
Local reductions

Hamid Jahanjou∗ Eric Miles∗ Emanuele Viola∗

July 6, 2013

Abstract

We reduce non-deterministic time T ≥ 2n to a 3SAT instance φ of size |φ| =
T · logO(1) T such that there is an explicit circuit C that on input an index i of log |φ|
bits outputs the ith clause, and each output bit of C depends on O(1) inputs bits. The
previous best result was C in NC1. Even in the simpler setting of |φ| = poly(T) the
previous best result was C in AC0.

More generally, for any time T ≥ n and parameter r ≤ n we obtain log2 |φ| =
max(log T, n/r)+O(log n)+O(log log T) and each output bit of C is a decision tree of
depth O(log r).

As an application, we simplify the proof of Williams’ ACC0 lower bound, and
tighten his connection between satisfiability algorithms and lower bounds.

∗Supported by NSF grant CCF-0845003. Email: {hamid,enmiles,viola}@ccs.neu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 99 (2013)

1 Introduction

The efficient reduction of arbitrary non-deterministic computation to 3SAT is a fundamental
result with widespread applications. For many of these, two aspects of the efficiency of the
reduction are at premium. The first is the length of the 3SAT instance. A sequence of
works shows how to reduce non-deterministic time-T computation to a 3SAT instance φ of
quasilinear size |φ| = Õ(T) := T logO(1) T [HS66, Sch78, PF79, Coo88, GS89, Rob91]. This
has been extended to PCP reductions [BSGH+05, Mie09, BSCGT13, BSCGT12].

The second aspect is the computational complexity of producing the 3SAT instance φ
given a machine M , an input x ∈ {0, 1}n, and a time bound T = T (n) ≥ n. Consider
φ of size |φ| ≥ T 2. It is well-known that φ is computable by circuits of size poly(T), and
that these circuits may be taken even from the restricted class AC0 of unbounded fan-in,
constant-depth circuits consisting of And, Or, and Not gates. In fact, [AAI+01] improve this
to NC0 circuits, i.e., local maps where each output bit depends on a constant number of input
bits. For many applications one however needs the construction of φ to be explicit : the ith
clause of φ should be computable with resources poly(|i|) = poly log |φ| = poly log T given
i ≤ |φ| and x ∈ {0, 1}n. When T = poly(n) this is indeed possible by a simple algorithm
running in time poly(|i|) with random access to x. When T ≥ 2n the size of the index i is
more than that of x, and one can obtain a circuit of size poly(|i|). This in particular yields
that the explicit versions of NP-complete problems are complete for NEXP. (Such problems
are sometimes called succinct.) Arora, Steurer, and Wigderson [ASW09] push this further
and note that one may get an AC0-explicit reduction: the circuit mapping i and x (both of
length Θ(n)) to the ith clause of φ is AC0 of size poly(|i|). This implies that, unless EXP =
NEXP, standard NP-complete graph problems cannot be solved in time poly(2n) on graphs
of size 2n that are described by AC0 circuits of size poly(n).

Interestingly, applications to unconditional complexity lower bounds rely on reductions
that simultaneously optimize both aspects of the reduction. For example, the time-space
tradeoffs for SAT need to reduce non-deterministic time T to a 3SAT instance φ of quasi-
linear size Õ(T) such that the ith clause is computable in time poly(|i|) = poly log |φ|, see
e.g. [FLvMV05] or Van Melkebeek’s survey [vM06]. More recently, the importance of op-
timizing both aspects of the reduction is brought to the forefront by Williams’ approach
to obtain lower bounds by satisfiability algorithms that improve over brute-force search by
a super-polynomial factor [Wil10, Wil11b, Wil11a, SW12, Wil13]. To obtain lower bounds
against a circuit class C using this technique, one needs a reduction of non-deterministic
time T = 2n to a 3SAT instance of size Õ(T) whose clauses are computable by circuits in the
class C of size poly(n). For example, for the ACC0 lower bounds [Wil11b, Wil13] one needs
to compute them in ACC0. However it has seemed “hard (perhaps impossible)” [Wil11b] to
compute the clauses with such restricted resources.

Two workarounds have been devised [Wil11b, SW12]. Both exploit the fact that, under
an assumption such as P ⊆ ACC0, non-constructively there does exist such an efficient
circuit computing clauses; the only problem is constructing it. They accomplish the latter
by guessing-and-verifying it [Wil11b], or by brute-forcing it [SW12] (cf. [AK10]).

1

local = NC0 = DT(O(1)) (DT(O(logn)) (DNF ∩ CNF (AC0 (NC1.

Figure 1: Inclusion between poly(n)-size circuit classes. DT(d) is for “depth-d decision tree.”

1.1 Our results

We show that, in fact, it is possible to reduce non-deterministic computation of time T ≥ 2n

to a 3SAT formula φ of quasilinear size |φ| = Õ(T) such that given an index of ` = log |φ|
bits to a clause, one can compute (each bit of) the clause by looking at a constant number
of bits of the index. Such maps are also known as local, NC0, or junta. More generally our
results give a trade-off between decision-tree depth and |φ|. The results apply to any time
bound T , paying an inevitable loss in |x| = n for T close to n.

Theorem 1 (Local reductions). Let M be an algorithm running in time T = T (n) ≥ n
on inputs of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one can output a circuit
D : {0, 1}` → {0, 1}3v+3 in time poly(n, log T) mapping an index to a clause of a 3CNF φ
in v-bit variables, for v = Θ(`), such that

1. φ is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) = 1, and

2. for any r ≤ n we can have ` = max(log T, n/r) + O(logn) + O(log log T) and each
output bit of D is a decision tree of depth O(log r).

Note that by choosing r := n/ log T , for T = 2Ω(n) we get that D is in NC0 and φ has
size 2` = T · logO(1) T . We point out that the only place where locality O(log r) (as opposed
to O(1)) is needed in D is to index bits of the string x.

The previous best result was D in NC1 [BSGH+05]. Even in the simpler setting of
|φ| = poly(T) the previous best result was D in AC0 [ASW09].

Our results simplify and tighten the aforementioned connection between satisfiability
algorithms and lower bounds. In particular they simplify the lower bounds for ACC0, by
eliminating the workarounds mentioned above.

We also obtain tighter parameters. For example, a lower bound for depth d is implied
by a satisfiability algorithm for depth d + 2, or even depth d + 1 in some cases [HP10].
By contrast previous workarounds required a satisfiability algorithm for depth > 2d. (In
the original proof [Wil11b] this is due to the need of combining two guessed ACC0 circuits,
one computing the clauses and one the assignment; the loss in [SW12] appears even larger.).
Moreover, the gates introduced by our reduction have constant fan-in. Another saving shows
up in the size. Previous workarounds incurred a polynomial blow-up, while we are able to
stay within linear size.

