, and
binary arithmetic. The technical details of our formalisation of binary arith-
metic are in Appendix B.

Our main new result is the reduction of the decision problem for parity
games to the weak automatizability of resolution. Finding a polynomial
time algorithm to solve parity games is a long-standing open problem, so
our result can be viewed as evidence that either resolution is not weakly
automatizable, or if it is, then this will be hard to prove.



On the other hand, modern SAT solvers typically use algorithms which,
given a formula, generate either a satisfying assignment or what is essentially
a resolution proof that the formula is unsatisfiable. Thus it seems that a
necessary condition for a formula to be tractable by these SAT solvers is
that the formula is either satisfiable, or has a short resolution refutation.
Our reduction can be used to translate a parity game into a formula that
satisfies at least this necessary condition. Hence, a possible application is to
try to combine our reduction with a SAT solver, to obtain a new algorithm
for solving parity games. A first step towards investigating the feasibility
of this would be to determine the hardness, as defined by Kullmann [24], of
the set of clauses produced by our reduction.

Finally, a natural question is whether there is a converse to the results of
Sections 2 and 4. That is, is it the case that polynomial time decidability of
parity games implies weak automatizability of resolution, or that polynomial
time decidability of simple stochastic games implies weak automatizability
of PK;? We are inclined to think that the answer is no, in both cases.

In the case of parity games and resolution, all we can say is that we do
have a kind of converse in Section 5, but we conjecture that the point-line
games defined there are not reducible to parity games, one reason being that
the canonical pair of a parity game consists of an NP set and its complement
(also an NP set), while the canonical pair of a point-line game usually does
not have this property.

In the case of of simple stochastic games and PK;, we can say a little
more. The result in Section 4 about simple stochastic games only needs as
much of Us-IND (and hence of the proof system PK; — see below) as suffices
to prove that every Ay ordering of a bounded set has a least element. We
have an indirect reason to believe that this is not the full strength of U3-IND.
Namely, the recent paper [9] considers an analogous ordering principle, that
every polynomial-time ordering of a bounded set has a least element, and
shows that this is provable not only in the theory T3 but also in the theory
Ti+sWPHP(PNF), which extends T3 by a kind of approximate counting and
is presumably incomparable with T3. Hence the polynomial-time ordering
principle is unlikely to be as strong as T%, and we may expect a similar
situation with the As ordering principle in Us-IND.

1.1 Constant depth proof systems

The propositional proof system PK is defined as follows. The formulas of
PK are formed from propositional variables pg,p1,po,..., negation —, and
unbounded fan-in conjunctions and disjunctions A and \/. Variables and
negated variables are together called literals. Formulas are then defined
inductively: each literal is a formula, and if ® is a finite non-empty set of
formulas then A® and \/® are formulas.

For a formula ¢, we use - as an abbreviation for the formula formed



from ¢ by interchanging A and \/ and interchanging atoms and their nega-
tions. We treat the binary connectives A and V as the obvious set opera-
tions, for example \/® vV \/¥ = \/(® U V). The depth dp(y) of a formula ¢
is the maximal nesting of /A and \/ in ¢. Thus literals have depth 0, and
dp(A®) = dp(V/®) = 1 + maxeq dp().

Each line in a PK-proof is a disjunction, sometimes called a cedent,
usually written as the list of disjuncts separated by commas. The rules of
PK are as follows, where I', A stand for sets of formulas, possibly empty:

troduct; I, A B troducti IVA,B
A-Introduction —F> ANB V-introduction 71“, AV B
. AAN...ANA I',-A,...,-A
weakening F,FA cut 1 m T 1 m

We also allow introduction of logical axioms a,—a for variables a.

We will also sometimes use “formula” to refer to a set of disjunctions.
Semantically, this behaves the same as the conjunction of those disjunctions.
A PK refutation of such a set of disjunctions I' is a sequence of disjunctions
ending with the empty disjunction, such that each line in the proof is either
in I, or a logical axiom, or follows from earlier disjunctions in the sequence
by a rule.

We will write PK, for the sub-system of PK in which every formula in a
cedent has depth d (or less), and PKg, for the system in which the formulas
have depth d + 1, but where all gates at depth d have fan-in at most k. The
system PKjy is called resolution and is denoted by Res(1) or simply Res.
The system PKg , for k > 2, is denoted by Res(k).

There is obviously a potential confusion in what is meant by a depth-d
proof system, since in each case each line of a proof, viewed as a single
disjunction, is of depth one level higher than the formulas occurring in it. We
will try to avoid this by always explicitly referring to a system as resolution,
Res(k), PKd or PKd,k.

1.2 Bounded arithmetic

We could obtain the results of this paper by a careful use of the conventional
Buss-style bounded arithmetic theories T7 and T3 [7] augmented with un-
interpreted predicate and relation symbols, which can be viewed as second
order variables. However, this would introduce unnecessary complications
to deal with sharply bounded quantification. Instead we will work with
simpler systems. Furthermore, we use our theories in such a way that only
the complexity of formulas with the new predicate and relation symbols
matters, allowing us to include all true arithmetical formulas as axioms.
Therefore, rather than describing a modification of Buss’s theories, we give
a new definition.



For » € N, we will say that a function f : N* — N is polynomially
bounded if there is some polynomial p such that f(z) < p(z) for all Z. Let
L be the language consisting of the constant symbols 0 and 1, and, for
every r € N, a function symbol for every polynomially bounded function
N" — N and a relation symbol for every relation on N". If the reader
is uncomfortable with such a large language, it can be replaced by any
reasonably rich language extending {0,1,+,-, <} as long as all functions
in the language are polynomially bounded. Let BASE be the set of true
universal L-sentences. We will use this as our base theory.

We extend L to a language LT = L U R by adding a tuple R of finitely
many new relation symbols. We will use these to stand for edges in a graph,
or strategies in a game, or whatever other objects we need to reason about.

Adapting notation from Wilmers [32], we define a strict Uy formula to
be one consisting of d alternating blocks of bounded quantifiers, beginning
with a universal block, followed by a quantifier-free Lt formula. We add
a further technical requirement, to make sure that our translation of these
formulas into propositional form works smoothly: the quantifier-free part
must have the form of a CNF if d is odd, or a DNF if d is even. However
we emphasise that, since any quantifier-free formula is logically equivalent
to one in either form, this requirement can usually be ignored in practice
and we will ignore it in the first-order proofs we use for our main results in
this paper. A Uy formula is a subformula of a strict Uy formula. The strict
E4 formulas and the E;4 formulas are defined dually.

We remark that we will almost always work with bounded rather than
unbounded quantifiers, and will often not write the bounds if they are ob-
vious, for example if we are quantifying over the vertices of a given finite
graph.

For d > 0, we define Ug-IND to be BASE together with the usual induc-
tion scheme

Va, ¢(0) AVa <a[p(z) = ¢(x + 1)] = ¢(a)

for each Uy formula ¢(x), which may also contain other parameters. The
theory E4-IND is defined similarly.

Similarly we define Uz-MIN to be the usual scheme asserting that any
non-empty Uy subset (with parameters) of an interval [0,a) has a least
element. The schemes E4-MIN, U;-MAX and E;-MAX are the obvious
variants of this. We will call a relation or formula Ay if in the model under
consideration it is expressible both by an E; and by a Uy formula. We will
say that a formula is Ay over a theory if the theory proves that the E; and
U, versions are equivalent.

The following is proved in the same way as the corresponding principles
in the usual bounded arithmetic theories.

Lemma 1.1. For d > 0, the following hold over BASE:



1. E4-IND is equivalent to Ugz-IND

2. E4g-MAX is equivalent to E4-MIN

3. Uy-MAX is equivalent to Ug-MIN

4. Ugy1-IND, Us-MAX and Eg11-MAX are equivalent.

Furthermore if d > 1, then Ugy1-IND proves that every Ay partial ordering
on a bounded interval has a least element. O

We now give our version of the Paris-Wilkie translation of first-order
proofs in bounded arithmetic into small propositional proofs [25]. Our goal
is to construct PKgj refutations out of Ugio-IND proofs.

For an Lt formula ¢, and an assignment « to the free variables of ¢, we
will define a PK formula (¢),. This translation will evaluate L formulas as
true or false, translate atomic formulas about the relations R into proposi-
tional variables, translate propositional connectives as themselves, and turn
bounded quantifiers ¥V and 3 into respectively A and \/. For each relation
symbol in R of arity s, we fix a propositional variable r;, ;. for each tuple
of numbers i1,...,7s. We assume that all these propositional variables, for
all relation symbols in R, are pairwise distinct.

Before giving the formal definition, we introduce some notation. We
identify the empty set of formulas with a new symbol T (for the truth value
true). We identify the set {\/ 0} containing just the empty disjunction with
a new symbol L (for false). An assignment « is a total map from first-order
variables to numbers, in which at most finitely many variables are assigned
non-zero values. For an assignment «, a variable x and a number n, we write
alx +— n] for the assignment which maps z to n and leaves the mapping of
all other variables unchanged. We write [x — n] for the assignment which
maps = to n and all other variables to 0.

Definition 1.2. We compute propositional translations as follows.

1. Any L-formula ¢ has a definite truth value under «. If ¢ evaluates to
true we let (@), be T, and if it evaluates to false we let (¢), be L.

