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Abstract

A signed majority function is a linear threshold function f : {+1,−1}n → {+1,−1} of the
form f(x) = sign(

∑n
i=1 σixi) where each σi ∈ {+1,−1}. Signed majority functions are a highly

symmetrical subclass of the class of all linear threshold functions, which are functions of the form
sign(

∑n
i=1 wixi − θ) for arbitrary real wi, θ.

We study the query complexity of testing whether an unknown f : {+1,−1}n → {+1,−1} is
a signed majority function versus ε-far from every signed majority function. While it is known [26]
that the broader class of all linear threshold functions is testable with poly(1/ε) queries (independent
of n), prior to our work the best upper bound for signed majority functions was O(

√
n) · poly(1/ε)

queries (via a non-adaptive algorithm), and the best lower bound was Ω(log n) queries for non-adaptive
algorithms [27].

As our main results we exponentially improve both these prior bounds for testing signed majority
functions:

• (Upper bound) We give a poly(log n, 1/ε)-query adaptive algorithm (which is computationally
efficient) for this testing problem;

• (Lower bound) We show that any non-adaptive algorithm for testing the class of signed majorities
to constant accuracy must make nΩ(1) queries. This directly implies a lower bound of Ω(log n)
queries for any adaptive algorithm.

Our testing algorithm performs a sequence of restrictions together with consistency checks to ensure that
each successive restriction is “compatible” with the function prior to restriction. This approach is used to
transform the original n-variable testing problem into a testing problem over poly(log n, 1/ε) variables
where a simple direct method can be applied. Analysis of the degree-1 Fourier coefficients plays an
important role in our proofs.
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1 Introduction

1.1 Background and motivation

Over the last few decades property testing has emerged as an important line of research in sublinear-time
algorithms, with close connections to related research topics such as learning theory, PCPs, coding theory,
computational geometry, and more. The goal in property testing is to determine whether an unknown “mas-
sive object” has a particular property while inspecting only a tiny portion of the object. Given this ambitious
goal, the success criterion required of such algorithms is necessarily an approximate one: a testing algo-
rithm should accept if the object has the property in question, and should reject if the object is far from
every object with the property. Many different types of “massive objects” have been studied from this prop-
erty testing perspective, including graphs, (code)words (for certain error-correcting codes), sets of points in
a metric space, probability distributions, and (last but not least) Boolean functions, which are the subject of
this work. For surveys see [13, 31, 32, 17].

Some of the earliest and best-known results in property testing, such as the well-studied “linearity test”
of Blum et al. [6], deal with testing Boolean functions. Any property of Boolean functions can be equated
with the class of all functions that have the property (for example, the linearity test for Boolean func-
tions corresponds to the class of all parity functions). Over the past decade testing algorithms and lower
bounds have been given for many natural classes of Boolean functions, such as monotone Boolean func-
tions [18, 11, 15, 1, 22, 7], literals, conjunctions and s-term monotone DNF [30], juntas [14, 3, 4], general
s-term DNF, size-s decision trees, and size-s circuits [10], small-width OBDDs [33, 16, 8], low-degree
GF (2) polynomials [2, 24, 23], functions with sparse or low-degree Fourier representations [20, 10] (real
polynomial representations over domain {+1,−1}n), and more.

Most of the classes described above have either a “logical/combinatorial” flavor (such as DNF formulas
and decision trees) or an “algebraic” flavor (such as low-degreeGF (2) polynomials and functions with low-
degree or sparse Fourier representations). An exception is the work of [26], which gives a testing algorithm
for a class of Boolean functions with a natural geometric definition, namely the class of all linear threshold
functions (LTFs). An LTF is a function f : {+1,−1}n → {+1,−1} defined by f(x) = sign(

∑n
i=1wixi −

θ) for some real values w1, . . . , wn, θ, i.e. its output is determined by whether the input x ∈ {+1,−1}n lies
on one side of a hyperplane in Rn. The main result of [26] is a poly(1/ε)-query algorithm (independent of
n) that tests whether any f : {+1,−1}n → {+1,−1} is an LTF versus ε-far from every LTF.

Subsequent to [26], [27] studied the testability of a natural subclass of LTFs, namely the class of signed
majority functions. These are LTFs in which each weight w1 is either +1 or −1 and the threshold θ is 0.
Equivalently, a signed majority function is computed by a Maj gate with n inputs where the i-th input is
either the literal xi or ¬xi. Signed majority functions are of interest for several reasons: for one thing,
they are arguably the simplest and most symmetrical LTFs that depend on all n input variables. They have
the largest total influence (equivalently, edge boundary) of all LTFs (or even of all unate functions), and
they have a natural interpretation as fair voting systems where each voter has equal weight and one of two
opposing orientations (such as Liberal/Conservative).

Perhaps surprisingly, the class of signed majority functions is provably harder to test than the general
class of all LTFs. [27] gave an O(

√
n) · poly(1/ε)-query non-adaptive testing algorithm for the class of

signed majorities, and proved an Ω(log n)-query lower bound for non-adaptive algorithms. Thus, while [27]
showed that signed majorities are indeed harder to test than general LTFs, their upper and lower bounds for
this class were exponentially far apart.
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1.2 Our results: Near-optimal algorithms and lower bounds for testing signed majorities

Our main positive result improves the query complexity of the [27] algorithm by an exponential factor (by
utilizing adaptivity), and our main negative result improves the [26] lower bound by an exponential factor.
We thus give upper and lower bounds for testing signed majority functions which are tight up to polynomial
factors (in terms of the dependence on n).

In more detail, our main positive result is the following:

Theorem 1 There is a poly(log n, 1/ε)-query adaptive algorithm for testing whether an arbitrary and un-
known f : {+1,−1}n → {+1,−1} is a signed majority function versus ε-far from every signed majority
function. The algorithm runs in poly(n, 1/ε) time.

Our main lower bound result shows that any nonadaptive algorithm must use exponentially more queries
(as a function of n) than our adaptive algorithm:

Theorem 2 Any non-adaptive algorithm for testing whether an unknown black-box f : {+1,−1}n →
{+1,−1} is a signed majority function versus Θ(1)-far from every signed majority function must make
nΩ(1) queries.

It is well-known that that the nonadaptive query complexity of any testing problem for Boolean functions
is at most exponentially larger than the adaptive query complexity (since a nonadaptive algorithm can simply
carry out all possible executions that an adaptive algorithm would perform given any possible sequences
of answers to its queries). Consequently Theorem 2 implies that any adaptive algorithm for Θ(1)-testing
SMAJ must make Ω(log n) queries, and hence the poly(log n, 1/ε) query complexity of Theorem 1 is
optimal up to polynomial factors.

1.3 A high-level discussion of the ideas behind our algorithm

We first briefly discuss the approach taken in [27] for testing signed majority functions, and then present the
techniques we apply, which give us an exponential improvement in the dependence on n.

It is well known that if f : {+1,−1}n → {+1,−1} is a signed majority function over n variables, then
all degree-1 Fourier coefficients of f , which we denote by f̂(1), . . . , f̂(n) have the same absolute value,
which we denote by M̂(n) = Θ(1/

√
n) (see Section 2.2). On the other hand, Matulef et al. [27] show

that if f is ε-far from every signed majority function then at least an Ω(ε2)-fraction of the degree-1 Fourier
coefficients of f are smaller than (1−Ω(ε2))M̂(n) in magnitude. Hence, their algorithm works by selecting
Θ(1/ε2) indices i ∈ [n] uniformly at random, and for each i selected, determining (with high probability)
whether |f̂(i)| < (1 − Ω(ε2))M̂(n), in which case the algorithm rejects. The latter task is performed by
taking a sample of size Θ

(
log(1/ε)

ε4 cM(n)

)
= Θ

(
log(1/ε)

√
n

ε4

)
so as to estimate |f̂(i)|. The linear dependence on

1/M̂(n) = Θ(
√
n) seems inherent in this approach since the degree-1 Fourier coefficients of f may indeed

be very close to ±M̂(n) so that obtaining a good estimate of them requires a sample of size Ω(1/M̂(n)).

How can we avoid the polynomial dependence on n? Roughly speaking1, we show that if f is ε-far
from every signed majority function, then one of the following holds: (1) We can find (statistical) evidence

1In particular, in all that follows we make statements that hold with high probability, without explicitly stating this.
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to the fact that f is not a signed majority function without having to consider individual degree-1 Fourier
coefficients but rather by considering the degree-1 Fourier coefficients “collectively” (by estimating the
sum of certain powers of these coefficients); or (2) We can find a very large Fourier coefficient (i.e. of
size poly(ε/ log(n))), which gives evidence that f is not a signed majority function; or (3) We can find a
restriction f ′ of f such that f ′ is defined over approximately n/2 variables and f ′ is ε′-far (for ε′ very close
to ε) from every signed majority function (over the appropriate number of variables). In the first two cases
we are done. In the third case we continue iteratively, working with f ′.

In each iteration we either find evidence that the current function h (which is a restriction of f ) is not
a restriction of any signed majority function (recall that we are considering the case in which f is far from
every signed majority function), or we obtain a restriction h′ of h on approximately half the number of
variables, where h′ is still far from every signed majority function. This condition on h′ is ensured by
performing certain consistency checks relating the degree-1 Fourier coefficients of h to those of h′. The
iterative process stops once the function we are dealing with has only poly(log n, 1/ε) input variables , at
which point we can afford to run an “end-stage” algorithm with polynomial dependence on the number of
input variables.

