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Abstract

Spira [36] showed that any Boolean formula of size s can be simulated in depth
O(log s). We generalize Spira’s theorem and show that any Boolean circuit of size s
with segregators of size f(s) can be simulated in depth O(f(s) log s). If the segregator
size is at least sε for some constant ε > 0, then we can obtain a simulation of depth
O(f(s)). This improves and generalizes a simulation of polynomial-size Boolean circuits
of constant treewidth k in depth O(k2 log n) by Jansen and Sarma [21]. Since the
existence of small balanced separators in a directed acyclic graph implies that the graph
also has small segregators, our results also apply to circuits with small separators.
Our results imply that the class of languages computed by non-uniform families of
polynomial-size circuits that have constant size segregators equals non-uniform NC1.

Considering space bounded Turing machines to generate the circuits, for f(s) log2 s-
space uniform families of Boolean circuits our small-depth simulations are also f(s) log2 s-
space uniform. As a corollary, we show that the Boolean Circuit Value problem for cir-
cuits with constant size segregators (or separators) is in deterministic SPACE(log2 n).
Our results also imply that the Planar Circuit Value problem, which is known to be
P -Complete [19], is in SPACE(

√
n log n). We also show that the Layered Circuit

Value and Synchronous Circuit Value problems, which are both P -complete [20], are
in SPACE(

√
n).
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1 Introduction

Spira [36] proved the following theorem.

Theorem A. [36] Let F be any Boolean formula of size s. Then F can be simulated by an
equivalent formula of depth O(log s).

There are several results improving or extending Spira’s theorem. Bonet and Buss [4]
improved the constants in the depth bounds and the size of the simulation for Boolean for-
mulas. Spira originally considered formulas over the {∧,∨,¬} basis. Savage [34] generalized
the result to all complete bases. Wegener [38] proved the statement for monotone Boolean
formulas. Brent [6], Bshouty et. al. [7] extended it to arithmetic formulas. All these results
study formulas, i.e. tree-like circuits with fan-out 1.

Valiant, Skyum, Berkowitz and Rackoff [37] showed that arithmetic circuits of size s and
degree d can be simulated by arithmetic circuits of size O((sd)O(1)) and O(log s log d) depth.
However, very little is known for size vs. depth for general Boolean circuits. The strongest
results so far for general Boolean circuits by Paterson and Valiant [28], and Dymond and
Tompa [14] give a simulation of arbitrary Boolean circuits of size s in depth O(s/ log s).

In this paper, we generalize Spira’s technique to circuits with small segregators or small
separators. Informally, the separator of a graph is a subset of the nodes whose removal
yields two subgraphs of comparable sizes. (See the following section for a formal definition.)
Graphs with small separators include trees, planar graphs [25], graphs with bounded genus
[18], graphs with excluded minors [1], as well as graphs with bounded treewidth [32].

Segregators are a relaxed version of separators of directed acyclic graphs. Paul et al. [29],
and Santhanam [33] used segregators to study the computation graph of Turing machines.
Directed acyclic graphs with small separators also have small segregators, but the reverse
may not necessarily hold. See Section 2 for more details.

Jansen and Sarma [21] studied the question of simulating Boolean circuits with bounded
treewidth by small-depth circuits. They showed that polynomial-size circuits with constant
treewidth k can be simulated in depth O(k2 log n), and thus the class of languages with
non-uniform polynomial-size bounded treewidth circuits equals non-uniform NC1.

We extend this result to arbitrary circuits with small segregators and show that any
Boolean circuit of size s with segregators (or separators) of size f(s) can be simulated
in depth O(f(s) log s). For circuits with segregators of size k, thus also for graphs with
treewidth k, this gives a simulation in depth k log s, improving the bound in [21]. If the
segregator size is at least sε for some constant ε > 0, then we can obtain a simulation of
depth O(f(s)). Our results imply that the class of languages computed by non-uniform
families of polynomial-size circuits that have constant-size segregators equals non-uniform
NC1.

Barrington [2] showed that the class of languages decided by branching programs of
polynomial size and constant width is the same as NC1 (in both the uniform and non-uniform
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settings). In the non-uniform setting, our results together with Barrington’s result imply
that the class of languages decided by constant-width branching programs of polynomial size
is the same as the class of languages decided by polynomial-size circuits with constant-size
segregators.

In [16] we observed that the two-person pebble game of Dymond and Tompa can be
used to simulate circuits with small separator size in small depth, giving essentially the same
dependence of the depth on the separator size as in the current paper. The approach in [16]
based on the two person pebble game can also be extended to graphs with small segregators.
However, the simulation based on the two person pebble game is non-uniform, and it seems
that the resulting circuits cannot be produced efficiently using this approach. Jansen and
Sarma’s [21] simulation of bounded treewidth circuits is also non-uniform.

For circuits with constant-size segregators or separators, the simulating circuits we obtain
in this paper can be generated in space O(log2 s). We also note that our simulation works
for any circuit, and if the circuit has a segregator of size f(s), we obtain a simulating circuit
of depth at most O(f(s) log s), the value f(s) does not have to be provided in advance. In
contrast, the simulation in [21] assumes that the treewidth k is known in advance, and a
tree decomposition is available along with the description of the circuit to be simulated. It
would be desirable to generate the simulating circuits even more efficiently with respect to
space or circuit depth, especially in the case of polynomial-size circuits with constant-size
segregators or separators, since in that case, as in the case of formulas in Spira’s theorem, the
resulting circuits are NC1 circuits. Note however, that even in the case of formulas (tree-like
circuits) Spira’s theorem is non-uniform. It is not known if the restructuring procedure for
formulas in Spira’s theorem producing the simulating O(log s) depth circuits can be directly
implemented in less than O(log2 s) space, or less than O(log2 s) depth [8, 9].