2. For t an L-term, we let (t), be the evaluation of ¢ under «.

3. For R an s-ary relation symbol in R, and ¢ an s-tuple of L-terms, we
let (R(t))a be the propositional variable r;, ; where each i; = (t;)a,
and let (~R(t))o be the negated variable —r;, ;..

4. We let (¢ A))q be (d)a A (¥)q and let (¢ V ©)q be (P)a V (¥)q.
5. We let (Vo <t ¢(7))a be A{{®)afzsm] : M < (t)a}. Bounded existen-

tial quantifiers are similarly translated into disjunctions.



Finally we simplify by inductively removing T from conjunctions, remov-
ing L from disjunctions, replacing conjunctions containing | with 1, and
replacing disjunctions containing T with T.

Now let ¢ be a strict Ugyo formula, whose quantifier-free part is a k-
CNF, if d is odd, and k-DNF, if d is even. Then the translation (¢), is a
conjunction of disjunctions, where each disjunction is of depth d + 2, but
all of its gates at depth d + 1 have fan-in at most k. We write (¢)¢ for the
set of these disjunctions. We must also distinguish the case where (@), is
simply T or L, where we let (¢)¢ be respectively T or L.

The purpose of this extra step is to allow our translated formula to be
usable in the propositional proof systems defined above, since (¢)¢
has exactly the form of a set of cedents of PK; ;. For example, let ¢ be
the formula Vo <z3y<z R(z,y) A R(y,z). Then (#)[,y is the formula
Ni<n Vj<nrij A7ji. On the other hand ()O?ZH”} is the set of disjunctions
{\/j<n rij ATji 04 < n} which is in the right form to, for example, appear as
the set of initial cedents in a Res(2) derivation.

now

Theorem 1.3. Let d € N, with d > 0. Suppose that ¢1(x),. .., ¢e(z) are
strict Ugyo formulas, with x the only free variable, such that Ugyo-IND
proves Vo =(¢p1(x) A ... A ¢e(x)). Then for some k € N the family

By 1= (S1(@)) g U+ U (B(@)) o

has polynomial size PKgq . refutations.

Furthermore, we can take k to be the mazimum k such that the quantifier-
free parts of the formulas ¢; and the induction formulas used in the proof
translate into k-DNFs if d odd, or k-CNFs if d is even. O

The cases we will need for the main results of this paper are d = 0 and
d = 1. We will not need the part of the theorem giving extra information
about k (because the canonical pair of PKgj is independent of k, up to
polynomial equivalence—see below).

We remark that the theorem, as written, does not give optimally tidy
results when the formulas we are refuting are of lower complexity than the
induction formulas used in the proof. For example, in Sections 3 and 4 we
will give refutations of Uy formulas in Us-IND. A U, formula translates nat-
urally into a set of k-DNFs, but to apply the theorem we must consider these
rather as Us formulas (by padding), which translate into something messier.
For our applications in this paper, this does not matter. Furthermore this
is an easy thing to fix, as the equivalence between the direct translation of
such formulas and the padded version has short derivations.

We give a self-contained proof of Theorem 1.3 in Appendix A.



1.3 Disjoint NP pairs

A disjoint NP pair is simply a pair of disjoint NP sets. In the context of proof
complexity, these were first studied by Razborov in [28]. Our presentation
follows [26]. A pair (A, B) is polynomially reducible to a pair (C,D) if
there is a polynomial time function f, defined on all strings, such that
f[A] € C and f[B] C D. A pair (A, B) is polynomially equivalent to a pair
(C, D) if polynomial reducibility holds in both directions. A pair (A, B) is
polynomially separable if there is a polynomial time function which takes
the value 0 on strings in A and the value 1 on strings in B.

If P is a propositional proof system, the canonical pair Cp of P is the
pair (A, B) where

A={(¢,1™) : ¢ is satisfiable}
B = {(¢,1™) : ¢ has a P-refutation of size at most m}.

We say that P is weakly automatizable if the canonical pair of P is polyno-
mially separable. This definition of weakly automatizability is equivalent to
others in the literature (see [2]).

To define the interpolation pair Ip of P, let Ap be the set of triples
(¢,0,7) where 6 and ¢ are propositional formulas in disjoint variables and
7 is a P-refutation of ¢ A §. Then Ip is the pair (A, B) where

A={(¢,0,7) € Ap: ¢ is satisfiable}
B ={(¢,0,m) € Ap : 6 is satisfiable}.

Given a triple (¢,60,7) € Ap, at least one of ¢ and § must be unsatisfiable.
We say that P has feasible interpolation if there is a polynomial time function
which, given such a triple as input, outputs 0 if ¢ is unsatisfiable and 1 if §
is unsatisfiable. It is easy to show that P has feasible interpolation if and
only if Ip is polynomially separable.

Proposition 1.4.
1. The interpolation pair of PKg (resolution) is polynomially separable.

2. For every d > 0, the canonical pairs of the proof systems
PK4,PKg2,PKgs,. ..
are equivalent, and are also equivalent to the interpolation pairs of

PKg2,PKg3,PKiy4,... and of PKgy.

Proof These relations are well-known. For the sake of completeness we
recall the ideas of their proofs. Feasible interpolation for resolution was
proved in [21]. For part 2, let us denote polynomial reducibility between



pairs by <. The reductions Cpk, = Cpx,, and Ipk,, < Ipk,,, are trivial.
The converse reductions are easy, using extension axioms. (Note that in
the case of the interpolation pairs we may introduce extension axioms only
for sets of the same kind of variable.) The reduction Ipk ar 3 Cpxk ap 18
defined by mapping (¢,60,7) to (¢,|r|) and observing that from 7 and a
satisfying assignment for 6 we obtain a refutation of ¢ by substituting the
assignment and simplifying the refutation 7. The only nontrivial reduction
is Cpk, = Ipk,,,, which is defined by mapping (¢, 1™) to (¢, pj', 75"), where
pe is a formula that says that a string of length m of propositional variables
encodes a PK, refutation of ¢, and 7T$ is a PKg41 refutation of ¢ A Py
(This extends an argument of [2] for the case d = 0.) O

It is not known if any other pairs are polynomially separable. In [5]
it is proven that for some small dy and all d > dp, all pairs Ipk, are not
polynomially separable, assuming that factoring Blum integers or computing
the Diffie-Hellman function is sufficiently hard.

Finally, we define the canonical pair of a class of two-player games to
be the pair (Ag, A1) where A; is the set of games in which player i has a
positional winning strategy. Naturally, for this to make sense we need there
to be a definition of what a positional strategy is, and for it to be possible
to recognise a positional winning strategy in NP.

Essentially all our results are based on the following observation, which
we state as a lemma.

Lemma 1.5. Suppose that, for a class of games, we can construct in polyno-
mial time for every game G from the class a pair of propositional formulas
Wing and Winy in disjoint variables such that each Win; s satisfiable if
player © has a positional winning strategy. Suppose also that there exists a
polynomial size refutation of Wing U Winy in a proof system P. Then the
canonical pair of the class of games is polynomially reducible to the canonical
pair of P.

In particular, if we can construct polynomial size PKgy . refutations of
WingUWin; for some k, then we get a polynomial reduction to the canonical
pair of PKg.

Proof Let p be the polynomial bound on the size of the refutation. The
reduction of the canonical pair of the game to the canonical pair of the proof
system is given by the map

G— (Wino, 1p) .
The second part of the lemma follows from Proposition 1.4. U

Remark. We remark that an alternative proof is to observe that the refuta-
tion 7 of Wing U Winy; which we construct in Theorem 1.3 is actually con-
structible in polynomial time, and that the mapping G — (Wing, Winy, )

10



is thus a polynomial reduction from the canonical pair of the class of games
to the interpolation pair of P. In particular, if we can construct in polyno-
mial time PK4, 1 refutations of Wing U Winy, then we also get a polynomial
reduction to the canonical pair of PK, using Proposition 1.4.

An important observation is that the formulas Win; are not limited to
directly describing player i’s strategy, with propositional variables only for
that strategy. We are free to add any variables we like, and to say about
them anything we like, as long as we stay inside the logical complexity
allowed by the proof system (which is no real limitation, as we can add
extension variables). We take advantage of this to add variables and clauses
that will make the refutation of Wing UWin; easier. For example, in the case
of parity games, Wing has extra variables and clauses describing a certain
reachability relation R7. (z,y,z) arising from player 0’s strategy o. What
we cannot do is add new variables that depend both on player 0’s and on
player 1’s strategies.

Remark. We should note that in this paper we are concerned with polyno-
mial reductions and separations and with proofs of polynomial length. In
particular, for disjoint NP pairs, we will simply write reducible or equiva-
lent rather than polynomially reducible or polynomially equivalent. We do
not consider here the many natural and important questions about quasi-
polynomial reductions and proofs, in particular concerning the proof system
Res(log) [22] and the usual systems S and T% of bounded arithmetic. We
remark however that the system of narrow resolution, which would sit at
around the level PK_; in our hierarchy, is known to be quasi-polynomially
automatizable [4].

1.4 Binary arithmetic

In Sections 3 and 4, refuting Wing U Win; will require reasoning about basic
binary arithmetic, that is, about sums and ordering of n-bit numbers whose
bits are given by n propositional variables (in the propositional setting) or
by an oracle (in the first-order setting). For their results about mean payoff
games, the authors of [3] develop a very sophisticated family of fixed depth
formulas (disjunctions of k-CNF's, for a constant k) to sum constantly many
binary numbers, and show their properties are provable in PK; ;. Similar
formulas are used in [18] for simple stochastic games.