Just as PCP constructions have been optimized in order to obtain tight inapproximability
results, it is conceivable that future lower bounds will benefit from more and more explicit
reductions to 3SAT.

Next we formally state our improved connection and present the simplified proof. Recall
that from non-trivial satisfiability algorithms for a circuit class one can get lower bounds

2

on that class for functions in ENP, NE, and NE ∩ coNE [Wil10, Wil11b, Wil13], and the
smaller the class the weaker the lower bound. For simplicity we focus on the case of super-
polynomial lower bounds on threshold circuits for ENP. Recall that it is consistent with
current knowledge that EXPNP has polynomial-size depth-2 circuits of unbounded-weight
thresholds, which are a subclass of depth-3 circuits with polynomial-weight thresholds (aka
majorities) [HMP+93, GHR92].

Theorem 2 (Tight connection between satisfiability and lower bounds). Consider unbounded
fan-in circuits consisting of threshold gates (either bounded- or unbounded-weight).

Suppose that for some constant d and for every c, given a circuit of depth d+ 2 and size
nc on n input bits one can decide its satisfiability in time 2n/nω(1).

Then ENP does not have circuits of polynomial size and depth d.

Proof. Following [Wil10], suppose that ENP has circuits of size nc and depth d for some
constants c and d. Let L ∈ NTime(2n) \ NTime(o(2n)) [Coo73, SFM78, Zák83]. Consider
the ENP algorithm that on input x ∈ {0, 1}n and i ≤ 2npoly(n) computes the 3CNF φx

from Theorem 1, computes its first satisfying assignment if one exists, and outputs its ith
bit. By assumption this algorithm can be computed by a circuit of depth d and size nc. By
hardwiring x we obtain that for every x ∈ {0, 1}n there is a circuit Cx of the same depth
and size that on input i computes that ith bit.

We contradict the assumption on L by showing how to decide it in Ntime(o(2n)). Consider
the algorithm that on input x ∈ {0, 1}n guesses the above circuit Cx. Then it connects
three copies of Cx to the decision trees with depth O(1) from Theorem 1 that on input
j ∈ {0, 1}n+O(logn) compute the jth clause of φx in depth O(lgn), to obtain circuit C ′

x.
Since the paths in a decision tree are mutually exclusive, C ′

x may be obtained simply by
appending a nO(1)-size layer of And gates to a layer of the gates of Cx, and increasing the
fan-in of the latter, for a total depth of d + 1. Then the algorithm constructs the circuit
C ′′

x which in addition checks if the outputs of the 3 copies of Cx indeed satisfy the jth
clause. The size of C ′′

x is nO(c) and a naive implementation yields depth d + 3. Running
the satisfiability algorithm on C ′′

x determines if φx is satisfiable and hence if x ∈ L in time
2|j|/|j|ω(1) = 2n/nω(1) = o(2n).

We improve the depth of C ′′
x to d + 2 as follows. The algorithm will guess instead of Cx

a circuit Dx that given i and a bit b computes the ith bit mentioned above xor’ed with b. In
an additional preliminary stage, the algorithm will check the consistency of D by running
the satisfiability algorithm on (i) Dx(i, 0)∧Dx(i, 1) and on (ii) (¬Dx(i, 0))∧¬Dx(i, 1)), and
reject if the output is ever 1. This circuit can be implemented in depth d+ 1.

Valiant’s challenge [Val77] to exhibit an explicit function that cannot be computed by
circuits of linear size and simultaneously logarithmic depth stands since 1977. In particular,
it is still open whether ENP has such circuits. By Theorem 1, similarly to the proof of
Theorem 2, that can be ruled out by making progress on satisfiability algorithms for the
same circuits.

Hansen and Podolskii [HP10] study depth-2 circuits with exact, unbounded-weight thresh-
old gates, noting that lower bounds are not available. For this class our depth blow-up can

3

be reduced to 1, by collapsing the output And gate with the outputs of the copies of Dx, see
[HP10, Proposition 6].

Our results have a few other consequences. For example they imply that NC0-explicit
3SAT is NEXP complete. Our techniques are also relevant to the notion of circuit unifor-
mity. A standard notion of uniformity is log-space uniformity, requiring that the circuit
is computable in logarithmic space or, equivalently, given an index to a gate in the circuit
one can compute its type and its children in linear space. Equivalences with various other
uniformity conditions are given by Ruzzo [Ruz81], see also [Vol99]. We consider another
uniformity condition which is stronger than previously considered ones in some respects.
Specifically, we describe the circuit by showing how to compute children by an NC0 circuit,
i.e. a function with constant locality.

Theorem 3 (L-uniform⇔ local-uniform). Let f : {0, 1}∗ → {0, 1} be a function computable
by a family of log-space uniform polynomial-size circuits. Then f is computable by a family
of polynomial-size circuits C = {Cn : {0, 1}n → {0, 1}}n such that there is Turing machine
that on input n (in binary) runs in time O(poly logn) and outputs a map D : {0, 1}O(logn) →
{0, 1}O(logn) such that
(i) D has constant locality, i.e., every output bit of D depends on O(1) input bits, and
(ii) on input a label g of a gate in Cn, D outputs the type of g and labels for each child.

1.2 Techniques

Background: Reducing non-deterministic time T to size-Õ(T) 3SAT. Our start-
ing point is the reduction of non-deterministic time-T computation to 3SAT instances of
quasilinear size T ′ = Õ(T). The classical proof of this result [HS66, Sch78, PF79, Coo88,
GS89, Rob91, BSGH+05] hinges on the oblivious Turing machine simulation by Pippenger
and Fischer [PF79]. However computing connections in the circuit induced by the oblivious
Turing machine is a somewhat complicated recursive procedure, and we have not been able
to use this construction for our results.

Instead, we use an alternative proof that replaces this simulation by coupling an argument
by Gurevich and Shelah [GS89] with sorting networks. Recall the latter are sorting circuits,
i.e., input-independent algorithms. This proof appears to be folklore. The first reference we
are aware of is the survey by Van Melkebeek [vM06, §2.3.1], which uses Batcher’s odd-even
mergesort [Bat68]. This proof was rediscovered by a superset of the authors as a class project
[VN12]. We now recall it.

