
Small Depth Proof Systems

Andreas Krebs1, Nutan Limaye2, Meena Mahajan3, and Karteek
Sreenivasaiah3

1 University of Tübingen, Germany
2 Indian Institute of Technology, Bombay, India

3 The Institute of Mathematical Sciences, Chennai, India

Abstract. A proof system for a language L is a function f such that
Range(f) is exactly L. In this paper, we look at proof systems from
a circuit complexity point of view and study proof systems that are
computationally very restricted. The restriction we study is: they can
be computed by bounded fanin circuits of constant depth (NC0), or of
O(log logn) depth but with O(1) alternations (poly log AC0). Each out-
put bit depends on very few input bits; thus such proof systems corre-
spond to a kind of local error-correction on a theorem-proof pair.
We identify exactly how much power we need for proof systems to capture
all regular languages. We show that all regular language have poly log AC0

proof systems, and from a previous result (Beyersdorff et al, MFCS 2011,
where NC0 proof systems were first introduced), this is tight. Our tech-
nique also shows that Maj has poly log AC0 proof system.
We explore the question of whether Taut has NC0 proof systems. Ad-
dressing this question about 2TAUT, and since 2TAUT is closely related
to reachability in graphs, we ask the same question about Reachability.
We show that both Undirected Reachability and Directed UnReachabil-
ity have NC0 proof systems, but Directed Reachability is still open.
In the context of how much power is needed for proof systems for lan-
guages in NP, we observe that proof systems for a good fraction of lan-
guages in NP do not need the full power of AC0; they have SAC0 or
coSAC0 proof systems.

1 Introduction

Let f be any computable function mapping strings to strings. Then f can be
thought of as a proof system for the language L = range(f) in the following sense:
to prove that a word x belongs to L, provide a word y that f maps to x. That is,
view y as a proof of the statement “x ∈ L”, and computing f(y) is then tanta-
mount to verifying the proof. From the perspective of computational complexity,
interesting proof systems are those functions that are efficiently computable and
have succinct proofs for all words in their range. If we use polynomial-time
computable as the notion of efficiency, and polynomial-size as the notion of suc-
cinctness, then NP is exactly the class of languages that have efficient proof
systems with succinct proofs. For instance, the coNP-complete language Taut
has such proof systems if and only if NP equals coNP [1].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 102 (2013)

Since we do not yet know whether or not NP equals co-NP, a reasonable
question to ask is how much more computational power and/or non-succinctness
is needed before we can show that Taut has a proof system. For instance,
allowing the verifier the power of randomized polynomial-time computation on
polynomial-sized proofs characterizes the class MA; allowing quantum power
characterizes the class QCMA; one could also allow the verifier access to some
advice, yielding non-uniform classes; see for instance [2–5].

An even more interesting, and equally reasonable, approach is to ask: how
much do we need to reduce the computational power of the verifier before we can
formally establish that Taut does not have a proof system within those bounds?
This approach has seen a rich body of results, starting from the pathbreaking
work of Cook and Reckhow [6]. The common theme in limiting the verifier’s
power is to limit the nature of proof verification, equivalently, the syntax of the
proof; for example, proof systems based on resolution, Frege systems, and so on.
See [7, 8] for excellent surveys on the topic.

Instead of restricting the proof syntax, if we only restrict the computational
power of the verifier, it is not immediately obvious that we get anywhere. This
is because it is already known that NP is characterised by succinct proof sys-
tems with extremely weak verifiers, namely AC0 verifiers. Recall that in AC0