For the completeness argument (the case in which f is a signed majority function), it is clear that
any restriction of f is a signed threshold function (see Definition 4). Our restrictions are constructed in
such a way that if h is a signed threshold function with a small-magnitude threshold, then the restriction
h′ is also such a function. This ensures that the degree-1 Fourier coefficients of the restriction will behave
appropriately, and that at each iteration the restriction h′ will pass the consistency check with h. Finally, once
we have only poly(log n, 1/ε) input variables, the restricted function is close to a signed majority function
over those input variables (since it is a signed threshold function with a small-magnitude threshold), and the
“end-stage” algorithm accepts.

2 Preliminaries

2.1 Basic definitions and the class of functions we are interested in

We consider functions whose domain is {+1,−1}n and whose range is {+1,−1}. We let [n] = {1, . . . , n}.

Definition 1 (Distance between functions) The distance between two functions f, g : {+1,−1}n →
{+1,−1}, denoted dist(f, g), equals Pr[f(x) 6= g(x)], where the probability is taken over x that is se-
lected uniformly from {+1,−1}n. We say that f and g are ε-far from each other if dist(f, g) > ε, other-

wise they are ε-close. For a family of functions Fn (from {+1,−1}n to {+1,−1}), we let dist(f, Fn) def=
ming∈Fn{dist(f, g)}, and we say that f is ε-far from Fn if dist(f, Fn) > ε (otherwise f is ε-close to Fn).

Definition 2 (Property Testing) For n ≥ 1 letFn denote a family of functions from {+1,−1}n to {+1,−1}.
A Property Testing algorithm for (membership in) a family of functions F =

⋃
n≥1 Fn is given n, a distance

parameter ε > 0, and black-box query access to an unknown function f : {+1,−1}n → {+1,−1}. If
f ∈ Fn then the algorithm should accept with probability at least 2/3, and if f is ε-far from Fn, then it
should reject with probability at least 2/3.

A property testing algorithm is non-adaptive if it selects all its query strings (possibly using randomness)
before making any queries; it is adaptive if for some j > 1 the j-th query made by the algorithm depends
on the response received from the black-box oracle to previous queries.
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The class that we shall be interested in testing is the class of all signed majority functions.

Definition 3 (Signed Majority Functions) Fix n ≥ 1. For each σ ∈ {+1,−1}n, the Signed Majority
Function Majσ is defined by Majσ(x) = sign (

∑n
i=1 σixi) (where sign(y) = +1 if y ≥ 0 and sign(y) = −1

otherwise). We denote the family of all 2n signed majority functions over {+1,−1}n by SMAJn, and we
write SMAJ to denote

⋃
n≥1 SMAJn.

For the sake of readability we will often suppress the dependence on n and simply write SMAJ to
denote the set of all 2n signed majority functions over {+1,−1}n. In the analysis of our testing algorithm
for SMAJ, we will have occasion to consider the following generalization of signed majority functions.

Definition 4 (Signed Threshold Functions) Fix n ≥ 1. For each integer θ ∈ [−n, n], and for each σ ∈
{+1,−1}n, the Signed Threshold Function Thrθσ is defined by Thrθσ(x) = sign (

∑n
i=1 σixi − θ). We

denote the family of n-variable signed threshold functions with threshold θ by by STHRθn.

As with signed majority functions, for readability we will often suppress the “n” and simply write STHRθ

for the class of all n-variable signed threshold functions with threshold θ.

Notation for substrings and restrictions. For u ∈ {+1,−1}m and S ⊆ [m] we write u|S to denote the
length-|S| string consisting of u restricted to the coordinates in S. We shall use the notation {+1,−1}S for
a set S ⊂ [m] to denote length-|S| substrings that are indexed by indices i ∈ S. For h : {+1,−1}m →
{+1,−1}, S ⊆ [m] and y ∈ {+1,−1}S we write hS←y to denote the restriction of f obtained by fixing the
coordinates in S according to y.

2.2 Fourier coefficients

See [29, 9] for excellent surveys on Fourier analysis over {+1,−1}n; here we state only the very basics
which we require.

Definition 5 (Fourier Coefficients) For each subset S ⊆ [n], the function χS : {+1,−1}n → {+1,−1}
is defined by χS(x) def=

∏
i∈S xi. Given a function f : {+1,−1}n → {+1,−1} we define its Fourier

coefficients by f̂(S) def= E[f(x)χS(x)], where the expectation is taken over a uniformly selected x, and we
have that f(x) =

∑
S⊆[n] f̂(S)χS(x).

We shall be interested especially in the degree-1 Fourier coefficients f̂(S) for |S| = 1; with a slight
abuse of notation we use the notation f̂(i) instead of f̂({i}) for such coefficients. For x ∈ {+1,−1}n,
let x+i = (x1, . . . , xi−1,+1, xi+1, . . . , xn) and x−i = (x1, . . . , xi−1,−1, xi+1, . . . , xn). Observe that for
each i ∈ [n] we have that

f̂(i) = E[f(x) · xi] = Pr
[
f(x+i) = +1 & f(x−i) = −1

]
−Pr

[
f(x+i) = −1 & f(x−i) = +1

]
. (1)

In particular, if f ∈ SMAJ (that is, f = Majσ for some σ ∈ {+1,−1}n), then for each i ∈ [n] we have

f̂(i) = σi · Pr
[
f(x+i) 6= f(x−i)

]
= σi · M̂(n) , (2)
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where M̂(n) denotes the value of the degree-1 Fourier coefficient M̂aj(i) of the n-variable majority function
sign(x1 + · · · + xn) (this value is the same for all i ∈ [n]). A well-known consequence of Stirling’s

formula (see [35]) is that M̂(n) =
√

2
πn −

cn
n3/2 , where 1

9 ≤ cn ≤ 1
8 . We shall also use the notation

M̃(n) def= n · (M̂(n))2 so that

M̃(n) =
2
π
−O(n−1). (3)

We sometimes refer to M̃(n) as “the level-1 Fourier weight of SMAJ.”

The following lemma of Matulef et al. [26, Lemma 15] says that it is possible to efficiently estimate
certain sums of products of degree-1 Fourier coefficients; we will use this in our testing algorithm.

Lemma 1 ([26]) Let p ≥ 2. Suppose we have black-box access to f1, . . . , fp : {+1,−1}n → {+1,−1}.
Then for any T ⊆ [n] we can estimate the sum of products of degree-1 Fourier coefficients∑

i∈T
f̂1(i) · · · f̂p(i)

to within an additive η, with confidence 1− δ, using O(p · log(1/δ)/η4) total calls to the black-box oracles
for f1, . . . , fp.

2.3 Results from probability

We briefly recall some useful bounds from probability theory. The first of these is the following standard
Chernoff bound (see Theorem 1.1 of [12]):

Theorem 3 Let Y1, . . . , Ym be m independent random variables which take on values in [0, 1], where
E[Yi] = pi, and

∑m
i=1 pi = P . Then for any γ > 0, we have the additive bounds

Pr

[
n∑
i=1

Yi > P + γm

]
≤ exp(−2γ2m), (4)

Pr

[
n∑
i=1

Yi < P − γm

]
≤ exp(−2γ2m) (5)

and the multiplicative bounds

Pr

[
m∑
i=1

Yi > (1 + γ)P

]
< exp(−γ2P/3) (6)

and

Pr

[
m∑
i=1

Yi < (1− γ)P

]
< exp(−γ2P/2). (7)

Note that by an appropriate shifting and scaling it is possible to apply the above Chernoff bounds to sums
of independent random variables which take on values in any interval [a, b], and in particular we often apply
the bounds to the interval [−1, 1].

We will also use the Berry-Esséen theorem, which is a version of the Central Limit Theorem with explicit
error bounds:
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Theorem 4 (Berry-Esséen) Let X1, . . . , Xn be a sequence of independent random variables satisfying

E[Xi] = 0 for all i,
√∑

i E[X2
i ] = σ, and

∑
i E[|Xi|3] = ρ3. Let S = (X1 + · · · + Xn)/σ and let

F denote the cumulative distribution function (cdf) of S. Then

sup
x
|F (x)− Φ(x)| ≤ Cρ3/σ

3, (8)

where Φ is the cdf of a standard Gaussian random variable (with mean zero and variance one), and C is a
universal constant. It is known [34] that one can take C = .7915.

3 Useful Technical Claims

We note that in our technical claims about functions that are ε-far from SMAJ we will always be dealing
with the case that ε ≥ 1/nc0 where c0 > 0 is a small (unspecified) absolute constant. This is because for
ε < 1/nc0 it is possible to non-adaptively test the class SMAJ using poly(1/ε) queries and poly(1/ε) time
since poly(1/ε) = poly(n, 1/ε) in this case.2

The following technical lemma states that if f is far from every signed majority function and f does not
have “too little” Fourier weight at level 1, then the level-1 Fourier coefficients of f must be far from those
of every signed majority function. The proof of the lemma is similar to the proof of [26, Theorem 34].

