
On Non-automatizability in PAC-Semantics

Brendan Juba∗

Harvard University
bjuba@alum.mit.edu

June 12, 2013

Abstract

We consider the proof search (“automatizability”) problem for integrated learning and rea-
soning, a problem modeling certain kinds of data mining and common sense reasoning [14]. In
such a problem, the approximate validity (i.e., under Valiant’s PAC-Semantics [24]) of an input
query formula over a background probability distribution is verified using incomplete examples
from the distribution; queries featuring a proof from some learnable premises are distinguished
from queries that are falsified with moderately high probability under the distribution. The
introduction of tolerance for some approximation and examples from the target distribution
raise the possibility that this problem may be easier than classical automatizability in many
circumstances. In particular, for certain restricted distributions and information-masking pro-
cesses, the automatizability problem for resolution can be solved in quasipolynomial time [15].
Nevertheless, we argue here that the known cryptographic non-automatizability results [18, 8, 7]
carry over to even the highly restricted kinds of distributions considered in that work.

1 Introduction

Learning is generally not an end unto itself—rather, it usually comprises one piece of a larger
analysis or application. When one considers the learning task in the larger context of performing
an analysis in data mining, for example, the corresponding combined algorithmic problem may be
much easier than designing separate algorithms for the learning and for performing the analysis.
An early form of this observation is due to Khardon and Roth [16], who showed how to answer
O(log n)-CNF queries against an unknown DNF using complete examples. Interestingly, Khardon
and Roth’s approach does not rely on bounding the complexity of proving the query. It succeeds
whenever the query is entailed by the unknown DNF. Unfortunately, this feature limits the extent
to which their approach can be applied in partial information settings: most such settings of any
generality feature instances of theorem-proving as special cases, and indeed, they could only handle
rather limited fragments [17]. Since background knowledge concerning attributes beyond the data
are most naturally modeled as problems with incomplete information, this limits the applicability
of such methods. An approach to this problem [14] that handles such partial information more
generally (drawing on a rather general partial information learning model due to Michael [21])
proceeds as follows: one fixes (a tractable fragment of) a proof system and attempts to answer
queries by testing for proofs of the query that may use as premises formulas that are learnable

∗Supported by ONR grant number N000141210358.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 94 (2013)

from the partial information. This approach is feasible for all “natural” tractable fragments (in the
sense of Beame, Kautz, and Sabharwal [2]), and moreover, much like in Khardon and Roth’s work,
circumvents various learning-theoretic barriers. Moreover, in follow-up work [15], we observed that
under a simpler partial information model due to Decatur and Gennaro [10], for a specific learning
problem (that may still be hard under such partial information), resolution is quasi-automatizable.
This is of interest as the best algorithms for resolution proof search [9, 5] are only guaranteed to

run in time 2Õ(
√
n), and results of Alekhnovich and Razborov [1] suggest that resolution may not be

(polynomial-time) automatizable. (Alekhnovich and Razborov further conjecture that resolution
may not even be quasi-automatizable, in contrast to the special case of tree-like resolution.) In light
of this it is natural to ask whether (and to what extent) any of the other negative results for proof
search still apply—or, whether the setting more like Khardon and Roth’s complete information
setting, in which provability poses no constraint on our ability to answer queries. In this work,
we show that the kind of cryptographic non-automatizability results established via the hardness
of interpolation, first explored in the work of Kraj́ıček and Pudlák [18], largely remain in effect.
In fact, we will observe that these results already establish non-automatizabilty of the same proof
systems in the more general “distribution-free” setting we first considered [14]. But moreover, we
show here that they can also be easily adapted to establish non-automatizability of various Frege
proof systems in the same restricted model under which resolution (“RES”) is quasi-automatizable.

In particular, Bonet, Pitassi, and Raz [8] essentially showed that answering queries using TC0-
Frege proofs is as hard as breaking the Diffie-Hellman key exchange protocol (i.e., as hard as
factoring). Here, we find that even given incomplete examples under Decatur and Gennaro’s model
for the specific problem of unsupervised learning of parities under the uniform distribution, the
same conclusion holds. Similarly, Bonet et al. [7] showed how to adapt the above work of Bonet,
Pitassi, and Raz to establish the non-automatizability of depth-d Frege proofs, under an assumption
that factoring cannot be performed in time 2n

ε
(i.e., for ε sufficiently small). This work follows

by translating the TC0-Frege proofs for small (polylogarithmic-size) keys to bounded-depth Frege
proofs. We show that we can apply the same transformation to likewise obtain an analogous
result for depth-d Frege. We obtain our results by noting that in the context of reasoning about
a cryptosystem, examples from Decatur and Gennaro’s partial information model correspond to a
relatively benign form of leakage. Thus, some of the oldest ideas in leakage-resilient cryptography
– namely, the use of a parity encoding of secret values [12] – suffice to reduce to a setting in which
the examples are of no value. Thus, so long as a large parity formula is available in the formulas
of the proof system (which is the case for TC0-Frege) we can obtain the same results as when no
examples are provided. Conveniently, the distribution produced by this transformation (for a fixed
secret) is precisely a uniform distribution satisfying an unknown system of parity constraints, i.e.,
an instance of the precise learning problem for which RES was shown to be quasi-automatizable .