We show that, for our purposes, this complicated construction is not
necessary. This is because the binary numbers we reason about always
fall into two disjoint sets, those arising from player 0’s strategy and those
arising from player 1’s strategy. While we will have to compare numbers
from one side with numbers from the other, in our proofs we will never
have to consider sums in which we mix the two sides together. So for every
tuple of player 0’s numbers which we will need to sum together in a proof,

11



we can add variables to Wing expressing the value of the sum, along with
formulas expressing that this value is calculated correctly. We will usually
also need to add some extra variables to witness the intermediate steps of
the calculation.

We do our formalisation of binary arithmetic in the first-order setting.
We use n+ 1 bits to represent an integer in the range [—2",2") in two’s com-
plement form. Everything necessary can be formalised straightforwardly in
Uo-IND, with no surprises. We include details in Appendix B, and sum-
marise below the properties we need.

Proposition 1.6. Over Us-IND,

1. The usual ordering < on such integers is provably a As linear order.

2. There is a Uy formula Sum such that for integers X,Y, Z with X,Y €
[—2n=1t 2" we have X +Y = Z if and only if there is a string C
such that Sum(X,Y, Z,C).

3. Provably, for integers X,Y, Z,U, V,W with X,Y,U,V € [-2"~1 2n~1),
if X < U and Y <V, then Sum(X,Y,Z,C) and Sum(U,V,W, D)
implies Z < W. (]

2 Parity games

Following Stirling [31] we will describe parity games in a simplified form,
which is linear-time equivalent to the usual definition. A parity game G is
given by a finite directed graph with vertices V and edges E satisfying the
following properties. The set V is the disjoint union of two sets V; and V}
which we think of as the vertices belonging respectively to player 0 and to
player 1. The graph has a designated start verter s, and every vertex has at
least one outgoing edge. We identify V' with the interval [n] = {0,...,n—1}
where n = |V|. Below when we talk about the “least” vertex we mean the
least with respect to the usual order on [n]. Without loss of generality, s = 0.

The game begins with a pebble placed on the start vertex s. On each
turn, the pebble is moved from its current vertex v along an edge in the
graph. If v € Vj then player 0 chooses which edge to move it along. If
v € Vi then player 1 chooses. A play of the game is the infinite sequence
v1, V9, ... of vertices visited by the pebble. To decide the winner of a play,
let v be the least vertex which occurs infinitely often. If v € Vj then player 0
wins and if v € V; then player 1 wins.

A positional strategy o for player 0 is a map o : Vj — V such that
(z,0(x)) € E for each z € Vj. Similarly, a positional strategy 7 for player 1
is amap 7: V4 — V such that (z,7(x)) € F for each x € ;.

The following theorem has been proven by Emerson [13] independently
of a similar result for mean payoff games by Ehrenfeucht and Mycielski [12];
the reduction from parity to mean payoff games was found later by Puri [27].
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Theorem 2.1 (Emerson [13]). A player has a winning strategy in a parity
game if and only if he has a positional winning strategy. U

From now on we will only discuss positional strategies, so we will usually
omit the word “positional”. Given a strategy o for player 0, we will use E? to
mean the edge relation obtained from E by, for each vertex v € V{, removing
all outgoing edges except for the one chosen in o. We will similarly use E7
to mean FE restricted by a strategy 7 for player 1.

It is straightforward to show that the strategy o is winning for player 0
if and only if for every vertex ¢ reachable from s in E?, for every path from
t to t in F9, the least vertex on the path is in V. To prove our main result
in this section, we formalise this characterisation in such a way that we
can prove in Ug-IND that player 0 and player 1 cannot simultaneously have
winning strategies. In our formalisation below, all quantifiers are implicitly
bounded by n.

Expand the language L to include relation symbols E, Vy, Vi, E7, RZ. ,
E7, R} . and a constant symbol n. We will write G to stand for the tuple
E, Vy, Vi, n representing the structure of the game. The intended meaning
of E7 is as described above. The intended meaning of the ternary relation

o in(Z, Y, 2) is that there is a non-trivial path in £ from x to y on which
the least vertex visited is z. The relations E™ and R ; are similar.

Let Game(G) be a formula asserting that G is a suitable graph for a
parity game, that is, that V and Vj partition the vertices and every vertex
has at least one outgoing edge. Let Strategy (G, E?) be a formula asserting
that E? represents a strategy for player 0, that is, that every vertex in 1
has an outgoing edge in E7. Let Strategy,(G, E7) be a similar formula for
player 1. It is clear that these can all be written as Uy formulas.

Let Wing(G, E?, R% . ) be the conjunction of the universal closures of

1. Strategy,(G, E7)

2. E%(z,y) A z = min(z,y) = R, (z,y,2)

3. R%, (x,y,u) NRS, (y,2,v) ANw = min(u,v) = RJ. (z,z,w)
4. R%. (s,x,u) NRZ. (z,z,v) = ve V.

Let Winy (G, E™, R} ;) be a similar formula for player 1.
Lemma 2.2. If player 0 has a winning strategy in game G, then there
exist E7 and RS satisfying Wing(G, E?, R? . ). Similarly for player 1 and
Winy (G, E™, RT,..). 0

The converse of Lemma 2.2 is also true. For suppose that we can satisfy
Wing (G, E?, R%; ), but that player 0 does not have a winning strategy.
Then by Theorem 2.1, player 1 must have a winning strategy. Hence by
Lemma 2.2, we can also satisfy Win; (G, E™, R . ). But by Theorem 2.3

min
below, we cannot satisfy both.
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Theorem 2.3. Provably in Us-IND, it is impossible to satisfy Game(G),
Wing(G, E?, RZ,,) and Wini (G, E7, R}, ) simultaneously.
Proof We first describe an informal proof. In the graph E° N E7, if
we start from s we will eventually reach some vertex t which is on a loop.
Let v be the least vertex on this loop. Then we must have Ju RS, (s,t,u),
JuRT; (s,t,u), RS, (t,t,v) and RT . (t,t,v). Hence condition 4 is false in
Wing if v € V7 and false in Win; if v € V.

We cannot use this argument directly in Uo-IND, because we are not
able in general to define the reachability relation on E? N E7. Instead, let

R*(z,y) be the formula
Jv, RO (z,y,v) A R (2, y,0).

By condition 3 of Wing and Winy, the relation R*(z,y) is transitive. More-
over for every x there is at least one y such that R*(z,y), since we can take y
to be the unique successor of z in £ N E7 and take v to be min(z,y).

We will use R*(z,y) as an approximation of the reachability relation on
E° N E™ and, as in the informal proof, find a vertex ¢ that is both on a loop
and reachable from s, in this approximate sense. Let A(x) be the formula

R*(s,z) AVy>xz —~R*(z,y).

Using E1-MAX, let  be maximum such that R*(s,x). It follows that A(x)
holds. Hence using Eo-MIN, we let ¢t be minimum such that A(t).

Now using E;-MAX, let ¢’ be maximum such that R*(¢,t'). By the
transitivity of R*, we know that R*(s,t') and also that for all y > ¢’ we
have —=R*(t',y). Hence A(t') holds, and therefore ¢’ > ¢ by minimality of .
On the other hand, since A(t) and R*(¢,t'), we know ¢’ < t. We conclude
that ¢/ = t.

We now have that R*(s,t) and R*(¢,t). Hence there are vertices u and
v such that both R7. (s,t,u) A R%. (t,t,v) and RT . (s,t,u) A RT. (t,t,v)
hold. Therefore condition 4 must be false in either Wing or Winy, since
either v € Vy or v € V1. O

The formula Wing(G, E?, R7 ;) is a conjunction of Us formulas. Suppose
we are given a parity game G, with n vertices. Let o map the constant
symbol n of our language (which we treat here as a free variable) to the
number n. Then for some £ € N we can translate each such formula ¢ into
a conjunction (¢), of k-DNF's, with propositional variables for the relations
E°, R? . and for the structure of the game G. We abuse notation and write
(Wing(E?, RZ..))c for the propositional formula obtained by taking the set
of all the formulas (¢), and substituting in, for the propositional variables
describing the structure of G, the values given by the actual game G.
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In other words, (Wing(E?, RZ, ))q is the propositional formula obtained
by translating Wing and substituting in the real values of G. It is satisfi-
able if and only if player 0 has a winning strategy in G. The formula
(Win; (E™, RT ;)¢ is similar.

Corollary 2.4. There is a number k € N and a polynomial p such that for
every game G, the set of formulas (Wing(E?, R%: ))q U (Winy1(E™, R . ))a

min min
has a Res(k) refutation of size p(n).

Proof Take the refutation given by Theorem 1.3 and substitute in the real
values of G. Observe that G satisfies Game(G), so all the initial formulas
coming from Game(G) vanish. O

Applying Lemma 1.5 to Corollary 2.4 yields the following

Corollary 2.5. The canonical pair for parity games is reducible to the
canonical pair for resolution. O

Corollary 2.6. If resolution is weakly automatizable, then parity games can
be decided in polynomial time. O

3 Mean payoff games

A mean payoff game G is given by a finite directed graph (V,E) where
V' = [n] is the disjoint union of sets V, and Vj belonging respectively to
player 0 and player 1, there is a designated start vertex s and each vertex
has at least one outgoing edge. Furthermore each edge (x,y) is now assigned
an integer weight w(z,y) (written as a binary string). The rules for moving
the pebble are the same as for a parity game. To decide the winner, let
v = liminf,, e % ot w(vi, vig1) where vy, v, ... is the infinite sequence
of vertices visited by the pebble. If v > 0 then player 0 wins and if v < 0
then player 1 wins. Strategies and positional strategies are defined as for
parity games, and by the following theorem we will again usually omit the
word “positional”.