The question of finding a uniform version of Spira’s theorem has direct relevance for the
complexity of the Boolean Formula Value problem. While a logspace uniform version of
Spira’s restructuring algorithm is still not known, it is known that for Boolean formulas pre-
sented as parenthesized expressions the Boolean Formula Value problem is in SPACE(log n)
[26], and in DLOGTIME-uniform NC1 [8, 9]. However, when the Boolean formulas are
presented as tree-like circuits, the best result so far shows only that the Boolean Formula
Value Problem can be solved in O(log2 n) space.

We also consider the space complexity of the Circuit Value Problem (CVP). Ladner [23]
showed that the Circuit Value Problem is P-complete. The space complexity of the CVP
is not known to be o(n/ log n) for general Boolean circuits. There are only a few restricted
versions of the Circuit Value Problem that have been previously shown to have small-space
complexity. It is a straightforward consequence of Borodin’s theorem [5] (see Theorem C)
that the CVP for logspace uniform depth d circuits is in SPACE(d) for d ≥ log n. It is
also easy to see that the CVP for small-width circuits can be solved in small space. The
Monotone Planar Circuit Value Problem (MPCVP) is another restricted version of CVP with
small-space complexity, where the circuits only have ∧ and ∨ gates, positive input literals,
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and can be embedded on the plane without crossings. There are numerous results on this
problem. The strongest result so far is by Limaye, Mahajan, and Sarma [24], who showed
that MPCVP is in SAC2. Also see [11, 40, 30] for results on MPCVP in the PRAM model.
Stronger bounds are known for some restricted versions of MPCVP [10, 19, 13, 3, 22, 31, 40].

Our generalization of Spira’s theorem allows us to bound the space complexity of the
Circuit Value Problem for circuits with small separators and segregators. We show that the
Boolean Circuit Value Problem for circuits with constant-size segregators (or separators)
is in deterministic SPACE(log2 n). Our results also imply that the Planar Circuit Value
problem, which is known to be P -Complete [19], is in SPACE(

√
n log n).

In addition we show that the Layered Circuit Value and the Synchronous Circuit Value
problems, which are both P -complete [20], are in SPACE(

√
n). However, since layered

circuits and synchronous circuits do not necessarily have small separators or segregators,
instead of using our generalization of Spira’s theorem we use a different approach.

2 Preliminaries

2.1 Space Bounded Turing Machines

For the space complexity of Turing machines, we follow the convention of considering Turing
machines with a separate read-only input tape, and additional work tapes. If the machine
has to produce an output string (instead of just accepting or rejecting its input), then we
also assume a separate write-only output tape. The space used by a Turing machine on a
given input is defined as the number of work tape cells visited during the computation over
all work tapes. The input tape and the output tape do not contribute to the space bound
of the computation. This allows us to consider computations with sublinear space.

SPACE(s(n)) denotes the class of languages decidable by deterministic Turing machines
with a separate read-only input tape and a separate write-only output tape using O(s(n))
space on the work tapes.

In the following, whenever we talk about space bounds of Turing Machines, it is assumed
that the input tape is read-only, the output tape is write-only and the space bound refers to
the space used on the work tapes. See Papadimitriou [27] for more details on space bounded
Turing machines.

2.2 The Circuit Model

A Boolean circuit is a labeled directed acyclic graph (DAG), where every node is labeled by
either a variable from {x1, . . . , xn}, or a Boolean operation. The set of available operations
we are allowed to use is called the basis of the circuit. A given basis B is called complete
if any Boolean function can be computed by a circuit using only operations from B. The
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inputs of a Boolean circuit are the nodes with in-degree (fan-in) zero, and the outputs of
a Boolean circuit are the nodes with out-degree (fan-out) zero. We refer to the nodes with
non-zero in-degree as gates. A formula (or tree-like circuit) is a circuit whose fan-out is one
for every gate except the output. The size of a Boolean circuit is the number of its gates.
We will typically consider Boolean circuits with gates of fan-in at most 2 from the basis
{∧,∨,¬} (unless stated otherwise). The depth of a gate g is the length of the longest path
from any input to g. The depth of a circuit C is the depth of the output gate. See [39] for
more on Boolean circuits.

There are several common ways to define the description of a circuit. To be specific, we
use the following definition.

Definition 2.1. The description of a Boolean circuit is a sequence of circuit inputs x1, . . . , xn
and the following quadruples:

〈name, type, child1, child2〉,

where name is the name of a gate, type is one of ∧, ∨, or ¬, and child1 and child2 are the
inputs to the gate. child2 can be empty for gates of type ¬.

Note that child1 and child2 can be either gates or circuit inputs.

Definition 2.2. A family of Boolean circuits {Cn} is called h(n)-space uniform, if there
exists a deterministic Turing machine M that on input 1n, outputs the description of Cn
using space O(h(n)) for all n. In particular, {Cn} is logspace uniform if h(n) = log n.

