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Abstract

We study the arithmetic complexity of iterated matrix multiplication. We show that any
multilinear homogeneous depth 4 arithmetic formula computing the product of d generic

matrices of size n ˆ n, IMMn,d, has size nΩp
?
dq as long as d ď n1{10. This improves the

result of Nisan and Wigderson (Computational Complexity, 1997) for depth 4 set-multilinear
formulas.

We also study ΣΠpOpd{tqqΣΠptq formulas, which are depth 4 formulas with the stated
bounds on the fan-ins of the Π gates. A recent depth reduction result of Tavenas (MFCS,
2013) shows that any n-variate degree d “ nOp1q polynomial computable by a circuit of size
polypnq can also be computed by a depth 4 ΣΠpOpd{tqqΣΠptq formula of top fan-in nOpd{tq. We
show that any such formula computing IMMn,d has top fan-in nΩpd{tq, proving the optimality
of Tavenas’ result. This also strengthens a result of Kayal, Saha, and Saptharishi (ECCC,
2013) which gives a similar lower bound for an explicit polynomial in VNP.

1 Introduction

Arithmetic circuits are a convenient way to model computation when considering objects of an
algebraic nature such as the determinant. Thanks to the work of Valiant [Val79, Val82], they
are also the basis of a clean theoretical framework to study the complexity of such objects.

In particular, Valiant defined two classes: the class VP of tractable polynomials and the larger
class VNP, which contains polynomials thought to be intractable. He then showed the com-
pleteness of the permanent polynomial for the class VNP. This contrasts with the determinant
polynomial, whose expression is very close to that of the permanent, but which is efficiently
computable. Indeed, a slight restriction of tractable computations [Tod92, MP08] yields a class,
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VPs, for which the determinant is complete. As a result, the major open question of the equal-
ity of the classes VPs and VNP can be stated as the question of whether a permanent can
always be expressed as a “not too big” determinant, without mention of a computation model.

Many other questions remain open in arithmetic circuit complexity. One of them is whether the
determinant, or other polynomials from the associated class VPs, can be computed efficiently
by weaker models. Among these models are formulas, which define a class VPe, where partial
results cannot be reused, and constant-depth circuits.

In this paper we will focus on iterated matrix multiplication, another fundamental computation
which is complete for the class VPs, and whether it can be computed by depth 4 formulas, with
alternating sum and product gates (so-called ΣΠΣΠ formulas).

1.1 Motivation and Results

Interest in depth 4 formulas for arithmetic computation was sparked by the result of Agrawal
and Vinay [AV08], showing that, for certain lower bound questions, it was enough to consider
this depth 4 case. This was later pursued by Koiran [Koi12] and Tavenas [Tav13], the latter
showing that a polynomial of degree d over N variables computed by a circuit of size s can
also be computed by a formula of depth 4 and size exppOp

a

d logpdsq logNqq. In particular,
every polynomial p of degree d “ polypNq that has a circuit of size polypNq has a depth 4
ΣΠΣΠ formula C of size exppOp

?
d logNqq. The formula C, additionally, has the property that

its Π-gates have fan-in Op
?
dq; such formulas are called ΣΠpOp

?
dqqΣΠpOp

?
dqq formulas. In the

special case that p is homogeneous, then C is also homogeneous.

There has been recent progress towards proving strong lower bounds for ΣΠpOp
?
dqqΣΠpOp

?
dqq

formulas as well: in a breakthrough result, Gupta, Kamath, Kayal and Saptharishi [GKKS13]
give exppΩp

?
nqq lower bounds for ΣΠpOp

?
nqqΣΠpOp

?
nqq formulas computing the n ˆ n perma-

nent and determinant polynomials. Note that this gives a lower bound of exppΩp
?
dqq, for a

polynomial in VP of degree d, which is off by a factor of logN (here N “ n2) in the exponent
as compared to the upper bound given by Tavenas. More recently, Kayal, Saha, and Sapthar-
ishi [KSS13] give a polynomial of degree d in N variables (for d “

?
N) in VNP such that

any ΣΠpOp
?
dqqΣΠpOp

?
dqq formula computing the polynomial has size exppΩp

?
d logNqq. Thus,

improving either the result of Tavenas or the lower bound techniques of [GKKS13, KSS13] a
little further could yield the desired separation between VP and VNP.

Here, we take the former approach and consider the question of whether the result of Tave-
nas [Tav13] can be strengthened. Formally, we ask

Is it possible to show that any polynomial (respectively homogeneous polynomial) of

degree d over N variables that has a polypNq-sized circuit has a ΣΠpOp
?
dqqΣΠpOp

?
dqq

(respectively homogeneous ΣΠΣΠ) formula of size exppop
?
d logNqq?

We answer this question partially by showing that for all d ď N ε, for some fixed ε ą 0, there
is an explicit polynomial f P VP of degree d on N variables such that any ΣΠpOp

?
dqqΣΠpOp

?
dqq

formula computing it has size exppΩp
?
d logNqq. Thus, in the above regime of parameters, we

strengthen the result of [KSS13] by obtaining a similar lower bound for a polynomial in VP.

As a corollary of our technical theorems, we also obtain an optimal lower bound for regular
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formulas (see Section 7) for the same polynomial f , answering a question raised in [KSS13].

Moreover, the polynomial f is the Iterated Matrix Multiplication polynomial, which computes
a single entry in the product of d many nˆ n matrices whose entries are all distinct variables.
We will denote this polynomial by IMMn,d. Its complexity is by itself of great interest. It
occupies a central position both in algebraic complexity theory — being complete for VPs

as mentioned above — and in complexity theory in general, since it is closely related to the
Boolean and counting versions of the canonical NL-complete problem of deciding reachability in
a directed graph. In particular, showing that IMMn,d does not have polynomial-sized formulas
is equivalent to showing a separation between VPe and VPs.

It is easy to see that for any r P N, the polynomial IMMn,d has a formula of size nOprd
1{rq

and product-depth r ď log d (i.e., at most r Π-gates on any root to leaf path). This formula,
constructed using a simple divide-and-conquer technique that requires r levels of recursion, is
furthermore a set-multilinear formula (see Section 2). In particular, for r “ log d, this technique
yields a set-multilinear formula of size nOplog dq for IMMn,d, which is the best known formula
upper bound for this polynomial.

In a seminal work, Nisan and Wigderson [NW97] showed lower bounds on the size of product
depth-r set multilinear formulas computing IMMn,d. For the case r “ 1, [NW97] prove an
optimal lower bound of nd´1. For r ě 2, however, they prove a lower bound of exppΩpd1{rqq.
Note that the dimension n of the matrices does not feature in the lower bound: indeed, we get
the same lower bound for any n ě 2. We rectify this situation for r “ 2 by showing that any
set-multilinear ΣΠΣΠ formula for IMMn,d (with no fan-in restrictions) must have size at least

nΩp
?
dq. In fact, our lower bound holds in the more general setting of homogeneous multilinear

ΣΠΣΠ formulas.

1.2 Related work

As mentioned above, the Iterated Matrix Multiplication polynomial has been considered before
in a work of Nisan and Wigderson [NW97], which also introduced the important technique
of using partial derivatives to prove lower bounds in arithmetic complexity. We use a recent
strengthening of this technique due to Kayal [Kay12] and Gupta et al. [GKKS13], which uses
shifted partial derivatives. We briefly survey some results that use this technique, but refer the
reader to [GKKS13] for a more thorough account.

Kayal [Kay12] used the shifted partial derivative technique to show a lower bound for expressing
the monomial x1x2 ¨ ¨ ¨xn as a sum of powers of bounded degree polynomials in x1, . . . , xn.
Gupta et al. [GKKS13] showed lower bounds for ΣΠΣΠ formulas (with fan-in bounds on the
Π-gates) computing the permanent and determinant polynomials. More recently, the shifted
partial derivative method has been used by Kumar and Saraf [KS13] to prove lower bounds for
homogeneous ΣΠΣΠ formulas (see Section 2) with bounded fan-in at the top Σ gate computing
the permanent and by Kayal, Saha, and Saptharishi [KSS13] to prove stronger lower bounds
for bounded Π-gate fan-in ΣΠΣΠ formulas computing a certain explicit polynomial in VNP.

It is interesting to note that the result of [GKKS13] itself implies a lower bound for ΣΠpOp
?
dqΣΠpOp

?
dqq

formulas computing the iterated matrix multiplication polynomial. This is because of the well
known fact (see for instance [MV97]) that an m ˆ m determinant is a projection of IMMn,d,
where n “ Opm2q and d “ m. Thus, for this setting of parameters, the lower bound of [GKKS13]
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for the determinant gives a lower bound of exppΩp
?
dqq for IMMn,d.

There has also been a considerable amount of research into lower bounds for set-multilinear and
more generally, multilinear formulas. Nisan and Wigderson [NW97] proved lower bounds on the
size of small-depth set-multilinear formulas for the Iterated Matrix Multiplication polynomial.
Building on their techniques, the breakthrough work of Raz [Raz09] proved superpolynomial
lower bounds for multilinear formulas computing the determinant and permanent polynomials.
Follow-up work of Raz [Raz06] (see also Raz and Yehudayoff [RY08]) showed a superpolynomial
separation between VPe and VP in the multilinear setting. This was recently strengthened by
Dvir, Malod, Perifel, and Yehudayoff [DMPY12] to a superpolynomial separation between VPe

and VPs in the multilinear setting.