Theorem 3.1 (Ehrenfeucht and Myecielski [12]). A player has a winning
strategy in a mean payoff game if and only if he has a positional winning
strategy. U

Given a strategy o for player 0, and vertices x and y such that y is
reachable from x in E7, let uf ((z,y) € {—o0} UZ be the infimum, over all
non-trivial paths 7 from x to y in 9, of the total weight of m. We claim that
if uf ¢(z,y) > —oo then uf((x,y) > Mn, where M < 0 is a lower bound
on the weight of the edges. This is because if m has no loops, then Mn
bounds the weight of 7; removing loops of positive weight does not increase
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the weight of 7; and if 7 has a loop of negative weight, then paths exist with
arbitrarily low weights, so uf (z,y) = —oo.

A strategy o for player 0 is winning if and only if, for every vertex t
reachable from s in E?, uf(t,t) > 0. Similarly given a strategy 7 for
player 1 we can define uf, (z,y) and show that 7 is winning if and only fif,
for every vertex t reachable from s in E7, ul,,(t,t) < 0.

Expand the language L to include a tuple G of relation symbols E, Vg, V1,
W and a constant symbol n, together describing the game. We add relation
symbols E?, R?, and U7, for player 0’s strategy and some relations derived
from it. Here the intended meaning of R?(x,y) is that y is reachable from z
in E7, and the intended meaning of UZ.(x,y,1%) is the ith bit of the binary
number uf ((x,y) (we also reserve one bit to express whether uf ((z,y) is
infinite). We further add a collection Cf; of relation symbols to code the
computations of the sum u{ ((z,y) + ul;(y,2) for all triples z,y,z. We
similarly add relation symbols E7, R", Ug,, and C7; for player 1.

Let Game(G) be a formula asserting that G is a suitable graph for a
mean payoff game. Let Strategy (G, E) and Strategy, (G, E™) be as before.
Again, all three formulas are U, formulas. Let Wing(G, E7, R?, U7, Cf;) be

inf>
the conjunction of the universal closures of:

1. Strategy,(G, E7)

2. All sums used in the proof are computed correctly

3. E7(x,y) = R7 (2, y) A ugy (2, y) < wiz,y)]

4. R7(z,y) AR(y, 2) = R (2, 2) A [ufp(2, 2) < ufyp(2,y) + ufy (y, 2)]

5. R7(s,x) = [uf¢(z,x) > 0].
Here condition 2 is a conjunction of Uy formulas involving the formula Sum.
Conditions 3, 4 and 5 are also Us, since the ordering relation is provably As.

Note that the formalisation of 4 does not involve Sum, but rather the part
of Cf which is stated in condition 2 to code the value of the sum uf (z, y) +

g (¥ 2)-

Let Winy (G, E™, R™,Ug,,,, Cf;) be a dual formula for player 1, with the

ordering reversed in 3 and 4 and with 5 replaced by
5 R7(s,x) = [udy,(z,z) <O0].

Theorem 3.2. Provably in Us-IND, it is impossible to satisfy Game(G),
Wing(G, E?, R?, U, Cf;) and Winy (G, E7, R7,Ug,,, Cf;) simultaneously.

Proof Let R*(z,y) be the formula

R (,y) AR (2, y) A uie(2,9) < udp(2,9)]-
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Using the properties of binary arithmetic we can show that the relation R*
is transitive. Also, as before, for all = there exists some y for which R*(x,y).

It follows, by exactly the same argument as in the proof of Theorem 2.3,
that there exists a vertex ¢ such that R*(s,t) A R*(¢,t). The only difference
is that now the relation R*(x,y) is Ag rather than E;, so we need Us-IND
rather than Uy-IND. We conclude that R7(s,t) A R7(s,t) A [uf¢(t,t) <
ugyp(t, )], violating condition 5 of either Wing or Win;. O

Corollary 3.3 ([3]). The canonical pair for mean payoff games is reducible
to the canonical pair for PKy. Hence if PKy is weakly automatizable, then
we can decide the winner of a mean payoff game in polynomial time.

Proof The proof is similar to the one given for parity games in Corollar-
ies 2.4 and 2.5. (]

4 Simple stochastic games

A simple stochastic game (SSG) G is given by a directed graph (V, E) sat-
isfying the following properties. G has a designated start vertex s and two
sink vertices called the 0-sink and the 1-sink. The set of non-sink vertices is
the disjoint union of three sets Vinax, Vinin, Vave called maz, min and average
vertices. All non-sink vertices have exactly two outgoing edges. As before
we assume that V' = [n] and s = 0.

The game is played by putting a pebble on the start vertex, which is then
moved along the edges of G by two players denoted player 1 or “Max”, and
player 0 or “Min”. From a max vertex, player 0 chooses the outgoing edge
to move the pebble along, and similarly for min vertices and player 1. At
average vertices, the successor vertex is chosen at random with each of the
two outgoing edges being chosen with probability % Player 1 wins the play
if the pebble reaches the 1-sink and player 0 wins if it reaches the O-sink.

A strategy o for player 0 is a map o : Vipin, — V such that (i,0(i)) € E for
all min vertices . Similarly, a strategy 7 for player 1 is a map 7: Vipax = V
such that (i,7(i)) € E for all max vertices i. We define the value vy (i) of
vertex © with respect to strategies o and T to be the probability that player 1
wins the game if the pebble begins on 7 and the players use strategies o and 7.
The optimal value vop (i) of G at vertex i is defined as max, min, vy -(2).
We define the wvalue val(G) of G to be wvopt(s), the optimal value of the
start vertex. The SSG value problem is to decide, given an SSG G, whether
val(G) > 3.

For A € R, say that a A-solution of G is a vector u € [0,1]" satisfying,
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at all vertices i,

(Amax{u(j),u(k)} ifi € Viax and iE = {j, k}
Amin{u(j),u(k)}  if i € Viin and iE = {j, k}

u(i) = 4 5 (u(f) + u(k)) if i € Vaye and iE = {7, k}
0 if 7 is the 0-sink
1 if 7 is the 1-sink

where ¢E denotes the set of vertices which can be reached from ¢ using an
edge in G, that is, iE = {j € V : (i,7) € E}. If A =1 we will call u simply
a solution of G. It is easy to see that the vector vp of optimal values of G
is a solution of G. However, in general there may also be other solutions.

Proposition 4.1 ([29, 10]). There is a constant ¢ such that for any game
G, if we let m = cn and X =1 — 27" then G has a unique \-solution w.
Furthermore if val(G) < % then w(s) < 3 and if val(G) > 1 then w(s) >
2+3-47N, where N =n(m+1). O

This follows immediately from the results in [10]. That paper expands
G to a A-stopping game G’ with N vertices, where val(G’') > % if and only
if val(G) > % The vector w arises as the restriction of the optimal values
of G’ to the vertices in G. Since G’ is an SSG, the optimal values of G’ are
rational numbers over a common denominator bounded above by 4%.

Take A\, m and NN as in the proposition. To obtain our reduction of SSGs
to the weak automatizability of PK;, we will prove in Us-IND that it is
impossible to simultaneously have a solution u of G with u(s) < % and a
A-solution w of G with w(s) > +1-4=V. Mixing solutions with A-solutions
in this way is not essential, but makes our proof substantially simpler. We
are also careful that our proof never involves the sum of a value from u and
a value from w. Otherwise we follow [18] in formalising the argument in [10]
that A\-stopping games have a unique solution.

Let D = 2mT44N | Let Wing(G, U) express the following, where as above

we use j and k to refer to the two neighbours of i:
1. All sums in u used in the proof are computed correctly
2. u(i) > max{u(j),u(k)}, for i € Viax
3. w(i) > min{u(j),u(k)}, for i € Viyin
4. 2u(1) > u(j) + u(k) — 2, for i € Vaye
5. u(0-sink) = 0 and wu(1-sink) = D

D
6. u(s) < 5.

18



If val(G) < 1 then Wing(G, U) can be satisfied by setting u = | D - vopy | for
the vector vopt of optimal values of G.

For Win; (G, W), we would like to write something dual to Wing(G,U),
expressing that w has some of the useful properties of a A-solution of GG. For
example, we might choose to write w(i) < Amax{w(j),w(k)}. However, for
the sake of simplicity we would rather avoid using any binary multiplication.
It turns out that we will only be interested in vertices i with w(i) > 2m+3,
and for such i we have that, for any number a, if w(i) < Aa then w(i) < a—8
(recall that A = 1 —27"). For our purposes, this last property is enough.
Hence we let Win; (G, W) express the following:

1. All sums in w used in the proof are computed correctly

2. If w(i) > 2™*3 then w(i) < max{w(j),w(k)} — 8, for i € Vinax
3. If w(i) > 23 then w(i) < min{w(j),w(k)} — 8, for i € Viuin
4. If w(i) > 2™+3 then 2w(i) < w(j) + w(k) — 6, for i € Vaye

5. w(0-sink) = 0 and w(1-sink) = D

6. w(s) > L +2m+3,

If val(G) > 1 then Wini (G, W) can be satisfied by setting w = | D - w'| for
the (unique) A-solution w’ of G.