Lemma 2 Let ε ≥ 1/nc0 . If f : {+1,−1}n → {+1,−1} is ε-far from SMAJ and
∑n

i=1(f̂(i))2 ≥ M̃(n)−
γ, then for every σ ∈ {+1,−1}n we have that

n∑
i=1

(
f̂(i)− σi · M̂(n)

)2
>

7ε2

32
− γ . (9)

Proof: We first observe that the left-hand-side of Equation (9) is minimized when σi = sign(f̂(i)), and
hence it suffices to prove the inequality for this setting of σ, which we denote by σf . For this setting we
have:

n∑
i=1

(
f̂(i)− σfi · M̂(n)

)2
=

n∑
i=1

(
f̂(i)

)2
+ M̃(n)− 2

n∑
i=1

|f̂(i)| · M̂(n)

≥ 2

(
M̃(n)− M̂(n) ·

n∑
i=1

|f̂(i)|

)
− γ , (10)

where we have used the premise of the lemma concerning
∑n

i=1

(
f̂(i)

)2
.

Let wfi
def= σfi · M̂(n) and consider the linear function `f (x) def=

∑
iw

f
i · xi. We next relate the right-

hand-side of Equation (10) to this linear function. First, we observe that

E
[∣∣∣`f (x)

∣∣∣] = E

[∣∣∣∣∣
n∑
i=1

wfi · xi

∣∣∣∣∣
]

= M̂(n) · E

[∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
]
≤ M̃(n) +O(n−1/2) . (11)

2This can be done either by running the O(
√
n · poly(1/ε))-queries algorithm of [27] (which runs in poly(n, 1/ε) time), or

by simply running a proper learning algorithm with time and query complexity poly(n, 1/ε) for the class SMAJ and applying the
well-known result that the query complexity of testing a class of functions is essentially upper bounded by the query complexity
of proper learning the class [Prop. 3.1.1][19]. To properly learn a function f ∈ SMAJ, i.e., f = Majσ for σ ∈ {+1,−1}n, it
suffices to find σi for each i ∈ [n] and this can easily be done by performing poly(n) queries.
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The final equality above is by symmetry of {+1,−1}n, and the inequality can be obtained either by using
Proposition 32 of [26] (which gives a fairly simple proof using the Berry-Esséen theorem) or by using
Theorem 2 of [25] (which has a more involved proof providing a sharper constant in the low-order term,
which we will not need here). On the other hand, we also have that

E
[
f(x) · `f (x)

]
= E

[
f(x) ·

n∑
i=1

wfi · xi

]
=

n∑
i=1

wfi · f̂(i) = M̂(n) ·
n∑
i=1

|f̂(i)| , (12)

where in the second equality we applied the definition of f̂(i), and in the third equality we applied the
definition of wfi . By combining Equation (10) with Equations (11) and (12) we get that

n∑
i=1

(
f̂(i)− σfi · M̂(n)

)2
≥ 2

(
E[|`f (x)|]− E[f(x) · `f (x)]

)
− γ −O(n−1/2) . (13)

Since the range of f is {+1,−1}, we have that

E[|`f (x)|]− E[f(x) · `f (x)] = 2−n ·
∑

x:f(x)6=sign(`f (x))

2|`f (x)|

≥ ε

8
·
(

Pr[f(x) 6= sign(`f (x))]− Pr[2|`f (x)| < ε/8]
)
. (14)

Since f is ε-far from SMAJ, it is in particular ε-far from sign(`f ), so we have Pr[f(x) 6= sign(`f (x))] > ε.
On the other hand, we have

Pr
[
2|`f (x)| < ε/8

]
= Pr

[∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ < ε

16
· 1

M̂(n)

]
≤ ε

16
+O(n−1/2), (15)

where the equality is by the definition of `f (x) and the symmetry of {+1,−1}n, and the first inequality
follows from the Berry-Esséen Theorem. We thus get that the right-hand-side of Equation (14) is lower
bounded by ε

8

(
15ε
16 −O(n−1/2)

)
, and the lemma follows by combining this inequality with Equation (13)

and recalling the assumed lower bound on ε.

We next prove a simple claim concerning binomial coefficients.

Claim 3 For any two integers m and j such that m > 0 and 0 ≤ j ≤
√
m, when m is even we have(

1− 2j2

m

)(
m

m/2

)
≤
(

m

m/2 + j

)
≤
(
m

m/2

)
, (16)

and when m is odd we have(
1− 2j(j + 1)

m

)(
m

dm/2e

)
≤
(

m

dm/2e+ j

)
≤
(

m

dm/2e

)
. (17)

Proof: We prove the claim for even m. The proof for odd m is very similar. For any k ∈ [0,m/2− 1],(
m

m/2 + k + 1

)
=

m/2− k
m/2 + k + 1

·
(

m

m/2 + k

)
=

m/2 + k + 1− (2k + 1)
m/2 + k + 1

·
(

m

m/2 + k

)
≥

(
1− 2(2k + 1)

m

)
·
(

m

m/2 + k

)
. (18)
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Hence (
m

m/2 + j

)
≥

j−1∏
k=0

(
1− 2(2k + 1)

m

)
·
(
m

m/2

)
≥

(
1− 2

m

j−1∑
k=0

(2k + 1)

)
·
(
m

m/2

)
, (19)

and we get that (
1− 2j2

m

)
·
(
m

m/2

)
≤
(

m

m/2 + j

)
≤
(
m

m/2

)
, (20)

as claimed.

As a corollary of Claim 3 we get:

Lemma 4 Let X1, . . . , Xm be i.i.d. {+1,−1}-valued random variables with Pr[Xi = +1] = 1/2 for all i.
For any α, β such that −1 < α < β < 1 and where α

√
m and β

√
m are even integers when m is even and

odd integers when m is odd, we have that:

β − α
6
≤ Pr

[
α
√
m ≤

m∑
i=1

Xi ≤ β
√
m

]
≤ β − α

2
+ 1/
√
m . (21)

Proof: Let X def=
∑m

i=1Xi. Consider the case that m is even (the case that m is odd is very similar).
Observe that for any even k we have that Pr[X = k] = 2−m

(
m

m/2+k/2

)
. Therefore,

Pr
[
α
√
m ≤ X ≤ β

√
m
]

= 2−m
β
√
m/2∑

j=α
√
m/2

(
m

m/2 + j

)
. (22)

The upper bound on Pr
[
α
√
m ≤ X ≤ β

√
m
]

now follows simply because
(

m
m/2+j

)
≤
(
m
m/2

)
and since

2−m
(
m
m/2

)
=
√

2
πm −O(m−3/2). For the lower bound we apply (the lower bound in) Claim 3 to get that

Pr
[
α
√
m ≤ X ≤ β

√
m
]
≥ 2−m

(
m

m/2

)
·
β
√
m/2∑

j=α
√
m/2

(
1− 2j2

m

)
, (23)

and we use 2−m
(
m
m/2

)
=
√

2
πm −O(m−3/2) once again.

In the following lemma β > 0 should be thought of as “large” and κ > 0 as “small”, and the values
for α > 0 which make the claim non-trivial are essentially those which satisfy α2 > κ/β. Intuitively, the
lemma says that if a set of small non-negative weights have average value β, then summing a random subset
is extremely likely to yield a value which is very close to β times the number of weights in the subset.

Lemma 5 Let 0 ≤ w1, . . . , wm ∈ R be such that wi ≤ κm for all i = 1, . . . ,m and
∑m

i=1wi = βm. Let

X1, . . . , Xm be i.i.d. Bernoulli random variables with Pr[Xi = 1] = 1/2 for all i, and let X def=
∑m

i=1Xi.
For any α ∈ [0, 1], with probability at least 1− exp(−Ω(α2β/κ)) we have that∣∣∣∣∣

m∑
i=1

wiXi − βX

∣∣∣∣∣ ≤ αβX. (24)
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Proof: We define m random variables, Y1, . . . , Ym, where Yi = (wiXi)/(κm). By the premise of the
lemma, Yi ∈ [0, 1], and E [

∑m
i=1 Yi] = (β/2κ). By applying a multiplicative Chernoff bound (see Theo-

rem 3),

Pr

[∣∣∣∣∣
m∑
i=1

Yi − (β/2κ)

∣∣∣∣∣ ≤ γ(β/2κ)

]
≥ 1− 2 exp(−(1/3)γ2(β/2κ))

= 1− exp
(
−Ω(γ2β/κ)

)
. (25)

By the definition of Yi, this implies that

Pr

[∣∣∣∣∣
m∑
i=1

wiXi − (β/2)m

∣∣∣∣∣ ≤ γ(β/2)m

]
≥ 1− exp

(
−Ω(γ2β/κ)

)
. (26)

By applying another multiplicative Chernoff bound, this time to X =
∑m

i=1Xi, we have that

Pr
[∣∣X −m/2∣∣ ≤ γ′m/2] ≥ 1− 2 exp(−(1/3)(γ′)2m/2) , (27)

which is of course equivalent to

Pr
[∣∣βX − βm/2∣∣ ≤ βγ′m/2] ≥ 1− 2 exp(−(1/3)(γ′)2m/2) . (28)

We thus have that with probability 1− exp
(
−Ω(γ2β/κ)

)
− exp

(
−Ω((γ′)2m)

)
,∣∣∣∣∣

m∑
i=1

wiXi − βX

∣∣∣∣∣ ≤ (γ + γ′)β(m/2) ≤ γ + γ′

1− γ′
βX . (29)

The lemma follows by setting γ = γ′ = α/3 and observing that m ≥ β/κ (since
∑m

i=1wi = βm and
wi ≤ κm) so that α2m ≥ α2β/κ).

We end this section by recording some properties of signed threshold functions (with a small-magnitude
threshold) that will be useful later. Since two threshold functions Thrθσ and Thrθ

′
σ can be equivalent even

though θ 6= θ′, when we write h = Thrθσ, we consider the minimal |θ| for which h has threshold θ.