Consider any general model of (non-deterministic) computation, such as RAM or random-
access Turing machines. (One nice feature of this proof is that it directly handles models
with random-access, aka direct-access, capabilities.) The proof reduces computation to the
satisfiability of a circuit C. The latter is then reduced to 3SAT via the textbook reduction.
Only the first reduction to circuit satisfiability is problematic and we will focus on that one
here. Consider a non-deterministic time-T computation. The proof constructs a circuit of
size Õ(T) whose inputs are (non-deterministic guesses of) T configurations of the machine.
Each configuration has size O(log T) and contains the state of the machine, all registers,

4

and the content of the memory locations indexed by the registers. This computation is then
verified in two steps. First, one verifies that every configuration Ci yields configuration Ci+1

assuming that all bits read from memory are correct. This is a simple check of adjacent
configurations. Then to verify correctness of read/write operations in memory, one sorts
the configurations by memory indices, and within memory indices by timestamp. Now
verification is again a simple check of adjacent configurations. The resulting circuit is outlined
in Figure 2 (for a 2k-tape random-access Turing machine). Using a sorting network of
quasilinear size Õ(T) results in a circuit of size Õ(T).

Making low-space computation local. Our first new idea is a general technique that
we call spreading computation. This shows that any circuit C whose connections can be
computed in space linear in the description of a gate (i.e., space log |C|) has an equivalent
circuit C ′ of size |C ′| = poly|C| whose connections can be computed with constant locality.
This technique is showcased in §2 in the simpler setting of Theorem 3.

The main idea in the proof is simply to let the gates of C ′ represent configurations
of the low-space algorithm computing children in C. Then computing a child amounts to
performing one step of the low-space algorithm, (each bit of) which can be done with constant
locality in a standard Turing machine model. One complication with this approach is that
the circuit C ′ has many invalid gates, i.e., gates that do not correspond to the computation
of the low-space algorithm on a label of C. This is necessarily so, because constant locality
is not powerful enough to even check the validity of a configuration. Conceivably, these
gates could induce loops that do not correspond to computation, and make the final 3SAT
instance always unsatisfiable. We avoid cycles by including a clock in the configurations,
which allows us to ensure that each invalid gate leads to a sink.

We apply spreading computation to the various sub-circuits checking consistency of con-
figurations, corresponding to the triangles in Figure 2. These sub-circuits operate on con-
figurations of size O(log T) and have size poly log T . Hence, we can tolerate the polynomial
increase in their complexity given by the spreading computation technique.

There remain however tasks for which we cannot use spreading computation. One is the
sorting sub-circuit. Since it has size > T we cannot afford a polynomial increase. Another
task is indexing adjacent configurations. We now discuss these two in turn.

Sorting network. We first mention a natural approach that gets us close but not quite to
our main theorem. The approach is to define an appropriate labeling of the sorting network
so that its connections can be computed very efficiently. We are able to define a labeling of
bit-length t+O(log t) = log Õ(T) for comparators in the odd-even mergesort network of size
Õ(2t) (and depth t2) that sorts T = 2t elements such that given a label one can compute
the labels of its children by a decision tree of depth logarithmic in the length of the label,
i.e. depth log log Õ(T). With a similar labeling we can get linear size circuits. Or we can get
constant locality at the price of making the 3SAT instance of size T 1+ε. (Details omitted.)

To obtain constant locality we use a variant by Ben-Sasson, Chiesa, Genkin, and Tromer
[BSCGT13]. They replace sorting networks with routing networks based on De Bruijn

5

c1 b b b

sort by Ram1 head position

head positions,
bounded-register tapes

check state,

c2 cT

head positions,
bounded-register tapes

check state,
head positions,

bounded-register tapes

check state,

c1 b b b

check Ram1 contents

c87 c42

check Ram1 contents check Ram1 contents

sort by Ram2 head position

c1 b b b

check Ram2 contents

c19 c71

check Ram2 contents check Ram2 contents

sort by Regk head position

c1 b b b

check Regk contents

c5 c99

check Regk contents check Regk contents

b
b

b

AND

b b b

Figure 2: Each of the T configurations has size O(log T). The checking circuits have size
poly log T . The sorting circuits have size Õ(T). k is a constant. Hence overall circuit has
size Õ(T).

6

graphs. They do so for their algebraic properties which are useful towards PCP construc-
tions, whereas we exploit the small locality of these networks. Specifically, the connections
of these networks involve computing bit-shift, bit-xor, and addition by 1. The first two oper-
ations can easily be computed with constant locality, but the latter cannot in the standard
binary representation. However, this addition by 1 is only on O(log log T) bits. Hence we can
afford an alternative, redundant representation which gives us an equivalent network where
all the operations can be computed with constant locality. This representation again intro-
duces invalid labels; those are handled in a manner similar to our spreading computation
technique.

Plus one. Regardless of whether we are using sorting or routing networks, another issue
that comes up in all previous proofs is addition by 1 on strings of > log T bits. This is
needed to index adjacent configurations Ci and Ci+1 for the pairwise checks in Figure 2. As
mentioned before, this operation cannot be performed with constant locality in the standard
representation. Also, we cannot afford a redundant representation (since strings of length
c log T would correspond to an overall circuit of size > T c).

For context, we point out an alternative approach to compute addition by 1 with constant
locality which however cannot be used because it requires an inefficient pre-processing. The
approach is to use primitive polynomials over GF(2)logT . These are polynomials modulo
which x has order 2logT − 1. Addition by 1 can then be replaced by multiplication by x,
which can be shown to be local. This is similar to linear feedback registers. However, it is
not known how to construct such polynomials efficiently w.r.t. their degrees, see [Sho92].

To solve this problem we use routing networks in a different way from previous works.
Instead of letting the network output an array C1, C2, . . . representing the sorted configura-
tions, we use the network to represent the “next configuration” map Ci → Ci+1. Viewing
the network as a matrix whose first column is the input and the last column is the output,
we then perform the pairwise checks on every pair of input and output configurations that
are in the same row. The bits of these configurations will be in the same positions in the
final label, thus circumventing addition by one.

We mention that to simplify the proof in [Wil11b] it is sufficient to prove a weaker version
of our Theorem 1 where C is in AC0. For the latter, it essentially suffices to show that either
the sorting network or the routing network’s connections are in that class.

Organization. §2 showcases the spreading computation technique and contains the proof
of Theorem 3. In §3 we present our results on routing networks. In §4 we discuss how to
fetch the bits of the input x. §5 includes the proof of our main Theorem 1.

2 Spreading computation

In this section we prove Theorem 3.

7

Theorem 3 (L-uniform⇔ local-uniform). Let f : {0, 1}∗ → {0, 1} be a function computable
by a family of log-space uniform polynomial-size circuits. Then f is computable by a family
of polynomial-size circuits C = {Cn : {0, 1}n → {0, 1}}n such that there is Turing machine
that on input n (in binary) runs in time O(poly logn) and outputs a map D : {0, 1}O(logn) →
{0, 1}O(logn) such that
(i) D has constant locality, i.e., every output bit of D depends on O(1) input bits, and
(ii) on input a label g of a gate in Cn, D outputs the type of g and labels for each child.