Let Game(G) assert that G is a suitable graph for an SSG. As in Sec-
tion 3, Game(G), Wing(G,U) and Win; (G, W) are all conjunctions of Us

formulas.

Theorem 4.2. Provably in Us-IND, it is impossible to satisfy Game(G),
Wing(G,U) and Win; (G, W) simultaneously.

Proof Define a relation > on the vertices of G by ¢ > j if and only if
w(i) — w(j) > w(i) — u(y). This is Ay (since we can assume that we are
given all differences w(i) — w(j) and w(i) — u(j)) and, by the properties of
binary arithmetic, is a total order. Therefore, by Us-MAX there exists a
vertex ¢ which is =-maximum. Fix such an 7.

In particular ¢ = s, that is, w(i) — w(s) > u(i) — u(s). Hence

w(i) — £ —2m3 >y (i) — 2.

Since u(i) > 0, it follows that w(i) > 2™3. Also w(i) # u(i), so i cannot be
asink. Let j and k be the neighbours of i. We know w(i) —w(j) > u(i)—u(j)
and w(i) — w(k) > u(i) — u(k).

Suppose i € Viax. Without loss of generality we may assume w(j) >
w(k). From condition 2 of Wing we have u(i) > u(j) and from condition 2
of Win; we have w(i) < w(j) — 8, giving

u(t) —u(j) 2 0 2 w(i) —w(j) + 8 > w(i) — w(j)
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which is impossible.

Suppose i € Vipin. Without loss of generality we may assume u(j) <
u(k). This time, from condition 3 of Wing we have u(i) > wu(j) and from
condition 3 of Win; we have w(i) < w(j) — 8, so we are back in the previous
case.

Finally suppose i € Vaye. From condition 4 of Wing and Win; we have

u(i) —u(y) +u(i) —uk)+2>0>w(iE) —w(j) +w() —wk)+6
which is impossible. O

Corollary 4.3 ([18]). The canonical pair for SSGs is reducible to the
canonical pair for PKy. Hence if PKy is weakly automatizable, then we
can decide the SSG value problem in polynomial time. O

5 A game equivalent to resolution

In this section we will define the point-line game and prove the following:

Theorem 5.1. The canonical pair for the point-line game is equivalent to
the canonical pair for resolution.

An instance of the point-line game is given by a finite directed acyclic
graph (V, E) with some extra structure. Namely, the set V is the disjoint
union of sets Vy, V1 and F', where vertices in Vy and Vi belong respectively
to player 0 and player 1, and F' contains exactly the leaf vertices, that is,
those of out-degree 0. There is a designated start vertex s of in-degree
0. Each vertex v contains a set S, of points. The start vertex is empty
(contains no points) and every leaf contains exactly one point. Vertices do
not share points. If there is an edge (u,v) in E, then some points in u may
be connected to some points in v by lines. A point in v may have lines out
to many points in v, but each point in v has a line in from at most one point
in u, as in Figure 1. During the game some points will be assigned colours,
either black, for player 0, or white, for player 1.

The game starts with a pebble on s. At the beginning of a general turn,
the pebble is on some vertex u and every point in u has a colour. As before,
the player who owns vertex u moves the pebble along an outgoing edge to a
new vertex v. Every point p in v that is connected by a line to some point
q in u is then coloured with ¢’s colour. Every other point in v is coloured
with the colour of the player who did not move. The game ends when the
pebble reaches a leaf w. The winner is the player whose colour is on the
single point in w.

As before, a positional strategy is a function o : Vg - Vorr:Vp -V
assigning a choice of outgoing edge to each of a player’s vertices, regardless
of the history of the game or the colouring of the current vertex. However in

20



(N

Vertex u connected to leaves Non-leaf vertices with points and lines
1 and Iy with points and lines

Figure 1: Components of point-line game graphs.

this case, it is not in general true that a winning strategy exists if and only a
positional winning strategy exists. One can give an example of such a game
in which neither player has a positional winning strategy, while at the same
time one of the players must, as in any finite game, have a (non-positional)
winning strategy.

Lemma 5.2. Given such a game G and a positional strateqy o for player 0,
it 1s decidable in polynomial time whether o is a winning strategy. Hence
the canonical pair for point-line games is a disjoint NP pair.

Proof We describe a polynomial time algorithm which, working back-
wards from the leaves, labels each vertex w with either a set B, C S, of
points or a symbol “Losing,”. This labelling will have the property that if
u is labelled “Losing,” then, regardless of the colouring of u, if the pebble
reaches u then player 1, playing optimally, will win the game if player 0 plays
according to o. If u is not labelled “Losing,” then if player 0 plays according
to o and player 1 plays optimally, player 0 will win the game from « if and
only if all points in B,, are coloured black. Thus ¢ is a winning strategy for
player 0 if and only if the start vertex s is not labelled “Losing,”.
The algorithm labels a vertex u using the following rules.

1. If w is a leaf, set B, to be the (unique) point in w.

2. If u € Vq, suppose that u has children vy, ...,v; and that these have
all been labelled. If any child v; is labelled “Losing,”, then label u
as “Losing,”. Otherwise, let B, contain every point in w which is
connected by a line to some point in B, for some child v; (in other
words, let B, be the union of the pre-images of the sets B,,). See
Figure 2.

3. If u € Vp, let v = o(u). Suppose that v has been labelled. If v is
labelled “Losing,” then label u as “Losing,”. If not, there are two
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oy
ue W

No child of u labelled “Losing”

Figure 2: The algorithm constructing a labelling of a point-line game under
a strategy o: the cases when constructing a label for a vertex u in V.

possibilities. If there is a point in B, that is not connected by a line
to any point in u, label u as “Losing,”. Otherwise, let B, be the set
of points of u which are connected by a line to some point in B,. See
Figure 3. (]

Theorem 5.3. The canonical pair for the point-line game is reducible to
the canonical pair for PKqy for some k € N, and hence to the canonical
pair for resolution.

Proof Our proof uses the same basic structure as for the games in previous
sections. Expand the language L to include a tuple G of relation symbols F,
Vo, V1, F, S, N and a constant symbol n, together describing the game. Here
S(u, p) means that a point p is in the set S, and N(p, q) means that there is
a line from point p to point ¢q. Let Game(G) be a conjunction of Uy formulas
asserting that G has the properties of a game. In particular, we enforce that
the underlying graph is a acyclic by only allowing an edge F(u,v) if u < v.

For player 0 we also add symbols E?, R?, B° and Losingj. We let
Wing(G, E?, R?, B?, Losing] ) be a conjunction of U, formulas asserting that
E° arises from a strategy for player 0; that R (u,v) holds if v is reachable
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v =o(u)
u € Vo u € Vo
Node v labelled “Losing” Node v labelled B,, and some point in

B, not connected to any point in u

u €Wy

Node v labelled B,, and all points
in B, connected to points in u

Figure 3: The algorithm constructing a labelling of a point-line game under
a strategy o: the cases when constructing a label for a vertex u in Vj.

from v in E7; that B? and Losingg give a labelling of the vertices as in the
proof of Lemma 5.2; and that for every vertex v, if R? (s, v) then v ¢ Losing§.

For player 1 we similarly add symbols E7, R”, W7 and Losing] and define
a similar formula Win; (G, E™, R™, W”, Losing]). Here W7 corresponds to
B? and represents points that must be coloured white for player 1 to win
using strategy 7.

It is easy to see that if player 0 has a winning strategy then we can satisfy
Wing(G, E?, R?, B?, Losing] ) and that a similar thing is true for player 1.
Hence for the theorem it is enough to give a Ua-IND proof that Game(G),
Wing(G, E?, R?, B?, Losing] ) and Win, (G, E™, R™, W7, Losing] ) cannot be
satisfied simultaneously.

Suppose otherwise. We will show by Us-IND that for u=n—1,...,0,

Vo>u, R7(s,v) AN R"(s,v) — 3p € BI NW,.

This holds trivially at n — 1. Suppose that it holds at u, and that R?(s,u)
and R"(s,u). For the induction, it is enough to show that BJ N W, is non-
empty. If u is a leaf, then by rule 1 of our labelling algorithm the unique
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point p in u must be in both Bf and W. So we may assume that u is an
internal vertex.

Without loss of generality assume u € V. Taking v = o(u), from our
assumptions we must have R?(s,v), R™(s,v) and v > u, so by the inductive
hypothesis there is some point ¢ in BJ N W, . Furthermore, neither u nor v
is in either Losing{ or Losing].

Since u ¢ Losingf and ¢ € BY, there must be a line in the game con-
necting ¢ with some point p in u, by rule 3 of our labelling algorithm for o.
Hence p is in B by rule 3 of the algorithm for o, and in W by rule 2 of
the algorithm for 7. This completes the induction.

It follows that there is some point p € B N W for the start vertex s,
which is impossible since s contains no points. U

We will prove the other direction of Theorem 5.1 by showing that the
interpolation pair for PKy, which is known to be equivalent to the canonical
pair for resolution, is reducible to the canonical pair for the game. In fact
we will not use the system PK; directly, but will use a similar system PK}
defined below, which is easily shown to be p-equivalent to PK; and hence
to have an equivalent interpolation pair.