we cannot even check if a binary string has an odd number of 1s [9, 10]. But
an AC0 computation can verify that a given assignment satisfies a Boolean for-
mula. Nonetheless, one can look for verifiers even weaker than AC0; this kind
of study was initiated in [11] where NC0 proof systems were investigated. In an
NC0 proof system, each output bit depends on just O(1) bits of the input, so to
enumerate L as the range of an NC0 function f , f must be able to do highly local
corrections to the alleged proof while maintaining the global property that the
output word belongs to L. Unlike with locally-decodable error-correcting codes,
the correction here must be deterministic and always correct. This becomes so
restrictive that even some very simple languages, that are regular and in AC0,
do not have such proof systems, even allowing non-uniformity. And yet there is
an NP-complete language that has a uniform NC0 proof system (See [12]). (This
should not really be that surprising, because it is known that in NC0 we can com-
pute various cryptographic primitives.) So the class of languages with NC0 proof
systems slices vertically across complexity classes. It is still not known whether
Taut has a (possibly non-uniform) NC0 proof system. Figure 1 shows the rela-
tionships between classes of languages with proof systems of the specified kind.
(Solid arrows denote proper inclusion, dotted lines denotes incomparability.)

The work in [11] shows that languages of varying complexity (complete for
NC1, P, NP) have uniform NC0 proof systems, while the languages Exact-Or,
Maj amongst others do not have even non-uniform NC0 proof systems. It then
focuses on regular languages, and shows that a large subclass of regular languages
has uniform NC0 proof systems. This work takes off from that point.

uniform AC0 proof
systems = NP

// AC0 proof systems
= NP/poly

uniform NC0 proof
systems

//

77nnnnnnnnnnn

NC0 proof systems

77nnnnnnnnnnnnnn

Fig. 1. Some constant-depth proof systems

Our Results

We address the question of exactly how much computational power is required
to capture all regular languages via proof systems, and answer this question
exactly. One of our main results (Theorem 5) is that every regular language
has a proof system computable by a circuit with bounded fanin gates, depth
O(log log n), and O(1) alternations. Equivalently, the proof system is computable
by an AC0 circuit where each gate has fanin (log n)O(1); we refer to the class of
such circuits as poly log AC0 circuits. By the result of [11], Exact-Or requires
depth Ω(log log n), so (upto constant multiplicative factors) this is tight. Our
proof technique also generalises to show that Maj has poly log AC0 proof systems
(Theorem 7).

The most intriguing question here, posed in [11], is to characterize the regular
languages that have NC0 proof systems. We state a conjecture for this character-
ization; the conjecture throws up more questions regarding decidability of some
properties of regular languages.

We believe that Taut does not have AC0 proof systems because otherwise
NP = coNP (See [1]). As a weaker step, can we at least prove that it does not
have NC0 proof systems? Although it seems that this should be possible, we have
not yet succeeded. So we ask the same question about 2TAUT, which is in NL,
and hence may well have an NC0 proof system. The standard NL algorithm for
2TAUT is via a reduction to Reach. So it is interesting to ask – does Reach
have an NC0 proof system? We do not know yet. However in our other main
result, we show that undirected Reach, a language complete for L, has an NC0

proof system (Theorem 8). Our construction relies on a careful decomposition of
even-degrees-only graphs (established in the proof of Theorem 9) that may be
of independent interest. We also show that directed unreachability has an NC0

proof system (Theorem 10).

Finally, we observe that Graph Isomorphism does not have NC0 proof sys-
tems. We also note that for every language L in NP, the language ({1}·L ·{0})∪
0∗ ∪ 1∗ has both SAC0 and coSAC0 proof systems (Theorem 12).

2 Preliminaries

Unless otherwise stated, we consider only bounded fanin circuits over ∨,∧,¬.

Definition 1 ([11]). A circuit family {Cn}n>0 is a proof system for a language
L if there is a function m : N −→ N such that for each n where L=n 6= ∅,

1. Cn has m(n) inputs and n outputs,
2. for each y ∈ L=n, there is an x ∈ {0, 1}m(n) such that Cn(x) = y (complete-

ness),
3. for each x ∈ {0, 1}m(n), Cn(x) ∈ L=n (soundness).

Note that the parameter n for Cn is the number of output bits, not input bits.
NC0 proof systems are proof systems as above where the circuit has O(1) depth.
The definition implies that the circuits are of linear size. AC0 proof systems
are proof systems as above where the circuit Cn has O(log n) depth but O(1)
alternations between gate types. Equivalently, they are proof systems as above
of nO(1) size with unbounded fanin gates and depth O(1).