We will use the following formalization of log-space uniformity: a family of polynomial-
size circuits C ′ = {C ′

n : {0, 1}n → {0, 1}}n is log-space uniform if there exists a Turing
machine M that, on input g ∈ {0, 1}log |C

′

n| labeling a gate in C ′
n, and n written in binary,

uses space O(logn) and outputs the types and labels of each of g’s children. (Note that M
outputs the types of g’s children rather than g’s type; the reason for this will be clear from
the construction below.)

Proof. Let C ′ be a log-space uniform family of polynomial-size circuits and M a log-space
machine computing connections in C ′. We make the following simplifying assumptions with-
out loss of generality.

• Each gate in C ′ has one of the following five types: And (fan-in-2), Not (fan-in-1),
Input (fan-in-0), Constant-0 (fan-in-0), Constant-1 (fan-in-0).

• For all n, |C ′
n| is a power of 2. In particular, each (log |C ′

n|)-bit string is a valid label
of a gate in C ′

n.

• M ’s input is a label g ∈ {0, 1}log |C
′

n|, a child-selection-bit c ∈ {0, 1} that specifies which
of g’s ≤ 2 children it should output, and n in binary. M terminates with log |C ′

n| bits
of its tape containing the child’s label, and 3 bits containing the child’s type.

The local-uniform family C will additionally have fan-in-1 Copy gates that compute the
identity function. Gates in C are labeled by configurations of M , and we now specify these.
Let q, k, k′ = O(1) be such that M has 2q − 1 states, and on input (g, c, n) ∈ {0, 1}O(log |C′

n|)

it uses space ≤ k logn and runs in time ≤ nk′. A configuration of M is a bit-string of length
((q + 2) · k + 2k′) · logn, and contains two items: the tape and the timestep.

The tape is specified with (q+2) · k · logn bits. Each group of q+2 bits specifies a single
cell of M ’s tape as follows. The first two bits specify the value of the cell, which is either 0,
1, or blank. The remaining q bits are all zero if M ’s head is not on this cell, and otherwise
they contain the current state of M .

The timestep is specified with 2k′ · log n bits. In order to allow it to be incremented by
a local function, we use the following representation which explicitly specifies the carry bits
arising from addition. View the timestep as a sequence of pairs

((ck′ logn, bk′ logn), (ck′ logn−1, bk′ logn−1), . . . , (c1, b1)) ∈ {0, 1}
2k′ logn.

Then the timestep is initialized with ci = bi = 0 for all i, and to increment by 1 we simulta-
neously set c1 ← b1, b1 ← b1 ⊕ 1, and ci ← bi ∧ ci−1 and bi ← bi ⊕ ci−1 for all i > 1.

8

It is not difficult to see that there is a local map Upd : {0, 1}O(logn) → {0, 1}O(logn)

that, on input a configuration of M , outputs the configuration that follows in a single step.
Namely Upd increments the timestep using the method described above, and updates each
cell of the tape by looking at the O(1) bits representing that cell and the two adjacent cells.

We say that a configuration is final iff the most-significant bit of the timestep is 1. This
convention allows a local function to check if a configuration is final. Using the above method
for incrementing the timestep, a final configuration is reached after nk′ + k′ log n − 1 steps.
We say that a configuration is valid if either (a) it is the initial configuration of M on some
input (g, c) ∈ {0, 1}log |C

′

n|+1 labeling a gate in C ′
n and specifying one of its children, or (b)

it is reachable from such a configuration by repeatedly applying Upd. (Note that Upd must
be defined on every bit-string of the appropriate length. This includes strings that are not
valid configurations, and on these it can be defined arbitrarily.)

We now describe the circuit family C = {Cn}n and the local map D that computes
connections in these circuits, where D depends on n.

Cn has size nu for u := (q+2) ·k+2k′ = O(1), and each gate is labeled by an (u logn)-bit
string which is parsed as a configuration of M . Cn is constructed from C ′

n by introducing
a chain of Copy gates between each pair of connected gates (gparent, gchild) in C ′

n, where the
gates in this chain are labeled by configurations that encode the computation of M on input
gparent and with output gchild.

Let g ∈ {0, 1}u logn be a configuration of M labeling a gate in Cn. Our convention is
that if g is a final configuration then the type of g is what is specified by three bits at fixed
locations onM ’s tape, and if g is not a final configuration then the type is Copy. (Recall that
when M terminates, the type of its output is indeed written in three bits at fixed locations.)
In particular, the type of a gate can be computed from its label g by a local function.

D computes the children of its input g as follows. If g is not a final configuration, then
D outputs the single child whose configuration follows in one step from g using the map Upd

described above. If g is a final configuration, D first determines its type and then proceeds
as follows. If the type is And, then D outputs two children by erasing all but the log |C ′

n|
bits of M ’s tape corresponding to a label of a gate in C ′

n, writing n, setting the timestep to
0, putting M in its initial state with the head on the leftmost cell, and finally setting one
child to have c = 0 and one child to have c = 1. (Recall that c is the child-selection-bit for
M .) If the type is Not, then D acts similarly but only outputs the one with c = 0. For any
other type, g has fan-in 0 and thus D outputs no children.

Naturally, the output gate of Cn is the one labeled by the configuration consisting of the
first timestep whose MSB is 1 and the tape of M containing (gout, tout, n) where gout is the
unique label of C ′’s output gate and tout is its type. (The remainder of this configuration
can be set arbitrarily.) It is clear that starting from this gate and recursively computing all
children down to the fan-in-0 gates of Cn gives a circuit that computes the same function as
C ′

n. Call the tree computed in this way the valid tree.
We observe that Cn also contains gates outside of the valid tree, namely all gates whose

labels do not correspond to a valid configuration. To conclude the proof, we show that the
topology of these extra gates does not contain any cycles, and thus Cn is a valid circuit.

9

By avoiding cycles, we ensure that the circuit can be converted to a constraint-satisfaction
problem (i.e. 3SAT); the existence of a cycle with an odd number of Not gates would cause
the formula to be always unsatisfiable.

Consider a label g of a gate in Cn containing a configuration of M . If g is the label of a
gate in the valid tree, then it is clearly not part of a cycle. If g is any other label, we consider
two cases: either g is a final configuration or it is not. If g is not a final configuration,
then its descendants eventually lead to a final configuration g′. (This follows because of the
inclusion of the timestep in each configuration, and the fact that starting from any setting
of the (ci, bi) bits and repeatedly applying the increment procedure will eventually yield a
timestep with MSB = 1.) Notice that the tape in g′ contains log |C ′

n| bits corresponding to
a valid label of a gate in C ′

n. (This is because of our convention that any bit-string of that
length is a valid label. An alternative solution intuitively connects the gates with MSB = 1
to a sink, but has other complications.) Therefore the children of g′ are in the valid tree,
and so g′ (and likewise g) is not part of a cycle. Similarly, if g is a final configuration then
its children are in the valid tree and so it is not part of a cycle.