2 Preliminaries

2.1 PAC-Semantics

PAC-Semantics was originally introduced by Valiant [24] in order to capture logical reasoning from
premises obtained by machine learning. The difficulty is that when an algorithm produces a formula
ψ for predicting a label bit `, the formula [ψ(x) = `] is in general not a tautology. (Indeed, it may
even be falsified with some small probability under new data drawn from the same source used for

2

training.) Nevertheless, if ψ is the rule produced by a PAC-learning algorithm [23], the formula
ϕ(x, `) = [ψ(x) = `] (probably) does possess the following weaker kind of “approximate” validity:

Definition 1 ((1− ε)-valid) We say that a formula ϕ is (1− ε)-valid w.r.t. a background distri-
bution D over Boolean assignments to free variables if Prx∈D[ϕ(x) = >] ≥ 1− ε.

Broadly speaking, the main algorithmic problem in PAC-Semantics is to certify formulas as
(1− ε)-valid on the basis of examples drawn from the background distribution. (Specifically, these
will be incomplete examples, as we discuss in the next section.) In this work, we will distinguish
between two families of such problems, paralleling a distinction in learning theory: when the
background distribution D is completely arbitrary, we will refer to this as the “distribution-free”
version of the problem, in contrast to when D is a member of some pre-specified family, which we
will refer to as a “restricted distribution” problem. The family of distributions we will consider in
this work is the following family of “affine distributions”:

Definition 2 (Affine distribution) A distribution D over Boolean assignments is an affine dis-
tribution if, when the Boolean values are interpreted as elements of F2 in the natural way, there
exists a linear system Ax = b such that D is the uniform distribution over solutions to the system.

Affine distributions are an “unsupervised” generalization of the problem of learning parity
formulas under the uniform distribution—one way of viewing such problems is that there is an
unknown parity constraint over the example and label bits, and the examples are generated by
choosing solutions to this equation uniformly at random. The difference is that in an affine distri-
bution, there may be many constraints, and there is no distinguished label bit (this is the sense in
which it is unsupervised).

We are particularly interested in restricted distribution problems concerning affine distributions
because prior work [15] suggests that certifying (1−ε)-validity using (general, DAG-like) resolution
proofs for these problems may be easier than the classical proof search problem for resolution. In
this work, we will show by contrast that cryptographic assumptions imply that certifying (1 − ε)-
validity under the same restricted family of distributions remains intractable for some more powerful
(Frege) proof systems.

2.2 Model of partial information

Reasoning in PAC-Semantics is only interesting in a partial information model: it is trivial to answer
queries using complete examples, and such settings do not capture most interesting examples of
applications in, e.g., data mining. The underlying partial information model we consider was
proposed by Michael [21].

Definition 3 (Masking process) A mask is a function m : {0, 1}n → {0, 1, ∗}n such that for
every x ∈ {0, 1}n, whenever m(x)i 6= ∗, m(x)i = xi. A masking process is a mask-valued random
variable (i.e., a random function). We denote the distribution over partial examples ρ ∈ {0, 1, ∗}n
obtained by the result of applying a masking process M to an example drawn from a distribution D
over {0, 1}n by M(D).

Notice, this general definition permits arbitrary correlations between the hiding of indices by M
in the partial example and the underlying example actually drawn from D. One cannot hope to

3

beat worst-case performance at reasoning when given only examples where M and D are arbitrary:
Any arbitrary setting of the masked indices may have appeared with (conditional) probability 1,
so one must rule out the existence of any falsifying assignments before it is safe to report that
a query is (highly) valid, and such a case is easily seen to be essentially equivalent to classical
reasoning. The problem becomes interesting when the masking process is sufficiently restricted
to permit generalization beyond the revealed partial information; one natural example of such a
process that appears in many other works (starting with a work of Decatur and Gennaro [10] in
learning) is the following:

Definition 4 (µ-independent masking process) For any µ ∈ (0, 1), the µ-independent mask-
ing process (denoted Mµ) produces a mask m by tossing an independent µ-biased coin for each
i ∈ [n], putting m(x)i = xi for all x if it comes up heads (with probability µ), and otherwise (with
probability 1− µ) putting m(x)i ≡ ∗.