Proposition 1 ([11]). A regular language L satisfying any of the following has
an NC0 proof system:

1. L has a strict star-free expression (built from ε, a, and Σ∗, using concate-
nation and union).

2. L is accepted by an automaton with a universally reachable absorbing final
state.

3. L is accepted by a strongly connected automaton.

Proposition 2 ([11]).

1. Proof systems for Maj need ω(1) depth.
2. Proof systems for Exact-Countnk and ¬Thnk+1 need Ω(log(log n − log k))

depth. In particular, proof systems for Exact-Or and for Exact-Or ∪ 0∗

need Ω(log log n) depth.

3 Proof Systems for Regular Languages

We first explore the extent to which the structure of regular languages can be
used to construct NC0 proof systems. At the base level, we know that all finite
languages have NC0 proof systems. Building regular expressions involves unions,
concatenation, and Kleene closure. And the resulting class of regular languages
is also closed under many more operations. We examine these operations one by
one.

Theorem 1. Let C denote the class of languages with NC0 proof systems. Then
C is closed under

1. finite union [11],

2. concatenation with finite sets [11],

3. reversal,

4. fixed-length morphisms,

5. inverses of fixed-length morphisms,
6. fixed-length regular transductions

computed by strongly connected
(nondeterministic) finite-state au-
tomata.

Proof. Closure under reversal is trivial.
Let h be a fixed-length morphism h : {0, 1} −→ {0, 1}k for some fixed k.

Given a proof system (Cn) for L, a proof system (Dn) for h(L) consists of
n parallel applications of h to the each bit of the output of the circuit Cn.
Given a proof system D′n for L, a proof system C ′n for h−1(L) consists of n
parallel applications of h−1 applied to disjoint k-length blocks of the output of
the circuit D′kn. C ′n needs additional input for each block to choose between
possibly multiple pre-images.

If L has an NC0 proof system (Cn) and h is a regular transduction computed
by a strongly connected automaton M , the construction from [11] (Proposition 1
(3)) with the output w of Cn as input will produce a word x ∈ L(M). A small
modification allows us output the transduction h(x) instead of x. This works
provided there are constants k, ` such that each edge in M is labeled by a pair
(a, b) with a ∈ {0, 1}k and b ∈ {0, 1}`. ut

Theorem 2. Let C denote the class of languages with NC0 proof systems. C is
not closed under

1. complementation [11],
2. concatenation,
3. symmetric difference,
4. cyclic shifts,

5. permutations and shuffles,

6. intersection,

7. quotients.

Proof. As noted in [11], Thn2 has an NC0 proof system but its complement
Exact-Or ∪ 0∗ does not. The languages denoted by the regular expressions
1, 0∗, 10∗, and the languages Th1, Th2 all have NC0 proof systems. The lan-
guage Exact-Or does not, but it can be written as 0∗ · 10∗ (concatenation), as
Th2∆Th1 (symmetric difference), as the result of cyclic shifts or permutations
on 10∗, and as the shuffle of 1 and 0∗.

To see the last two non-closures, it is easier to use non-binary alphabets; the
coding back to {0, 1} is straightforward. Over the alphabet {0, 1, a, b}, the lan-
guages (0∗10∗ ∪ (0 + 1 + a)∗a(0 + 1 + a)∗) and (0∗10∗ ∪ (0 + 1 + b)∗b(0 + 1 + b)∗)
both have NC0 proof systems (this follows from Proposition 1 (2)), but their in-
tersection is Exact-Or. Also, consider the languages A = a0∗, B1 = {xay |
|x| = |y|, x ∈ Exact-Or, y ∈ 0∗}, B2 = {xay | |x| = |y|, x ∈ (0 + 1)∗, y ∈ Th1}.
Then A and B = B1 ∪B2 have NC0 proof systems but Exact-Or = B | A.
(A proof system for B is as follows: the input proof at length 2n+ 1 consists of
a word w ∈ (0 + 1)n and the sequence of n states q1, . . . , qn allegedly seen by
an automaton M for Exact-Or on reading w. The circuit copies w into x. If
qi−1, wi, qi is consistent with M , then it sets yi to 0, otherwise it sets yi to 1. It
can be verified that the range of this circuit is exactly B=2n+1.) ut