2.3 Separators and Segregators

Informally, a node separator of a graph G is a set of nodes whose removal yields two disjoint
subgraphs of G. In this paper we only consider balanced separators, that yield subgraphs
that are comparable in size. In the next definition each of the two subDAGs could consist
of several weakly connected components.

Definition 2.3. A separator of size k of a DAG G = (V,E) is a set of k nodes S ⊆ V such
that G \ S is not weakly connected (i.e. the underlying undirected graph is not connected);
and the removal of S partitions G \ S into two subDAGs, G1 = (V1, E1) and G2 = (V2, E2),
such that |Vi| ≤ 2

3
|V | for i = 1, 2, and there are no edges either from G1 to G2, or from G2

to G1 in G \ S.

Segregators are a relaxation of separators in directed acyclic graphs [29, 33].

Definition 2.4. A segregator of size k of a DAG G = (V,E) is a set of k nodes S ⊆ V such
that every node in G \ S has at most 2

3
|V | predecessors in G \ S.
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The following lemma follows directly from the definitions.

Lemma 1. Any DAG with a separator of size k has a segregator of size k.

Notice that the reverse is not true in general, since a node in a DAG may have much
smaller number of predecessors than the size of the component that contains the node in the
underlying undirected graph.

3 Boolean Circuits with Small Segregators or Separa-

tors

Definition 3.1. We say that a Boolean circuit C has separators of size f() if the underlying
DAG of every subcircuit of C with s gates has a separator of size at most f(s).

We say that a Boolean circuit C has segregators of size f() if the underlying DAG of
every subcircuit of C with s gates has a segregator of size at most f(s).

The above definition is reasonable, since we typically consider classes of circuits based on
properties of their underlying DAGs that are closed with respect to subDAGs, for example
planar circuits, circuits with small treewidth, etc.

We talk about constant-size separators (resp. segregators), if the size of the separator
(resp. segregator) is bounded by a fixed constant that does not depend on the size of the
circuit.

By Lemma 1, if the circuit has separators of size f(), then it must also have segregators
of size f(). Therefore in the following we will focus on circuits with small segregators.

We state and prove the following generalization of Spira’s theorem for the basis {∧,∨,¬}
with fan-in at most 2. It is easy to see that Theorem 1 can be generalized to Boolean circuits
over arbitrary complete basis with bounded fan-in, since any complete basis can implement
the selector used in expression (1).

Theorem 1. Any Boolean circuit of size s with segregators of size f() can be simulated in
depth O(f(s)) if f(s) = Ω(sε) for some constant ε > 0, and in depth O(f(s) log s) otherwise.

Proof. The construction is defined recursively. Let U = {u1, . . . , up} be the segregator of C
with size p ≤ f(s). Let C1, . . . , Cp be the subcircuits of C corresponding to the nodes of the
segregator, that is the node uj is the output of the subcircuit Cj, for j = 1, . . . , p. Let gj be
the Boolean function computed by Cj. Let v be the output node of the circuit C, and let

Ĉ be the circuit with output node v, obtained from C by replacing the nodes in U by new
variables y1, . . . , yp. Thus, if the original circuit C has n variables, then Ĉ may have up to

p + n variables. It is possible that Ĉ has less than p + n variables, if some of the original
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inputs get disconnected from the output v after removing the nodes of the segregator from
the circuit.

We enumerate all Boolean vectors c ∈ {0, 1}p. Let ci = 〈ci,1, ci,2, . . . , ci,p〉 be the ith

Boolean vector of length p, for i = 1, . . . , 2p, according to some fixed ordering. Let Ĉi be the
circuit obtained from Ĉ by fixing the values of the variables y1, . . . , yp to the bits ci,1, . . . , ci,p,

respectively. Let hi : {0, 1}n → {0, 1} be the Boolean function computed by the circuit Ĉi.
Then, the Boolean function computed by the circuit C can be represented using the

following expression:

2p∨
i=1

(
hi ∧

p∧
j=1

((gj ∧ ci,j) ∨ (¬gj ∧ ¬ci,j))

)
(1)

To see that expression (1) is indeed the function computed by C, note that on each input
x, exactly one of the functions Hi evaluates to 1, where Hi is defined by

Hi =

p∧
j=1

((gj ∧ ci,j) ∨ (¬gj ∧ ¬ci,j)) .

For a given input x ∈ {0, 1}n, let vx = 〈g1(x), g2(x), . . . , gp(x)〉 ∈ {0, 1}p. Notice that Hi(x)
is nonzero if and only if vx = ci. Finally, note that C(x) = hi(x) when vx = ci.

Next we will represent the functions hi for i = 1, . . . , 2p and gj for j = 1, . . . , p. We could
proceed with a straightforward recursion, if we could claim that each subcircuit C1, . . . , Cp
and each circuit Ĉi for i = 1, . . . , 2p has size at most 2s/3. In fact, we do know that every
subDAG of the underlying DAG of C with the nodes of U removed has size at most 2s/3.
However, the output node of the subcircuit Cj is uj, and uj is a member of the segregator

U . Note that the underlying DAGs of the circuits Ĉi are identical (they only differ from
each other in the substituted constants), and their output node v is the output node of the
“original” circuit C. The node v may or may not participate in the segregator. If the node
v participates in the segregator, then the functions hi are constants and the recursion stops.