An important notion in proof complexity is that of a restriction of a formula; we can naturally
interpret our partial examples as restrictions as follows:

Definition 5 (Restriction) Given a formula ϕ(x1, . . . , xn) defined over linear threshold and par-
ity connectives and a partial example ρ ∈ {0, 1, ∗}n we define the restriction of ϕ under ρ, denoted
ϕ|ρ, as follows by induction on the construction of ϕ:
• For any Boolean constant b, b|ρ = b.
• For any variable xi, if ρi = ∗, then xi|ρ = xi, and otherwise (for ρi ∈ {0, 1}), xi|ρ = ρi.
• For a parity connective over ψ1, . . . , ψk, if ` ≥ 1 of the ψi (indexed by i1, . . . i`) do not simplify

to Boolean values under ρ, then (indexing the rest by j1, . . . , jk−`)

⊕(ψ1, . . . , ψk)|ρ = ⊕(ψi1 |ρ, . . . , ψi` |ρ, (ψj1 |ρ ⊕ · · · ⊕ ψjk−` |ρ))

and otherwise it simplifies to a Boolean constant, ⊕(ψ1, . . . , ψk)|ρ = ψ1|ρ ⊕ · · · ⊕ ψk|ρ.
• A linear threshold connective [

∑k
i=1 ciψi ≥ b], (c1, . . . , ck, b ∈ Q) simplifies to 1 if∑

i:ψi|ρ=1

ci +
∑

i:ψi|ρ /∈{0,1}

min{0, ci} ≥ b

simplifies to 0 if ∑
i:ψi|ρ=1

ci +
∑

i:ψi|ρ /∈{0,1}

max{0, ci} < b

and otherwise is given by ∑
i:ψi|ρ /∈{0,1}

ci(ψi|ρ) ≥

b− ∑
i:ψi|ρ=1

ci

 .
That is, ϕ|ρ is a formula over the variables xi such that ρi = ∗. We define AND and OR using
the threshold connective and NOT using the parity connective in the natural way. We briefly
remark that for the uniform distribution Un, Mµ(Un) is essentially the usual definition of a random
restriction with parameter µ. We will be interested in the regime where µ is a constant (e.g., 1%).

Finally, we can define our central notion of interest:

4

Definition 6 (PAC-automatizability) When we say that a proof system is PAC-automatizable
in time T (N, 1/δ, 1/γ), we mean that for any fixed constant ε > 0, there is an algorithm that is given
ϕ, γ, δ > 0, and N as input and obtains samples from M(D) for a given distribution D and masking
process M . This algorithm runs in time T (N, 1/γ, 1/δ) and with probability 1 − δ distinguishes ϕ
that are (ε+γ)-valid from ϕ that have a refutation of size N in the system from additional premises
ψ1, . . . , ψk such that ψ1 ∧ · · · ∧ψk simplifies to true under partial examples drawn from M(D) with
probability at least 1− ε+ γ.1

2.3 Bounded-depth Frege systems

We will use the standard bounded-depth Frege sequent systems of propositional logic defined by
Maciel and Pitassi [19]. In these systems, each line is of the form A1, . . . , As → B1, . . . , Bt (that
is, the conjunction of the Ai’s implies the disjunction of the Bj ’s) where each Ai and Bj is a
bounded-depth formula from the appropriate class; we will consider two such classes in this work,
AC0 and TC0. These classes both use the connectives ∨, ∧, and ¬, and TC0 additionally features
the ⊕b connectives that are true iff the number of inputs that are true modulo 2 is b ∈ {0, 1}, and
the Thk connective, a threshold connective that is true iff at least k of the inputs are true. All
of these connectives (except ¬) have unbounded fan-in, and we define the depth of a formula to
be the maximum depth of nesting of these connectives; the depth of a proof is then the maximum
depth of any formula appearing in the proof. The size of the proof is the sum of the sizes of all of
the formulas appearing in the proof. In the systems we consider, the depths will be bounded by
some absolute constant (independent of the number of variables n) and the size of the proofs (and
hence also their lengths) will be bounded by some polynomial in the number of variables.

The initial sequents (axioms) are the following
• 0→ and → 1
• The empty connective sequents → ∧(), ∨()→, ⊕1()→, → ⊕0(), Thk()→ for k ≥ 1
• A→ A for any formula A
• → Th0(A1, . . . , Ak) for any A1, . . . , Ak and k ≥ 0.