3 Routing networks

In this section we show how to non-deterministically implement the sorting subcircuits.
We do this in a way so that for every input sequence of configurations, at least one non-
deterministic choice results in a correctly sorted output sequence. Further, each possible
output sequence either is a permutation of the input or contains at least one “dummy
configuration” (wlog the all-zero string). Importantly, the latter case can be detected by the
configuration-checking subcircuits.

Theorem 4. Fix T = T (n) ≥ n. Then for all n > 0, there is a circuit

S :
(

{0, 1}O(logT)
)T
× {0, 1}O(T log T) →

(

{0, 1}O(logT)
)T

of size T ′ := T · logO(1) T and a labelling of the gates in S by strings in {0, 1}logT
′

such that
the following holds.

1. There is a local map D : {0, 1}logT
′

× {0, 1} → {0, 1}logT
′

such that for every label g
of a gate in S, D(g, b) outputs the label of one of g’s ≤ 2 children (according to b).
Further, the type of each gate can be computed from its label in NC0. The latter NC0

circuit is itself computable in time poly log T .

2. Given a (log T +O(log log T))-bit index into S’s output, the label of the corresponding
output gate can be computed in NC0. Further, given any input gate label, the corre-
sponding (log T +O(log log T))-bit index into the input can be computed in NC0. These
two NC0 circuits are computable in time poly log T .

3. For every C = (C1, ..., CT) and every permutation π : [T] → [T], there exists z such
that S(C, z) = (Cπ(1), . . . , Cπ(T)).

10

4. For every C = (C1, ..., CT) and every z, if (C ′
1, . . . , C

′
T) := S(C, z) is not a permutation

of the input then for some i, C ′
i is the all-zero string.

We construct this circuit S using a routing network.

Definition 5. Let G be a directed layered graph with ` columns, m rows, and edges only
between subsequent columns such that each node in the first (resp. last) `− 1 columns has
exactly two outgoing (resp. incoming) edges.

G is a routing network if for every permutation π : [m] → [m], there is a set of m node-
disjoint paths that link the i-th node in the first column to the π(i)-th node in the last
column, for all i.

Our circuit S will be a routing network in which each node is a 2× 2 switch that either
direct- or cross-connects (i.e. flips) its input pair of configurations to its output pair, depend-
ing on the value of an associated control bit. This network is used to non-deterministically
sort the input sequence by guessing the set of control bits. We use routing networks con-
structed from De Bruijn graphs as given in [BSCGT13].

Definition 6. An n-dimensional De Bruijn graph DBn is a directed layered graph with
n + 1 columns and 2n rows. Each node is labeled by (w, i) where w ∈ {0, 1}n specifies the
row and 0 ≤ i ≤ n specifies the column. For i < n, each node (w, i) has outgoing edges to
(sr(w), i+ 1) and (sr(w)⊕ 10 · · ·0, i+ 1), where sr denotes cyclic right shift.

A k-tandem n-dimensional De Bruijn graph DBk
n is a sequence of k n-dimensional De

Bruijn graphs connected in tandem.

Theorem 7 ([BSCGT13]). For every n, DB4
n is a routing network.

To use this in constructing the sorting circuit S, we must show how, given the label (w, i)
of any node in DB4

n, to compute in NC0 the labels of its two predecessors.
Computing the row portion of each label (corresponding to w) is trivially an NC0 oper-

ation, as w is mapped to sl(w) and sl(w ⊕ 10 · · ·0) where sl denotes cyclic left shift.
For the column portion (corresponding to i), we use the encoding of integers from The-

orem 3 that explicitly specifies the carry bits arising from addition. Namely, we use a
(2 log(4n))-bit counter as described there, and number the columns in reverse order so that
the last column is labeled by the initial value of the counter and the first column is labeled
by the maximum value. This actually results in more columns than needed, specifically
4n + log(4n), due to the convention that the counter reaches its maximum when the MSB
becomes 1. (We use this convention here to determine when we are at the input level of the
circuit.) However, note that adding more columns toDB4

n does not affect its rearrangeability
since whatever permutation is induced by the additional columns can be accounted for by
the rearrangeability of the first 4n+ 1 columns.

The next proof will introduce some dummy configurations whose need we explain now.
With any routing network, one can talk about either edge-disjoint routing or node-disjoint
routing. Paraphrasing [BSCGT13, first par after Def A.6], a routing network with m rows
can be used to route 2m configurations using edge-disjoint paths (where each node receives

11

and sends two configs), or m configurations using node-disjoint paths (where each node
receives and sends one configuration). In the former every edge carries a configuration,
while in the latter only half the edges between each layer carry configurations (which half
depends on the permutation being routed). However, when implementing either type of
routing with a boolean circuit, all edges must of course always be present and carry some
data, because they correspond to wires. Thus for node-disjoint routing, half of the edges
between each layer carry “dummy configurations” in our construction, and it is possible
even for the dummy configurations to appear at the output of the network for certain (bad)
settings of the switches. This whole issue would be avoided with edge-disjoint routing (which
is arguably more natural when implementing routing networks with circuits), but we prefer
to rely on existing proofs as much as possible.

Proof of Theorem 4. The circuit S is a De Bruijn graph with T rows and 4 log T+log(4 log T)
columns as described above. It routes the T configurations specified by its first input accord-
ing to the set of paths specified by its second input. Each node not in the first or last column
is a 2×2 switch on O(logT)-bit configurations with an associated control bit from S’s second
input specifying whether to swap the configurations. Each node in the last column has a
control bit that selects which of its two inputs to output. Nodes in the first column map
one input to two outputs; these have no control bits, and output their input along with the
all-zero string.

We label each non-input gate in S by (t = 00, w, i, s, d) where t = 00 specifies “non-
input”, (w, i) ∈ {0, 1}logT × {0, 1}O(log log T) specifies a switch (i.e. a node in the De Bruijn
graph), and (s, d) ∈ {0, 1}O(log log T) × {0, 1}O(1) specifies a gate within this switch. For the
latter, we view a switch on O(log T)-bit configurations as O(log T) switches on individual
bits; then s designates an O(1)-sized bit switch, and d designates a gate within it.

We label each gate in S’s first input by (t = 01, w, s) where t = 01 specifies “first input”,
w ∈ {0, 1}logT specifies one of the T configurations, and s ∈ {0, 1}O(log log T) specifies a bit
within the configuration.

We label each gate in S’s second input by (t = 10, w, i) where t = 10 specifies “second
input” and (w, i) ∈ {0, 1}logT × {0, 1}O(log log T) specifies a switch.