We can compute the function gj (computed at gate uj) by an additional gate if we
compute the functions computed at the two children of the gate uj. If none of the children
participates in the segregator, then we know that their subcircuits must have size at most
2s/3. However, it is possible that children of segregator nodes are also included in the
segregator. Let Sj be the set of nodes in the segregator, that are predecessors of uj, such
that there is a path from each of them to uj that consists only of segregator nodes. We also
include uj in Sj. That is, Sj forms a subcircuit with output uj that consists of segregator
nodes. Let Bj be the “boundary” of Sj formed by nodes that are not in the segregator, that
is, Bj contains the children of the nodes in Sj that are not included in the segregator. Then
we can compute the function gj from the functions computed at the nodes in Bj (these can be
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computed by subcircuits of size at most 2s/3) with an additional set of gates corresponding
to the segregator nodes in Sj. Since |Sj| ≤ p, this takes additional depth at most p.

To summarize, we can compute the functions hi and gj, by first computing in parallel
the functions corresponding to all subcircuits after removing the nodes of the segregator.
We know that each such subcircuit has size at most 2s/3, and we can use our construction
recursively on these smaller size circuits. Then we finish computing every function hi and gj
we need, by adding the gates corresponding to the nodes participating in the segregator. This
will take at most an additional p ≤ f(s) depth. Then we can compute the function computed
by C by expression (1). This takes at most an additional p + dlog(p + 1)e + 3 = O(f(s))
depth. Thus, in each iteration, we increase the depth by at most O(f(s)). Since the size
is reduced by a constant factor in each iteration, we are done after O(log s) steps. More

precisely, the depth of the final circuit is O
(∑dlog3/2 se

i=0 f
(

(2/3)i s
))

. Thus the depth of the

final circuit is O(f(s)) if f(s) = sε for some constant ε > 0, or O(f(s) log s) otherwise.

Theorem 2. The class of languages decided by non-uniform families of polynomial-size
circuits with constant-size segregators equals non-uniform NC1.

Proof. Immediately follows from Theorem 1.

Robertson and Seymour [32] showed that if a graph has treewidth k, then the graph
also has separator size O(k). Together with Lemma 1 and Theorem 2, a polynomial-size
circuit with treewidth k can be simulated in depth O(k log n). This improves a result in [21],
which showed that Boolean circuits of size nO(1) and treewidth k can be simulated in non-
uniform depth O(k2 log n). We refer interested readers to [12] and [15] for more background
on treewidth.

3.1 Monotone Circuits

In this section we consider monotone circuits, i.e. circuits over the basis {∧,∨} with fan-
in 2. As mentioned in the introduction, Wegener [38] proved Theorem A for monotone
Boolean formulas. The following theorem generalizes his result to monotone circuits with
small segregators.

Theorem 3. Any monotone Boolean circuit C of size s with segregators of size f() can be
simulated by a monotone Boolean circuit in depth O(f(s)) if f(s) = Ω(sε) for some constant
ε > 0, and in depth O(f(s) log s) otherwise.

Proof. We first give a monotone version of expression (1), and the rest of the proof follows
from the proof for Theorem 1. As in the previous section, we enumerate all Boolean vectors
c ∈ {0, 1}p. Let ci = 〈ci,1, ci,2, . . . , ci,p〉 be the ith Boolean vector of length p, for i = 1, . . . , 2p,

according to some fixed ordering. We assume that the c1 is the all-zero vector. Let Ĉi
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be the circuit obtained from Ĉ by fixing the values of the variables y1, . . . , yp to the bits

ci,1, . . . , ci,p, respectively, where Ĉ and y1, . . . , yp are defined as in the proof of Theorem 1.

Let hi : {0, 1}n → {0, 1} be the Boolean function computed by the circuit Ĉi. Let Gi be
defined as follows for i ≥ 2:

Gi =
∧

1≤j≤p
ci,j=1

gj.

We claim that the function computed by C can be represented by the following expression:

h1 ∨
2p∨
i=2

(hi ∧Gi) = h1 ∨
2p∨
i=2

hi ∧ ∧
1≤j≤p
ci,j=1

gj

 . (2)

To prove this claim, first we define a relation < on Boolean vectors of length p: given
cu = 〈cu,1, cu,2, . . . , cu,p〉 and cv = 〈cv,1, cv,2, . . . , cv,p〉, cu < cv iff cu,k ≤ cv,k for all 1 ≤ k ≤ p,
and cu,r < cv,r for some 1 ≤ r ≤ p.

Let wx = 〈g1(x), g2(x), . . . , gp(x)〉 ∈ {0, 1}p. Notice that if wx = ci, then Gi(x) = 1.
On the other hand, for any vector ck such that wx < ck or wx is not comparable to ck,
Gk(x) = 0. This can be proved by the following argument. If ci < ck, then there exists an l
such that ci,l < ck,l. Then gl(x) = ci,l = 0, which implies that Gk(x) = 0. If ci and ck are not
comparable, then there must also exist an l such that ci,l = 0 but ck,l = 1. Thus gl(x) = 0
and Gk(x) = 0. This implies that on a given x ∈ {0, 1}n, expression (2) evaluates to

h1(x) ∨
∨

2≤k≤2p
ck<wx

(hk(x) ∧Gk(x)).