The rules of inference are the following
• (Weakening) From Γ→ ∆, infer Γ, A→ ∆ or Γ→ ∆, A for any formula A.
• (Contraction) From Γ, A,A→ ∆ infer Γ, A→ ∆; from Γ→ ∆, A,A infer Γ→ ∆, A.
• (Permutation) From A1, . . . , As → B1, . . . , Bt, infer Aπ(1), . . . , Aπ(s) → Bπ′(1), . . . , Bπ′(t) for

any permutations π on [s] and π′ on [t].
• (Cut) From Γ, A→ ∆ and Γ′ → A,∆′ infer Γ,Γ′ → ∆,∆′.
• (Negation-left) From Γ→ A,∆ infer ¬A,Γ→ ∆.
• (Negation-right) From A,Γ→ ∆ infer Γ→ ¬A,∆.
• (And-left) From A1,∧(A2, . . . , Ar),Γ→ ∆, infer ∧(A1, . . . , Ar),Γ→ ∆.
• (And-right) From Γ→ A1,∆ and Γ→ ∧(A2, . . . , Ar),∆, infer Γ→ ∧(A1, . . . , Ar),∆.
• (Or-left) From A1,Γ→ ∆ and ∨(A2, . . . , Ar),Γ→ ∆, infer ∨(A1, . . . , Ar),Γ→ ∆.
• (Or-right) From Γ→ A1,∨(A2, . . . , Ar),∆, infer Γ→ ∨(A1, . . . , Ar),∆.
• (Mod-left) From A1,⊕1−b(A2, . . . , Ar),Γ→ ∆ and ⊕b(A2, . . . , Ar),Γ→ A1,∆ infer
⊕b(A1, . . . , Ar),Γ→ ∆.

1It turns out to be more natural and convenient to state this definition in terms of refutations of ϕ as we have done
here, since this is how we will use the algorithms in most circumstances. We could equivalently (but less conveniently)
have said that we were distinguishing when ¬ϕ has a proof from when ¬ϕ is not (1 − ε − γ)-valid (where ϕ is the
query actually provided to the algorithm).

5

• (Mod-right) From A1,Γ → ⊕1−b(A2, . . . , Ar),∆ and Γ → A1,⊕b(A2, . . . , Ar),∆, infer Γ →
⊕b(A1, . . . , Ar),∆.
• (Threshold-left) From Thk(A2, . . . , Ar),Γ → ∆ and A1,Thk−1(A2, . . . , Ar),Γ → ∆, infer

Thk(A1, . . . , Ar),Γ→ ∆.
• (Threshold-right) From Γ → A1,Thk(A2, . . . , Ar),∆ and Γ → Thk−1(A2, . . . , Ar),∆ infer

Γ→ Thk(A1, . . . , Ar),∆.
The main result of Bonet et al. [7] is essentially a translation from TC0-Frege proofs to AC0-Frege

proofs:

Theorem 7 (Theorem 6.1 of Bonet et al. [7]) Suppose that Γ → ∆ has a TC0-Frege proof
of size polynomial in n in which the threshold and parity connectives all have fan-in bounded by
O(logk n). Then there is an AC0 formula equivalent to Γ→ ∆ that is polynomial-time computable
from Γ → ∆ and has an AC0-Frege proof of size greater by a factor of at most O(nK) where K
depends only on k.

Actually, Bonet et al. give specific definitions of such threshold and parity connectives. They
do not explicitly state or argue for the efficient computation of the transformation (of the con-
clusion Γ → ∆) but this is essentially immediate. This translation enables non-automatizability
for (sufficiently simple) specific TC0-Frege formulas to be carried over to non-automatizability for
AC0-Frege formulas.

2.3.1 Substitutions

A substitution is a mapping from formulas to formulas defined by its action on free variables,
taking them to arbitrary propositional formulas. For a substitution θ and propositional formula ϕ,
we typically denote the result of applying θ to ϕ by θϕ. Since the rules of inference for Frege systems
remain instances of the same rules under any substitution, the following (essentially standard) fact
is easily established:

Proposition 8 Let θ be any substitution taking variables to depth-d1 formulas, and suppose that
there is a depth-d2 Frege proof of ϕ from {ψ1, . . . , ψk}. Then there is a depth-(d1 + d2) Frege proof
of θϕ from {θψ1, . . . , θψk}.

In particular, we will be substituting formulas consisting of a parity connective over variables
for the variables of the original formula. This increases the depth of a formula by one and increases
the size by at most a factor of n′ (where there are n′ variables in the substitutions). It thus takes
TC0-Frege proofs to TC0-Frege proofs.

2.4 The generalized Diffie-Hellman assumption and propositional encoding

The Diffie-Hellman key exchange scheme was one of the contributions of the seminal work by Diffie
and Hellman [11]. Roughly speaking, over the group Z∗p (for a possibly composite p) and quadratic

residue g, the parties come to share a secret key σ = gab mod p by publicly exchanging ga mod p
and gb mod p for privately chosen secrets a and b. It is known that computing gab mod p from the
public information (g, ga, gb, and p) when p is the product of integers equal to 3 modulo 4 (“Blum
integers”) is as hard as factoring such integers [6, 20, 22], which is commonly presumed to be hard.