We take any gate with t = 11 to be a Constant-0 gate, one of which is used to output
the all-zero string in the first column.

Naturally the labels of S’s output gates vary over w and s and have t = 00, i = 0 · · ·0,
and d = the output gate of a bit switch; these and the input gate labels above give Property
2. Theorem 7 guarantees that Property 3 holds for some setting of the switches, and it is
straightforward to verify that Property 4 holds for any setting of the switches. We now show
Property 1, namely how to compute connections in S with a local map D.

Suppose g = (t = 00, w, i, s, d) is the label of a non-input gate, and let b ∈ {0, 1} select
one of its children. There are four possible cases: (1) the child is in the same 2×2 bit switch,
(2) the child is an output gate of a preceding 2 × 2 bit switch, (3) the child is a bit of a
configuration from S’s first input or the all-zero string, or (4) the child is a control bit from
S’s second input. Since each bit switch has a fixed constant-size structure, the case can be
determined by reading the O(1) bits corresponding to d and the MSB of i which specifies

12

whether g is in the first column of the De Bruijn graph.
For case (1), D updates d to specify the relevant gate within the bit switch. For case (2),

D updates w and i via the procedures described above, and updates d to specify the output
gate of the new bit switch. For cases (3) and (4), D updates t and either copies the relevant
portions (w, s or w, i) from the rest of g if t 6= 11, or sets the rest of g to all zeros if t = 11.

Finally we note that as in Theorem 3, there are strings that do not encode valid labels
in the manner described above, and that these do not induce any cycles in the circuit S due
to the way the field i is used.

4 Fetching bits

In this section, we construct a local-uniform circuit that will be used to fetch the bits of
the fixed string x ∈ {0, 1}n in our final construction. Moreover, we demonstrate a trade-off
between the length of the labels and the locality of the map between them.

Theorem 8. For all x ∈ {0, 1}n and for all r ∈ [n], there is a circuit C of size 2` where
` = n/r+O(logn), a labeling of the gates in C by strings in {0, 1}`, and a map D : {0, 1}` →
{0, 1}` each bit of which is computable by a decision tree of depth O(log r) with the following
properties:

1. All gates in C are either fan-in-0 Constant-0 or Constant-1 gates, or fan-in-1 Copy
gates. In particular, C has no input gates.

2. There are n output gates out1, . . . , outn, a Constant-0 gate g0, and a Constant-1 gate
g1 such that, for all i ≤ n, repeatedly applying D to the label of outi eventually yields
the label of gxi

.

3. ∀i ≤ n: the label of outi can be computed in NC0 from the binary representation of i.

4. Given x and r the decision trees computing D, and the NC0 circuit in the previous
item can be computed in time poly(n).

Proof. We first explain the high-level idea of the construction. Assume r = 1, we later
extend this to the general case. For each i, the chain of labels induced by D starting from
the label of outi will encode the following process. Initialize an n-bit string s := 10 · · ·0 of
Hamming weight 1. Then shift s to the right i−1 times, bit-wise AND it with x, and finally
shift it to the left i − 1 times. Clearly, the leftmost bit of s at the end of this process will
equal xi. The main technical difficulty is encoding counting to i for arbitrary i while allowing
connections in C to be computed locally. We achieve this using similar techniques as in the
proof of Theorem 3 in Section 2, namely by performing the counting with a machine M
whose configurations we store in the labels of C. We now give the details.

The label of each gate in C is parsed as a tuple (t, s, d, i, c) of length ` = n+O(logn) as
follows: t is a 2-bit string specifying the type of the gate, s is the n-bit string described above,
d is a 1-bit flag specifying the direction s is currently being shifted (left or right), i is the

13

(log n)-bit binary representation of an index into x, and c is the O(logn)-bit configuration
of a machine M that operates as follows. M has log n tape cells initialized to some binary
number. It decrements the number on its tape, moves its head to the left-most cell and
enters a special state q∗, and then repeats this process, terminating when its tape contains
the binary representation of 1. We encode M ’s O(logn)-bit configurations as in Theorem 3,
in particular using the same timestep format so that checking if M has terminated can be
done by reading a single bit.

The label of outi has the following natural form. The type t is Copy, s is initialized to
10 · · ·0, the flag d encodes “moving right”, i is the correct binary representation, and c is
the initial configuration of M on input i. Note that this can be computed from i in NC0.

The local map D simply advances the configuration c, and shifts s in the direction
specified by d iff it sees the state q∗ in M ’s left-most cell. If c is a final configuration and d
specifies “moving right”, then D bit-wise ANDs x to s, sets d to “moving left”, and returns
M to its initial configuration on input i. If c is a final configuration and d specifies “moving
left”, then D outputs the unique label of the constant gate gb where b is the left-most bit of
s. (Without loss of generality, we can take this to be the label with the correct type field
and all other bits set to 0.)

The correctness of this construction is immediate. Furthermore, the strings that encode
invalid labels do not induce cycles in C for similar reasons as those given at the end of The-
orem 3. (In fact, the presence of cycles in this component would not affect the satisfiability
of our final 3SAT instance, since the only gates with non-zero fan-in have type Copy.)

We now generalize the proof to any value of r. The goal is to establish a trade-off
between the label length ` and the locality of the map D such that at one extreme we have
` = n +O(logn) and D of constant locality and the the other we have ` = O(logn) and D
computable by decision trees of depth O(logn).

The construction is the same as before but this time the label of a gate in C is parsed
as a tuple (t, p, k, d, i, c) of length ` = n/r + log r +O(logn) = n/r +O(logn), where t, d, i,
and c are as before and p ∈ {0, 1}n/r and k ∈ {0, 1}log r together represent a binary string
of length n and Hamming weight 1. More precisely, consider a binary string s ∈ {0, 1}n of
Hamming weight 1 partitioned into r segments each of n/r bits. Now, the position of the bit
set to 1 can be determined by a segment number k ∈ {0, 1}log r and a bit string p ∈ {0, 1}n/r

of Hamming weight 1 within the segment.
The map D now cyclically shifts the string p in the direction indicated by d, updating k

as needed. For the rest, the behavior of D remains unchanged. In particular, If c is a final
configuration and d specifies “moving right”, then D bit-wise ANDs the relevant n/r-bit
segment of x to p and so on. To perform one such step, D needs to read the entire k in
addition to a constant number of other bits, so it can be computed by decision trees of depth
O(log r).

14

5 Putting it together

We now put these pieces together to prove Theorem 1. First we modify previous proofs to
obtain the following normal form for non-deterministic computation that is convenient for
our purposes, cf. §1.2.