Since C is monotone, ck < ci implies hk(z) ≤ hi(z) for all z ∈ {0, 1}n. Note also that
since wx = ci, Gk(x) ≤ Gi(x) = 1 for any k. Therefore we have

h1(x) ∨
∨

2≤k≤2p
ck<ci

(hk(x) ∧Gk(x))

= h1(x) ∨ (hi(x) ∧Gi(x))

= h1(x) ∨ hi(x)

= hi(x) since c1 < ci

Recall that C(x) = hi(x) when wx = ci.
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4 Finding minimum size segregators in small space

4.1 Segregators of directed acyclic graphs

In this section, we give a space-efficient algorithm to find a minimum size segregator in
arbitrary directed acyclic graphs.

We will use the following space-efficient algorithm for reachability in directed graphs by
Savitch [35], to count the number of predecessors of a given node.

Theorem B. [35] Given a directed graph G on s nodes and two nodes u, v ∈ G, there exists
a deterministic Turing machine that decides if there is a path from u to v in G using space
O(log2 s).

Lemma 2. Let G be a DAG with s nodes. There exists a deterministic Turing machine M
such that, on input G, if G has a segregator of size f(s), then M outputs a segregator of G
of size at most f(s) using space O(f(s) log s+ log2 s).

Proof. We first define a Turing machine M1 that takes G and a node v ∈ G as input, and
computes the number of predecessors of v in G, i.e. the number of nodes u such that there
exists a directed path from u to v in G. In the beginning M1 initializes a counter to 1. Then
M1 uses Theorem B to check, one-by-one, for each node u ∈ G \ {v} if there is a directed
path from u to v in G. For each node u ∈ G \ {v} such that v is reachable from u, the
counter is incremented. The space used to check the reachability of v from u is reused when
checking for reachability from the next node in G \ {v}. Thus M1 uses O(log2 s) space and
computes the size of the subDAG with v as the root.

We now define M in Lemma 2 as follows. First M enumerates integers k such that
1 ≤ k ≤ s in increasing order. For a fixed k, M enumerates subsets W of size k of the nodes
in G in lexicographic order. For a given W , for every node u ∈ G \W , let G(u) denote the
set of predecessors of u in G \W . That is, G(u) is the subDAG in G \W with u as its root.
M uses M1 to compute |G(u)|. If there exists one node u ∈ G \W such that |G(u)| > 2

3
s,

then M continues to the next W , or the next k if every W of the current size has been
already checked. Also, every time before continuing to the next W or the next k, M clears
unnecessary information from the work tape.

We now argue that M will find a segregator of the smallest size. Observe that the set of
nodes of G is a segregator of size s, so M is guaranteed to find a segregator. Since we try
every k in increasing order, and we check for every subset W of size k whether or not it is a
segregator, it is guaranteed that we will find a segregator of the smallest possible size in G.

We now argue that M only uses O(f(s) log s + log2 s) space. The description of G can
be read using a counter of size O(log s). The enumeration and the storing of W both take
O(k log s) = O(f(s) log s) space. The computation of |G(u)| takes O(log2 s) space since
M1 uses O(log2) space. Thus the space complexity to find a segregator of smallest size is
O(f(s) log s+ log2 s).
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Note that in the proof for Lemma 2, the input of M consists of only the description of
the graph. M does not know the value of f(s) in advance. Also, by Lemma 1, for graphs
with separators of size k, the algorithm in Lemma 2 will also find a segregator of size at
most k.

4.2 Segregators of uniform circuits

Intuitively, Lemma 2 seems to apply directly to circuits since circuits are also DAGs. How-
ever, the input of the Turing machine that has to generate the circuit Cn for a uniform
family of circuits, is the unary representation of n (1n), so the graph of the circuit Cn is not
available directly. Since we want to generate the segregator using small space, we cannot
store the description of Cn on the work tapes. As it is standard in such situations, we will
generate the description of Cn as needed for the machine in the proof of Lemma 2, but never
store the complete description. We then have the following lemma.

Lemma 3. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be the Boolean
circuit in the family with n inputs, and assume that Cn has size s = s(n) and a segregator
of size f(s). Then there exists a deterministic Turing machine M̂ that on input 1n, outputs
a segregator of Cn of size at most f(s) using space O(h(n) + f(s) log s+ log2 s).

As in the case for directed graphs, for circuits with separators of size f(s), the algorithm
in Lemma 3 will also find a segregator of size at most f(s).

5 Generating the simulating circuits in small space

Let v be any node and Z be any set of nodes in the underlying graph of a circuit Cn. We
denote by Cv,Z the circuit obtained from the subcircuit Cv of Cn with output v by replacing
every node in Z that participates in Cv by a new input variable.

Lemma 4. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be the circuit with
n inputs in the family, and assume that Cn has size s = s(n). Let v be any node and Z be
any set of nodes in the underlying graph of Cn. Then there exists a Turing machine M2 such
that on input 1n, v and Z, M2 outputs the description of the circuit Cv,Z. Furthermore, M2

runs in space O(h(n) + log2 s).

Note that if Z = ∅, or if Z does not contain any predecessors of v then Cv,Z is simply

the subcircuit Cv. Similarly to the circuit Ĉ in the proof of Theorem 1, if the size of Z is r,
and Cv depends on n′ input variables, then Cv,Z may have up to n′ + r variables. If v ∈ Z,
then Cv,Z is simply a new variable.
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Proof. Let M1 be the Turing machine that on input 1n generates the description of Cn using
space O(h(n)). M2 will use M1 to generate information about the circuit Cn as needed. As
before, the full description of Cn will never be stored. M2 will use Theorem B to check if a
given node is part of the subcircuit Cv, using space O(log2 s). As before, space can be reused
when checking for a new node. Note that the size of the set Z can be larger than the size
of the subcircuit Cv, but it will be at most s, which is the size of the whole circuit Cn. M2

will need to work with a counter of size log |Z|, but log |Z| < log2 s.