A natural idea is to somehow use the structure of the syntactic monoid
(equivalently, the unique minimal deterministic automaton) to decide whether
or not a regular language has an NC0 proof system, and if so, to build one.
Unfortunately, this idea collapses at once: the languages Exact-Or and Th2

have the same syntactic monoid; by Proposition 2, Exact-Or has no NC0 proof
system; and by Proposition 1 Th2 has such a proof system.

The next idea is to use the structure of a well-chosen (nondeterministic) au-
tomaton for the language to build a proof system; Proposition 1 does exactly
this. It describes two possible structures that can be used. However, one is sub-
sumed in the other; see Observation 3 below.

Observation 3 Let L be accepted by an automaton with a universally reachable
absorbing final state. Then L is accepted by a strongly connected automaton.

Proof. Let M be the non-deterministic automaton with universally reachable
and absorbing final state q. That is, q is an accepting state such that (1) q is
reachable from every other state of M , and (2) there is a transition from q to q
on every letter in Σ. Add ε-moves from q to every state of M to get automaton
M ′. Then M ′ is strongly connected, and L(M ′) = L(M). ut

A small generalisation beyond strongly connected automata is automata
with exactly two strongly connected components. However, the automaton for
Exact-Or is like this, so even with this small extension, we can no longer
construct NC0 proof systems. (In fact, we need as much as Ω(log log n) depth.)

Finite languages do not have strongly connected automata. But they are
strict star-free and hence have NC0 proof systems. Strict star-free expressions
lack non-trivial Kleene closure. What can we say about their Kleene closure?
It turns out that for any regular language, not just a strict-star-free one, the
Kleene closure has an NC0 proof system.

Theorem 4. If L is regular, then L∗ has an NC0 proof system.

Proof. Let M be an automaton accepting L, with no useless states. Adding ε
moves from every final state to the start state q0, and adding q0 to the set of
final states, gives an automaton M ′ for L∗. Now M ′ is strongly connected, so
Proposition 1 gives the NC0 proof system. ut

Based on the above discussion and known (counter-) examples, we conjecture
the following characterization. The structure implies the proof system, but the
converse seems hard to prove.

Conjecture 1. Let L be a regular language. The following are equivalent:

1. L has an NC0 proof system.
2. For some finite k, L =

⋃k
i=1 ui ·Li · vi, where each ui, vi is a finite word, and

each Li is a regular language accepted by some strongly connected automa-
ton.

An interesting question arising from this is whether the following languages
are decidable:

Reg-SCC =

{
M |M is a finite-state automaton; L(M) is accepted

by some strongly connected finite automaton

}
Reg-NC0-PS =

{
M |M is a finite-state automaton; L(M) has an NC0

proof system

}
(Instead of a finite-state automaton, the input language could be described in
any form that guarantees that it is a regular language.)

We now establish one of our main results. NC0 is the restriction of AC0

where the fanin of each gate is bounded by a constant. By putting a fanin
bound that is ω(1) but o(nc) for every constant c (“sub-polynomial”), we obtain
intermediate classes. In particular, restricting the fanin of each gate to be at most
poly log n gives the class that we call poly log AC0 lying between NC0 and AC0.
We show that it is large enough to have proof systems for all regular languages.
As mentioned earlier, Proposition 2 implies that this upper bound is tight.

Theorem 5. Every regular language has a poly log AC0 proof system.