Theorem 9. Let M be an algorithm running in time T = T (n) ≥ n on inputs of the form
(x, y) where |x| = n. Then there is a function T ′ = T logO(1) T , a constant k = O(1), and
k logspace-uniform circuit families C1, . . . , Ck each of size logO(1) T with oracle access to x,
such that the following holds:

For every x ∈ {0, 1}n, there exists y such that M(x, y) accepts in ≤ T steps iff there

exists a tuple (z1, . . . , zT ′) ∈
(

{0, 1}O(logT)
)T ′

, and k permutations π1, . . . , πk : [T ′] → [T ′]
such that for all j ≤ k and i ≤ T ′, Cj

(

zi, zπj(i)

)

outputs 1.

We note that “oracle access to x” means that the circuits have special gates with log n
input wires that output xi on input i ≤ n represented in binary. Alternatively the circuits
Ci do not have oracle access to x but instead there is a separate constraint that, say, the
first bit of zi equals xi for every i ≤ n.

Proof sketch. Model M as a random-access Turing machine running in time T ′ and using
indices of O(log T ′) = O(log T) bits. All standard models of computation can be simulated
by such machines with only a polylogarithmic factor T ′/T blow-up in time. Each zi is
an O(log T)-bit configuration of M on some input (x, y). This configuration contains the
timestamp i ≤ T ′, the current state of M , the indices, and the contents of the indexed
memory locations; see [VN12] for details.

The circuits and permutations are used to check that (z1, . . . , zT ′) encodes a valid, accept-
ing computation of M(x, y). This is done in k + 1 phases where k = O(1) is the number of
tapes. First, we use C1 to check that each configuration zi yields zi+1 assuming that all bits
read from memory are correct, and to check that configuration zT ′ is accepting. (For this we
use the permutation π1(i) := i + 1 mod T ′.) This check verifies that the state, timestamp,
and indices are updated correctly. To facilitate the subsequent checks, we assume without
loss of generality that M ’s first n steps are a pass over its input x. Therefore, C1 also checks
(using oracle access to x) that if the timestamp i is ≤ n then the first index has value i and
the bit read from memory is equal to xi.

For j > 1, we use Cj to verify the correctness of the read/write operations in the (j−1)-th
tape. To do this, we use the permutation πj such that for each i, zi immediately precedes
zπj(i) in the sequence of configurations that are sorted first by the (j − 1)-th index and then
by timestamp. Then, Cj checks that its two configurations are correctly sorted, and that
if index j − 1 has the same value in both then the bit read from memory in the second is
consistent with the first. It also checks that the value of any location that is read for the first
time is blank, except for the portion on the first tape that corresponds to the input (x, y).
(Note that C1 already verified that the first time M reads a memory index i ≤ n, it contains
xi. No checks is performed on the y part, corresponding to this string being existentially
quantified.)

15

We stipulate that each Cj above outputs 0 if either of its inputs is the all-zero string,
which happens if the sorting circuit does not produce a permutation of the configurations (cf.
Theorem 4, part 4). Finally, we observe that all checks can be implemented by a log-space
uniform family of polynomial-size circuits with oracle access to x.

We now prove our main theorem, restated for convenience. The high-level idea is to use
§2-4 to transform the circuits from Theorem 9 into circuits whose connections are computable
by small-depth decision trees, and to then apply the textbook reduction from Circuit-SAT
to 3SAT.

Theorem 1 (Local reductions). Let M be an algorithm running in time T = T (n) ≥ n
on inputs of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one can output a circuit
D : {0, 1}` → {0, 1}3v+3 in time poly(n, log T) mapping an index to a clause of a 3CNF φ
in v-bit variables, for v = Θ(`), such that

1. φ is satisfiable iff there is y ∈ {0, 1}T such that M(x, y) = 1, and

2. for any r ≤ n we can have ` = max(log T, n/r) + O(logn) + O(log log T) and each
output bit of D is a decision tree of depth O(log r).

Proof. We parseD’s input as a tuple (g, r, s), where g is the label of a gate in some component
from Theorem 9, as explained next, r is a 2-bit clause index, and s is a 1-bit control string.
We specifically parse g as a pair (Region, Label) as follows. Region (hereafter, R) is an
O(1)-bit field specifying that Label is the label of either

(a) a gate in a circuit that implements the ith instance of some Cj ,

(b) a gate in a circuit that provides oracle access to x,

(c) a gate in a circuit that implements some πj via a routing network, or

(d) a gate providing a bit of some configuration zi.

Label (hereafter, L) is a (max(log T, n/r) + O(logn) + O(log log T))-bit field whose in-
terpretation varies based on R. For (a), we take L = (i, j, `) where i ≤ T and j ≤ k specify
Cj(zi, zπj(i)) and ` ∈ {0, 1}O(log log T) specifies a gate within it, where we use Theorem 3 and
take Cj to be a circuit whose connections are computable in NC0. For (b), we take L to be
a (n/r+O(logn))-bit label of the circuit from Theorem 8. For (c), we take L = (j, `) where
j ≤ k specifies πj and ` ∈ {0, 1}logT+O(log log T) specifies a gate in the circuit from Theorem 4
implementing πj . For (d), L is simply the (log T +O(log log T))-bit index of the bit.

We now describe D’s computation. First note that from Theorems 3, 4, and 8, the type of
g can be computed from L in NC0; call this value Type ∈ {And, Not, Copy, Input, x-Oracle,
Constant-0, Constant-1}.

16

Computing g’s children. D first computes the labels of the ≤ 2 children of the gate
g = (R,L) as follows.

If R specifies that L = (i, j, `) is the label of a gate in Cj(zi, zπj(i)), D computes `’s
child(ren) using the NC0 circuit given by Theorem 3. The only cases not handled by this
are when Type ∈ {x-Oracle, Input}. When Type = x-Oracle, the child is the i′th output
gate of the bit-fetching circuit, where i′ is the lower log n bits of i; by part 3 of Theorem 8,
the label of this gate can be computed in NC0. When Type = Input, the child is either the
mth bit of zi or the mth bit of πj ’s ith output, for some m ≤ O(log T). We assume without
loss of generality that m is contained in binary in a fixed position in L, and that which of
the two inputs is selected can be determined by reading a single bit of L. Then, the label of
the bit of zi can be computed in NC0 by concatenating i and m, and the label of the mth
bit of πj ’s ith output can be computed by part 2 of Theorem 4.

If R specifies that L is a label in the bit-fetching circuit from Theorem 8, D computes
its child using the O(log r)-depth decision trees given by that theorem.

If R specifies that L = (j, `) is the label of a sorting circuit from Theorem 4, D computes
`’s child(ren) using the NC0 circuit given by that theorem. The only case not handled by
this is when ` labels a gate in the first input to the sorting circuit, but in this case the child
is a bit of some zi where i can be computed in NC0 by part 2 of Theorem 4.