Lemma 5. Let C be a h(n)-space uniform family of circuits. Let Cn ∈ C be the circuit with
n inputs in the family, and assume that Cn has size s = s(n). Let v be any node and Z be
any set of nodes in the underlying graph of Cn. Also assume that Cn has segregators of size
f(). Then there exists a Turing machine M3 such that on input 1n, v and Z, M3 outputs a
minimum size segregator of Cv,Z using space O(h(n) + f(s) log s+ log2 s).

Proof. Let M2 be the Turing machine in Lemma 4 that generates the description of Cv,Z in
space O(h(n) + log2 s). Let M be the Turing machine in the statement of Lemma 2, that
takes a directed graph G as input, and outputs a minimum size segregator of G. The machine
M3 will simulate M on the underlying directed graph of Cv,Z . However, as before, the full
description of the graph will never be stored. Instead, whenever M3 needs some information
about the graph, it lets M2 run, (without recording its output), until the required information
is generated. The size of the subcircuit Cv,Z is s′ ≤ s. Since Cn has segregators of size f(),
we know that Cv,Z has a segregator of size f(s′). Recall that M always finds a minimum
size segregator, thus it will find a segregator of size f(s′) ≤ f(s). Since M runs in space
O(f(s) log s+ log2 s), the total space used will be O(h(n) + f(s) log s+ log2 s).

Now we are ready to prove a uniform version of Theorem 1.

Theorem 4. Let C be an h(n)-space uniform family of Boolean circuits. Let Cn ∈ C be the
Boolean circuit on n inputs with size s = s(n). Suppose that Cn has segregators of size f().
Let g(s) = f(s) if f(s) = Ω(sc) for some constant c > 0 and f(s) log s otherwise. Then C
can be simulated by a O(h(n) + g(s) log s)-space uniform family of Boolean circuits of depth
O(g(s)).

Proof. We show that the construction in the proof of Theorem 1 can be generated by a
machineM∗ within the appropriate space bounds. M∗ on input 1n will output the description
of the depth O(g(s)) circuit simulating the circuit Cn ∈ C.

M∗ generates the simulating circuit essentially as described in the proof of Theorem 1.
In each step of the recursion, M∗ has to do the following:

1. Find a segregator S of the current subcircuit, and store the list of nodes of S in
workspace.

12



2. Find and store the list of nodes that participate in B = ∪|S|j=1Bj. Note that a given

node may belong to Bj for more than one j, but | ∪|S|j=1 Bj| ≤ 2|S|, since Bj contains
only children of segregator nodes. Thus, if |S| = p, it takes O(p log s) space to store
the list of nodes in B. We can generate this list using M̂1, where M̂1 is the Turing
machine that on input 1n generates the description of Cn using space O(h(n)). We
will run M̂1 several times, reusing space, and never store the full description of the
circuit, as discussed before. For finding the set Bj, we have to find the set Sj and store
it until we are finished generating Bj. For each j this takes O(p log s) workspace. We
reuse this space when we move on to the next j. For each node of Bj that we find, we
check if we have already added it to the list, so the full list B takes at most O(p log s)
workspace to store.

3. Output the description of the part of the circuit that corresponds to the current sub-
circuit. This is based on the expression (1), and the sets Bj and Sj. We produce the
description of the part of the circuit to compute gj, while we have Bj and Sj stored in
memory. We reuse space when we move on to the next j. Recall that the output is not
part of the space bound. (We do keep S and the full list B until the end of processing
the subcircuit, and maybe longer as we see below.)

The recursion will continue to process the subcircuits Ĉi (functions hi) defined in the proof
of Theorem 1, and the subcircuits of the nodes in B. Recall that each of these subcircuits
has size at most 2/3 of the last subcircuit. The recursion stops when a subcircuit is either
constant or an input variable. We need a counter of size p to enumerate the Boolean vectors
substituted, and to enumerate the functions hi, for i = 1, . . . , 2p.

We reuse space as we proceed to the next recursive step. However, to be able to proceed
with the recursion, we need to retain some information about the segregators S, the sets B
and list of values substituted for segregator nodes from previous recursive steps to be able to
generate and process the current subcircuits. We process the subcircuits similarly to a depth
first search in the recursion tree, starting with the subcircuits corresponding to the set B and
leaving the subcircuit for the functions hi for last. Recall that there is only one subcircuit
to consider for the functions hi, they just differ in the values of constants substituted.

We keep S, B and list of values substituted for nodes in S from previous steps along the
current path in the recursion tree. Since there are log s stages of the recursion, at any point
we keep at most log s segregators with their corresponding set B and list of values. This
takes O(

∑log s
i=1 f(s/2i) log s) = O(g(s) log s) space.