Proof. Let A = (Q,Σ, δ, q0, F) be an automaton for L. We assume that Σ =
{0, 1}, larger finite alphabets can be suitably coded. We unroll the computation
of A on inputs of length n to get a layered branching program B with n + 1
layers numbered 0 to n. (We can work directly with the automaton, as discussed
in the proof idea, but this equivalent formulation is useful in proving the next
theorem as well.) The initial layer of B has just the start node s which behaves
like q0 in the automaton, while every other layer of the branching program has
as many vertices as |Q|. Since A may have multiple accepting states, we add
an extra layer at the end with a single sink node t, and connect all copies of
accepting states at layer n to t by edges labeled 1. Note that B has the following
properties:

– Length l = n+ 2.
– Every layer except the first and last layer has width (number of vertices in

that layer) w = |Q|.
– Edges are only between consecutive layers. These edges and their labelling

are according to δ.
– All edges from layer i− 1 to layer i are labelled either xi or xi.
– A word a = a1 . . . an is accepted by A if and only if B has a path from s to
t (with n+ 1 edges) with all edge labels consistent with a.

Any vertex u ∈ B can be indexed by a two tuple (`, p) where ` stands for the
layer where u appears and p is the position where u appears within layer `.

Consider the interval tree T for (0, n+ 1] described above. The input to the
proof system consists of a pair of labels 〈u, v〉 for each node in the interval tree.
The labels u, v point to nodes of B. For interval (i, j], the labels are of the form
u = (i, p), v = (j, q). Since i, j are determined by the node in T , the input only

specifies the pair 〈p, q〉 rather than 〈u, v〉. That is, it specifies a pair of states from
A, as discussed in the proof idea. At the root node, the labeling is hardwired to
be 〈s, t〉.

Given a word a = a1 . . . an and a labeling as above of the interval tree, we
define feasibility and consistency as follows:

1. A leaf node (k − 1, k] with k ∈ [n], labeled 〈p, q〉, is
(a) feasible if there exists an edge from (k − 1, p) to (k, q) in B. (That is,

there exists b ∈ Σ such that q ∈ δ(p, b).)
(b) consistent if there exists an edge from (k − 1, p) to (k, q) in B labeled

xk if ak = 1, labeled xk if ak = 0. (That is, q ∈ δ(p, ak).)
(The case k = n+ 1 is simpler: feasible and consistent if p is a final state of
A.)

2. An internal node (i, j] labeled 〈p, q〉 is
(a) feasible if there exists a path from (i, p) to (j, q) in B. (That is, there

exists a word b ∈ Σj−i such that q ∈ δ̃(p, b).)
(b) consistent if it is feasible, both its children are feasible, and the labels
〈p′, q′〉 and 〈p′′, q′′〉 of its left and right children respectively satisfy: p =
p′, q = q′′, q′ = p′′.

3. A node is fully consistent if all its ancestors (including itself) are consistent.

Since the label at the root of T is hardwired, the root node is always feasible.
But it may not be consistent.

For each node (i, j] in the interval tree, and each potential labeling 〈p, q〉 for
this node, let u = (i, p) and v = (j, q). Define the predicate R(u, v) to be 1 if and
only if there is a path from u to v in B. (ie this potential labeling is feasible.)
Whenever R(u, v) = 1, fix a partial assignment wu,v that assigns 1 to all literals
that occur as labels along an aribtrarily chosen path from u to v). Note that
wu,v assigns exactly j − i bits, to the variables xi+1, . . . , xj . We call wu,v the
feasibility witness for the pair (u, v).

Let y be the output string of the proof system we construct. A bit yk of the
output y is computed as follows: Find the lowest ancestor of the node (k − 1, k]
that is fully consistent.

– If the leaf node (k − 1, k] is fully consistent, output ak.
– If there is no such node, then the root node is inconsistent. Since it is feasible,

the word ws,t is defined. Output the kth bit of ws,t.
– If such a node is found, and it is not the leaf node itself but some (i, j] labeled
〈p, q〉, let u = (i, p) and v = (j, q). The word wu,v is defined and assigns a
value to xk. Output this value.

It follows from this construction that every word a ∈ L can be produced as
output: give in the proof the word a, and label the interval tree fully consistent
with an s − t path of B consistent with a (equivalently, an accepting run of A
on a).