A result that is closely related to ours is the work of Raz and Yehudayoff [RY09], who also prove
strong exponential lower bounds for constant-depth multilinear formulas. More precisely, they
give an explicit multilinear polynomial of degree N over N variables that has no multilinear
ΣΠΣΠ formulas of size less than exppΩp

?
N logNqq. Their results are somewhat incomparable

to ours, since

• Our lower bound is stronger in that it matches Tavenas’ upper bound [Tav13] for ΣΠΣΠ
formulas for any degree-d polynomial with polypNq-sized circuits. The above lower bound
is slightly weaker.

• The results of Raz and Yehudayoff apply not just to ΣΠΣΠ formulas, but to all small-
depth (up to oplogN{ log logNqq) multilinear formulas, without homogenity restrictions.
(The bounds get weaker with larger depth.)

• As far as we are aware, their techniques — or indeed, any of the general techniques used
to prove multilinear formula lower bounds — are not applicable to the Iterated Matrix
Multiplication polynomial.

2 Definitions and notations

Let X be a set of variables and let FrXs denote the set of polynomials over variables X and
field F.

2.1 Arithmetic circuits and branching programs

An arithmetic circuit is a finite simple directed acyclic graph. The vertices of in-degree 0 are
called input gates and are labeled by constants from F or variables from X. The vertices of
in-degree at least 2 are labeled by ` or ˆ. The output gate is a vertex with out-degree 0.
The polynomial computed by a node is defined in an obvious inductive way. The polynomial
computed by the arithmetic circuit is the polynomial computed by the output gate.

The size of the circuit is the number of nodes in the graph. The depth of the circuit is the
length of the longest input gate to output gate path. The in-degree (out-degree) of a node/gate
is often called its fan-in (fan-out, respectively). We do not assume any bound on the fan-ins or
fan-outs of the nodes unless stated otherwise. A circuit is called layered if the underlying graph
is layered.
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An algebraic branching program, or ABP, over the set of variables X and field F is a tuple
pG, s, tq where G is a weighted simple directed acyclic graph and s and t are special vertices in
G. The weight of an edge in a branching program is a linear form in FrXs. The weight of a path
is the product of the weights of its edges. The polynomial computed by a branching program
G is the sum of the weights of all the paths from s to t in G. The size of a branching program
is the number of its vertices. The length of a branching program is the length of the longest s
to t path. If we can partition the vertices of a branching program in levels so that there are
only edges between vertices in successive levels, we say that the branching program is layered.

2.2 Arithmetic formulas and variants

An arithmetic formula is an arithmetic circuit which is a simple directed tree. The size, depth,
fan-ins, fan-outs and layers for formulas are defined similarly to that of circuits. We fix the
convention that in a layered circuit/formula, the layers are numbered in increasing order with
input gates getting the smallest number (0) and output gates getting the largest number.

A ΣΠΣΠ formula is a layered formula in which gates at layer 1 and 3 are labeled ˆ and gates
at layer 2 and 4 are labeled `. We will also use the notation ΣΠpαqΣΠpβq to indicate that the
fan-in of gates on the first and third layers is bounded by β and α respectively.

Recall that a polynomial is called homogeneous if each monomial in it has the same degree. A
formula is called homogeneous if each of its gates computes a homogeneous polynomial.

Fix a partition X1, X2, . . . , Xd of X. For a subset T Ď rds we say that a monomial over the
variables in X is T -multilinear if it is a product of variables such that exactly one variable
comes from each Xi (i P T ). A polynomial is called T -multilinear if it is a linear combination
of T -multilinear monomials. We say that a polynomial is set-multilinear if it is T -multilinear
for some T Ď rds.

A formula is called set-multilinear if every node in the formula computes a set-multilinear
polynomial. Note that a set-multilinear formula is by definition homogeneous.

We also consider multilinear polynomials, which are a slight generalization of set-multilinear
polynomials. A monomial over a set of variables X is called multilinear if each variable in
X has degree at most one in the monomial. A polynomial is called multilinear if it is a linear
combination of multilinear monomials. A formula is called multilinear if each node in the formula
computes a multilinear polynomial. It is called homogeneous multilinear if it is simultaneously
homogeneous and multilinear.

For any node g in the formula, let Xg denote the set of variables in the polynomial computed
by g. A formula is called syntactic multilinear if, for each ˆ node g in the formula, the sets
Xg1 , Xg2 , . . . , Xgk are mutually disjoint, where g1, g2, . . . , gk are the children of g.

It is known from [SY10] that if there is a multilinear formula F of size s computing a multilinear
polynomial p P FrXs, then there exists a syntactic multilinear formula of size at most s comput-
ing p; similar statements are also true for ΣΠΣΠ and homogeneous ΣΠΣΠ formulas. Therefore,
we assume without loss of generality that the formulas computing multilinear polynomials are
syntactic multilinear.

It will be convenient for us to blur the distinction between multilinear monomials over the set
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of variables X and subsets of X. Thus, we freely apply reasonable set-theoretic operations to
multilinear monomials. For example, for multilinear monomials m1 and m2, m1 Y m2 is the
multilinear monomial that contains exactly the variables that occur in either m1 or m2; we can
similarly define m1 Xm2 and m1zm2; |m| will denote the degree of a multilinear monomial m.

2.3 The Iterated Matrix Multiplication polynomial

Throughout, let n, d ě 2 be fixed parameters.

We consider polynomials defined on variable sets X1, . . . , Xd. For i P rdszt1, du, let Xi be the

set of variables x
piq
j,k for j, k P rns; for i P t1, du, let Xi be the set of variables x

piq
j for j P rns. Let

X “
Ť

iPrdsXi. We will use N to denote |X| “ pd´ 2qn2 ` 2n.

The Iterated Matrix Multiplication polynomial on X, denoted IMMn,d, is defined to be

IMMn,d “
ÿ

j1,...,jd´1

x
p1q
j1
x
p2q
j1,j2

x
p3q
j2,j3

¨ ¨ ¨x
pd´1q
jd´2,jd´1

x
pdq
jd´1

.

Note that the polynomial IMMn,d is the sum of the entries of the product of d generic matrices
(of dimensions 1 ˆ n, n ˆ n (d ´ 2 times), and n ˆ 1), the ith matrix having entries from the
variable set Xi. Hence in the remainder of the paper we refer to “the matrix Xi”.

Another way to define this polynomial is to see it as a generic layered algebraic branching

program with d` 1 layers V0, . . . , Vd where Vi “ tv
piq
1 , . . . , v

piq
n u for 0 ă i ă d and Vi “ tv

piqu for
i P t0, du. The graph contains all possible edges from Vi to Vi`1 for i P t0, . . . , d´ 1u. The edge

from v
pi´1q
j to v

piq
k is labeled with the variable x

piq
j,k for 0 ă i ă d´ 1 and the edges from vp0q to

v
p1q
j and v

pd´1q
j to vpdq are labeled x

p1q
j and x

pdq
j respectively. Then, IMMn,d is the polynomial

computed by the branching program, i.e., the sum of the weights of all the paths from the vertex
vp0q to the vertex vpdq.

We denote by A the canonical ABP defined above. Given a path ρ in the ABP A, we will also
denote by ρ the product of all the variables that occur along the edges in the path ρ.

2.4 The dimension of the shifted partial derivatives

As in [Kay12, GKKS13], we will use the dimension of shifted partial derivatives as our complexity
measure.

For k, ` P N and a multivariate polynomial f P Frx1, . . . , xns, we define

xBkfyď` “ span

#

xj11 . . . xjnn ¨
Bkf

Bxi11 . . . Bx
in
n

ˇ

ˇ

ˇ

ˇ

ˇ

i1 ` . . .` in “ k, j1 ` . . .` jn ď `

+

.

The complexity measure we use is dimpxBkfyď`q.
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3 Preliminaries

In this section we give a few technical lemmas and definitions which will be used in the subse-
quent sections.

3.1 The derivatives of IMMn,d

The derivatives of IMMn,d have a simple form that is easily described. Since we will be interested
in lower bounding the size of the partial derivative space of this polynomial, we only choose
a subset of all partial derivatives available to us. Let k denote a parameter which we will

choose later. Let r denote
Y

d
k`1

]

´ 1. We fix k matrices among X1, . . . , Xd that are placed

evenly apart. Formally, choose k matrices Xp1 , . . . , Xpk such that pq ´ ppq´1 ` 1q ě r for all
1 ď q ď k ` 1, where p0 “ 0 and pk`1 “ d` 1. We then choose one variable from each of these

chosen matrices, say x
pp1q
i1,j1

, . . . , x
ppkq
ik,jk

and take derivatives with respect to these variables. We

denote this derivative by BIIMMn,d, where I denotes pi1, j1, . . . , ik, jkq P rns
2k.

Note that BIIMMn,d can be written as a sum of monomials m such that m “ ρ1ρ2 . . . ρk`1,

where ρq is a path from v
ppq´1q

jq´1
to v

ppq´1q
iq

in A for all 2 ď q ď k, ρ1 is a path from vertex

vp0q to v
pp1´1q
i1

in A, and ρk`1 is a path from v
ppkq
jk

to vertex vpdq in A. Clearly, BIIMMn,d is a
homogeneous polynomial of degree d´ k.

3.2 Restrictions

Definition 1. By a restriction of the variable set X, we will mean a function σ : X Ñ t0, ˚u.
Given f P FrXs and a restriction σ on X, we denote by f |σ the polynomial g P FrXs obtained
by setting all the variables x P σ´1p0q to 0 (the other variables remain as they are).

Given polynomials f, g P FrXs, we say that g is a restriction of f if there exists a restriction σ
on X such that g “ f |σ.

Given a formula C over the variables X and a restriction σ, we define C|σ to be the circuit
obtained by replacing all the variables x P σ´1p0q with 0 then simplifying the formula accordingly,
by suppressing any Π gate receiving a variable set to 0. Clearly, if C computes the polynomial
f P FrXs, then C|σ computes the polynomial f |σ.

