Errata for: Locally Computable UOWHF with Linear Shrinkage

Benny Applebaum^{*} Yoni Moses[†]

This is an errata for our Journal of Cryptology paper, "Locally Computable UOWHF with Linear Shrinkage" [2]. There is a gap in the proof of Theorem 4.1 that asserts that the collection $\mathcal{F}_{P,n,m}$ is δ -secure β -random target-collision resistant assuming the one-wayness and the pseudorandomness of the collection for related parameters. We currently do not know whether Theorem 4.1 (as stated in Section 4) holds.

The source of trouble is a miscalculation in the proof of Claim 4.4. Indeed, it is essentially claimed that for a random graph G and random input $x \in \{0,1\}^n$, any string $z \in \{0,1\}^n$ whose output $f_{G,P}(z) \in \{0,1\}^{2m}$ agrees with $f_{G,P}(x) \in \{0,1\}^{2m}$ on about $(1+\gamma)m$ locations, must be correlated with x. Unfortunately, this level of "output correlation" is not significant enough to guarantee the desired input correlation.

We note that Theorem 5.1 that transforms any δ -secure β -random target collision resistant collection to a target collision resistant collection while preserving constant locality and linear shrinkage, remains intact. Thus, one can construct a locally computable UOWHF with linear shrinkage based on the hypothesis that random local functions are δ -secure β -random target-collision resistant. Specifically, the main result of the paper can be based (via Theorem 5.1) on the following hypothesis.

Assumption 1. For every constants $\varepsilon, \beta, \delta > 0$, there exists an integer d and a d-local predicate $P : \{0,1\}^d \to \{0,1\}$ such that the ensemble $\mathcal{F}_{P,n,(1-\varepsilon)n}$ is o(1)-secure β -random target-collision resistance, that is, every polynomial-time adversary \mathcal{A} that is given a random local function $f \notin \mathcal{F}_{P,n,(1-\varepsilon)n}$ and a random target $x \notin \{0,1\}^n$, outputs $x' \in f^{-1}(f(x))$ which is β n-far from x with probability at most δ .

In fact, the assumption seems plausible even for $\delta = o(1)$. We also mention that locallycomputable functions with linear-shrinkage that achieve a stronger form of *collision-resistance* were constructed in [1] based on incomparable assumptions.

Acknowledgement. We are grateful to Colin Sandon for pointing out the gap in Claim 4.4.

References

[1] B. Applebaum, N. Haramaty, Y. Ishai, E. Kushilevitz, and V. Vaikuntanathan. Low-complexity cryptographic hash functions. In C. H. Papadimitriou, editor, 8th Innovations in Theoretical

^{*}School of Electrical Engineering, Tel-Aviv University, bennyap@post.tau.ac.il.

[†]ymoses@gmail.com.

Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 7:1–7:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[2] B. Applebaum and Y. Moses. Locally computable UOWHF with linear shrinkage. J. Cryptol., 30(3):672–698, 2017.