6

Bonet, Pitassi, and Raz [8] exhibited TC0 formulas essentially asserting that either any desired
ith bit of the secret gab is equal to 0 or is equal to 1, such that moreover the (contradictory)
conjunction of these formulas for any i has a polynomial-size TC0-Frege refutation. We will revisit
their argument in more detail in the next section, but first we will give an overview of the formulas
they use as these are somewhat nontrivial. We will review the variables used in particular, as the
role played by these variables is crucial to our reductions.

Precisely, fixing an ith bit (we will follow them and only consider the least significant bit here)
they give two formulas A0 and A1 respectively asserting that the given bit of gab is 0 or 1. A0 and
A1 will actually use different sets of variables for the secret values a and b; in A1 we will denote
these values by variables c and d, respectively. The rest of the variables are shared between the
two formulas.

These common variables include binary encodings of the n-bit integers p and g, as well as
encodings of g2

i
mod p for each i ≤ 2n, and encodings of pi = i · p for i ≤ n. They also include

binary encodings of x = ga mod p, y = gb mod p, and likewise x2
i

mod p and y2
i

mod p for i ≤ 2n.
In order to compute quotients and remainders, they further include values ki and ri for i ≤ n such
that 0 ≤ ri ≤ p and 2i = p · ki + ri. We remark that the values of all of these variables can be
computed from the public values in polynomial time.

The formulas perform the exponentiation of g by the secret values a and b (resp., c and d)
by using an iterated product that is performed by an iterated sum in the exponent in the chinese
remainder representation; conversion to and from the chinese remainder representation is performed
in essence by iterated sums in modular arithmetic, with the isomorphisms between an additive
representation (as Zqi−1) and multiplicative representation of Z∗qi for the primes qi used in the
chinese remainder representation performed by table lookups. Naturally, these primes have size
O(log n) so that these tables have polynomial size. Moreover, the primes (and generators) used for
the representation only depend on the length of the integers n (not p or any of the other public or
private values for the DH scheme). Thus, even a brute-force search for appropriate values can be
performed in time polynomial in n, and these will be “hard-wired” into the formulas.

Given the iterated product, the formula A0 is now given by the conjunction of formulas asserting
for i ≤ n, 2i = p·ki+ri, 1 ≤ ri < p, and pi = i·p (to facilitate modular arithmetic);

∏
i g

2iai mod p =

x and
∏
i g

2ibi mod p = y (so a and b correspond to the private values reflected in the public values

x and y); for every j ≤ n,
∏
i g

2i+jai mod p = x2
j

mod p and
∏
i g

2i+jbi mod p = y2
j

mod p (in

support of the next step, where x2
j

and y2
j

are similarly publicly computable from x and y); and
finally,

∏
i,j g

2i+jaibj mod p (= gab mod p, the shared secret) is even. A1 is similar, replacing a and

b by c and d, and finally concluding that
∏
i,j g

2i+jcidi mod p (= gcd mod p) is odd.

3 Cryptographic non-automatizability in PAC-Semantics

We begin by observing that essentially all of the existing cryptographic non-automatizability re-
sults actually establish non-automatizability under (general, “distribution-free”) PAC-Semantics.
Concretely, let us recall the argument used by Bonet, Pitassi, and Raz [8] to establish that TC0-
Frege is not automatizable given the security of the Diffie-Hellman protocol (and hence, given that
factoring is intractable). The main step in their argument can be summarized as follows:

Theorem 9 (Bonet, Pitassi, Raz [8]) The TC0 formula Ai0∧Ai1 described in Section 2.4 (where
A1

0 defines “ga mod p = x, gb mod p = y, and the ith bit of gab mod p is 0” and Ai1 defines

7

“gc mod p = x, gd mod p = y and the ith bit of gcd mod p is 1”) has a polynomial-size TC0-Frege
refutation. There is also an algorithm that given n and i ≤ n, runs in polynomial-time and produces
Ai0 and Ai1 as output.

In particular, by plugging in the known public values for the variables in these TC0-formulas, the
formula asserting e.g. that the ith bit is 0 when it is actually 1 has a polynomial-size TC0-Frege
refutation. Thus, the ability to decide whether it is Ai0 or Ai1 that has a polynomial-size TC0-
Frege refutation allows us to recover the ith bit of gab mod p, completely breaking the security
of DH. Of course, a and b are (essentially) determined by g, p, ga mod p and gb mod p. This
trivially establishes that PAC-automatizability of TC0-Frege for arbitrary distributions and masking
processes is as hard as breaking DH:

Theorem 10 Suppose TC0-Frege is PAC-automatizable in time T (N, 1/γ, 1/δ) for all distribu-
tions and masking processes on formulas of size N for T (N, 3, 1/δ) ≥ Ω(Nk) for some suffi-
ciently large constant k. Then for some polynomial P , there is an algorithm running in time
O(n · T (P (n), 3, n/δ)) that recovers gab mod p with probability 1− δ from any n-bit p, generator g
of Z∗p, ga mod p, and gb mod p where a and b are arbitrary.