We will mostly be interested in restrictions of IMMn,d. In this setting, the following basic
observation helps simplify many arguments.

Remark 2. In Section 2.3, we defined the IMMn,d polynomial to be the polynomial computed by
an ABP A such that for each edge of A, the linear form labeling that edge was a distinct variable
from X. Restrictions F of IMMn,d are polynomials obtained when we set certain variables of X
to 0 in IMMn,d; equivalently, we may see F as the polynomial computed by the ABP AF obtained
when we delete the edges corresponding to the variables that are set to 0 by the restriction.
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3.3 The shifted partial derivative space of ΣΠpDqΣΠptq formulas

We need an upper bound on the dimension of the shifted partial derivative space of polynomials
computed by small ΣΠpDqΣΠptq formulas. The following is implicit in the work of Gupta et
al. [GKKS13] and is stated explicitly in [KSS13].

Lemma 3 ([KSS13], Lemma 4). Let D, t, k, ` P N be arbitrary parameters. Let C be a ΣΠpDqΣΠptq

formula with at most s Π gates at layer 3 computing a polynomial in N variables. Then, we
have

dimpxBkCyď`q ď s ¨

ˆ

D

k

˙

¨

ˆ

N ` `` pt´ 1qk

`` pt´ 1qk

˙

.

3.4 Technical lemmas

Fact 4. For any integers N, `, r such that r ă `, we have
ˆ

N ` `

`

˙r

ď

`

N``
`

˘

`

N``´r
`´r

˘ ď

ˆ

N ` `´ r

`´ r

˙r

.

Claim 5. For any integers n, d ě 2, N “ pd ´ 2qn2 ` 2dn and t ě 1, there exists an integer

` ą d such that n1{16 ď
`

N``
`

˘t
ď n1{4.

Proof. We choose ` to be the least positive integer such that fp`q :“
`

N``
`

˘t
ď n1{4. Note that

such an ` exists since fp1q “ pN ` 1qt ą n1{4 and lim`Ñ8 fp`q “ 1. We must also have ` ą d
since for ` ď d, we have fp`q ě ppN{dq ` 1qt ě pn` 1qt ą n1{4.

The only thing left to show is that for this choice of `, we have
`

N``
`

˘t
ě n1{16. To prove this,

we claim that it suffices to prove the following inequality for any `1 ě 1
a

fp`1q ď fp`1 ` 1q. (1)

To see this, note that assuming the above inequality, we have fp`q ě
a

fp`´ 1q ě n1{16, where
the last inequality follows from the fact that fp`´ 1q ě n1{4.

The proof of Inequality (1) is elementary. We need to show that
ˆ

N ` `1

`1

˙t{2

ď

ˆ

N ` `1 ` 1

`1 ` 1

˙t

ô

ˆ

N ` `1

`1

˙1{2

ď
N ` `1 ` 1

`1 ` 1
.

Squaring both sides and cross multiplying we see that (1) is equivalent to

p`1 ` 1q2

`1
ď
pN ` `1 ` 1q2

N ` `1

ô `1 `
1

`1
` 2 ď N ` `1 `

1

N ` `1
` 2

which is easily verified for N ě 1.
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4 Proof overview

In this section, we briefly describe the outline of the proof of the main theorems.

Our theorems prove strong lower bounds on variants of ΣΠΣΠ formulas computing IMMn,d.
Recall that we already have tight lower bounds on ΣΠΣ set-multilinear formulas computing
IMMn,d due to Nisan and Wigderson [NW97]. A natural first step for us, therefore, would
be to prove an optimal lower bound for set-multilinear formulas which are sums of products
of quadratics, i.e., set-multilinear ΣΠΣΠp2q, or more generally, sums of products of low degree
polynomials. To do this, we use the shifted partial derivative method of Gupta et al. [GKKS13],
who introduced this technique to prove that any ΣΠpOpn{tqqΣΠptq formula (not necessarily ho-
mogeneous) computing the permanent or the determinant polynomial (on n2 variables) must
have size exppΩpn{tqq. Their proof was made up of two steps.

• First, they observed that the shifted partial derivative space of ΣΠpDqΣΠptq formulas, for
suitable D and t, has small dimension.

• Then, they showed that the dimension of xBkF yď` is quite large for suitable k and `, where
F is any one of the determinant or permanent polynomials.

We prove a strong lower bound on dimension of the shifted partial derivative space of IMMn,d,
thereby proving a lower bound of nΩpd{tq for ΣΠpDqΣΠptq formulas computing IMMn,d, as long as
D is small enough compared to n. In fact, we manage to prove something slightly stronger. We
prove that some carefully chosen restrictions (see Section 3.2) of the IMMn,d polynomial have
shifted partial derivative spaces of large dimension. Putting this together with Lemma 3 implies
strong lower bounds for ΣΠpDqΣΠptq formulas computing even these restrictions of IMMn,d.

In order to prove our next result, a lower bound for set-multilinear ΣΠΣΠ formulas and homo-
geneous multilinear ΣΠΣΠ formulas of possibly unbounded bottom fan-in computing IMMn,d,
we reduce to the case of formulas with bounded bottom fan-in using the idea of random restric-
tions. This is motivated by, and reminiscent of some arguments in [FSS84, H̊as87, NW97]; our
restrictions themselves, however, look quite different.

We force the fan-in of the bottom Π gates to less than some threshold t by using random
restrictions. This is quite intuitive, since a random restriction that sets any variable to 0 with
good probability should set any high degree (multilinear) monomial to 0 with probability close
to 1. Importantly for us, though, we can devise such a set of restrictions with the additional
property that these restrictions remain hard to compute for homogeneous ΣΠΣΠptq formulas,
by the ideas used to prove the lower bound for ΣΠpDqΣΠptq formulas.

We consider two different sets of restrictions. The first set of restrictions is simpler, but only
works to reduce the fan-in of set-multilinear ΣΠΣΠ formulas. By considering a second, slightly
more involved, family of restrictions, we prove a lower bound for homogeneous multilinear ΣΠΣΠ
formulas as well. Note that the lower bound result for ΣΠΣΠ homogeneous multilinear formulas
subsumes the lower bound result for set-multilinear ΣΠΣΠ formulas and indeed, there is a good
amount of overlap between the two proofs. However, for the sake of clarity of exposition, we
give detailed proofs for both.
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5 Lower bounds for set-multilinear formulas

We start by defining a set of restrictions of IMMn,d, then we prove a lower bound for ΣΠpDqΣΠptq

formulas computing them, and finally we show that there exists a restriction in the set which
changes a set-multilinear formula to a ΣΠpDqΣΠptq formula.

5.1 Nice restrictions of IMMn,d

Our restrictions are related to the evenly-spaced matrices chosen before: recall that we have
chosen indices p1, . . . , pk and also set p0 “ 0 and pk`1 “ d` 1. We will now choose new indices
p1q, where p1q is roughly in the middle between pq´1 and pq: for each q P rk ` 1s, we choose a p1q
such that pq´1 ď p1q ď pq and mintp1q ´ ppq´1 ` 1q, pq ´ pp

1
q ` 1qu ě

X

r´1
2

\

. We define P 1 to be
tpq | q P rksu Y

 

p1q
ˇ

ˇ q P rk ` 1s
(

.

We then consider the set R of restrictions which:

• keep only one variable in the first (row) matrix,

• for each index p R P 1 Y t1, du, keep only the variables in Xp of the form xi,πppiq for some
permutation πp of rns.

• for each index p P P 1, leave the variables of Xp untouched,

• keep only one variable in the last (column) matrix.

More formally, let R be the set of restrictions τ defined below, for any choice of integers j1 and
jd in rns and any set tπp | p R P

1 Y t1, duu of permutations of rns:

τpxq “

$

’

’

’

&

’

’

’

%

0 if x “ x
p1q
j for some j ‰ j1, or

if x “ x
pdq
j for some j ‰ jd, or

if x “ x
ppq
i,j for j ‰ πppiq and p R P 1 Y t1, du,

˚ otherwise.

For example, we can choose to keep the first variable of X1 and Xd and in each matrix Xp for
p P P 1 to keep only variables on the diagonal, thus defining a restriction σ:

σpxq “

$

’

’

’

&

’

’

’

%

0 if x “ x
p1q
j for some j ‰ 1, or

if x “ x
pdq
j for some j ‰ 1, or

if x “ x
ppq
i,j for i ‰ j and p R P 1 Y t1, du,

˚ otherwise.

Let F be the polynomial IMMn,d|σ. As we saw in Remark 2, we can also define the polynomial
F in the language of ABPs. Consider the ABP A defined in Section 2.3 above. Construct a
new ABP A1 by removing edges from A as follows:

• Remove all edges from vp0q to v
p1q
j for j ‰ 1.
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• For p R P 1 Y t1, du, remove all edges between Vp´1 to Vp except for those of the form

pv
pp´1q
j , v

ppq
j q for j P rns.

• Remove all edges from v
pd´1q
j to vpdq for j ‰ 1.

The ABP A1 computes exactly the polynomial F .

5.2 A lower bound for nice restrictions of IMMn,d

We will work with F for most of the lower bound proof, and then show that the lower bound
holds for all the polynomials obtained from IMMn,d by a restriction in R.