A PK] refutation is a sequence of DNFs, each written as a list of con-
junctions separated by commas. However unlike in (our definition of) PKj,
DNFs in PK) behave like sequences of their disjuncts, not like sets. This
means that repetition and ordering of disjuncts now matter, and we include
explicit structural rules to manipulate them. We still treat conjunctions as
sets of their conjuncts.

The rules of PK) are as follows, for literals z, conjunctions «, ( and
sequences of conjunctions I', A:

. r Ia,o Lo, B, A
§ r . Daa il Rt Nt Rl
weakening T.A contraction T.o exchange T. 83,0 A
. IaAz I, -z troducti LTia T,z
cu T A-1ntroduction T,a Az

We also allow introduction of logical axioms z,—z.

Theorem 5.4. The interpolation pair of PK} is reducible to the canonical
pair for the point-line game.

Proof We are given two sets of clauses ® and V¥ in disjoint sets of variables
X and Y. We are also given a PK) refutation 7 of ® U ¥. We may assume
without loss of generality that ® already contains all axioms z, —x for vari-
ables from X, and similarly for ¥ and axioms from Y, and that there are no
other introductions of axioms in 7. We will construct in polynomial time a
game G such that if ¢ is satisfiable then player 0 has a positional winning
strategy in G, and if ¥ is satisfiable then player 1 has such a strategy.
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Figure 4: Constructing point-line games from PK) derivations: the case of
an initial clause I'.

The game has one vertex for each DNF that forms a line in the proof, and
that vertex contains one point for each conjunction in the DNF. Additionally
it has one vertex for each literal z arising from a variable in X UY, and each
such vertex contains a single point.

The vertices corresponding to literals are the leaf vertices. For each
vertex u corresponding to an initial clause of the proof (that is, a clause
from ® U ¥), and each literal z occurring in the clause, there is an edge
connecting u to the leaf vertex v, for the literal z, and a line connecting the
point in u corresponding to z to the single point in v,. See Figure 4.

The vertices corresponding to non-initial DNF's are connected by edges
to the vertices corresponding to the premises from which they are derived.
We define the lines connecting the points contained in these vertices as
follows, using the notation we used in the definitions of the rules of PK}.
See Figure 5.

For every rule, we connect every conjunction in a sequence I' in either
premise of a rule to its descendant in I' in the conclusion of the rule. For
the exchange rule, we also do this for A.

For the cut and weakening rules, there are no other lines. For the A-
introduction rule, we connect « in the left-hand premise with o A z in the
conclusion. For the contraction rule, we connect both occurrences of « in
the premise with the « in the conclusion. For the exchange rule, we connect
« in the premise with « in the conclusion, and similarly for .

We finally describe how the non-leaf vertices are assigned to the two
players. If a vertex u corresponds to an initial clause in ® then u € Vj, and
if u corresponds to an initial clause in ¥ then u € V;. For vertices u cor-
responding to non-initial DNF's, if u was derived by weakening, contraction
or exchange, it does not matter how we assign it. If it was defined by cut
or A-introduction, the assignment depends on the literal z appearing in the
rule: if z comes from an X variable, we put u € Vj, and if z comes from a
Y variable, we put u € V;. This completes the definition of the game G.

Now let A be a truth-assignment to the variables X which satisfies ®.
We will use A to define a positional winning strategy for player 0 (the case
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weakening

r
T A

F’a7/8’A

exchange W

I'NaAz I, —z

cut

I« T,z

A-introduction T.anz

Figure 5: Constructing point-line games from PK) derivations: applying
rules. By S’ we always denote the sequence of formulas in the conclusion of
a rule; by S those in the premise, if the rules have exactly one premise; and
by 51 and Sy those in respectively the left and right premise, for rules with
two premises.

26



for player 1 is symmetrical). Let u € V.

1. Suppose u is derived using the cut rule. If z is false in A, choose the
edge from u going to the left, that is, to the vertex containing a A z.
Otherwise go right, that is, to the vertex containing —z.

2. Suppose u is derived using the A-introduction rule. If z is false, go
right; otherwise go left.

3. Suppose u is an initial clause from ®. Pick the first satisfied literal z
in the clause and go to the leaf vertex corresponding to z.

For a conjunction ~, define the X -part of v to be v with all literals that
use variables from Y deleted. In particular, if v consists solely of Y literals,
the X-part of v is empty and we will treat it as the constant for truth. To
prove that the strategy described above is a winning strategy, we will show
that the following invariant is preserved during any game played according
to it:

If the pebble is on a non-leaf vertex w, and p is a point in u
corresponding to a conjunction whose X -part is satisfied by A,
then p is coloured black.

This property immediately implies that player 0 wins. This is because the
game must eventually reach a vertex u that is an initial clause of the refu-
tation. If w € ®, then some literal in u is satisfied by A. Hence by the
invariant, this literal must be coloured black, since ¢ only contains vari-
ables from X. Hence player 0 can move to the corresponding leaf vertex
and colour its point black (and notice that this move can be chosen depend-
ing only on A, and not on the colouring of the points in u). On the other
hand if u € ¥, then the X-parts of all literals in u are empty, hence true and
coloured black. Thus, whatever leaf player 1 picks, its point will be coloured
black.

It remains to show that the invariant is preserved. It holds at the start
vertex, since that has no points. Suppose it holds at a non-leaf vertex u
which does not correspond to an initial clause. If u was derived by weaken-
ing, contraction or exchange then the invariant is preserved trivially. Oth-
erwise, let z be the literal appearing in the rule by which u was derived and
let v be the vertex that the game moves to after u. In all cases, the property
is preserved trivially on points corresponding to conjunctions in I'.

Suppose that u was derived using the cut rule. If u € V;, then whether
player 1 chooses to go left or right, the new point (corresponding respectively
to aAz or —z) gets coloured black, so the invariant is preserved. So suppose
u € Vp, meaning that z comes from an X-variable. If z is false, then by
the definition of the strategy player 0 chooses to go left. But from our
assumption the X-part of o A z is false, so it does not matter how it is
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coloured and the invariant is preserved. If z is true, then player 0 chooses
to go right. But similarly the X-part of —z is false and the invariant is
preserved.

Suppose that v was derived using the A-introduction rule. Suppose first
that u € V1, so z comes from a Y-variable. If player 1 goes left, then o gets
coloured the same colour as a A z, since there is a line connecting them; but
both points have the same X-part so the invariant is preserved. If player 1
goes right, then z is automatically coloured black. Suppose now that u € Vj,
so z comes from an X-variable. If z is false, then player 0 goes right, and it
does not matter how the point z is coloured. If z is true, then player 0 goes
left and « gets the same colour as a A z; but in this case, the X-part of « is
satisfied if and only if the X-part of a A z is. O

Corollary 5.5. The canonical pair of parity games is polynomially reducible
to the canonical pair of point-line games.

Proof The canonical pair of parity games is reducible to the canonical
pair of resolution which in turn is reducible to the canonical pair of point-line
games. U

It might be interesting to construct a direct reduction from parity games to
point-line games.
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A Translating first-order into propositional proofs

Let L and L™ be theories as in Section 1.2, so that in particular all terms
are polynomially bounded. For simplicity of presentation we will assume
that LT = L U {R} for exactly one binary relation symbol R. This is easily
extended to arbitrary tuples of relation symbols of arbitrary arity.

Definition A.1. A first-order k-conjunction is a conjunction of the form
o NP1 A+ N ¢dp, where o is any L formula, m < k and each of ¢q,...,dm
has the form R(s,t) or —R(s,t) for L-terms s and ¢t. A first-order
k-disjunction is defined dually.

For odd d, a strict Uy formula is a strict Uy formula whose quantifier-
free part is a conjunction of first-order k-disjunctions. For even d, a strict
Ug . formula is a strict Uy formula whose quantifier-free part is a disjunction
of first-order k-conjunctions. A Uy formula is a subformula of a strict Ug y,
formula. The strict Eq formulas and Egy formulas are defined dually.

The theory Uy ,-IND consists of BASE together with the usual induction
scheme for all Uy formulas, with parameters. The theory Eg;-IND is
defined similarly (and is equivalent).

We will show that Ugys 5-IND refutations can be translated into families
of polynomial size PK refutations. We will first prove this for U 1-IND
and resolution, and then derive the general case.

Notice that the translation (¢)% turns a Us; formula ¢ into a set of
clauses, that is, of disjunctions of literals. Recall that we treat the symbols
T and L respectively as the empty set and the singleton set containing the
empty clause.

Theorem A.2. Suppose that ¢1(z), ..., ¢e(z) are strict Ug 1 formulas, with
x the only free variable, such that Ug 1-IND proves YV —=(¢1(z) A--- A pe(z)).
Then the family of CNFs

By = (91 (@) g U+ U (00(@))
has polynomial size resolution refutations.

A resolution derivation of a set B of clauses from a set A of clauses is a
sequence of clauses, ending with the clauses in B, such that each line in the
proof is either from A, or is a logical axiom p V —p, or follows from earlier
clauses in the sequence by a rule. We will call A the initial clauses and B
the final clauses, and will call such a derivation a derivation of A+ B.

Definition A.3. For sets of clauses C' and D, we write C x D for the set of
clauses {¢ V¢ : ¢ € C,9 € D}.