At the first iteration, we simply use the machine M̂ from Lemma 3 to find a segregator.
Now we describe how to find a segregator of the current subcircuit during the recursion.
To find a segregator for the subcircuits with outputs in the sets B described above, we use
M3 with input 1n, u where u is the output of the subcircuit, and Z = ∅. (For processing
the subcircuits corresponding to nodes in the sets B we do not need to worry about the
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segregators that we stored from previous levels of the recursion.) For the subcircuits Ĉi
(functions hi) we use M3 with input 1n, v, where v is the output node of the subcircuits Ĉi
(recall that they have the same output node, they only differ in the constants substituted),
and Z where Z is the union of all the segregators currently stored.

In each step of the recursion, M3 finds the current segregator in at most h(n)+O(log2 s+
f(s) log s) space by Lemma 5. Note that after each invocation of Lemma 5, its workspace
can be reused.

Thus on input 1n, the space used to construct the new circuit is at most O(h(n)+log2 s+
g(s) log s) = O(h(n) + g(s) log s) since g(s) = Ω(log s).

6 Circuit Value Problem

The Boolean Circuit Value problem is defined as follows: given the description of a circuit
C and an assignment x to the variables of C, compute the value of the output of the circuit
C evaluated on the assignment x. As mentioned in the introduction, it is not known if the
general Circuit Value Problem, which is P -complete, can be solved in o(n/ log n) space. In
this section, we consider the Circuit Value Problem for three circuit families: planar, layered,
and synchronous circuits. It is known that these variants of the Circuit Value Problem are
all P -complete. See [19] and [20]. In the following, we first solve the Planar Circuit Value
Problem in O(

√
n log n) space using Theorem 4. Then we show that the Layered Circuit

Value Problem and the Synchronous Circuit Value Problem can be solved in O(
√
n) space.

6.1 Planar Circuits

As an application of Theorem 4, we obtain a bound on the space complexity of the Circuit
Value Problem for Boolean circuits with small segregators (or separators). We need the
following theorem of Borodin [5].

Theorem C. [5] Any language decided by a h(n)-space uniform circuit family of depth
h(n) ≥ log n, can be decided by a Turing machine in space O(h(n)).

Theorem 5. The Boolean Circuit Value problem for circuits that have size s and segregators
(or separators) of size f(s) is in SPACE(f(s) log s) if f(s) = Ω(sε) for some constant ε > 0,
and SPACE(f(s) log2 s) otherwise.

Proof. Let g(s) = f(s) if f(s) = Ω(sε) for some constant ε > 0, and g(s) = f(s) log s
otherwise. Since the description of C is given in the input, by the proof of Theorem 4, using
O(g(s) log s) space, we can generate a circuit C ′ of depth O(g(s)) that simulates C. Then
we can evaluate C ′ in the given assignment using the argument of Theorem C using space
O(g(s)).
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Theorem 5 immediately implies the following theorem.

Theorem 6. The Boolean Circuit Value problem for circuits with constant-size segregators
(or separators) is in SPACE(log2 n).

Lipton and Tarjan [25] gave the following “planar separator theorem”.

Theorem D. [25] Any planar graph of size s has a separator of size O(
√
s).

We use this to obtain our result about the space complexity of the Circuit Value Problem
for planar graphs.

Theorem 7. The Planar Circuit Value Problem is in SPACE(
√
n log n).

Proof. Immediately follows from Theorem D and Theorem 5.

6.2 Layered Circuits and Synchronous Circuits

In the following we consider the Layered Circuit Value Problem and the Synchronous Circuit
Value Problem. We first show that the Layered Circuit Value Problem can be solved inO(

√
s)

space. Since every synchronous circuit is layered, it then follows that the Synchronous Circuit
Value Problem can be also solved in O(

√
s) space. Before stating and proving our results,

we need a few definitions first.

Definition 6.1. A circuit is layered, if its set of gates can be partitioned into subsets called
layers, such that every wire connecting two gates in the circuit is between adjacent layers.
For circuits with one output, the following is an equivalent definition: A circuit with one
output is layered if for any gate g all paths from g to the output have the same length.

A circuit is synchronous if for any gate g, all paths from the inputs to g have the same
length.

It is easy to show that any synchronous circuit is also layered, but the converse is not
true. See Gál and Jang [16].

Definition 6.2. Let C be a circuit with one output, and let g be any gate in C. Then the
height of g is the length of the longest path from g to the output. The height of C is the
maximum height of all gates in C.

Given a layered circuit with one output, the ith layer of the circuit consists of all gates
with height equal to i. Note that the 0th layer consists of the output gate.

In the followings we assume that a layered circuit has one output unless stated otherwise.

Lemma 6. Given the description of a layered Boolean circuit C of size s, and any gate g
in C, the height of g can be computed in O(log s) space.
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Proof. We define the following Turing machine M . M follows a path starting from g until
it reaches the output of C. This can be done by scanning the description of C to see which
gates in C have g as a child. If the gate g has fan-out more than 1, M chooses arbitrarily
which parent of g to visit next, say for example the first such gate in the description. Once
a parent of g is found, say h, we let h be the current gate and repeat the above process. M
also counts the number of edges in the path and outputs that number when the output gate
is reached. It is easy to see that M computes the height of g, since all paths from the gate
g to the output of C have the same length. M uses O(log s) space since it only needs to
remember the name of the current gate along the path and a constant number of counters
using O(log s) space for each.

Lemma 7. Let C be a layered Boolean circuit of size s and height h. Let 0 ≤ i < j ≤ h be
two integers. Let g be any gate in the ith layer, and let C(g, j) be the subcircuit of C whose
output is g, and whose inputs are all the gates in the jth layer that are connected to g by a
path to g, and those circuit inputs that have a parent gate in layers i, . . . , j − 1. Then given
the description of C, g, and j, the description of C(g, j) can be computed in O(log2 s) space.