Lemma 6 Let h : {+1,−1}m → {+1,−1}, h = Thrθσ where |θ| ≤ α
√
m, α < 1, and σ ∈ {+1,−1}m.

1. For every i ∈ [m] we have that (1− α2/2) · M̂(m) ≤ |ĥ(i)| ≤ M̂(m).

2. |E[h]| ≤ α+ 1/
√
m.

On the other hand, suppose that h′ : {+1,−1}m → {+1,−1}, h′ = Thrθ
′
σ′ is a signed threshold function

where |E[h′]| ≤ γ. Then:

3. |θ′| ≤ 3γ
√
m.

Proof: For the first item, assumem is even. The odd case is proved similarly. As noted in the text preceding
the lemma, we consider the minimal |θ| defining h, so that θ is even. Since h = sign (

∑
i=1 σixi − θ), we

have that

ĥ(i) =

(
m

m/2+θ/2

)
(m/2 + θ/2)

m2m−1
. (30)
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Using
(

m
m/2+k

)
=
(

m
m/2−k

)
(since θ might be negative), the first item now follows by applying Claim 3 and

using M̂(m) =
( m
m/2)
2m .

The second and third items follow from Lemma 4 by observing that

|E[h]| ∈

[
Pr

[∣∣∣∣∣
m∑
i=1

σixi

∣∣∣∣∣ < θ

]
− 1/
√
m,Pr

[∣∣∣∣∣
m∑
i=1

σixi

∣∣∣∣∣ < θ

]
+ 1/
√
m

]
(31)

and the lemma follows.

4 A poly(log n, 1/ε)-Query Adaptive Testing Algorithm for SMAJ

4.1 A high-level overview and intuition for our approach

As explained in the introduction, our testing algorithm (Algorithm 4) works in an iterative manner. At the
start of the jth iteration it holds a function f (j−1) that is a restriction of the tested function f , and is defined
over a set of variables T (j−1) ⊆ [n] (where f (0) = f and T (0) = [n] for the first iteration). In the course of
the jth iteration, the algorithm selects a restriction f (j) of f (j−1) where the size of the subset of variables
over which f (j) is defined, that is, T (j), is a constant fraction of the size of T (j−1). The iterative process ends
once |T (j)| goes below a certain threshold that is poly(log n, 1/ε), at which point we can afford running a
procedure whose query complexity is linear (or even polynomial) in the number of variables.

In each iteration, the restriction is selected by calling a procedure (Algorithm 1) that ensures (with
probability at least 1− δ) that if f (j−1) is a signed threshold function with a small threshold (so that its bias
|E[f (j−1)]| is small) then the same is true of f (j). If f (0) = f is a signed majority function (i.e., a signed
threshold function with 0 threshold), then by calling Algorithm 1 each time with δ = O(1/ log n) we have
that with high probability all restrictions f (j) are signed threshold functions with a small threshold. This is
essentially what ensures the completeness of the algorithm, since in each iteration the checks performed on
the new restriction f (j) should pass (with high probability) when f (j) is a signed threshold function with a
small threshold, and the same is true of the final procedure. The main focus of what follows is to explain
what the algorithm does in each iteration (as well as initially and after the last iteration) so as to ensure the
algorithm’s soundness, where we point out in the appropriate places how this is done without compromising
the completeness of the algorithm.

Consider the vector vf def= (f̂(1), . . . , f̂(n)) of degree-1 Fourier coefficients of f . First recall that by
Lemma 2, if f is ε-far from SMAJ then either ‖vf‖22 =

∑n
i=1(f̂(i))2 is significantly smaller (i.e., by Ω(ε2))

than M̃(n) = n(M̂(n))2 ≈ 2/π, or ‖vf − vMajσ‖22 =
∑n

i=1

(
f̂(i)− σiM̂(n)

)2
is relatively large (i.e.,

is Ω(ε2)) for every σ = {+1,−1}n. By Lemma 1 (setting p = 2 and f1 = f2 = f ), the first case can be
detected by performing only poly(1/ε) queries to f .

However, the first case does not necessarily hold, and ‖vf‖22 might actually be very close to “what it
should be” (i.e., M̃(n) ≈ 2/π). We thus turn to the second case where ‖vf −vMajσ‖22 is relatively large (for
every σ = {+1,−1}n). Suppose first that there exist few (possibly just one) degree-1 Fourier coefficients
f̂(i) that are relatively large, that is, of the order of poly(ε) (or even poly(ε/ log n)). In such a case we call
a procedure (Algorithm 2) that detects (with high probability) the existence of such a large coefficient (note
that if f is a signed majority function, then no such large Fourier coefficient exists).
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We are left to deal with the case in which ‖vf‖22 is close to M̃(n) and f̂(i) is not very large for every
i ∈ [n]. As explained in the foregoing discussion, this implies that ‖vf − vMajσ‖22 is relatively large
for every σ ∈ {+1,−1}n (but no individual f̂(i) is very large). In this case we show that if we select
each i independently with probability 1/2, then with high probability, the restriction of vf to the subset
of selected indices T = T (1), which we denote by vf|T , is relatively far from every |T |-dimensional all-

(±M̂(|T |)) vector (recall that vMajσ is an n-dimensional all-(±M̂(n)) vector). The algorithm performs
such a selection of T and then finds an assignment y to the subset of remaining variables, R = R(1) (by
calling the aforementioned Algorithm 1) thus obtaining a restricted function f (1) = fR←y.

As noted previously, such an assignment y is selected so as to ensure (with high probability) that when
f ∈ SMAJ, then f (1) is a signed threshold function with a small threshold (though this is immaterial to
the case that f is ε-far from SMAJ). The algorithm now estimates ‖vf (1)‖22 as well as appropriately scaled
versions of ‖vf|T ‖

2
2 and 〈vf (1)

, vf|T 〉, and rejects if any of them deviates from 2/π by more than a small

amount. In the analysis we show that this ensures (with high probability) that ‖vf (1) − vMajσ‖22 is relatively
large for every σ ∈ {+1,−1}|T |. The algorithm then calls a procedure for detecting the existence of any
large degree-1 Fourier coefficient of f (1), and if no such coefficient is detected, then the algorithm continues
to the next iteration with f (1).

Since the number of relevant variables decreases by a factor of approximately 1/2 in each iteration,
afterO(log n) iterations (in which the algorithm does not reject) this number goes below a sufficiently small
threshold s = poly(log n, 1/ε). At this point, the final function obtained, h, is tested for having any degree-
1 Fourier coefficient that deviates by a sufficiently large multiplicative factor (1 ± ζ) from M̂(k), where
k ≤ s is the number of variables over which h is defined. We show that if f is ε-far from SMAJ, then
(with high probability over all the iterations), h must have at least one such coefficient. On the other hand,
if f ∈ SMAJ then (with high probability over all the iterations), all degree-1 Fourier coefficients of h are
sufficiently close to M̂(k). The algorithm can distinguish between the two cases by performing a number
of queries to h that is polynomial in k and 1/ε.

4.2 Some useful subroutines for our testing algorithm

In this subsection we describe several subroutines that are used by our testing algorithm.

4.2.1 Finding small-bias restrictions.

Definition 6 (Biased restrictions) Let h : {+1,−1}m → {+1,−1}.We say that a restriction hS←y (where
S ⊆ [m], y ∈ {+1,−1}S) is a γ-bias restriction of h if |E[hS←y]| ≤ γ.

As described in the intuitive overview in Section 4.1, our approach involves constructing small-bias
restrictions to signed threshold functions that have a small-magnitude threshold. This is done using Al-
gorithm 1. It is given query access to a function h : {+1,−1}T∪R and disjoint sets T,R ⊆ [n] of input
variables to h. It either fails, or else outputs an assignment y ∈ {+1,−1}R to the variables in R. The key
property of the algorithm is that if h is a signed threshold function which itself has small bias, then with high
probability it outputs an assignment y ∈ {+1,−1}R such that hR←y is similarly a small-bias restriction of
h. The algorithm works simply by trying random assignments for y and estimating the bias of hR←y for
each try (giving up if there are too many unsuccessful tries).
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Algorithm 1: Procedure for finding small-bias restrictions

Input: query access to a function h : {+1,−1}T∪R → {+1,−1} over a set of variables T ∪R and
parameters δ and γ

1. Repeat the following at most s = Θ(log(1/δ)/γ) times:

(a) Select y ∈ {+1,−1}R uniformly at random and let h′ : {+1,−1}T → {+1,−1} be
h′ := hR←y.

(b) Estimate E[h′] to within an additive error of γ with confidence 1− δ/(4s) (by performing
Θ(log(s/δ)/(γ)2) queries to h′), and denote the estimate by µ.

(c) If |µ| ≤ 2γ then return y.

2. Return failure (this step is reached if |µ| > 2γ in all s repetitions above).

Lemma 7 Let h : {+1,−1}T∪R be a signed threshold function satisfying |E[h]| ≤ 3γ where T,R ⊂ [n]
are disjoint sets that satisfy 1

3 |T ∪R| ≤ |T |, |R| ≤
2
3 |T ∪R|. Suppose that |T ∪R| ≥ C/γ2 (for a sufficiently

large absolute constant C). Then

1. Algorithm 1 makes O
(

log(1/δ) log(1/(δγ)
γ3

)
queries to h.

2. With probability at least 1 − δ, Algorithm 1 outputs an assignment y for which hR←y is a (3γ)-bias
restriction of h.

Proof: Part (1) is immediate from inspection of the algorithm.