Proof: Let such p, g, ga mod p, and gb mod p be given, and let a and b be their natural
representatives (i.e., in the range (0, φ(p)) where φ is Euler’s φ-function). Let D be a distribution
that puts all of its mass on this single assignment, and let M be the masking process that hides only
the values of the (vectors of) variables encoding the binary representations of a, b, and their copies
c and d. Note that samples from M(D) correspond to a vector encoding the public values and
masking the secret values. Now, for any ith bit of the secret gab mod p, Theorem 9 establishes that
the formulas Ai0 and Ai1 can be generated in time O(nk) for some k and have a TC0-Frege refutation
(without any additional premises) of size N = P (n) for some polynomial P . In particular, plugging
in the public values, it follows that the formula Aib (where the ith bit is actually b) is satisfied by
the secret values—i.e., is 1-valid where since 1− γ > 1/2, the algorithm with ε = 1/2 must accept
such a query. Moreover, the other formula must have a refutation of size P (n); that is, this other
formula is actually 0-valid, and so, since γ < 1/2, the algorithm must reject it when ε = 1/2. Thus,
by running our algorithm on Ai0 for i = 1, . . . , n, we recover gab mod p in time O(n ·T (P (n), 3, n/δ))
as claimed.

We will strengthen this basic result in two stages. First, we will show that even if the distribution
is restricted to an affine distribution and the masking process is Mµ for some constant µ, TC0-Frege
still cannot be PAC-automatized. We will then show that this result can be carried over to AC0-
Frege given a stronger assumption about the hardness of factoring, as in the work of Bonet et
al. [7].

For the first stage, we will simply substitute a parity of a vector of k(n) new variables for each

secret Boolean variable, and let D
⊕k(n)
n be the distribution in which these parities are constrained

to take the same values as the underlying secrets; then for any constant µ, we can simulate access

to the result of Mµ(D
⊕k(n)
n) with negligibly small failure probability. This then provides a “leakage

resilient” encoding of these secret values that is strong enough to withstand the relatively benign
leakage provided by Mµ. (This use of the parity encoding to obtain leakage-resilience goes back to
work by Ishai, Sahai, and Wagner [12].)

Lemma 11 Let Dn and M be point distributions over n variables and masks on n variables,
respectively. Let θ be a substitution that takes each variable x such that M(x) = ∗ to a parity of

8

k(n) new variables, x1, . . . , xk(n), and leaves all other variables fixed. Let D⊕k(n) be the distribution
over this new set of variables such that the variables left fixed by θ take the same value as in Dn

and the new variables are uniformly distributed over values satisfying x1 ⊕ · · · ⊕ xk(n) = b where x

took value b in Dn. Then for any p-valid formula ϕ under Dn, θϕ is also p-valid under D⊕k(n).
Moreover, there is a distribution that can be sampled in linear time given an example from M(Dn)
that is 1− nµk(n)-statistically close to Mµ(D⊕k(n)).

Proof: Since every assignment in the support of D⊕k(n) satisfies x1 ⊕ · · · ⊕ xk(n) = b where the
original variable x takes value b with probability 1 in Dn, it is immediate that θϕ takes the same
(fixed) value under every assignment drawn from D⊕k(n) as ϕ took under the sole assignment in
the support of Dn. We can sample from Mµ(D⊕k(n)) as follows: we construct an assignment to
the new set of variables by first taking the known values from our partial assignment from M(Dn),
and then filling in the unknown (new) variables by tossing an unbiased coin for each variable. We
denote this distribution by D̃. We then sample Mµ in the natural way, and output the result.

To see that Mµ(D̃) is statistically close to Mµ(D⊕k(n)), we merely note that for each masked
x under M , whenever at least one of the new variables xi is masked by Mµ, then the distribution
induced by Mµ(D⊕k(n)) is uniform over the unmasked xi, i.e., identical to Mµ(D̃). Therefore, as
long as every block of masked variables has at least one masked variable, which happens with
probability 1 − µk(n), the distributions are identical. A union bound over the (at most n) blocks
gives the desired bound.

Repeating the argument of Theorem 10, the desired strengthening is now almost immediate:

Theorem 12 Suppose TC0-Frege is PAC-automatizable for affine distributions under Mµ for con-

stant µ in time T (N, 1/γ, 1/δ) for T (N, 3, 1/δ) ≥ Ω(N c) and T (N, 3, 1/δ) < 2o(N log 1
δ
)1/c) for suffi-

ciently large c. Then for some polynomial P , there is an algorithm running in time Õ(nT (P (n) ·
log 1

δ , 3,
n
δ)) that recovers gab mod p with probability 1 − δ from any n-bit p, generator g of Z∗p,

ga mod p, and gb mod p, where a and b are arbitrary.