Notice that A C'V A D is logically equivalent to A(C * D).
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Lemma A.4. Let C, D and E be sets of clauses.
1. The operator * is associative, commutative, and distributive over U.
We have C CC+xC,Cx L =CandCxT =T.

We can derive C'+= C % D by weakening.

e e

Given a derivation m of C' = D, there is a derivation of Cx E+- D+ E
of size polynomial in the sizes of m and E, obtained by multiplying each
clause of m by F. O

To analyse Uz 1-IND proofs we will use the sequent calculus LKB, for
bounded arithmetic, as presented in [8]. This is a system for deriving se-
quents ¢1,...,¢p —> P1,..., 1Yy of bounded formulas, where the intended
meaning of a sequent is that the conjunction of the formulas on the left
implies the disjunction of the formulas on the right. It has weak structural
rules, which allow us to treat each side of a sequent as a set of formulas. It
has logical axioms ¢ —> ¢, equality axioms, and non-logical axioms, which
in our case have the form — ¢ for ¢ a formula from BASE. Its other rules
are listed in the proof below. They consist of rules for introducing proposi-
tional connectives and bounded quantifiers on the left and right hand side
of a sequent, the cut rule, and the induction rule. The quantifier and induc-
tion rules all involve an eigenvariable which is not allowed to appear in the
bottom sequent.

The translation (¢)? was only defined for strict Ugyo formulas. We
extend it to non-strict Ugio; formulas ¢ by first padding ¢ using dummy
quantifiers. Remember that assignments are total maps from variables to
numbers in which at most finitely many variables are assigned non-zero
values.

Theorem A.5. Suppose that there is a sequent calculus derivation I1 ending
in the sequent

Py Pt — Y1y m

where every formula appearing in the derivation is a Ua1 formula. The
deriation may use the Us 1 induction rule and may use any universally
true, quantifier-free L-formula as an axiom. Then there is a polynomial p
such that for any assignment «, there is a resolution derivation w, of size

p(a), of
(p1)a U U)ok (br)a -+ * (Ym)a

Here we write p(a) for p(n), where n is the mazimum value assigned by .
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Proof The proof is by induction on the derivation II and splits into cases
depending on the rule by which the last sequent is derived. The existence of a
polynomial size bound will be clear from the construction. The construction
follows that of [30] and [23] but is simpler, because we are not worried about
issues of uniformity.

For readability of notation, throughout this proof we will write (¢) to
mean (¢)?. For a first-order cedent I' = ¢y, ..., ¢y we will write I'° for the
set of clauses (¢1) U--- U (¢¢) and I'* for the set of clauses (¢1) x - - * (¢y).

Axioms and weak structural rules Logical axioms, exchange, contrac-
tion and left weakening are trivial. Non-logical axioms (apart from equality)
are also trivial, as these are universally-true L-formulas and hence always
translate into T, the empty set of clauses. Equality axioms not involving R
are treated similarly. For equality axioms involving R, of the form

S1 = SQatl - t27R(817t1) — R(SQatQ)a

if 81 # s9 or t1 # to in a we use the fact that we can derive anything from
the empty clause L. Otherwise we use the trivial derivation of r;; F r; ;,
where i = (s1), and j = (t1)4. For right weakening

I — A
r — A9

we use weakening to derive A* x (¢) from A*.

Propositional A-introduction Suppose the last rule applied in IT is

Lo, — A or r — Ao r— Ay
oAy — A I —Ao¢AY '
In both cases, by our assumptions about II we may assume without loss of

generality that ¢ is an L-formula. Hence either (¢) = T and (¢ A ¢) = (),
or (¢) = L and (¢ A1) = L. Both cases are trivial.

Propositional V-introduction Suppose the last rule applied in IT is

e — A Ly — A or I — A ¢,
Lovy — A I — AoV
In both cases we may assume that ¢ and 1 are disjunctions of first-order
1-conjunctions. It follows that (¢ V ¢) = (¢) * (¢»). The right-hand case
is then trivial. For the left-hand case, by the inductive hypothesis we have
derivations m and mo of

T°U () F A* and T°U () A*.
By multiplying every clause in m1 by (1) we get a derivation 7] of

I (1) U (@) * () F A x (¢).
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By multiplying every clause in w2 by A* we get a derivation 7} of
% A* U () * A" F A*.

Combining 7} with 74 and using weakening to derive both I'° % (¢)) and
I'° % A* from I'°, we get the required derivation I'° U (¢) * (¢) = A*.

Propositional —-introduction Suppose the last rule applied in IT is

' — A9 or o — A
-9 — A I — A -9

If ¢ is an L-formula then these are trivial. Otherwise, we may assume that
¢ is an atomic sentence R(s,t) and that (¢) = {r} and (-¢) = {-r} for
some propositional variable r (where we are abusing notation slightly and
identifying the literals r and —r with the single-element clauses \/{r} and
\V{-r}). Let m be a derivation for the upper sequent.

For the left-hand case, we resolve every final clause of © with —r.

For the right-hand case we add —r to every clause in 7, so that the initial
clause r is replaced by the axiom instance r V —r. This gives a derivation
of T° x {—r} F A* x {=r}. We derive I'° * {=r} from I'° by weakening.

Induction Suppose the last rule applied in IT is

L, d(x) — A, pla+1)
L0(0) — A, ¢(1)

Let n = (t)o. We will write (¢); for (¢(x)>g[w._>i]. By the definition of the

translation for terms, we have (¢);+1 = (¢(x + 1)>g[$._m.}.

Observe that since x does not appear as a free variable in the bottom
sequent, in particular it does not appear free in I' and A. It follows that I'°
and A* stay the same under the two assignments « and «[x +— i]. By the
inductive hypothesis there is some polynomial p such that for each i < n
there is a resolution derivation m;, of size bounded by p(«), of

U (@)i b A% % (d)it1.

Multiplying by A*, we get a resolution derivation =} of

A* % T° U A"+ (d)i - A% % (d)is1.

Writing the derivations m, ..., 7, _; one after the other, and observing that
we can derive A* x T'° U A* % (¢)g from I'° U (¢)o by weakening, we obtain
the required derivation I'° U (@) = A* % (¢).

Cut This is done the same way as one step in the induction rule.

Bounded d-left-introduction Suppose the last rule applied in II is
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x <s,0(x), I — A
Jy<sO(y),l — A

Let n = (s)q. We may assume that 6(x) is a disjunction of first-order 1-
conjunctions. As above, we will write (6); for <9(:1;)>g[zﬁi]. Note that (0);
contains exactly one clause. We will write ©; for L % (0)g*---*(6);_1. Notice
that ©p = L and ©,, = (Jy<sO(y)).

For each ¢ < n by the inductive hypothesis we have a polynomial sized
derivation m; of

T°U(6); - A*

where x < s does not appear, as it translates to T. Multiplying this deriva-
tion by A* x ©;, we get a derivation =, of

A*xO;*T°UA"x0O; x (0); - A* % ©;.

Now ©; x (0); is just ©;11, and A* x ©; * I'° can be obtained from I'° by
weakening. So we can construct a derivation 7} of

I°UA* * @H—l A" % @z
!

Combining the derivations m,, 4, .
required derivation I'° U ©,, - A*.

.., m, and using weakening, we obtain the

Bounded V-left-introduction Suppose the last rule applied in II is

o(r),I' — A
r<sVoe<sf(z),T — A

If » > s under « then r < s translates into L, from which we can derive
anything (by weakening). If < s under « then this case is trivial, as (6(r))
is then formally a subset of (Vz <s6(z)).

Bounded 3-right-introduction Suppose the last rule applied in II is

I — A0(r)
r<sI' — A Jx<sb(z)

This is similar to the previous case. Only this time (6(r)) is not a subset of
(Jr<s6(x)), but can be obtained by weakening.
Bounded V-right-introduction Suppose the last rule applied in II is

x<s,I' — A 0(x)
I — A, Vy<s6(y)
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By the inductive hypothesis, if we put n = (s), then, writing (#); for
<9(m)>g[x,_ﬂ], for each ¢ < n there is a derivation m; of

I F A" % (0);.
Combining these gives us the required derivation. U

Proof of Theorem A.2 By our assumption and the free-cut elimination
theorem (see for example [8]) there is a sequent calculus derivation satisfying
the assumptions of Theorem A.5 and ending with the sequent

¢1(2), ..., pe(x) — 0= 1.

The result follows by Theorem A.5. O

We now show the general case.

Theorem A.6. Let d € N with d > 0. Suppose that ¢1(x), ..., de(x) are
strict Ugqok formulas, with x the only free variable, such that Ugyo j-IND
proves Vo —=(¢p1(x) A ... A ¢g(x)). Then the family

By = (91 (@) sy U+ U (@)
has polynomial size PKgy, refutations.

Proof First consider the case where £k = 1. We will prove the result for
all d, by induction on d. The base case d = 0 is Theorem A.2. So suppose
that d > 0 and we can translate Ugio 1 refutations into PKy; refutations.
We will suppose d is even—the case for odd d is similar.

Let 61,...,0,, be a list of strict Uz, 3 formulas, consisting of the initial
formulas ¢1,...,¢; and every formula for which induction is used in the
Ug43,1-IND proof of a contradiction from the assumption ¢1(z), ..., ¢o(x).