We now turn to part (2). First observe that given the sample size used in Step 1b of the algorithm, by an
additive Chernoff bound (see Theorem 3) for each fixed choice of y selected in Step 1a, with probability at
least 1− δ/(2s) (for an appropriate constant in the sample size Θ(·) notation) we have |E[hR←y]− µ| < γ.
By taking a union bound over the (at most s) choices of y, we have that with probability at least 1 − δ/2
all estimates µ are within γ of their expected value. Assume from this point on that this is indeed the case.
This implies that the algorithm will not return an assignment y for which |E[hR←y]| > 3γ. It remains
to show that with probability at least 1 − δ/2, for some estimate µ we have that |µ| ≤ 2γ so that the
corresponding assignment y is returned. To this end we show that the probability over a single choice of
y that |E[hR←y]| ≤ γ is Ω(γ), implying that the probability that no y is selected in s = Θ(log(1/δ)/γ)
iterations of Step 1 is at most δ/2.

By the premise of the lemma, h is a |T ∪ R|-variable signed threshold function h = Thrθ
h

σh , with
|E[h]| ≤ 3γ, where |T ∪ R| ≥ C/γ2 for some large constant C. By Part 3 of Lemma 6 we have
that the threshold θh satisfies |θh| ≤ 9γ

√
|T ∪R|. By the definition of h we have that h(x) =

sign
(∑

i∈T σ
h
i xi +

∑
i∈R σ

h
i xi − θh

)
. For any assignment y to R, let τh(y) =

∑
i∈R σ

h
i yi. Thus,

for h′ = hR←y we have that h′ is a signed threshold function (over the variables in T ) with thresh-
old θh

′
= θh − τh(y). It remains to lower bound (by Ω(γ)) the probability (over the choice of y) that

|θh′ | ≤ γ
√
|T |.

The constraint |θh′ | ≤ γ
√
|T |, that is, −γ

√
|T | ≤ θh

′ ≤ γ
√
|T |, is equivalent to θh − γ

√
|T | ≤

τh(y) ≤ θh + γ
√
|T |. Since |θh| ≤ 3γ

√
|T ∪R|, γ ≥

√
C/
√
|T ∪R|, and |R|, |T | ≥ |T ∪ R|/3, we can

apply Lemma 4, and get that Pr[|θh′ | ≤ γ
√
|T |] = Ω(γ).
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4.2.2 Detecting the existence of large degree-1 Fourier coefficients.

Recall that by Lemma 6, if h is a signed threshold over m variables with a small-magnitude threshold, then

|ĥ(i)| ≤ M̂(m) <
√

2
πm for every i ∈ [m]. Hence, if given query access to a function h over m variables

we can detect that |ĥ(i)| is significantly larger than
√

2
πm for some i ∈ [m], then we have evidence that h

is not such a signed threshold function. In this subsection we present a simple procedure (see Algorithm 2)
that (roughly) performs such a detection. The precise claim regarding Algorithm 2 is stated in Lemma 8.
We note that the procedure is called by the testing algorithm (Algorithm 4) on restrictions h of the tested
function f , i.e., h = fR←y for some R ⊂ [n] and y ∈ {+1,−1}T . Thus, each such h is defined over
{+1,−1}T for some T = [n] \R. By reordering the variables, we may view h as being over {+1,−1}m.

Algorithm 2: Procedure for detecting large Fourier coefficients
Input: query access to a function h : {+1,−1}m → {+1,−1} and parameters δ > 0 and

γ > C
√

(logm)/m for some large constant C

1. Let Z1, . . . , Zt be an arbitrary partition of [m] into t = Θ(log(1/γ)/γ2) disjoint subsets, each of size
bm/tc or dm/te (which is Θ((γ2/ log(1/γ))m)).

2. For j = 1 to t do:

(a) Initialize dj := 0 and repeat the following s = Θ(log(t/δ)/γ2) times:

i. Select an assignment y to the variables in [m] \ Zj uniformly at random, and two
assignments, z and z′ to Zj uniformly at random.

ii. If h[m]\Zj←y(z) 6= h[m]\Zj←y(z
′) then dj := dj + 1.

(b) If dj ≥ (γ/4)s, then return fail (and exit).

3. Return pass (this step is reached if dj < (γ/4)s for all j).

Lemma 8 Let h : {+1,−1}m → {+1,−1} and γ ≥ C
√

(logm)/m for some large enough constant C.

1. Algorithm 2 makes O
(

log(1/(δγ)) log(1/γ)
γ4

)
queries to h.

2. If there exists i ∈ [m] such that |ĥ(i)| ≥ γ then with probability at least 1−δ Algorithm 2 returns fail,
and if h is a signed threshold function then with probability at least 1− δ Algorithm 2 returns pass.

In order to prove Lemma 8 we recall the well-studied notion of the variation of a set of variables (see
e.g., [14]).

Definition 7 (Variation) For a function h : {+1,−1}m → {+1,−1} and a set of variables Z ⊂ [m] the
variation of the set Z with respect to h, denoted Vrh(Z), is

Pry,z,z′
[
h[m]\Z←y(z) 6= h[m]\Z←y(z

′)
]

where y is selected uniformly at random in {+1,−1}[m]\Z and z, z′ are selected uniformly at random in
{+1,−1}Z . When Z = {i}, we use the shorthand notation Vrh(i) for Vrh({i}).
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By the definition of the degree-1 Fourier coefficients (see Equation (1)), we have that Vrh(i) ≥ |ĥ(i)|/2,
where the factor of 1/2 is due to the event that z = z′ for the assignment to variable i. We shall use the
fact that the variation is monotone, so that in particular, for every nonempty subset Z of variables, and every
variable i in Z, we have that Vrh(Z) ≥ Vrh(i).

Proof of Lemma 8: Part (1) is immediate from inspection of the algorithm.

In order to prove part (2), first observe that what the algorithm does is simply estimate the variation of
each subset Zj . Given the setting of the sample size s, by an additive Chernoff bound and a union bound
over all t subsets we have that with probability at least 1 − δ all j ∈ [t] satisfy |dj/s − Vrh(Zj)| ≤ γ/8.
Assume from this point on that this is in fact the case. It remains to verify that if |ĥ(i)| ≥ γ for some i ∈ [m]
then Vrh(Zj) ≥ γ/2 for some subset Zj , while if h is a signed threshold function, then Vrh(Zj) ≤ γ/8 for
every subset Zj .

The first statement follows directly from the monotonicity of the variation by consider-
ing the subset Zj that contains i. To establish the second statement, we write h(x) =

sign
(∑

i∈Zj σixi +
∑

i∈[m]\Zj σixi − θ
)

. For an assignment y to [m] \ Zj let τh(y) =
∑

i∈[m]\Zj σiyi,

and similarly define τh(z) for an assignment z to Zj . If h[m]\Z←y(z) 6= h[m]\Z←y(z′) then this means that
τh(y) + τh(z) − θ has a different sign from τh(y) + τh(z′) − θ. Since the probability (taken over the
random choice of y, z and z′) of such an event decreases with |θ| we may consider the case θ = 0. Let
m′ = m− |Zj | = (1− Θ̃(γ2))m. For any choice of β ∈ (−1, 1)

Pr
[
sign(τh(y) + τh(z)) 6= sign(τh(y) + τh(z′))

]
≤ Pr

[
|τh(y)| ≤ β

√
m′
]

+ Pr
[
|τh(z)| > β

√
m′
]

+ Pr
[
|τh(z′)| > β

√
m′
]
. (32)

By Lemma 4, the first term on the right-hand-side of Equation (32) is upper bounded by O(β). Taking
β to be a sufficiently small constant multiple of γ, this term is at most γ/16. Observing that

√
m′ ≥√

|Zj | log(1/γ)/(γ/c) for some sufficiently large constant c > 1, by an additive Chernoff bound, the
second and third terms are upper bounded by γ/32 each, and the lemma follows.

4.2.3 Dealing with functions on few variables.

As described in Section 4.1, our algorithm works by successively fixing more and more variables, until even-
tually we are working with a restriction f ′ of the original function f which has only k = poly(log n, 1/ε)
input variables left unrestricted. At this point the algorithm checks whether all the degree-1 Fourier co-
efficients of f ′ are sufficiently close in magnitude to M̂(k) (as is the case when f ′ is a small-bias signed
threshold function). The procedure for performing this task is Algorithm 3, and the following lemma states
the properties of this algorithm. (As in the case of Algorithm 2, Algorithm 3 is called on a restriction
h : {+1,−1}T of the tested function f , but for simplicity we let T = [k].)

Lemma 9 Given query access to h : {+1,−1}k → {+1,−1} and ζ ∈ (0, 1),

1. Algorithm 3 makes O
(
k log k
ζ2

)
queries to h.
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2. If |ĥ(i)| ∈
[
(1− ζ)M̂(k), (1 + ζ)M̂(k)

]
for every i ∈ [k], then Algorithm 3 accepts with probability

at least 9/10, and if |ĥ(i)| /∈
[
(1− 2ζ)M̂(i), (1 + 2ζ)M̂(i)

]
for some i ∈ [k], then Algorithm 3

rejects with probability at least 9/10.

Proof: The bound on the query complexity (the first part of the lemma) follows immediately by inspection
of the algorithm.