Proof: We first note that by Proposition 8, if ϕ has a TC0-Frege refutation of size P (n),
then for any k(n), the substitution instance θϕ taking some variables to parities of k(n) new
variables has a TC0-Frege refutation of the same length in which each formula has size greater
by at most a factor of k(n). If we take k(n) = n log n

δ and c such that P (n) < O(nc−2), then

k(n) ≥ log nT (k(n)P (n),3,n/δ)
δ log 1

µ for sufficiently large n since log T (N, 3, n/δ) < o((N log n
δ)1/c) =

o(n log n
δ) by assumption. We may then apply Lemma 11 to simulate samples from Mµ(D⊕k(n)).

Since the algorithm takes at most T (N, 3, n/δ) examples, and each example is good with probability
at least 1− δ

2nT (N,3,n/δ) , the overall probability that the algorithm fails is greater by at most δ/2n,

for an overall probability of δ/n. We use this algorithm to recover each bit of gab mod p as before
with a total failure probability of at most 1− δ as needed.

Theorem 12 gives a range of non-automatizability bounds for a range of assumptions on the
hardness of factoring: for example, we can conclude that TC0-Frege cannot be PAC-automatized in
(quasi-)polynomial time unless integer factoring has a (quasi-)polynomial-time algorithm, even for
the restricted case of affine distributions under the independent masking process Mµ. This stands
in contrast to RES, which is quasipolynomial time PAC-automatizable in this restricted case [15].
We can also obtain 2n

ε
-hardness of TC0-Frege given 2n

ε
-hardness for integer factoring. Under this

latter (strong) assumption, we can obtain a weaker conclusion for AC0-Frege, following Bonet et
al. [7, Theorem 7.1]:

9

Theorem 13 Suppose AC0-Frege is PAC-automatizable for affine distributions under Mµ for con-
stant µ in time 2log

c(N/δ) for some constant c. Then for all η > 0, there is an algorithm for integer
factoring running in time 2n

η
.

Proof: Theorem 9 establishes that the DH formula on m bits generally has a refutation of
size polynomial in m; suppose we take m = log(c+1)/η n. Then Ai0 ∧ Ai1 has a refutation of size
polynomial in m. We let θ be the substitution taking each of the O(m) (secret) variables to a parity
of size k(n) = 2C log 1

µ logc(n/δ) for some δ = m−s/2 (C and s given below). Then Proposition 8

implies that θ(Ai0 ∧Ai1) (still) has a TC0-Frege refutation of size polynomial in m; Theorem 7 now
implies that this TC0-Frege refutation has an efficiently computable AC0-Frege translation of size
O(nK) where K depends only on c and η.

Noting that the asymptotic size of these proofs is independent of C, we can fix C = (Kc + 1)
so that the assumed algorithm for PAC-automatizing AC0-Frege under Mµ and affine distribu-
tions decides such instances in time 2C logc n. Lemma 11 enables us to simulate its examples from
Mµ(D⊕k(n)) with failure probability O(mµk(n)) = O(1

22C logc(n/δ))) < δ 1
m2C logc n (for sufficiently large

n), and hence we can simulate m2C logc n samples from Mµ(D⊕k(n)) with overall failure probability
δ. Thus, following the approach of Theorem 10, we can recover gab mod p from g, p, ga mod p, and
gb mod p for m-bit values by making m queries. Following the reduction of Biham, Boneh, and
Reingold [6], this enables us to factor (Blum) integers with constant success probability overall in
polynomial in m repetitions. Suppose this reduction makes O(mr) queries; then we take s = r, and

find overall that we solve instances of size m = (logc+1 n)1/η in time O(mr2C logc n) < 2log
c+1 n = 2m

η

(for m sufficiently large).

4 Discussion and directions for future work

We remark that an analogue of our substitution of parities for variables appears elsewhere in
proof complexity for a different purpose, increasing the (space) complexity of refutations (that is,
“hardness amplification”) in weaker proof systems [3, 4, 13].2 In a sense, this “hardness amplifying”
feature of the construction suggests why this same construction does not apply to RES, and therefore
is consistent with the PAC quasi-automatizability of RES [15]: a formula hit with the parity
substitution cannot have a “simple” refutation, where “simple” means low-space. (We warn that
“simple” cannot be interpreted as “short” here, as Ben-Sasson and Nordström [4] in particular
showed that formulas with proofs of linear length may still require quasi-linear space.)

The central question for future work is (still) whether or not proof systems such as RES are
(quasi-)automatizable in the distribution-free setting. Indeed, if RES is not PAC-automatizable for
general distributions, we require techniques that are rather different than the known techniques,
which all trace back to the work of Alekhnovich and Razborov [1], and fundamentally rely on
estimating the length of the shortest proof, a feature that is not provided in the natural promise
formulation under PAC-Semantics—that is, in PAC-Semantics we only distinguish statements with
short proofs from false statements, as opposed to distinguishing statements with short proofs from
statements with only long proofs.