It also follows that every word y output by this construction belongs to L.
On any proof, moving down from the root of the interval tree, locate the frontier

of lowest fully consistent nodes. These nodes are feasible and correspond to a
partition of the input positions, and the procedure described above outputs a
word constructed by patching together the feasibility-witnesses for each part.

To see that the above construction can be implemented in depth O(log log n)
with O(1) alternations, observe that each of the conditions - feasibility, con-
sistency and equality of two labels depend on O(logw) bits. Hence depth of
O(log log n) and O(1) alternations suffices for their implementation.

More formally, define the following set of predicates:

– Equal : [w]2 −→ {0, 1} the Equality predicate on logw bits.
– For each 0 ≤ i < j ≤ n + 1, Feasiblei,j : [w]2 −→ {0, 1} is the Feasibility

predicate with arguments the labels (p, q) at interval (i, j].
– For each 0 ≤ i < j + 1 ≤ n + 1, Consistenti,j : [w]6 −→ {0, 1} is the

Consistency predicate at an internal node, with arguments the labels at
interval (i, j] and at its children.

– For each 0 < k ≤ n + 1, ConsistentLeafk : [w]2 × Σ −→ {0, 1} is the
Consistency predicate at leaf (k − 1, k] with arguments the label 〈p, q〉 and
the bit ak at the leaf.

All the predicates depend on O(logw) bits. So a naive truth-table implementa-
tion suffices to compute them in depth O(logw) with O(1) alternations.

For any 0 < k ≤ n + 1, let the nodes on the path from (k − 1, k] to the
root of the interval tree be the intervals (k− 1, k] = (i0, j0), (i1, j1], . . . , (ir, jr] =
(0, n+ 1]. Note: r ∈ O(log n).

Given a labeling of the tree, the output at position k is given by the expression
below. (It looks ugly, but it is just implementing the scheme described above.
We write it in this detail to make the poly log AC0 computation explicit.)

yk =

[
ak ∧ConsistentLeafk ∧

r∧
h=1

Consistentih,jh

]
∨
[

(ws,t)k ∧Consistent0,n+1

]
∨

 r∨
h=1

(w(ih,ph),(jh,qh))k ∧Consistentih−1,jh−1
∧

r∧
g=h

Consistentig,jg


where the arguments to the predicates are taken from the tree labeling. This
computation adds O(1) alternations and O(log log n) depth to the computation
of the predicates, so it is in poly log AC0. ut

While proving Theorem 5, we unrolled the computation of a w-state automa-
ton on inputs of length n into a layered branching program BP of width w with
` = n+ 2 layers. The BP so obtained is nondeterministic whenever the automa-
ton is. The BP has a very restricted structure which we exploited to construct
the poly log AC0 proof system.

We observe that some restrictions on the BP structure can be relaxed and
still we can construct a poly log AC0 proof system.

Definition 2. A branching program for length-n inputs is structured if it sat-
isfies the following:

1. It is layered: vertices are partitioned into n+1 layers V0, . . . , Vn and all edges
are between adjacent layers E ⊆ ∪i(Vi−1 × Vi).

2. Each layer has the same size w = |Vi|, the width of the BP. (This is not
critical; we can let w = max |Vi|.)

3. There is a permutation σ ∈ Sn such that for i ∈ [n], all edges in Vi−1 × Vi
read xσ(i) or xσ(i).

Non-uniform automata [13, 14] give rise to branching programs that are struc-
tured with w the number of states in the automaton. For instance, the language
{xx | x ∈ {0, 1}∗} is not regular. But if the input bits are provided in the order
1,m+ 1, 2,m+ 2, . . . ,m, 2m then it can be decided by a finite-state automaton.
This gives rise to a structured BP where σ is the inverse of the above order. (eg
r2 = m+ 1, r3 = 2, σ(m+ 1) = 2, σ(2) = 3.)

The idea behind the construction in Theorem 5 works for such structured
BPs. It yields a proof system with depth O(log log n + logw). This means that
for w ∈ O(poly log n), we still get poly log AC0 proof systems. Potentially, this
is much bigger than the class of languages accepted by non-uniform finite-state
automata. Formally,

Theorem 6. Languages accepted by structured branching programs of width w ∈
(log n)O(1) have poly log AC0 proof systems.