For the second part, consider any specific degree-1 Fourier coefficient ĥ(i) of h and recall that ĥ(i) =
E[h(x)xi]. By an additive Chernoff bound, given that the sample size s satisfies s = Θ(k log k/ζ2)), the
probability that |h̃i − ĥ(i)| > ζ/(4

√
k) is at most 1/(10k). By taking a union bound over all i ∈ [k], with

probability at least 9/10 we have that |h̃i − ĥ(i)| ≤ ζ/(4
√
k) for every i ∈ [k]. The lemma now follows

since 1/(4
√
k) < M̂(k)/2.

Algorithm 3: Procedure for detecting deviation of Fourier coefficients from ±M̂(k)

Input: query access to a function h : {+1,−1}k → {+1,−1} and parameter ζ ∈ (0, 1).

1. Draw s = Θ(k log(k)/ζ2) strings x1, . . . , xs independently and uniformly from {+1,−1}k and
query h(xj) for each j ∈ [s].

2. For each i ∈ [k] let h̃i :=
Ps
j=1 h(xj)xji

s .

3. If for any i ∈ [k] it holds that |h̃i| /∈ [(1− 3ζ/2) · M̂(k), (1 + 3ζ/2 · M̂(k)] then return reject,
otherwise return accept.

4.3 The Algorithm

In this subsection we present our algorithm for testing signed majority functions – Algorithm 4. Lemmas 10
and 11 establish completeness and soundness of the testing algorithm, respectively.

Lemma 10 (Completeness) If f ∈ SMAJ, then Algorithm 4 accepts with probability at least 2/3.

Proof: By the premise of the lemma f = Majσf for some σf ∈ {+1,−1}n. We consider a collection of
failure events (whose total probability is at most 1/3) and show that if none of the failure events occurs then
the algorithm accepts.

We first note that the algorithm may reject in Step 5b if the random subset T (j) of T (j−1) ever has size
smaller than 1

3 |T
(j)| or larger than 2

3 |T
(j)|. Since Step 5b is only performed when |T (j−1)| ≥ s, at each

iteration of Step 5b the probability of such an “unbalanced split” is at most 1/nω(1) by a standard additive
Chernoff bound. Given that the splits are all roughly balanced (between 1

3 and 2
3 ), the “while” loop of Step 5

is carried out at most O(log n) times, and thus the probability that the algorithm ever outputs reject and
exits in Step 5b is at most 1/nω(1).

We next observe that the algorithm computes various estimates in Steps 2 and 5d, on a total of O(log n)
occasions. The probability that any of these estimates deviates by more than the allowed error from the
correct value is O(δ · log(n)), which is at most 1/20. The algorithm also performs O(log n) calls to
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Algorithm 4: Testing Algorithm for Signed Majority

1. Let δ := Θ(1/ log n), s := Θ((log n)4(log log n)(log(log n/ε))/ε4), γ1 := Θ(ε2/(log n)2),
γ2 := Θ(ε2/((log n)2

√
log logn)), γ3 := Θ(ε/ log n).

2. Obtain an estimate of
∑n

i=1(f̂(i))2 to within additive error γ1 and with confidence 1− δ by applying
Lemma 1. If this estimate deviates from M̃(n) by more than ±γ1, then output reject (and exit).

3. Call Algorithm 2 with query access to f and parameters δ and γ = γ2. If it returns pass then
continue, otherwise output reject (and exit).

4. Initialize j := 0, f0 := f , T 0 := [n], t(0) = n.

5. While tj ≥ s do:

(a) Increment j := j + 1.

(b) Select a subset T (j) ⊆ T (j−1) by independently putting each i ∈ T (j−1) into T (j) with
probability 1/2. Set t(j) := |T (j)| and R(j) := T (j−1) \ T (j). If t(j) /∈ [1

3 t
(j−1), 2

3 t
(j−1)] then

output reject and exit.

(c) Call Algorithm 1 with query access to f (j−1), the pair of sets of variables T (j) and R(j) and the
parameters δ and γ = γ3. If it returns failure then output reject (and exit). Otherwise, let y(j)

be the assignment it returns to R(j) and set f (j) := f
(j−1)

R(j)←y(j) .

(d) Let (i) φ(j)
j−1 be

(
M̂(t(j))/M̂(t(j−1))

)2
times an estimate of

∑
i∈T (j)

(
f̂ (j−1)(i)

)2
;

(ii) φ(j)
j be an estimate of

∑
i∈T (j)

(
f̂ (j)(i)

)2
; and

(iii) φ(j)
j−1,j be M̂(t(j))/M̂(t(j−1)) times an estimate of

∑
i∈T (j) f̂ (j−1)(i) · f̂ (j)(i).

All estimates are obtained via Lemma 1 with additive error γ1 and confidence 1− δ. If any one
of φ(j)

j−1, φ(j)
j , or φ(j)

j−1,j deviates from 2/π by more than 2γ1, then output reject (and exit).

(e) Call Algorithm 2 with query access to f (j) and parameters δ and γ = γ2. If it returns pass then
continue, otherwise output reject (and exit).

6. Let ` = j be the index of the last iteration of the “while” loop (Step 5). Run Algorithm 3 with query
access to f (`) and ζ = ε/8, and output what it outputs.

Algorithm 2. Each call is with a restriction of f (which is a signed threshold function because f ∈ SMAJ)
over at least s/3 variables, and parameters δ and γ2. By Lemma 8 (note that the relation between γ2 and the
number of variables is as required), the probability that any call rejects is O(δ · log(n)), which is at most
1/20. For the rest of this proof we may assume that all estimates are indeed as required and that all calls
to Algorithm 2 return pass. (In particular the algorithm does not reject in Step 2 or Step 3 and reaches the
while loop in Step 5.)

Since f ∈ SMAJ, by the definition of f (j) it holds that f (j) ∈ STHRθ
(j)

for all j. For j = 0 we have
that θ(0) = 0, so |E[f (j)]| ≤ 3γ3 as required by Lemma 7. Indeed, Lemma 7 gives that if |E[f (j−1)]| ≤ 3γ3

then f (j) (defined in Step 5c) also satisfies |E[f (j)]| ≤ 3γ3 except with failure probability at most δ =
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Θ(1/ log n). Since Step 5c is executedO(log n) times, the probability that the algorithm ever outputs reject
in Step 5c is at most 1/10.

At this point we have established that we may assume that at each iteration of Step 5d, both f (j−1)

and f (j) are signed threshold functions, with thresholds θ(j−1) and θ(j) respectively, which satisfy
|E[f (j−1)]|, |E[f (j)]| ≤ 3γ3. Part (3) of Lemma 6 implies that |θ(j−1)| = O(γ3

√
t(j−1)) and |θ(j)| =

O(γ3

√
t(j)), so that by Part (1) of Lemma 6,

(1−O((γ3)2))M̂(t(j−1)) ≤ f̂ (j−1)(i) ≤ M̂(t(j−1)) (33)

and
(1−O((γ3)2))M̂(t(j)) ≤ f̂ (j)(i) ≤ M̂(t(j)) . (34)

By Equation (34), ∑
i∈T (j)

(
f̂ (j)(i)

)2
= (1−O((γ3)2)) · M̃(t(j)) (35)

Given that φ(j)
j is accurate as required, recalling that γ1 = Ω((γ3)2) and that M̃(m) = 2/π−O(m−1), we

see that the algorithm does not reject in Step 5d because of a large deviation of φ(j)
j from 2/π. Similarly, by

Equation (33), (
M̂(t(j))

M̂(t(j−1))

)2

·
∑
i∈T (j)

(
f̂ (j−1)(i)

)2
= (1−O((γ3)2))M̃(t(j)) (36)

and by Equations (33) and (34),

M̂(t(j))

M̂(t(j−1))
·
∑
i∈T (j)

f̂ (j−1)(i) · f̂ (j)(i) = (1−O((γ3)2))M̃(t(j)) . (37)

Given that φ(j)
j−1 and φ

(j)
j−1,j are accurate as required (as well as γ1 = Ω((γ3)2) and M̃(m) = 2/π −

O(m−1)), the algorithm does not reject in Step 5d because of large deviations of these estimates as well.
Recall that we have already bounded the probability that the algorithm rejects in Step 5e due to a failed call
to Algorithm 2.

Finally, by Lemma 9 (using Equation (34) for j = ` and the fact that Algorithm 3 is called with ζ =
ε/8 = ω((γ3)2)), the algorithm rejects in Step 6 with probability at most 1/10. Summing all probabilities of
failure we see that the overall probability that the algorithm rejects is at most 1/nω(1)+1/10+1/10+1/10 <
1/3, and the lemma is proved.

Lemma 11 (Soundness) If dist(f, SMAJ) > ε, then Algorithm 4 rejects with probability at least 2/3.

Proof: Fix f : {+1,−1}n → {+1,−1} to be any function that is ε-far from every n-variable signed
majority. As in the proof of Lemma 10, the probability that any estimate computed by the algorithm has an
additive error greater than indicated is O(δ log n), so we may assume from this point on (incurring failure
probability at most 1/20) that all estimates are indeed within the desired additive error. In particular, this
means that

∑n
i=1(f̂(i))2 ≥ M̃(n)− 2γ1. By Lemma 2, for every σ ∈ {+1,−1}n and for ε0 = 7ε2

32 − 2γ1,
we have

n∑
i=1

(
f̂(i)− σi · M̂(n)

)2
> ε0 . (38)
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By Lemma 8, for each call to Algorithm 2 on some f (j) (i.e., in Step 3 for j = 0 or in Step 5e for j > 1), if
|f̂ (j)(i)| ≥ γ2 for some i ∈ T (j), then Algorithm 2 returns fail with probability at least 1− δ. Thus we may
assume from this point on (incurring failure probability O(δ log n) ≤ 1/20) that for each j, if Algorithm 4

reached iteration j, then |f̂ (j−1)(i)| < γ2 for every i ∈ T (j−1).