5.2.1 The dimension of the space of shifted partial derivatives of F

As with IMMn,d in Section 3.1, we will consider the derivatives of F with respect to a tuple of

variables x
pp1q
i1,j1

, . . . , x
ppkq
ik,jk

and denote this derivative by BIF , where I denotes pi1, j1, ¨ ¨ ¨ , ik, jkq
as before. It can be observed from the restriction defining F that BIF is now a single monomial
of degree d´ k, which we denote ppIq. In fact, we can write ppIq “ ρ1ρ2 . . . ρk`1, where

ρ1 “

¨

˝x
p1q
1 ¨

ź

1ăpăp11

x
ppq
1,1

˛

‚

looooooooooomooooooooooon

gI1

¨x
pp11q
1,i1

¨

¨

˝

ź

p11ăpăp1

x
ppq
i1,i1

˛

‚

looooooooomooooooooon

hI1

ρq “

¨

˝

ź

pq´1ăpăp1q

x
ppq
jq´1,jq´1

˛

‚

looooooooooooomooooooooooooon

gIq

¨x
pp1qq

jq´1,iq
¨

¨

˝

ź

p1qăpăpq

x
ppq
iq ,iq

˛

‚

looooooooomooooooooon

hIq

(for 1 ă q ă k ` 1)

ρk`1 “

¨

˝

ź

pkăpăp
1
k`1

x
ppq
jk,jk

˛

‚

looooooooooomooooooooooon

gIk`1

¨x
pp1k`1q

jk,1
¨

¨

˝

¨

˝

ź

p1k`1ăpăd

x
ppq
1,1

˛

‚¨ x
pdq
1

˛

‚

looooooooooooooomooooooooooooooon

hIk`1

We would like to lower bound the dimension of the vector space generated by the shifted k-
partial derivatives of F . Clearly, we have

dimpxBkF yď`q ě dim pspanpMqq

where M “
 

m ¨ BIF
ˇ

ˇm a monomial of degree at most ` and I P rns2k
(

. Since M is a set of
monomials, the dimension of the span of M is exactly |M|.

Another way of looking at M is as follows. For I P rns2k, define

MI :“
 

m1
ˇ

ˇm1 a monomial of degree at most `` d´ k and ppIq divides m1
(

.
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Since by definition, ppIq is exactly BIF , we have

M “

!

m ¨ ppIq
ˇ

ˇ

ˇ
m a monomial of degree at most ` and I P rns2k

)

“

!

m1
ˇ

ˇ

ˇ
m1 of degree at most `` d´ k and D I P rns2k such that ppIq|m1

)

“
ď

IPrns2k
MI

We have shown the following.

Claim 6. For F and MI (I P rns2k) as defined above, we have dimpxBkF yď`q ě |M|, where
M “

Ť

IPrns2kMI .

We will also need the following simple technical claim, the intuitive content of which is that any
two distinct monomials ppIq and ppI 1q are quite different. Recall that we do not distinguish
between multilinear monomials over the variable set X and subsets of X.

Claim 7. For any I, I 1 P rns2k, we have

|ppI 1qzppIq| ě ∆pI, I 1q ¨
Z

r ´ 1

2

^

where ∆pI, I 1q denotes the Hamming distance between I and I 1.

Proof. Consider any I, I 1 P rns2k. Say I “ pi1, j1, . . . , ik, jkq and I 1 “ pi11, j11, . . . , i1k, j1kq. Then,
using the notation from the definition of ppIq, we have

ppI 1qzppIq Ě 9ď

qPrks

pgI
1

q`1zg
I
q`1q 9Y

9ď

qPrks

phI
1

q zh
I
q q

Ě
9ď

qPrks:jq‰j1q

pgI
1

q`1zg
I
q`1q 9Y

9ď

qPrks:iq‰i1q

phI
1

q zh
I
q q.

(Recall that A 9YB denotes the union of disjoint sets A and B.)

Note that when jq ‰ j1q, then the monomials gIq`1 and gI
1

q`1 do not share any variables and

hence |gI
1

q`1zg
I
q`1| “ |g

I1
q`1| ě

X

r´1
2

\

. Similarly, when iq ‰ i1q, we have |hI
1

q zh
I
q | ě

X

r´1
2

\

.

|ppI 1qzppIq| ě
ÿ

qPrks:jq‰j1q

|gI
1

q`1zg
I
q`1| `

ÿ

qPrks:iq‰i1q

|hI
1

q zh
I
q |

ě ∆pI, I 1q ¨
Z

r ´ 1

2

^

,

which completes the proof of the claim.

Claim 8. For any I P rns2k, we have MI “
`

N``
`

˘

.

Proof. A monomial m P MI iff there is a monomial m1 of degree at most ` such that m “

m1 ¨ ppIq. Thus, |MI | is equal to the number of monomials of degree at most `, which is
`

N``
`

˘

.
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Claim 9. For any I, I 1 P rns2k, we have |MI XMI1 | “
`N``´|ppI1qzppIq|

`´|ppI1qzppIq|
˘

.

Proof. Fix any I, I 1 as above. Any monomial m PMIXMI1 may be factored as m “ m1 ¨ppIq ¨
pppI 1qzppIqq. Note that the degree of m1 can be bounded by `` d´ k´pd´ kq´ |ppI 1qzppIq| “
`´ |ppI 1qzppIq|.

Thus, |MI XMI1 | is equal to the number of monomials of degree at most `´|ppI 1qzppIq|, from
which the claim follows.

Claim 10. Fix any k, n P N. Then there exists an S Ď rns2k such that

• |S| “
Y

`

n
4

˘k
]

,

• For all distinct I, I 1 P S, we have ∆pI, I 1q ě k.

Proof. Greedily pick vectors which have pairwise Hamming distance at least k. A standard
volume argument (see, e.g., [Gur10]) shows that the set picked has size at least n2k

Volnp2k,kq
, where

Volnp2k, kq stands for the volume of the Hamming ball of radius k for strings of length 2k over
an alphabet of size n. We can upper bound Volnp2k, kq by nk

`

2k
k

˘

. This shows that there exists

a set S of size at least nk{
`

2k
k

˘

ě pn{4qk. We choose S such that it has size exactly
Y

`

n
4

˘k
]

.

Hence the lemma follows.

Now we are ready to prove lower bound on the dimension of the space of shifted partial deriva-
tives of F .

Lemma 11. Let k, ` P N be arbitrary parameters such that 20k ă d ă ` and k ě 2. Then,

dimpxBkF yď`q ěM ¨

ˆ

N ` `

`

˙

´M2 ¨

ˆ

N ` `´ d{10

`´ d{10

˙

,

where M “

Y

`

n
4

˘k
]

.

Proof. Fix S as guaranteed by Claim 10. By Claim 6, it suffices to lower bound |M|. For this,
we use inclusion-exclusion. Since M “

Ť

IMI , we have

|M| ě |
ď

IPS
MI |

ě
ÿ

IPS
|MI | ´

ÿ

I‰I1PS
|MI XMI1 |. (2)

By Claim 8, we know that |MI | “
`

N``
`

˘

. By Claims 9 and 7 and our choice of S, we see that
for any distinct I, I 1 P S, we have

|MI XMI1 | ď

ˆ

N ` `´ k ¨ tpr ´ 1q{2u

`´ k ¨ tpr ´ 1q{2u

˙

ď

ˆ

N ` `´ d{10

`´ d{10

˙

13



where the last inequality follows since tpr ´ 1q{2u ě d{10k for k ď d{20.

Plugging the above into (2), we obtain

|M| ě |S| ¨
ˆ

N ` `

`

˙

´ |S|2 ¨
ˆ

N ` `´ d{10

`´ d{10

˙

.

Since |S| “
Y

`

n
4

˘k
]

, the lemma follows.

5.2.2 A lower bound for ΣΠpDqΣΠptq formulas computing F

We now prove the main lemma for ΣΠpDqΣΠptq formulas.

Lemma 12. Let n, d,D, t, k P N be such that 1 ď t ď d{320, n ě 10, and k ď d{320t. Then,

any ΣΠpDqΣΠptq formula for F has top fan-in at least Ω

ˆ

´

n3{4

4D

¯k
˙

.

Proof. Recall that N “ pd ´ 2qn2 ` 2dn “ |X|. By Claim 5, we can choose ` to be a positive
integer such that n1{16 ď N``

` ď n1{4. We now analyze dimpxBkF yď`q. By Lemma 11, we have

dimpxBkF yď`q ěM ¨

ˆ

N ` `

`

˙

looooooomooooooon

T1

´M2 ¨

ˆ

N ` `´ d{10

`´ d{10

˙

looooooooooooomooooooooooooon

T2

where M “
X

pn4 q
k
\

.

However, for our choice of parameters, we have

T1

T2
“

`

N``
`

˘

M ¨
`N``´d{10

`´d{10

˘

ě
1

M
¨

ˆ

N ` `

`

˙d{10

(by Fact 4)

ě
nd{320t

M
(by our choice of `)

ě
nk

M
ě 4k ě 2.

Hence, we have

dimpxBkF yď`q ě T1 ´ T2 ě T1{2 “
M

2
¨

ˆ

N ` `

`

˙

. (3)

Now, let C be a ΣΠpDqΣΠptq formula for F of top fan-in s. Then, by Lemma 3, we have

dimpxBkCyď`q ď s ¨

ˆ

D

k

˙

¨

ˆ

N ` `` pt´ 1qk

`` pt´ 1qk

˙

ď s ¨Dk ¨

ˆ

N ` `` pt´ 1qk

`` pt´ 1qk

˙

.