If Type = Input and (R,L) is not one of the cases mentioned above or Type ∈ {Constant-
0, Constant-1}, D computes no children.

Outputting the clause. When the control string s = 0, D outputs the clause specified
by g and r in the classical reduction to 3SAT, which we review now. (Recall that r is a 2-bit
clause index.) The 3SAT formula φ contains a variable for each gate g, including each input
gate, and the clauses are constructed as follows.

If Type = And, we denote g’s children by ga and gb. Then depending on the value of r,
D outputs one of the four clauses in the formula

(ga ∨ gb ∨ g) ∧ (ga ∨ gb ∨ g) ∧ (ga ∨ gb ∨ g) ∧ (ga ∨ gb ∨ g).

These ensure that in any satisfying assignment, g = ga ∧ gb.
If Type = Not, we denote g’s child by ga. Then depending on the value of r, D outputs

one of the two clauses in the formula

(g ∨ ga ∨ ga) ∧ (g ∨ ga ∨ ga).

These ensure that in any satisfying assignment, g = ga.
If Type ∈ {x-Oracle, Copy} or Type = Input and D computed g’s child ga, then depend-

ing on the value of r, D outputs one of the two clauses in the formula

(g ∨ ga ∨ ga) ∧ (g ∨ ga ∨ ga).

These ensure that in any satisfying assignment, g = ga.
If Type = Constant-0, D outputs the clause (g∨g∨g) which ensures that in any satisfying

assignment g is false (i.e. that each Constant-0 gate outputs 0). If Type = Constant-1, D

17

outputs the clause (g ∨ g ∨ g) which ensures that in any satisfying assignment g is true (i.e.
that each Constant-1 gate outputs 1).

If Type = Input, and D did not compute a child of g, D outputs a dummy clause
(gdummy ∨ gdummy ∨ gdummy) where gdummy is a string that is distinct from all other labels g.

When the control string s = 1, D outputs clauses encoding the restriction that each
Cj(zi, zπj(i)) outputs 1. Namely, D parses L = (i, j, `) as above, and outputs (gi,j ∨gi,j ∨gi,j),
where gi,j := (i, j, `∗) and `∗ is the label of Cj ’s output gate, which depends only on j and
log T and thus can be hardwired into D.

Acknowledgments. We are very grateful to Eli Ben-Sasson for a discussion on routing
networks which led us to improving our main result, cf. §1.2.

References

[AAI+01] Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi, and Steven
Rudich. Reducing the complexity of reductions. Computational Complexity, 10(2):117–
138, 2001.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-
reducibility. J. of the ACM, 57(3), 2010.

[ASW09] Sanjeev Arora, David Steurer, and Avi Wigderson. Towards a study of low-complexity
graphs. In Coll. on Automata, Languages and Programming (ICALP), pages 119–131,
2009.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint
Computing Conference, volume 32, pages 307–314, 1968.

[BSCGT12] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete-
efficiency threshold of probabilistically-checkable proofs. Electronic Colloquium on
Computational Complexity (ECCC), 19:45, 2012.

[BSCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reduc-
tions from RAMs to delegatable succinct constraint satisfaction problems. In ACM
Innovations in Theoretical Computer Science conf. (ITCS), pages 401–414, 2013.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Short pcps verifiable in polylogarithmic time. In IEEE Conf. on Computational
Complexity (CCC), pages 120–134, 2005.

[Coo73] Stephen A. Cook. A hierarchy for nondeterministic time complexity. J. of Computer
and System Sciences, 7(4):343–353, 1973.

[Coo88] Stephen A. Cook. Short propositional formulas represent nondeterministic computa-
tions. Information Processing Letters, 26(5):269–270, 1988.

[FLvMV05] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-
space lower bounds for satisfiability. J. of the ACM, 52(6):835–865, 2005.

[GHR92] Mikael Goldmann, Johan H̊astad, and Alexander A. Razborov. Majority gates vs.
general weighted threshold gates. Computational Complexity, 2:277–300, 1992.

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik, Symposium
on Logical Foundations of Computer Science, pages 108–118, 1989.

18

[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán.
Threshold circuits of bounded depth. J. of Computer and System Sciences, 46(2):129–
154, 1993.

[HP10] Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Exact threshold circuits. In
IEEE Conf. on Computational Complexity (CCC), pages 270–279, 2010.

[HS66] Fred Hennie and Richard Stearns. Two-tape simulation of multitape turing machines.
J. of the ACM, 13:533–546, October 1966.

[Mie09] Thilo Mie. Short pcpps verifiable in polylogarithmic time with o(1) queries. Ann.
Math. Artif. Intell., 56(3-4):313–338, 2009.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures.
J. of the ACM, 26(2):361–381, 1979.

[Rob91] J. M. Robson. An O(T log T) reduction from RAM computations to satisfiability.
Theoretical Computer Science, 82(1):141–149, 1991.

[Ruz81] Walter L. Ruzzo. On uniform circuit complexity. J. of Computer and System Sciences,
22(3):365–383, 1981.

[Sch78] Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. J. of the ACM,
25(1):136–145, 1978.

[SFM78] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeterministic
time complexity classes. J. of the ACM, 25(1):146–167, 1978.

[Sho92] Victor Shoup. Searching for primitive roots in finite fields. Math. Comp., 58:369–380,
1992.

[SW12] Rahul Santhanam and Ryan Williams. Uniform circuits, lower bounds, and qbf algo-
rithms. Electronic Colloquium on Computational Complexity (ECCC), 19:59, 2012.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In 6th Sympo-
sium on Mathematical Foundations of Computer Science, volume 53 of Lecture Notes
in Computer Science, pages 162–176. Springer, 1977.

[vM06] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related problems.
Foundations and Trends in Theoretical Computer Science, 2(3):197–303, 2006.

[VN12] Emanuele Viola and NEU. From RAM to SAT. Available at
http://www.ccs.neu.edu/home/viola/, 2012.

[Vol99] Heribert Vollmer. Introduction to circuit complexity. Springer-Verlag, Berlin, 1999.
[Wil10] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.

In 42nd ACM Symp. on the Theory of Computing (STOC), pages 231–240, 2010.
[Wil11a] Ryan Williams. Guest column: a casual tour around a circuit complexity bound.

SIGACT News, 42(3):54–76, 2011.
[Wil11b] Ryan Williams. Non-uniform ACC lower bounds. In IEEE Conf. on Computational

Complexity (CCC), 2011.
[Wil13] Ryan Williams. Natural proofs versus derandomization. In ACM Symp. on the Theory

of Computing (STOC), 2013.
[Zák83] Stanislav Zák. A turing machine time hierarchy. Theoretical Computer Science, 26:327–

333, 1983.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