We next define the following vectors:

a(j) def=
(
f̂ (j)(i)

)
i∈T (j)

for j ≥ 0, (39)

b(j) =

(
M̂(t(j))

M̂(t(j−1))
· f̂ (j−1)(i)

)
i∈T (j)

for j ≥ 1, (40)

and for each σ ∈ {+1,−1}T (j)
,

c(j)
σ =

(
σi · M̂(t(j))

)
i∈T (j)

for j ≥ 0. (41)

Recalling that f (0) = f , T (0) = [n] and t(0) = n, Equation (38) implies that

‖a(0) − c(0)
σ ‖22 > ε0 (42)

for each σ ∈ {+1,−1}n. Observe that φ(j)
j−1, φ(j)

j , and φ(j)
j−1,j are, respectively, estimates of ‖b(j)‖22, ‖a(j)‖22

and 〈a(j), b(j)〉. From the foregoing discussion at the start of the proof we may assume that these estimates
are all within additive error at most γ1 of the true values; moreover, we may assume that each estimate is
within ±2γ1 from 2/π, or else the algorithm would reject. Consequently we have that all j satisfy

‖a(j) − b(j)‖22 = ‖b(j)‖22 + ‖a(j)‖22 − 2〈a(j), b(j)〉 ≤ 8γ1 . (43)

Similarly, by the assumption concerning the correctness of the executions of Algorithm 2, if we have reached
iteration j, then |a(j−1)(i)| < γ2 for every i ∈ T (j−1), which implies that (a(j−1)

i )2 < (γ2)2 for each
i ∈ T (j).

We have reached the main step of the proof, which is establishing the following claim.

Claim 12 There is an absolute constant C such that the following holds: for each fixed j ≥ 1, given that

all σ ∈ {+1,−1}T (j−1)
satisfy

‖a(j−1) − c(j−1)
σ ‖2 ≥

√
ε0 ·
(

1− C
√
γ1/ε0

)j−1
(44)

and that
(a(j−1)
i )2 ≤ (γ2)2 for each i ∈ T (j) , (45)

with probability at least 1− δ over the random choice of T (j) ⊆ T (j−1), all σ ∈ {+1,−1}T (j)
satisfy

‖a(j) − c(j)
σ ‖2 ≥

√
ε0 ·
(

1− C
√
γ1/ε0

)j
. (46)
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Since there are O(log n) iterations of the “while” loop (Step 5), Claim 12 implies (given that all estimates
are as required as described above) that conditioned on the algorithm not rejecting in Step 2 or Step 3 or in
any iteration of the “while” loop, with probability at least 1 − O(δ log n) ≥ 9

10 (over all choices of T (j))
the following holds: once the algorithm exits the “while” loop, the final vector a(`) (corresponding to f (`))
satisfies (recall that ε0 = 7ε2/32− 2γ1)

‖a(`) − c(`)
σ ‖22 ≥ ε0 · (1− C

√
γ1/ε0)O(logn) ≥ ε2/8 (47)

for all σ ∈ {+1,−1}T (`)
. But if this is the case then we claim that Step 6 will reject with probability at least

9/10 by Lemma 9 because for at least one i ∈ [k] it holds that |f̂ (`)(i)| /∈
[
(1− ε/4)M̂(k), (1− ε/4)M̂(k)

]
(recall that Algorithm 3 is called with ζ = ε/8). To verify this, assume in contradiction that |f̂ (`)(i)| ∈[
(1− ε/4)M̂(k), (1− ε/4)M̂(k)

]
for every i ∈ [k]. But then, setting σi = sign(f̂ (`)(i)) we get

‖a(`) − c(`)
σ ‖22 ≤ k · (ε2/16)(M̂(k))2 , (48)

which (using M̂(k) < 1/
√
k) is less than ε2/8. Consequently the overall probability that the algorithm

outputs reject is at least 2/3.

Thus, to complete the proof of Lemma 11, it remains to prove Claim 12.

Proof of Claim 12: Recall that b(j) is obtained from a(j−1) by selecting each coordinate of a(j−1) indepen-

dently with probability 1/2, and multiplying it by M̂(t(j))/M̂(t(j−1)). Given a vector σ ∈ {+1,−1}T (j−1)
,

we shall write the ith coordinate of a(j−1) (that is, f̂ (j−1)(i)) as (1 + ρσ(i)) · σiM̂(t(j−1)). Using this
notation we have

‖a(j−1) − c(j−1)
σ ‖22 =

∑
i∈T (j−1)

(
(1 + ρσ(i)) · σiM̂(t(j−1))− σiM̂(t(j−1))

)2

= (M̂(t(j−1)))2
∑

i∈T (j−1)

(ρσ(i))2 . (49)

Recalling that Equation (44) (the first premise of the claim) gives ‖a(j−1) − c
(j−1)
σ ‖2 ≥

√
ε0 · (1 −

C
√
γ1/ε0)j−1, by Equation (49) we get (recalling that (M̂(m))2 ≤ 2

πm ) that for each σ ∈ {+1,−1}T (j−1)
,∑

i∈T (j−1)

(ρσ(i))2 = βσt
(j−1) (50)

for βσ ≥ π
2 · ε0 · (1− C

√
γ1/ε0)2(j−1).

Recalling that c(j)
σ =

(
σi · M̂(t(j))

)
i∈T (j)

for σ ∈ {+1,−1}T (j)
, we have that for all σ ∈ {+1,−1}T (j)

,

‖b(j) − c(j)
σ ‖22 =

∑
i∈T (j)

(
(M̂(t(j))/M̂(t(j−1))) · (1 + ρσ(i)) · σiM̂(t(j−1))− σiM̂(t(j))

)2

= (M̂(t(j)))2
∑
i∈T (j)

(ρσ(i))2. (51)
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We also know from Equation (45) (the second premise of the claim) that (a(j−1)
i )2 ≤ (γ2)2 for each i;

since a(j−1)
i = (1 + ρσ(i)) · σiM̂(t(j−1)), recalling that M̂(m)2 ≥ 2

πm − c/m
3/2 for some constant c and

t(j−1) = Ω(s), we get that for each σ ∈ {+1,−1}T (j−1)
we have (ρσ(i))2 ≤ 2(γ2)2t(j−1).

Now let us define a “distinguished” vector of signs σ(j−1) ∈ {+1,−1}k by σ(j−1)
i = sign(a(j−1)

i ), so
σ(j−1) is the sign vector whose coordinates match the signs of the degree-1 Fourier coefficients of f (j−1).
We apply Lemma 5 where the (ρσ(j−1)(i))2’s play the role of the wi’s, 2(γ2)2 plays the role of “κ”, βσ(j−1)

plays the role of “β”, and t(j−1) plays the role of m, taking α to be γ1/βσ(j−1) . Lemma 5 gives us that∑
i∈T (j)

(ρσ(j−1)(i))2 ≥ (βσ(j−1) − γ1)t(j) (52)

with probability at least 1− exp(−Ω(γ2
1/(βσ(j−1) · (γ2)2))) (where the probability is taken over the random

choice of T (j) from T (j−1)). We now observe that Equations (49) and (50) imply that βσ(j−1) is certainly
upper bounded by O(1) (recall that a(j−1) and c(j−1) are vectors of norm at most 1), so the bound γ1 =
Ω(
√

log(1/δ) · γ2) implies that the above probability is at least 1− δ as desired.

We now observe that for every σ ∈ {+1,−1}T (j−1)
and every i ∈ T (j−1), we have

|ρσ(i)| ≥ |ρσ(j−1)(i)|. (53)

(This follows easily from the facts that σ(j−1)
i = sign(a(j−1)

i ) and a(j−1)
i = (1 + ρσ(i)) · σi · M̂(t(j−1)).)

Consequently, Equation (52) yields that with probability at least 1− δ over the random choice of T (j), every
σ ∈ {+1,−1}T (j−1)

satisfies ∑
i∈T (j)

(ρσ(i))2 ≥ (βσ(j−1) − γ1)t(j). (54)

Using Equation (51) this gives

‖b(j) − c(j)
σ ‖22 ≥ (M̂(t(j)))2 · (βσ(j−1) − γ1) · t(j)

= M̃(t(j)) · (βσ(j−1) − γ1)

≥ M̃(t(j−1)) · (1−O(1/t(j−1))) · (βσ(j−1) − γ1)

≥ βσ(j−1) · M̃(t(j−1))(1−O(1)/t(j−1))− γ1 (55)

where the first inequalities follow from the definition and bound on M̃(·) given in Equation (3). Combining
Equations (49) and (50) we may re-express ‖a(j−1) − c

(j−1)
σ ‖22 as βσ(j−1)M̃(t(j−1)), and thus the final

inequality above yields

‖b(j) − c(j)
σ ‖22 ≥ ‖a(j−1) − c(j−1)

σ ‖22 ·
(

1−O(1)/t(j−1)
)
− γ1 . (56)

Combining with Equation (44) (and using the elementary identity
√
x− y ≥

√
x−√y for 0 < y < x), we

get

‖b(j) − c(j)
σ ‖2 ≥

√
ε0 · (1− C

√
γ1/ε0)j−1 ·

√
1−O(1)/t(j−1) −√γ1 . (57)

Now the fact that ‖a(j) − b(j)‖2 ≤
√

8γ1 (which follows from Equation (43) implies that

‖a(j) − c(j)
σ ‖2 ≥

√
ε0 · (1− C

√
γ1/ε0)j−1 ·

√
1−O(1)/t(j−1) −√γ1 −

√
8γ1

≥
√
ε0 · (1− C

√
γ1/ε0)j (58)

for a suitable absolute constant C, and Claim 12 follows. (Claim 12 and Lemma 11)
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Theorem 5 Algorithm 4 is a testing algorithm for Signed Majority functions. Its query complexity is
poly(log n, 1/ε).