An application of inequality (3) implies that we must have

s ¨Dk ¨

ˆ

N ` `` pt´ 1qk

`` pt´ 1qk

˙

ě
M

2
¨

ˆ

N ` `

`

˙

.
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Therefore,

s ě
M

2Dk
¨

`

N``
`

˘

`N```pt´1qk
``pt´1qk

˘

ě
M

2Dk
¨

ˆ

`

N ` `

˙pt´1qk

(by Fact 4)

ě
1

4Dk
¨

´n

4

¯k
¨

ˆ

`

N ` `

˙pt´1qk

(by our choice of M)

“
1

4
¨

˜

n

4D
¨

ˆ

`

N ` `

˙pt´1q
¸k

ě
1

4
¨

˜

n

4D ¨
`

N``
`

˘t

¸k

ě
1

4
¨

˜

n3{4

4D

¸k

(by our choice of `).

This proves the theorem.

5.2.3 A lower bound for ΣΠpDqΣΠptq formulas computing nice restrictions of IMMn,d

We will show that any restriction in R, when applied to IMMn,d, yields a polynomial whose
complexity is equivalent to that of F .

Definition 13. For a polynomial g P FrXs and a permutation φ of X, define φpgq as the
polynomial obtained by replacing in g each variable x P X by φpxq.
Two polynomials f, g P FrXs are said to be equivalent if there exists a permutation φ of X such
that f “ φpgq.

Note that if two polynomials f, g P FrXs are equivalent, then their complexity with regards to
ΣΠpDqΣΠptq formulas is the same. That is, there exists a ΣΠpDqΣΠptq formula of size s for f if
and only if there exists a ΣΠpDqΣΠptq formula of size s for g.

Claim 14. For any restriction σ P R as defined above, IMMn,d|σ is equivalent to F .

Proof. Recall that the polynomial F was obtained from IMMn,d by the restriction σ:

σpxq “

$

’

’

’

&

’

’

’

%

0 if x “ x
p1q
j for some j ‰ 1, or

if x “ x
pdq
j for some j ‰ 1, or

if x “ x
ppq
i,j for i ‰ j and p R P 1 Y t1, du.

˚ otherwise.

Consider a restriction τ obtained by picking j1, jd and permutations πp for p R P 1 Y t1, du. We
wish to define a permutation φ such that IMMn,d|τ “ φpF q. We start necessarily by defining

φpx
p1q
1 q “ x

p1q
j1

.

We then define φ for the matrices Xp for p P t2, . . . , p11´1u. Once again viewing our polynomials
as ABPs: let Aσ be the graph corresponding to F and Aτ the graph corresponding to IMMn,d|τ .
To lighten notations, we only write the index of the vertex at each layer; the path 1, 1, . . . , 1

from layer p to layer q is thus the path v
ppq
1 , v

pp`1q
1 . . . , v

pqq
1 .
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Note that there are n pairwise edge-disjoint paths i, i, . . . , i going from layer 1 to layer p11 ´ 1
in Aσ, one path for each i P rns. There are also n pairwise edge-disjoint paths going from layer 1
to layer p11 ´ 1 in Aτ , these paths being defined by the composition of the permutations πp for
p P t2, . . . , p11 ´ 1u. We define φ successively in each matrix X2, X3, . . . , Xp1´1 so that it sends
the path 1, 1, . . . , 1 to the path starting from vertex j1. Let i1 be the end-vertex of this path at

layer p11´ 1. We then define φ over the variables in Xp11
by only requiring that φpx

p11
1,jq be equal

to x
p11
i1,j for all j P rns.

We will then define the permutation separately over the following intervals of matrix indices:
tp11 ` 1, . . . , p1u, tp1 ` 1, . . . , p12u, . . . , tpk ` 1, . . . , p1k`1 ´ 1u. We will describe the case of the
interval tp11 ` 1, . . . , p1u in some detail, other intervals can be treated in a similar fashion, with
a slight exception for the last one.

Once again in Aσ there are n pairwise edge-disjoint paths from layer p11 to layer p1´1. Similarly,
there is a set of n pairwise edge-disjoint paths from from layer p11 to layer p1 ´ 1 in the graph
Aτ . We define φ such that it sends the path i, i, . . . , i to the path starting at vertex i of
layer p11 in Aτ . For example, we send the path 1, 1, . . . , 1 in Aσ to the path 1, πp11`1p1q, πp11`2 ˝

πp11`1p1q, . . . , πp1´1 ˝ πp1´2 ˝ ¨ ¨ ¨ ˝ πp11`2 ˝ πp11`1p1q. Next we define the effect of φ on the matrix
Xp1 . Define the permutation α by setting αpiq to be the index of the end-vertex of the path
starting at vertex i of layer p11 in Aτ , i.e., αpiq “ πp1´1 ˝πp1´2 ˝¨ ¨ ¨˝πp11`2 ˝πp11`1piq. We then let

φpx
pp1q
i,j q “ x

pp1q
αpiq,j for all i P rns. A path i, i, . . . , i in Aσ is sent by φ to the path starting at i and

ending at αpiq in Aτ . This path i, i, . . . , i in Aσ could then be extended by any edge pi, jq in Xp1 .

Since we have sent the path i, i, . . . , i to the path ending in αpiq, by setting φpx
pp1q
i,j q “ x

pp1q
αpiq,j

we ensure that any path from vertex i of layer p11 to vertex j of layer p1 in Aσ is sent to a path
from vertex i of layer p11 to vertex j of layer p1 in Aτ . We can then start the process again with
the next interval, with the exception of the last one, where we do not set φ for the variables in
Xp1k`1

yet. Let α be the permutation obtained as above for the interval tpk ` 1, . . . , p1k`1 ´ 1u

To define φ on the end of the graph, we will start from the end. Clearly, we must set φpx
pdq
1 q “

x
pdq
jd

. We then need to do the interval tp1k`1 ` 1, . . . , d ´ 1u. We define φ on the interval
tp1k`1 ` 1, . . . , d ´ 1u by sending the path 1, 1, . . . , 1 to the unique path ending at vertex jd of
layer d´1 in Aτ . Let j1 be the index at layer p1k`1 of the starting vertex of this path. To define

φ on Xp1k`1
, we only require of φ that it send x

pp1k`1q

i,1 to x
pp1k`1q

αpiq,j1 for all i P rns.

Then IMMn,d|τ “ φpF q.

The following lemma is then obvious.

Lemma 15. Let n, d,D, t, k P N be such that 1 ď t ď d{320, n ě 10, and k ď d{320t. Let τ be

a restriction in R. Then any ΣΠpDqΣΠptq for IMMn,d|τ has top fan-in at least Ω

ˆ

´

n3{4

4D

¯k
˙

.

5.3 From set-multilinear formulas to ΣΠpDqΣΠptq formulas

In this section we reduce the case of a depth 4 set-multilinear formula to the case of bounded
bottom fan-in by finding a suitable nice restriction.
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Lemma 16. Let n, d be large enough integers, and k, t P N be such that d ď n1{10 and t ě 4k.
Let C be a set-multilinear ΣΠΣΠ formula of size s ă nt{10. Then there exists a restriction
τ P R such that C|τ is a ΣΠΣΠptq formula.

Proof. We consider the uniform distribution over restrictions in R and prove that with high
probability the property in Lemma 16 holds.

Let us fix any bottom level Π gate G in C that has fan-in t1 ą t. Let m be the (set-multilinear)
monomial computed by this Π gate. We can write m as a product of t1 variables, each coming
from a different variable set. That is, there exists a set S Ď rds, |S| “ t1 such that m “ ΠiPSy

piq,
where ypiq is a variable from Xi. We claim the following:

Pr
τ
rG not set to 0 in C|τ s ď

1

nt{3
(4)

To see this, first note for all p P P 1, each variable in Xp survives with probability 1, i.e., the
restriction does not set any variable in Xp to 0. But from the definition of our restriction and
choice of t, |P 1| “ 2k` 1 and t1 ě t ě 4k. Therefore, the monomial m has at least t{3 variables
coming from matrices Xp (p R P 1). And for all p R P 1, the probability over τ that a variable
survives in Xp is exactly 1{n. Therefore, the probability that the monomial m survives is at

most p1{nqt{3. Therefore we have (4).

Since there are at most s ă nt{10 bottom level Π gates of fan-in greater than t, by a union
bound, the probability that any such Π gate survives is at most nt{10 ¨ 1

nt{3 “ op1q.

We can now bring everything together.

Theorem 17. Let n, d P N be such that d ď n1{10. Let C be any set-multilinear ΣΠΣΠ formula
computing IMMn,d. Then C has size nΩp

?
dq.

Proof. Let us choose k, t such that d{640 ď kt ď d{320 and t “ 4k. Let C be a ΣΠΣΠ set-
multilinear formula of size s computing IMMn,d and say s ă nt{10. Let σ be the restriction
guaranteed by Lemma 16. Therefore, we have that C|σ is a ΣΠΣΠptq formula computing
IMMn,d|σ, which is equivalent to F . Since C|σ is also a set-multilinear formula computing
a degree d polynomial, every Π gate at layer 3 has fan-in at most d. From Theorem 12, we have

that any ΣΠpdqΣΠptq circuit computing F has size at least 1
4 ¨

´

n3{4

4d

¯k
, i.e., nΩpkq (as d ď n1{10).

Therefore, we get that s ą min
 

nΩptq, nΩpkq
(

. Since kt “ Θpdq and t “ 4k, we have proved

s “ nΩp
?
dq.

Remark 18. Raz and Yehudayoff [RY09] proved that any ΣΠΣΠ multilinear formula comput-
ing the determinant polynomial has size exppΩpn1{27qq (note that their bound also hold in the
stronger model of ΣΠΣΠΣ formulas). Using a carefully defined restriction (which is a function
from txi,jui,jPrns to t0, 1, ˚u instead of to t0, ˚u) along the above lines together with the result of

[GKKS13], this lower bound can be improved to exppΩpn1{2qq in the set-multilinear case.