Each 0; consists of d + 2 alternations of quantifiers followed by a Ej ;
formula of the form

Vi(2) =y <ti, 1(Z,y) V- VAL(Z,y)

where each 'yji- is a first-order 1-conjunction. Let 6} be §; with the subformula
1;(Z) replaced by a new relation symbol S;(Z). Let A;(x) be the set of first-
order extension axioms

vz <si(x) 3y <ti, 2Si(2) VA (Z,9) V-V (2 )
VZ<si(z)Vy<ti, Si(z)V —vyj.(é, y) foreachj=1,...,r;

expressing that VzZ <s;(x), Si(2) <> ©:(Z), where s;(x) is a bound (obtained
from Parikh’s theorem) on the values of Z that can appear in the proof.
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There is now a Ugyo1-IND proof of a contradiction from the Ugig
assumptions ¢} (), ..., ¢)(x), A1(x),..., Ay (z). Hence by the inductive hy-
pothesis there are polynomial size PKg 1 refutations 1I,, of the formulas

(@1 (@) U U (@)(2))n U (Ar ()5 U - - U (A (@)

Here we are writing (¢(z))¢ for (¢(m)>flz —sn]> and abusing notation by treating

A;i(z) as though it were a single formula rather than several formulas.

We obtain the desired PKg1 1 refutation of (¢1(z))dT U - U (¢(x))d+!
by substituting (1;(2))a for (Si(2))a and (—1);(2))a for (—S;(2))a into Il,,
for every a.. This increases the depth of the refutation by at most 1, and after
the substitution each formula in (A4;(x))¢ becomes a propositional tautology
with a short PKg411 proof (in fact essentially with a PK; 1 proof, since
these represent disjunctions of conjunctions of literals whose depth has been
artificially padded out by the translation).

We deal with the case £ > 1 in a similar way, by using extension axioms
to obtain a translation of Ugyg ;-IND into PKy ) from our translation of
Ud+271—IND into PKdJ. O

B Binary arithmetic

We will represent integers in two’s-complement form. To find the m-bit
two’s-complement representation of an integer z in the range —2™! to
2m=1_1 if x > 0 we take the usual m-bit representation (with leading 0s)
of x, and if x < 0 we take the usual m-bit representation of 2™ + z.

This form has the property that, provided we ignore overflow, the op-
erations of addition and subtraction are exactly the same as they would be
for unsigned binary integers. Furthermore, comparison of two such integers
can be reduced to comparison of unsigned binary integers by first flipping
the leading bit. We write numbers with the most significant bit on the left.

To make the following definitions more natural, we will often treat
boolean-valued formulas as though they took the numerical values 0 and
1 instead of false and true, in particular writing ¢ = v for ¢ < ¥, ¢ < Y
for ¢ — ¥ and ¢ < ¢ for —¢ A 1.

For (n+1)-bit strings X and Y we define

X=Y = Vi<n, X(i) =Y(i)
X<Y = X(n)>Y(n)
Vv Ji<n, X(i) < Y(i) AVj€(i,n] X(j) = Y ()
X<Y = (X=Y)V(X<Y).
We say that X < Y at i if ¢ witnesses the existential quantifier in the
definition of ordering, or if X(n) > Y (n) and i = n. We will use 0,, to

denote the integer 0 written in (n+1)-bit two’s complement, that is, a string
of n + 1 many Os.
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Observation B.1. Over BASE, the relation < is a strict linear order.

Observation B.2. For (n+1)-bit strings, over U;-IND, X (n) = 0 implies
0, < X and X(n) =1 implies X < 0,. Furthermore X <Y is Ag, since it
s equivalent to

[(X(n) >Y(n)] V[Vi<n (X (i) > Y (i) = Fjc(i,n) X(j) <Y()))
AJi<n X (i) <Y(i)]. O
Definition B.3. Let the formula S(X) denote the successor of X, defined
by [S(X)| = | X]| and
0 ifVji<i, X(j) =1
S(X)i)=11 if X(i) =0AVji<i, X(j)=1
X (i) otherwise.
Note that overflow is possible, with S(2" — 1) = —2" (working in (n+1)-

bit two’s complement). We will usually write S(X) as X + 1. If we write
X + 0, this means simply X. The formula ¥ = X + 1 is Us.

Observation B.4. Over U1-IND, X <Y and X' = X +1 implies X' < Y.

Proof First suppose that X(n) > Y(n). If X contains only 1s, then
X' =0, <Y. If X contains a 0, then nothing to the left of the 0 is changed,
so X'(n) = 1 and hence X’ < Y. Now suppose X < Y at i < n. If X
contains only 1s to the right of i, then X'(i) = 1 and X'(j) = 0 for all j < i,
so X' <Y. If X contains a 0 to the right of 4, then X'(i) =0so X <Y. O

Observation B.5. Over Uj-IND, if X' = X +1 and Y = X0+ 1 then
X'70=Y +1. (In other words, 2(X +1) =2X +1+1.) O

Observation B.6. An integer X written in (n+1)-bit two’s complement
satisfies =21 < X <271 — 1 if and only if X(n) = X(n —1). O

Definition B.7. For (n+1)-bit strings X,Y, Z, and a string C' encoding, for
each i, a tuple of five i-bit strings Cj, C’i(o), CZ-(l), CZ-(2), Ci(s), the Uy formula
Sum(X,Y, Z, C) expresses that, for i =n,...,0,

1. Ch41 is the empty string and Cp = Z
2. ¢V =170

3. Y =™ 41 for k=0,1,2

4. C;=Ciy17 0+ X (1) +Y(7)

5. 00 <V <c® <c®ificn—1
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6. fY <0, then Z< X andif Y > 0,, then Z7 > X
7. f X <0, then Z <Y and if X > 0,, then Z > Y.

Here 1 and 4 contain the essential definition of summation. The other
conditions are needed for the formalisation or to simplify the proof of Theo-
rem B.9 below. The right hand side of 4 is formally written as C’Z.(X(ZHY(”).

Lemma B.8. Suppose X,Y,Z are in (n+1)-bit two’s complement with
— bl < XY <2l —1 and X +Y = Z. Then there is a string C
satisfying Sum(X,Y, Z, C).

Proof Put C,, = XOR(X(n),Y (n)). Write X[k for the string consisting
of the k most significant bits of X. By Observation B.6, if & > 2 we have
—2k=2 < Xk, Yk <2F2-1. Sofori =n—1,...,0, wecanset k = n+1—i
and put C; = X[k + Y[k written in k-bit two’s complement, using normal
integer addition. Furthermore C; < 2k=1 _ 2 50 C;70 < 2F — 4. Tt follows
that if i < n — 1, we have CZ»(O) < 21 _ 4, 50 we can add 1 three times
without overflow and satisfy condition 5. O

Theorem B.9. Over A9-IND, assume X,Y,Z U V,W are in (n+1)-bit
two’s complement with X (n) = X(n—1),Y(n) =Y (n—1), U(n) =U(n—1)
and V(n) = V(n — 1). Furthermore suppose X < U and Y < V. Then
Sum(X,Y, Z,C) and Sum(U,V, W, D) implies Z < W.

Proof We will only do the case where X < U and Y < V. The other cases
use subsets of this argument. Let X < U at k and Y < V at £. Because
Sum is symmetrical, without loss of generality we may assume that & > /.
By our assumptions on X and U we know that & # n — 1. There are now
three cases.

In the first case, &k = n. Then X(n) = 1 and U(n) = 0. Therefore
X < 0, < U by Observation B.2. Hence Z <Y and V < W, by conditions 6
and 7, giving Z < W.

In the second case, kK < n —1 and k = . We have X (i) = U(i) and
Y (i) = V(i) for all ¢ > k, and can thus use U;-IND to show that Cxiq =
Di41. Then X (k) =Y (k) =0and U(k) =V (k) =1, so Cp = Cr4+170 and
Dy = Ci4+170+ 1+ 1. Therefore Cy + 1 < Dy, by condition 5.

We have now established that C; + 1 < D; for ¢ = k. Formally this is
written Ci(X(ZHY(Z)H) < D; sois Ay. We will use As-IND to prove it for
i =4k—1,...,0. Suppose it is true for ¢ + 1, that is, Cj11 + 1 < D;y1.
Then it follows from the definition of < that (C;y1 +1)"1 < D;1170. But,
using Observation B.5, (Ci;1 +1)71 = Cj4170+ 1+ 1+ 1. Therefore by
condition 5 we have
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In the third case, £ < k < n—1. Asin case 2, Cx11 = Dgy1. Now
X(k)=0,U(k)=1and Y(k) = V(k). Hence by condition 5,

Cp=Cri1 04+ Y (k) < Chy1 "0+ 1+Y (k) = Dy.

We now use As-IND to show C; < D; for i =k —1,...,/ 4+ 1. Assuming
Cit1 < Djy1, as before we have that C; 1171 < D;1170, hence Cj1170+1 <
D;1170. Since i > ¢, Y (i) = V(3). If Y (i) = 0, by condition 5

C,=Ci17 0+ X(Z) < Dit170<L D;.

If Y (i) = 1, we use Observation B.4 to get C;11704+14+1 < D;1170. Then
by condition 5

Ci=Cit17 0+ X(Z) +1< D117 0<Dip1704+1< Dy

giving the induction step.
A similar argument shows Cy+1 < D,. We finally prove that C;+1 < D;
fori=¢—1,...,0 exactly as in the second case. O
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