Proof: The correctness of the algorithm follows by Lemmas 10 and 11. Inspection of the algorithm and the
parameter settings shows that the query complexity is the query complexity is

O

log n ·


Step 5d︷ ︸︸ ︷
log 1

δ

(γ1)4
+

Step 5e︷ ︸︸ ︷
log( 1

δγ2
) log 1

γ2

(γ2)4
+

Step 5c︷ ︸︸ ︷
log(1

δ ) log( 1
δγ3

)

(γ3)3

+

Step 6︷ ︸︸ ︷
s log s
(ε/8)4

 = O

(
(log n)9(log(log n/ε))4

ε8

)

where the dominant contribution comes from the (O(log n) many) executions of Step 5e.

5 A poly(n) lower bound for non-adaptive testing of SMAJ

In this section we prove the following lower bound which yields Theorem 2 of Section 1:

Theorem 6 There is a universal constant ε0 > 0 such that any non-adaptive algorithm for testing SMAJ
with distance parameer ε0 must make at least Ω(n1/12) queries.

Theorem 6 gives an exponential improvement over the lower bound of [27], which showed that any
non-adaptive algorithm for ε0-testing SMAJ must make Ω(log n) queries. The theorem is proved via an
improved analysis of the construction of [27], using ideas from [5] and [21]. In Section 5.1 we first recall
the construction and then in Section 5.2 we prove Theorem 6.

5.1 The construction

The construction is based on two distributions Dyes and Dno over functions from {+1,−1}n to {+1,−1}.
As defined in [27], the distribution Dyes is uniform over all 2n signed majority functions, so a function
fyes drawn from Dyes is fyes(x) = sign(σ1x1 + · · ·σnxn) where each σi is independently and uniformly
drawn from {+1,−1}. The distribution Dno is similarly a distribution over halfspaces of the form fno(x) =
sign(ν1x1 + · · · νnxn), but each νi is independently chosen to be ±

√
1/2 or ±

√
3/2 each with probability

1/4.

Lemma 4 of [27] gives the following:

Lemma 13 (Lemma 4 of [27]) Let fno be a random function drawn from Dno. With probability at least
1− o(1) we have that fno is ε0-far from SMAJ, where ε0 > 0 is some fixed constant independent of n.

In the next subsection we will prove the following lemma:

Lemma 14 Let T be any deterministic non-adaptive q-query algorithm for testing whether a black-box
f : {+1,−1}n → {+1,−1} is a signed majority. Then∣∣Prfyes∼Dyes [T accepts fyes]− Prfno∼Dno [T accepts fno]

∣∣ = O(q3/2/n1/8) . (59)

A standard argument using Yao’s minmax method [36] yields Theorem 6 from Lemmas 13 and 14.
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5.2 Proof of Lemma 14

Fix T to be a deterministic q-query non-adaptive tester. We may view its q queries as a q × n query matrix
Q ∈ {+1,−1}q×n. Following the terminology of [5], we define a “Response Vector” random variable
Ryes ∈ {+1,−1}q which is obtained by drawing a random σ ∈ {+1,−1}n, evaluting sign(σ · x) on the
q different choices of x corresponding to the q rows of Q, and writing down the results as the q entries of
Ryes. Similarly we define a “Response Vector” random variable Rno ∈ {+1,−1}q which is obtained by
drawing a random coefficient vector ν uniformly from {±

√
1/2,±

√
3/2}, evaluating sign(ν · x) on the q

rows of Q, and writing down the results as the q entries of Rno.

By the definition of total variation distance, the left-hand side of Equation (59) is upper bounded by
dTV(Ryes, Rno), the total variation distance between the random variables Ryes and Rno. Let S denote
the column vector Qσ and let T denote the column vector Qν where σ, ν are uniform over {+1,−1}q
and {±

√
1/2,±

√
3/2}q respectively as described above. The Response Vector Ryes is determined by the

orthant of Rq in which S lies, and the Response Vector Rno is determined by the orthant of Rq in which T
lies. So as in [5], to prove Lemma 14 it suffices for us to prove the following:

Lemma 15 For S, T as defined above and O any union of orthants in Rq, we have

|Pr[S ∈ O]− Pr[T ∈ O] = O(q3/2/n1/8). (60)

We proceed to prove Lemma 15. We have that

S = X1 + · · ·+Xn (61)

where each Xi is a vector-valued random variable which is independently Qi (the i-th column of Q) with
probability 1/2 and −Qi with probability 1/2. Similarly we have that

T = Y1 + · · ·+ Yn (62)

where each Yi is a vector-valued random variable which is equiprobably independently ±
√

1
2Q

i,±
√

3
2Q

i.

Similar to [5], we will prove Lemma 15 using multidimensional invariance principle tools. The fol-
lowing lemma is a combination of Lemmas 4.5 and 4.6 in [5], which in turn are respectively essentially
Theorem 4.1 in [28] (see [21]), and a result established in [21].

Lemma 16 ([28, 21]) Let O be any union of orthants in Rq. Let S = S1 + · · · + Sn where the Si’s are
independent Rq-valued random variables and let T = T1 + · · ·+ Tn similarly.

Assume that for each i ∈ [n], Si and Ti have matching means and covariance matrices, i.e. E[Si] =
E[Ti] and Cov[Si] = Cov[Ti]. Given a multi-index J = (j1, . . . , jq) ∈ Nq and a vector U ∈ Rq, let UJ

denote U j11 · · · · · ·U
jq
q , and let |J | denote j1 + · · ·+ jq.

Let
Wr := {x ∈ Rq : |xi| ≤ r/2 for some i ∈ [q]}. (63)

Then we have

|Pr[S ∈ O]− Pr[T ∈ O]| ≤ Pr[S ∈Wr] +O(1/r3)
n∑
i=1

∑
|J |=3

(E[|(Si)J |] + E[|(Ti)J |]) . (64)
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A suitable application of Lemma 16 will give us Equation (60) as desired. To show that the conditions
for Lemma 16 are satisfied, we begin with the following straightforward lemma, which is analogous to
Lemma 4.7 of [5]:

Lemma 17 For all j ∈ [n] we have E[Sj ] = E[Tj ] = 0 and Cov[Sj ] = Cov[Tj ].

Proof: It suffices to prove the desired equalities for j = 1. We have

E[S1] = E[(X1 + · · ·+Xn)1] =
n∑
i=1

E[(Xi)1] = 0 (65)

since each (Xi)1 is independently equally likely to be (Qi)1 or −(Qi)1. Similarly, we have

E[T1] = E[(Y1 + · · ·+ Yn)1] =
n∑
i=1

E[(Yi)1] = 0 (66)

since each (Yi)1 is independently equally likely to be ±
√

1/2(Qi)1 or ±
√

3/2(Qi)1.

For the covariances, fix i, i′ ∈ [q]. Let us write q to denote the i-coordinate of vector Q1 and q′ to denote
the i′-coordinate ofQ1. Similarly, let us write x for the i-coordinate of vectorX1 and x′ for the i′-coordinate
of X1.

Observing that µx := E[x] = 0 and µx′ := E[x′] = 0, we have that

Cov[S1]i,i′ = E[(x− µx)(x′ − µx′)] = E[xx′] =
1
2

(qq′) +
1
2

(−q)(−q′) = qq′ . (67)

Similarly let us write y for the i-coordinate of Y1 and y′ for the i′-coordinate of Y1. Observing that µy :=
E[y] = 0 and µy′ := E[y′] = 0, we similarly have that

Cov[T1]i,i′ = E[(y − µy)(y′ − µy′)] = E[yy′]

=
1
4
· qq′ ·

(√1
2

)2

+

(
−
√

1
2

)2

+

(√
3
2

)2

+

(
−
√

3
2

)2


= qq′ , (68)

and the lemma follows.

As in Lemma 16 let Wr := {x ∈ Rq : |xi| ≤ r for some i ∈ [q]} be the region around the orthant
boundaries. Recalling that the binomial distribution B(n, 1/2) puts probability mass at most O(1/

√
n) on

each outcome, it is easy to see that for r ≥ 1 we have

Pr[S ∈Wr] = O(qr/
√
n), (69)

where the factor of q comes from a union bound over the q coordinates.

Finally, to apply Lemma 16 it remains only to observe that for any |J | ≤ 3 the quantities E[|XJ
i |] and

E[|Y J
i |] can be bounded uniformly by an absolute constant for all i. Putting the pieces together Lemma 16

gives that
|Pr[S ∈ O]− Pr[T ∈ O]| ≤ O(qr/

√
n) +O(nq3/r3). (70)

Taking r = n3/8q1/2, we get that the bound is O(q3/2/n1/8) as desired. This concludes the proof of
Lemma 14.
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