We consider the determinant polynomial of a generic nˆn matrix which is set-multilinear with
respect to its columns. Let S, T Ď rns and |S| “ |T | “ n{2 be chosen uniformly at random.
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Let φ be a random bijection from rnszS to rnszT . Now consider a restriction σ as given below:
σpxi,jq “ ˚ if i P S, j P T , σpxi,φpiqq “ 1 if i P rnszS, and σpxi,jq “ 0 otherwise. Under this
restriction, an n ˆ n determinant reduces to an n{2 ˆ n{2 determinant of the matrix defined
by S, T . And under this restriction a ΣΠΣΠ set-multilinear formula of size at most 2op

?
nq

computing the determinant reduces to a ΣΠΣΠptq set-multilinear formula where t “ Op
?
nq

whp. Therefore, there exists a restriction which along with the result of [GKKS13] gives a lower
bound of exppΩpn1{2qq for ΣΠΣΠ set-multilinear formula computing the determinant polynomial.

6 Homogeneous multilinear depth-4 formulas

We will follow the same strategy as in Section 5, first defining a set of nice restrictions, then
proving a lower bound for ΣΠpDqΣΠptq formulas computing them, and finally showing that there
exists a restriction in the set which changes a homogeneous multilinear formula to a ΣΠpDqΣΠptq

formula.

6.1 Nice restrictions of IMMn,d

Our restrictions are once again related to the evenly-spaced matrices chosen before. We will
now choose new indices p2q in a slightly different way. For q P rk ` 1s, let p2q P rds be defined so
that pq´1 ă p2q ă pq and mintp2q ´ ppq´1 ` 1q, pq ´ pp

2
q ` 2qu ě

X

r
2

\

´ 1. Let P 21 denote the set
tpq | q P rksu and P 22 denote

 

p2q
ˇ

ˇ q P rk ` 1s
(

. We define P 2 to be P 21 Y tp, p` 1 | p P P 22 u.

Definition 19. Let R be the set of restrictions τ such that:

1. for p P t1, du, there is a unique jp P rns such that τpx
ppq
jp
q “ ˚,

2. for p R P 2Yt1, du, there is a permutation πp of rns such that for any i, j P rns, τpx
ppq
i,j q “ ˚

iff j “ πppiq,

3. for p P P 22 and for all i, j P rns, there is at least one h in rns such that τpx
ppq
i,hq “

τpx
pp`1q
h,j q “ ˚,

4. for p P P 21 , |Xp X τ
´1p˚q| ě n1.7.

6.2 A lower bound for nice restrictions of IMMn,d

We will not proceed exactly as we did in Section 5, where we chose a specific nice restriction
and showed the lower bound for the resulting polynomial. Instead, we study the polynomial
obtained from a nice restriction in general.

6.2.1 The dimension of the space of shifted partial derivatives of nice restrictions
of IMMn,d

Let σ be a restriction in R and F the polynomial IMMn,d|σ. Let Aσ be the ABP corresponding
to F .
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As in Section 5.1, we first analyze BIF for I P rns2k. Let I “ pi1, j1, . . . , ik, jkq. Clearly, if there

is a q P rks such that σpx
ppqq
iq ,jq

q “ 0, then we have BIF “ 0. Consequently we say I is surviving

if for all q P rks, we have σpx
ppqq
iq ,jq

q “ ˚. Let T “
 

I P rns2k
ˇ

ˇ I surviving
(

. By property 3 in

Definition 19, we have |T | “ |
Śk

q“1pXp X σ
´1p˚qq| ě np1.7q¨k.

For any I “ pi1, j1, . . . , ik, jkq P T , the polynomial BIF is the sum of all monomials m such that

m “ ρ1ρ2 . . . ρk`1, where ρq is a path from v
ppq´1q

jq´1
to v

ppq´1q
iq

in Aσ for all 2 ď q ď k, ρ1 is a

path from vertex vp0q to v
pp1q
i1

in Aσ, and ρk`1 is a path from v
ppkq
jk

to vertex vpdq in Aσ. Clearly,
BIF is a homogeneous polynomial of degree d´ k.

Moreover, given any I P T , the polynomial BIF is non-zero; that is, there is a path from vp0q

to vpdq in Aσ which contains each edge pv
ppq´1q
iq

, v
ppqq
jq
q for q P rks by properties 1, 2, and 3 in

Definition 19.

We would like to lower bound dimpxBkF yď`q, which is at least dimpVq, where

V “ span tm ¨ BIF | I P T and m a monomial of degree at most `u .

To lower bound dimpVq, we will use the monomial-ordering technique as in [GKKS13] (see also
[CLO97]). Let ľ be an arbitrary linear ordering of the variables in X and extend it to the
lexicographic ordering on the set of all monomials in FrXs — the linear order on monomials is
also denoted ľ. Given this monomial ordering ľ, for any polynomial f P FrXs, we denote by
LMpfq the leading monomial of f under this ordering (the ordering will be clear from context).
The following fact will be useful.

Fact 20. Let ľ be any ordering as described above. Let m1,m2 P FrXs be arbitrary monomials
such that m1 ľ m2. Then, for any monomial m, we have

m1 ¨m ľ m2 ¨m

This immediately implies that for f, g P FrXs, we have LMpf ¨ gq “ LMpfq ¨ LMpgq.

Now, to lower bound dimpVq, note that by Gaussian elimination, we know that

dimpVq “ |tLMpfq | f P Vu|
ě |tLMpm ¨ BIF q | I P T and m a monomial of degree at most `u|

“ |tm ¨ LMpBIF q | I P T and m a monomial of degree at most `u|

where the last equality follows from Fact 20. We denote by ppIq the monomial LMpBIF q. From
the above, we see that dimpVq ě |M|, where

M “
 

m1
ˇ

ˇm1 a monomial of degree at most `` d´ k and D I P T such that ppIq|m1
(

.

Also, for I P T , if we let

MI “
 

m1
ˇ

ˇm1 a monomial of degree at most `` d´ k such that ppIq|m1
(

,

then we have M “
Ť

IPT MI .

The above arguments prove the following claim.
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Claim 21. dimpxBkF yď`q ě |M|.

We need some technical claims, which are analogous to the claims proved in Section 5.

Claim 22. For any I, I 1 P T , we have

|ppI 1qzppIq| ě ∆pI, I 1q ¨
´Yr

2

]

´ 1
¯

,

where ∆pI, I 1q denotes the Hamming distance between I and I 1.

Proof. Let I, I 1 P T . Say I “ pi1, j1, . . . , ik, jkq and I 1 “ pi11, j11, . . . , i1k, j1kq. In the ABP Aσ, let
gI1 be the unique path from vp0q to Vp21´1 and for all q P rks, let gIq`1 be the unique path from

v
ppqq
jq

to Vp2q`1´1. For all q P rks, let hIq be the unique path from Vp2q`1 to v
ppq´1q
iq

, and let hIk`1 be

the unique path from Vp2k`1`1 to vpdq. (These paths are unique by property 2 in Definition 19).

For q P rk`1s, define gI
1

q and hI
1

q in the same way for I 1. We have ppIq “ m ¨
ś

qPrk`1s g
I
q h

I
q and

ppI 1q “ m1 ¨
ś

qPrk`1s g
I1
q h

I1
q where m and m1 are monomials on the variables

Ť

qPP 22
pXqYXq`1q.

Hence |ppI 1qzppIq| ě
ř

qPrk`1sp|g
I1
q zg

I
q | ` |h

I1
q zh

I
q |q.

If iq ‰ i1q, the paths hIq and hI
1

q are edge disjoint (again by property 2 in Definition 19). In the

same way, gIq`1 and gI
1

q`1 are edge disjoint if jq ‰ j1q. Now all paths gIq , hIq (and gI
1

q , h
I1
q ) are of

length at least tr{2u´ 1 by the choice of pq and p2q .

Claim 23. For any I P T , we have |MI | “
`

N``
`

˘

.

Claim 24. For any I, I 1 P T , we have |MI XMI1 | “
`N``´|ppI1qzppIq|

`´|ppI1qzppIq|
˘

.

Claim 25. Fix any k, n P N. Then there exists an S Ď T such that

• |S| “
Z

´?
n

4

¯k
^

,

• For all distinct I, I 1 P S, we have ∆pI, I 1q ě k.

Proof. As in the proof of Claim 10, a volume argument shows that we can pick

Z

n1.7k

nkp2kk q

^

ě nk{2

22k

elements in T with pairwise Hamming distance at least k.

Now we are ready to prove lower bound on the dimension of the space of shifted partial deriva-
tives of F.

Lemma 26. Let k, ` P N be arbitrary parameters such that 20k ă d ă ` and k ě 2. Then,

dimpxBkF yď`q ěM ¨

ˆ

N ` `

`

˙

´M2 ¨

ˆ

N ` `´ d{10

`´ d{10

˙

,

where M “

Z

´?
n

4

¯k
^

.
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Proof. By Claim 21, it suffices to lower bound |M|. Since M “
Ť

IMI , we have

|M| ě |
ď

IPS
MI |

ě
ÿ

IPS
|MI | ´

ÿ

I‰I1PS
|MI XMI1 |. (5)

By Claim 23, we know that |MI | “
`

N``
`

˘

. By Claims 24 and 22 and our choice of S (Claim 25),
we see that for any distinct I, I 1 P S, we have

|MI XMI1 | ď

ˆ

N ` `´ kptr{2u´ 1q

`´ kptr{2u´ 1q

˙

ď

ˆ

N ` `´ d{10

`´ d{10

˙

where the last inequality follows since tr{2u´ 1 ě d{10k for k ď d{20.