For the language Maj of strings with more 1s than 0s, and in general for
threshold languages Thnk of strings with at least k 1s, we know that there are
constant-width branching programs, but these are not structured in the sense
above. It can be shown that a structured BP for Maj must have width Ω(n) (a
family of growing automata Mn for Maj, where Mn is guaranteed to be correct
only on {0, 1}n, must have 1 +n/2 states in Mn). This is much much more than
the poly log width bound used in the construction in Theorem 5. Nevertheless,
we show below how we can modify that construction to get a poly log AC0 proof
system even for threshold languages.

Theorem 7. For every n and t ≤ n, the language Thnt has a poly log AC0 proof
system.

Proof. We follow the approach in Theorem 5: the input to the proof system is
a word a = a1, . . . , an and auxiliary information in the interval tree allowing
us to correct the word if necessary. The labeling of the tree is different for this
language, and is as follows. Each interval (i, j] in the tree gets a label which
is an integer in the range {0, 1, . . . , j − i}. The intention is that for an input
a = a1, . . . , an, this label is the number of 1s in the subword ai+1 . . . aj . For
thresholds, we relax the constraint: we expect the label of interval (i, j] to be no
more than the number of 1s in the subword. At a leaf node (k − 1, k], we do
not give explicit labels; ak serves as the label. At the root also, we do not give

an explicit label; the label t is hard-wired. (We restrict the label of any interval
(i, j] to the range [0, j − i], and interpret larger numbers as j − i.)

For any node u of T , let l(u) denote the label of u. A node u with children
v, w is consistent if l(u) ≤ l(v) + l(w).

Let the output of our proof system be y1, . . . , yn. The construction is as
follows:

– If all nodes on the path from (k − 1, k] to the root in T are consistent, then
yk = ak.

– Otherwise, yk = 1.

In analogy with Theorem 5, we use here for each interval (i, j] the feasibility
witness 1j−i, independent of the actual labels. Thus the construction forces this
property: at a node u corresponding to interval (i, j] labelled `(u), the subword
yi+1, . . . , yj has at least min{`(u), j − i} 1s. Thus, the output word is always
in Thnt . Every word in Thnt is produced by the system at least once, on the
proof that gives, for each interval other than (0, n], the number of 1s in the
corresponding subword.

As before, the Consistenti,j predicate at a node depends on 3 labels, each
of which is O(log n) bits long. A truth-table implementation is not good enough;
it will give an AC0 circuit. But the actual consistency check only involves adding
and comparing m = log n bit numbers. Since addition and comparison are in
AC0, this can be done in depth O(logm) with O(1) alternations. Thus the overall
depth is O(log log n). ut

Corollary 1. For every n and t ≤ n, Exact-Countnt has a poly log AC0 proof
system.

Proof. We follow the same approach as Theorem 7. We redefine consistent as
follows: For any node u of T , let l(u) denote the label of u. A node u with children
v, w is consistent if l(u) = l(v) + l(w). Let the output of our proof system be
y1, . . . , yn. The construction is as follows:

– If all nodes on the path from (k − 1, k] to the root in T are consistent, then
yk = ak.

– Otherwise, let u = (p, q] be the topmost node along the path from (k− 1, k]
to the root that is not consistent. We output yk = 1 if k − p ≤ l(u), 0
otherwise.

That is, for u = (i, j] labeled `(u), if L = min{`(u), j− i}, use feasibility witness
1L0j−i−L. ut

4 2TAUT, Reachability and NC0 proof systems

In this section, we first look at the language Undirected Reachability, which is
known to be in (and complete for) L ([15]). Intuitively, the property of connec-
tivity is a global one. However, viewing it from a different angle gives us a way

to construct an NC0 proof system for it under the standard adjacency matrix
encoding (i.e., our proof system will output adjacency matrices of all graphs that
have a path between s and t, and of no other graphs). In the process, we give
an NC0 proof system for the set of all undirected graphs that are a union of
edge-disjoint cycles.