Proof. We now define a Turing machine M∗. We are going to produce a description of C(g, j)
according to Definition 2.1. First we list those circuit inputs that are participating in the
subcircuit. Then we list the names of those gates u in the jth layer that serve as inputs to
C(g, j). We use Lemma 6 to check if a given gate is in the jth layer. We can use Savitch’s
theorem (Theorem B) to test if a given circuit input or a given gate u is connected to g by
a path.

Next for k = j − 1 to 0, M∗ generates the quadruples of the gates in the kth layer. For
a given k, M∗ scans the description of C, and for each gate v ∈ C, first check if v is in
the kth layer and then check if v is connected to g. If yes, then M∗ writes the quadruple
corresponding to gate v to the output tape. It is clear that M∗ uses O(log2 s) space.

Notice that the above algorithm can be easily modified such that it outputs the descrip-
tion of the subcircuit in any pre-determined format of circuit description. Also observe that
the space used is dominated by the space of testing directed connectivity.

Theorem 8. Given a description of a layered Boolean circuit C of size s, and an input
assignment x to C, there exists a Turing machine that evaluates C on x using O(

√
s) space.

That is, the Layered Circuit Value Problem can be solved in O(
√
s) space.

The idea is to evaluate the circuit layer-by-layer if the layers are small, and use Borodin’s
theorem (Theorem C) when the layers are large. Since there cannot be too many large layers,
we can bound the space. We now give the complete proof.
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Proof. Let y > 1 be some positive number. We call a layer in C large if the number of gates
in the layer is greater than y, or small otherwise. We will determine the value of y later.

We define a Turing machine M as follows. In the beginning M computes the height of
C. This can be easily done by applying Lemma 6. Given any 1 ≤ j ≤ h, we can compute
the number of gates in the jth layer also using Lemma 6.

Let h be the height of C. There are two phases. In the first phase we consider the hth
layer. Note that the inputs of all gates in the hth layer are circuit inputs. If the hth layer is
small, then M writes the values of the gates in the hth layer on the work tape. These values
can be computed from the circuit description and x. If the hth layer is large, then M looks
for the largest i < h such that the ith layer is small. Note that this means the depth of
every gate in the ith layer is at most s/y, since every layer between the ith layer and the hth
layer is large. Similarly to the proof of Lemma 4, given the circuit description of C, we can
produce the description of the subcircuit Cv for each gate v in the ith layer. Note however,
we do not have enough space to store the circuit description of Cv. Instead we will produce
the necessary information about each gate as needed. We use Theorem C to evaluate Cv,
and we write the value of each gate in the ith layer on the work tape. Furthermore, M writes
down values of gates according to their order in the circuit description of C. In this list, we
do not store the names of the gates.

Let m be the largest m such that the mth layer is small. Then at the end of Phase 1, we
have all the values of the gates in the mth layer written on the work tape.

Now consider Phase 2. At the beginning of Phase 2, let j = m. If j = 0, then we are
done. Let the kth layer (0 ≤ k < j) be the next small layer. That is, either k = j − 1, or
all the layers between the kth and jth layers are large. For a given gate g in the kth layer,
we will use Lemma 7 to generate the description of the circuit C(g, j). Note that the inputs
to C(g, j) are either circuit inputs, or gates in the jth layer. Also at this point, we have the
values of all gates in the jth layer written on the work tape. We need the following claim.

Claim. Given the name of a gate u in the jth layer, we can compute in O(log s) space the
index t such that u is the tth gate within the jth layer, according to the order of the gates
in the circuit description of C.

Proof for the claim We enumerate the gates of the jth layer as follows. We consider
each gate g in C according to their order in the circuit description of C. For each gate g,
we use Lemma 6 to compute its height. If the height of g is j, we increment a counter.
We stop when we reach u in the circuit description. The index t of u within the jth layer
is the current value of the counter plus 1. It follows from Lemma 6 that the space used is
O(log s).

Putting it all together, M can produce the values of the gates in the kth layer as follows:
M scans the description of C. For each gate g of C, we check (as before) if g is in the kth
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layer. If yes, we use Lemma 7 to produce the description of C(g, j). Note that the depth
of C(g, j) is at most s/y (since all the layers between the kth layer and the jth layer are
large). Then we use Theorem C to evaluate C(g, j). However, we never actually store the
description of C(g, j). Instead, each time we need information about a given gate, we run
the machine M∗ from Lemma 7 (without actually recording its output) until we get the
necessary information.

Recall that each input to C(g, j) is either a circuit input (thus its value can be obtained
from x) or a gate from the jth layer. Given the name of a gate u in the jth layer that is an
input to C(g, j), we can use the above claim to find its value among the values of the gates
in the jth layer.

We keep the values of the jth layer on the work tape until we finish computing all the
values in the kth layer. Then we let j = k and we repeat the above process re-using space
no longer needed.

M continues the above process until j = 0. Then M outputs the value of the output
gate. The space used by M is bounded by O(y + s/y + log2 s) = O(y + s/y). Let y =

√
s,

then M uses O(
√
s) space.

Since every synchronous circuit is layered, the Synchronous Circuit Value Problem can
be solved using O(

√
s) space.
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