Plugging the above into (5), we obtain

|M| ě |S| ¨
ˆ

N ` `

`

˙

´ |S|2 ¨
ˆ

N ` `´ d{10

`´ d{10

˙

.

Since |S| “
Z

´?
n

4

¯k
^

, the lemma follows.

6.2.2 A lower bound for ΣΠpDqΣΠptq formulas computing nice restrictions of IMMn,d

Lemma 27. Let n,D, k, t, d P N be such that 1 ď k, t ď d ď n1{10, D ď n1{4{100, and
kt ď d{320. Let σ be a restriction in R. Then any ΣΠpDqΣΠptq formula C for IMMn,d|σ has

top fan-in Ω

ˆ

´

n1{4

4D

¯k
˙

.

Proof. Let F “ IMMn,d|σ. We proceed as in Theorem 12. Fix ` P N such that n1{16 ď
`

N``
`

˘t
ď

n1{4, which exists by Claim 5. By Lemma 26, we have

dimpxBkF yď`q ěM ¨

ˆ

N ` `

`

˙

looooooomooooooon

T1

´M2 ¨

ˆ

N ` `´ d{10

`´ d{10

˙

looooooooooooomooooooooooooon

T2

where M “

Y

p
?
n

4 q
k
]

.

However, for our choice of parameters, we have

T1

T2
“

`

N``
`

˘

M ¨
`N``´d{10

`´d{10

˘

ě
1

M
¨

ˆ

N ` `

`

˙d{10

(by Fact 4)

ě
nd{320t

M
(by our choice of `)

ě
nk

M
ě 4k ě 2.
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Hence, we have

dimpxBkF yď`q ě T1 ´ T2 ě T1{2 “
M

2
¨

ˆ

N ` `

`

˙

. (6)

Now, let C be a ΣΠpDqΣΠptq formula for F of top fan-in s. Then, by Lemma 3, we have

dimpxBkCyď`q ď s ¨

ˆ

D

k

˙

¨

ˆ

N ` `` pt´ 1qk

`` pt´ 1qk

˙

ď s ¨Dk ¨

ˆ

N ` `` pt´ 1qk

`` pt´ 1qk

˙

.

An application of inequality (6) implies that we must have

s ¨Dk ¨

ˆ

N ` `` pt´ 1qk

`` pt´ 1qk

˙

ě
M

2
¨

ˆ

N ` `

`

˙

.

Therefore,

s ě
M

2Dk
¨

`

N``
`

˘

`N```pt´1qk
``pt´1qk

˘

ě
M

2Dk
¨

ˆ

`

N ` `

˙pt´1qk

(by Fact 4)

ě
1

4Dk
¨

ˆ?
n

4

˙k

¨

ˆ

`

N ` `

˙pt´1qk

(by our choice of M)

“
1

4
¨

˜?
n

4D
¨

ˆ

`

N ` `

˙pt´1q
¸k

ě
1

4
¨

˜ ?
n

4D ¨
`

N``
`

˘t

¸k

ě
1

4
¨

˜

n1{4

4D

¸k

(by our choice of `).

6.3 From homogeneous multilinear formulas to ΣΠpDqΣΠptq formulas

Lemma 28. The following holds for any large enough n P N, and any k, t, d such that 1 ď
k, t ď d ď n1{10. Let C be a homogeneous multilinear ΣΠΣΠ formula of size s ă nt{10, there is
a restriction τ P R such that C|τ is ΣΠΣΠptq.

Proof. As in Section 5, we will use a probabilistic argument. We define a suitable distribution D
over restrictions σ : X Ñ t0, ˚u in general and show that with high probability over the choice
of σ „ D, the restriction F :“ IMMn,d|σ belongs to R and satisfies the required property. We
specify the distribution D by describing how to sample a single restriction σ.

• For p P t1, du, pick jp P rns uniformly at random. Set σpx
ppq
j q “ ˚ if j “ jp and 0 otherwise.

• For p R P 2 Y t1, du, pick an independent and uniformly random permutation πp of rns.

Set σpx
ppq
i,j q “ ˚ if j “ πppiq and 0 otherwise.

• For each x P
Ť

pPP 2 Xp, set σpxq “ ˚ independently with probability 1
n0.2 .
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We denote by Aσ the ABP corresponding to this restriction.

σ belongs to R with high probability. From the description of D above, it follows that for
any σ „ D, the restriction σ always satisfies properties 1 and 2 of Definition 19. So we need
only consider properties 3 and 4.

Let E3 denote the event that property 3 is not satisfied. Fix any p P P 22 and any i, j P rns.
For each v P Vp, define the t0, 1u-valued random variable Yv,i,j so that Yv,i,j “ 1 iff the edges

pv
pp´1q
i , vq and pv, v

pp`1q
j q both survive in the ABP Aσ and let Y 1p,i,j “

ř

vPVp
Yv,i,j . Since each

of the edges pv
pp´1q
i , vq and pv, v

pp`1q
j q survives independently with probability 1{n0.2, it follows

that PrσrYv,i,j “ 1s “ 1{n0.4.

Note that the random variables Yv,i,j are mutually independent. Hence, we have

Pr
σ
rThere is no path from v

pp´1q
i to v

pp`1q
j s “ Pr

σ
rY 1p,i,j “ 0s “ Pr

σ
r
ľ

v

Yv,i,j “ 0s

“
ź

v

Pr
σ
rYv,i,j “ 0s

“

ˆ

1´
1

n0.4

˙n

“ expp´nΩp1qq.

Union bounding over the choices of p, i, j, we see that PrrE3s “ expp´nΩp1qq “ op1q.

Let E4 denote the event that property 4 is not satisfied. Fix any p P P 21 and for each x P Xp,
define the t0, 1u-valued random variable Zpxq that is 1 iff σpxq “ ˚; let Zp “

ř

xPXp
Zpxq.

We have EσrZps “
ř

xPXp
PrσrZpxq “ 1s “ |Xp| ¨ n

´0.2 “ n1.8. Moreover, the random variables

Zpxq are mutually independent and hence, by a Chernoff bound (see, e.g., [DP09, Chapter 1]),
we have for large enough n,

Pr
σ
rZp ă n1.7s ď Pr

σ
rZp ă ErZps{2s “ expp´nΩp1qq.

Thus, union bounding over the at most d ď n1{10 choices of p P P 21 , we have PrrE4s ď n1{10 ¨

expp´nΩp1qq “ expp´nΩp1qq “ op1q.

Thus, we have
Pr
σ
rσ not valids “ Pr

σ
rE3 _ E4s “ op1q.

C|σ is ΣΠΣΠptq with high probability. We need to show that, with high probability, the
fan-in of bottom Π gates of C|σ is at most t. In other words, we need to show that with high
probability, all bottom Π gates in C that have fan-in greater than t are set to 0 by σ.

Let us fix any bottom level Π gate G in C that has fan-in greater than t. Let m be the
(multilinear) monomial computed by this Π gate.1 Write m “ m1 ¨ m2 ¨ ¨ ¨md, where mp “
ś

xPXp:x|m x. Let tp denote degpmpq. We have
ř

pPrds tp “ degpmq ą t. We claim that

Pr
σ
rG not set to 0 in C|σs ď

1

nt{5
. (7)

1This is the only place where multilinearity is necessary.
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To see this, note that by the independence of the random restriction σ across the different Xp

(p P rds), we have

Pr
σ
rG not set to 0 in C|σs “

ź

pPrds

Pr
σ
rNo variable in mp set to 0s

looooooooooooooooooomooooooooooooooooooon

αp

. (8)

Now, fix any p P rds. We upper bound αp based on a case analysis.

• If p P t1, du, αp “ 0 if tp ą 1 and αp “ 1{ntp otherwise.

• If p P P 2, αp “ 1{ntp{5.

• If p R P 2 Y t1, du, then αp “ 0 if the monomial mp contains at least two variables from

any row or column of Xp. Otherwise, αp “
śtp´1
z“0

1
n´z ď

´

1
n´tp

¯tp
ď 1

ntp{2
, where the last

inequality follows since tp ď t ď d ď n1{10.

Thus, we see that in all cases, we have αp ď
1

ntp{5
. Substituting in (8), we have PrσrG not set to 0s ď

1{n
ř

pPrdsptp{5q ď 1{nt{5, which proves (7).

Since there are at most s ă nt{10 bottom level Π gates of fan-in greater than t, by a union
bound, the probability that any such Π gate survives is at most nt{10 ¨ 1

nt{5 “ op1q.

Finally, another union bound proves the lemma.

Theorem 29. Let n, d P N be such that d ď n1{10. Let C be a homogeneous multilinear ΣΠΣΠ
formula computing IMMn,d. Then C has size nΩp

?
dq.

Proof. Let us choose k, t such that d{640 ď kt ď d{320 and t “ 4k. Let C be a ΣΠΣΠ
homogeneous multilinear formula of size s computing IMMn,d and say s ă nt{10. Let σ be the
nice restriction guaranteed by Lemma 28. Therefore, we have that C|σ is a ΣΠΣΠptq formula
computing F “ IMMn,d|σ. Since C|σ is also a homogeneous multilinear formula computing a
degree d polynomial, every Π gate at layer 3 has fan-in at most d. From Lemma 27, we have

that any ΣΠpdqΣΠptq circuit computing F has size at least 1
4 ¨

´

n1{4

4d

¯k
, i.e., nΩpkq (as d ď n1{10).

Therefore, we get that s ą min
 

nΩptq, nΩpkq
(

. Since kt “ Θpdq and t “ 4k, we have proved

s “ nΩp
?
dq.