2Actually, the constructions there are slightly different: since these weaker proof systems do not actually feature
the parity connective, one actually obtains a conjunction of formulas that is equivalent to the parity formula (featuring
exponentially many such formulas in the size of the parity).

10

In any case, to the extent that we see proof systems such as RES featuring feasible interpolation
turn out to be automatizable under PAC-Semantics and proof systems such as AC0-Frege that do
not have feasible interpolation remain hard, we are motivated to ask whether or not it is possible
to characterize automatizability in PAC-Semantics (at least for affine distributions and the µ-
independent masking process) in terms of interpolation. Of course, we likely need to strengthen
the definition of interpolation for such a thing to be plausible: for example, rather than the usual
“non-uniform” notion of feasible interpolation, we might demand uniform interpolation in which
a uniform algorithm (given access to partial examples from the background distribution) decides
which member of an input conjunction is false, promised that the conjunction has a small refutation
in a given proof system. Note that PAC-automatizability still enables us to support such “uniform
interpolation,” following the existing reduction (originally due to Impagliazzo) reported in the work
of Bonet, Pitassi, and Raz [8]. The question is whether there is a converse to this reduction.

Acknowledgements

The author would like to thank Les Valiant and Paul Beame for discussions that motivated this
work.

References

[1] Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable unless W[P]
is tractable. SIAM J. Comput., 38(4):1347–1363, 2008.

[2] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. JAIR, 22:319–351, 2004.

[3] Eli Ben-Sasson. Size-space tradeoffs for resolution. SIAM J. Comput., 38(6):2511–2525, 2009.

[4] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity: Separations
and trade-offs via substitutions. In Proc. 2nd ICS, pages 16–29, 2011.

[5] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – resolution made simple. J.
ACM, 48(2):149–169, 2001.

[6] Eli Biham, Dan Boneh, and Omer Reingold. Breaking generalized Diffie-Hellman modulo a
composite is no easier than factoring. Inform. Process. Lett., 70:83–87, 1999.

[7] Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldá, Alexis Maciel, and Toniann Pitassi.
Non-automatizability of bounded-depth Frege proofs. Comput. Complex., 13:47–68, 2004.

[8] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automization for
Frege proof systems. SIAM J. Comput., 29(6):1939–1967, 2000.

[9] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Gröbner basis algorithm
to find proofs of unsatisfiability. In Proc. 28th STOC, pages 174–183, 1996.

[10] Scott E. Decatur and Rosario Gennaro. On learning from noisy and incomplete examples. In
Proc. 8th COLT, pages 353–360, 1995.

11

[11] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Trans. Inform.
Theory, 22:423–439, 1976.

[12] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, Proc. CRYPTO 2003, volume 2729 of LNCS, pages
463–481. Springer, Berlin, 2003.

[13] Jan Johannsen. Exponential separations in a hierarchy of clause learning proof systems. Tech-
nical Report TR13-072, ECCC, 2013.

[14] Brendan Juba. Implicit learning of common sense for reasoning. To appear in IJCAI’13, 2013.
Preliminary version: Learning implicitly in reasoning in PAC-Semantics, arXiv:1209.0056v1
[cs.AI].

[15] Brendan Juba. PAC quasi-automatizability of resolution over restricted distributions. Tech-
nical Report 1304.4633 [cs.DS], arXiv, 2013.

[16] Roni Khardon and Dan Roth. Learning to reason. J. ACM, 44(5):697–725, 1997.

[17] Roni Khardon and Dan Roth. Learning to reason with a restricted view. Machine Learning,
35:95–116, 1999.

[18] Jan Kraj́ıček and Pavel Pudlák. Some consequences of cryptographical conjectures for S1
2 and

EF. In D. Leivant, editor, Logic and Computational Complexity, volume 960 of LNCS, pages
210–220. Springer, Berlin, 1995.

[19] Alexis Maciel and Toniann Pitassi. Towards lower bounds for bounded-depth Frege proofs
with modular connectives. In P. Beame and S. Buss, editors, Proof Complexity and Feasible
Arithmetics, number 39 in DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 195–227.
AMS, 1998.

[20] Kevin McCurley. A key distribution system equivalent to factoring. J. Cryptology, 1:95–105,
1988.

[21] Loizos Michael. Partial observability and learnability. Artificial Intelligence, 174(11):639–669,
2010.

[22] Z. Shmuely. Composite Diffie-Hellman public-key generating systems are hard to break. Tech-
nical Report 356, Technion, Haifa, 1985.

[23] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 18(11):1134–1142,
1984.

[24] Leslie G. Valiant. Robust logics. Artificial Intelligence, 117:231–253, 2000.

12

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