Remark 30. Note that we used multilinearity only in the proof of Lemma 28. Even there,
mutilinearity was not strictly necessary. We only needed that the ΣΠΣΠ formula C has the
property that all the Π gates on layer 1, just above the input variables, are multilinear.

7 Lower bounds for ΣΠpDqΣΠptq formulas and regular formulas

In this section, we derive our lower bounds for some flavors of ΣΠΣΠ formulas. We start with a
specific case that has been the focus of a few recent results ([GKKS13, KSS13]), the ΣΠpDqΣΠptq

model, where the Π gates at layers 3 and 1 have fan-ins bounded by D and t respectively.
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Corollary 31. Let n, d,D, t P N be such that 1 ď t ď d{320 and n ě 10. Then, any ΣΠpDqΣΠptq

for IMMn,d has top fan-in at least
´

n3{4

4D

¯Ωpd{tq
.

Proof. Fix k “ td{320tu. We will show that any ΣΠpDqΣΠptq formula C for IMMn,d has top

fan-in at least Ω

ˆ

´

n3{4

4D

¯k
˙

, which will prove the corollary.

But this follows from Theorem 12 and the simple fact that if IMMn,d has a ΣΠpDqΣΠptq formula
with top fan-in at most s, then so does any of its restrictions, and in particular F does.

For the next result of this section we need a few additional definitions. The degree of any node is
defined to be the degree of the polynomial computed by it. The degree of the circuit (formula)
is the degree of the output node. The syntactic degree is defined inductively. The syntactic
degree of an input node is 1. The syntactic degree of ` gate is the maximum of the syntactic
degrees of its children. The syntactic degree of ˆ gate is the sum of the syntactic degrees of
its children. The syntactic degree of the circuit (formula) is the syntactic degree of its output
node.

A formula is called regular if it is a layered formula, the alternate layers in the formula are
labeled by ` and ˆ, for every layer the fan-in of all the gates at that layer is the same, and the
syntactic degree of the formula is at most twice the degree of the formula.

Regular formulas were defined and studied recently by Kayal, Saha, and Saptharishi [KSS13].
They show the existence of a certain polynomial in VNP of degree d over N variables that has
no regular formula of size less than NΩplog dq.

They also explicitly ask the following: is it true that any degree d polynomial in N variables
that has a polynomial-sized ABP also has a regular formula of size Noplog dq? Here, we answer
this question in the negative for d ď n1{10 by showing that IMMn,d has no regular formulas of
size less than nΩplog dq. We will need the following theorem of [KSS13].

Theorem 32 ([KSS13], Theorem 15). Let X be any set of N variables and let F P FrXs be a
polynomial of degree d with the property that there exists a δ ą 0 such that for any t ă d{100, any
ΣΠpOpd{tqqΣΠptq formula computing the polynomial F has top fan-in at least exppδ

`

d
t

˘

logNq.

Then, any regular formula computing F must be of size NΩplog dq.

Though the theorem above is stated for t ă d{100, it holds for t ă d{C for any constant C. We
leave this check to the interested reader. Putting the above theorem together with Corollary 31,
we have

Corollary 33. For large enough n, d P N such that d ď n1{10, any regular formula for IMMn,d

has size at least nΩplog dq.

Note that the above is tight, up to the constant in the exponent, since the standard construction
of an nOplog dq sized formula for IMMn,d yields a regular formula.
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8 Discussion

Our aims in this paper were twofold: to explore the limits of depth reduction, and to understand
better the arithmetic circuit complexity of IMMn,d. We have made progress on both fronts, but
many interesting questions remain unanswered.

We have shown that Tavenas’ result [Tav13] is optimal up to polynomial factors, even for

polynomials in the class VPs, by showing that any ΣΠpOp
?
dqqΣΠpOp

?
dqq formulas for IMMn,d

has size exppΩp
?
d logNqq. Our results also answer a question of Kayal, Saha, and Sapthar-

ishi [KSS13] regarding the simulation of polynomial-sized circuits by regular formulas. Thus,
in order to use depth reduction based techniques to prove a separation between VP and VNP,
we will need to exhibit a polynomial in VNP that requires ΣΠpOp

?
dqqΣΠpOp

?
dqq formulas of size

exppωp
?
d logNqq to compute it.

One might also wonder whether lower bounds for weaker models, such as arithmetic formulas,
might follow from either the shifted partial derivative technique or by depth reduction. Can
one show non-trivial upper bounds on the dimension of the shifted partial derivative space of
polynomials computed by small formulas? Do polynomials of degree d over N variables com-
puted by polypNq-sized formulas have ΣΠpOp

?
dqqΣΠpOp

?
dqq formulas of size exppop

?
d logNqq?

As far as we know, even the case of lower bounds for ΣΠΣΠ homogeneous formulas is open.

Coming to the question of the complexity of IMMn,d, we have been able to pin down almost
exactly the ΣΠΣΠ complexity of IMMn,d in the set-multilinear and more generally, in the
homogeneous multilinear setting. Can we extend these results to show that, in general, that
set-multilinear formulas of product-depth r (for constant r) computing IMMn,d must have size
exppΩpd1{r log nqq?

This would count as tangible progress towards the goal of showing that set-multilinear formulas
for IMMn,d must have size nΩplog dq. Raz [Raz10] has shown that, for d “ oplog n{ log log nq,
the set-multilinear formula complexity of IMMn,d and the formula complexity of IMMn,d are
polynomially related and hence, a superpolynomial lower bound for set-multilinear formulas in
this regime would immediately imply a separation between VPs and VPe.
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Appendix

In this section, we prove a lemma which states a lower bound on the dimension of the shifted
partial derivative space of IMMn,d. Though this lemma is not necessary to obtain any of our
lower bounds, it may be of general interest. We first need the following intuitive statement.

Lemma 34. Let X be a set of variables with |X| “ N and f, g P FrXs be such that g is a
restriction of f . Then, for any k, ` ě 1 we have dimpxBkfyď`q ě dimpxBkgyď`q.

Proof. Given x P X, let Sx : FrXs Ñ FrXs be the linear map that maps any polynomial f 1

to the polynomial g1 obtained by setting x to 0 in f 1. Similarly, we use Sσ : FrXs Ñ FrXs to
denote the linear map that maps f 1 to the polynomial g1 obtained by setting all x P σ´1p0q to
0 in f 1. Note that Sσ is the composition of all the Sx for x P σ´1p0q (the order of composition
is irrelevant).

We want to show that for any f P FrXs, we have dimpxBkfyď`q ě dimpxBkpSσfqyď`q. From
the reasoning in the previous paragraph, it suffices to show that for any x P X, we have
dimpxBkfyď`q ě dimpxBkpSxfqyď`q. We can write f as f “

řa
j“0 x

jfj where fj P FrXztxus for
j ď a. Using this notation, Sxf is simply the polynomial f0. Thus, what we want to show is
that dimpxBkfyď`q ě dimpxBkpf0qyď`q.

We introduce some useful notation here. Let the variable in X be denoted x1, . . . , xN . For
i P NN such that i1 ` ¨ ¨ ¨ ` iN “ k and g P FrXs, we denote by xi the monomial xi11 ¨ ¨ ¨x

in
n and

by Bkg
Bxi the polynomial Bkg{pBi1x1 ¨ ¨ ¨ B

iNxN q.

Let L denote the dimension of xBkpf0qyď`. Choose an arbitrary basis B for this space. Such a
basis may be written as

B “

"

m1 ¨
Bkf0

Bxip1q
,m2 ¨

Bkf0

Bxip2q
, . . . ,mL ¨

Bkf0

BxipLq

*

for some monomials m1, . . . ,mL of degree at most ` and ip1q, . . . , ipLq P NN such that for each

r P rLs, i
prq
1 ` ¨ ¨ ¨ ` i

prq
N “ k. In particular, we must have Bkf0

Bxiprq
‰ 0 for each r P rLs. As

f0 P FrXztxus, this implies that x - xiprq .
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We claim that the elements

B1 “

"

m1 ¨
Bkf

Bxip1q
,m2 ¨

Bkf

Bxip2q
, . . . ,mL ¨

Bkf

BxipLq

*

of xBkfyď` are linearly independent. This would prove that dimpxBkfyď`q ě L and finish the
proof of the lemma.

To see that the elements of B1 are linearly independent, we partition the monomials mr (r P rLs)
depending on the highest power of x dividing them. For j ď `, let Tj “

 

r P rLs
ˇ

ˇ xj |mr but xj`1 - mr

(

.
Now, fix any non-zero linear combination of the elements of B1, say

F “
ÿ

rPrLs

αr ¨mr ¨
Bkf

Bxiprq

where αr P F for each r P rLs. Let j be the least element of t0uYr`s such that there is an r P Tj

with αr ‰ 0. Consider the coefficient Fj of xj in F as a polynomial in FrXztxus. Since x - xiprq

for any r P rLs, it can be seen that

xjFj “
ÿ

rPTj

αr ¨mr ¨
Bkf0

Bxiprq

(Notice that f has been replaced by f0 in the equation above.) But by the linear independence
of the elements in B, we have Fj ‰ 0. Hence so is F . Thus, the elements of B1 are linearly
independent.

Lemma 35. Let k, ` P N be arbitrary parameters such that 20k ă d ă ` and k ě 2. Then,

dimpxBkIMMn,dyď`q ěM ¨

ˆ

N ` `

`

˙

´M2 ¨

ˆ

N ` `´ d{10

`´ d{10

˙

,

where M “

Y

`

n
4

˘k
]

.

Proof. Straightaway follows from Lemmas 34 and 11, since the polynomial F from Lemma 11
is a restriction of IMMn,d.
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