Define the following languages:

uSTConn =

{
A ∈ {0, 1}n×n|

A is the adjacency matrix of an undirected graph
G where vertices s = 1, t = n are in the same
connected component.

}

Cycles =

{
A ∈ {0, 1}n×n|

A is the adjacency matrix of an undirected graph
G = (V,E) where E is the union of edge-disjoint
simple cycles.

}
(For simplicity, we will say G ∈ uSTConn or G ∈ Cycles instead of referring
to the adjacency matrices.)

Theorem 8. The language uSTConn has an NC0 proof system.

Proof. We will need an addition operation on graphs: G1⊕G2 denotes the graph
obtained by adding the corresponding adjacency matrices modulo 2. We also
need a notion of upward closure: For any language A, UpClose(A) is the lan-
guage B = {y : ∃x ∈ A, |x| = |y|,∀i, xi = 1 =⇒ yi = 1}. In particular, if
A is a collection of graphs, then B is the collection of super-graphs obtained
by adding edges. Note that (undirected) reachability is monotone and hence
UpClose(uSTConn) = uSTConn.

Let L1 = {G = G1 ⊕ (s, t)|G1 ∈ Cycles} and L2 = UpClose(L1). We show:

1. L2 = uSTConn.
2. If L1 has an NC0 proof system, then L2 has an NC0 proof system.
3. If Cycles has an NC0 proof system, then L1 has an NC0 proof system.
4. Cycles has an NC0 proof system.

Proof of 1: We show that L1 ⊆ uSTConn ⊆ L2. Then applying upward closure,
L2 = UpClose(L1) ⊆ UpClose(uSTConn) = uSTConn ⊆ UpClose(L2) = L2.

L1 ⊆ uSTConn: Any graph G ∈ L1 looks like G = H ⊕ (s, t), where H ∈
Cycles. If (s, t) /∈ H, then (s, t) ∈ G and we are done. If (s, t) ∈ H, then s
and t lie on a cycle C and hence removing the (s, t) edge will still leave s and t
connected by a path C \ {(s, t)}.

uSTConn ⊆ L2: Let G ∈ uSTConn. Let ρ be an s-t path in G. Let H =
(V,E) be a graph such that E = edges in ρ. Then, G ∈ UpClose({H}). We can
write H as H ′ ⊕ (s, t) where H ′ = H ⊕ (s, t) = ρ ∪ (s, t); hence H ′ ∈ Cycles.
Hence H ∈ L1, and so G ∈ L2.
Proof of 2: We show a more general construction for monotone properties, and
then use it for uSTConn.

Recall that a function f is monotone if whenever f(x) = 1 and y domi-
nates x (that is, ∀i ∈ [n], xi = 1 ⇒ yi = 1), then it also holds that f(y) = 1.

For such a function, a string x is a minterm if f(x) = 1 but x does not dom-
inate any z with f(z) = 1. Minterms(f) denotes the set of all minterms of f .
Clearly, Minterms(f) ⊆ f−1(1). The following lemma states that for any mono-
tone function f , constructing a proof system for a language that sits in between
Minterms(f) and f−1(1) suffices to get a proof system for f−1(1).

Lemma 1. Let f : {0, 1}∗ −→ {0, 1} be a monotone boolean function and let
L = f−1(1). Let Ln = L∩{0, 1}n. Let L′ be a language such that for each length
n, (Minterms(L) ∩ {0, 1}n) ⊆ (L′ ∩ {0, 1}n) ⊆ Ln. If L′ has a proof system of
depth d, size s and a alternations, then L has a proof system of depth d+ 1, size
s+ n and at most a+ 1 alternations.

Proof. Let C be a proof circuit for L′ that takes input string x. We construct
a proof system for L using C and asking another input string y ∈ {0, 1}n. The
i’th output bit of our proof system is C(x)i ∨ yi. ut

Now note that Minterms(uSTConn) is exactly the set of graphs where the
edge set is a simple s-t path. We have seen that L1 ⊆ uSTConn. As above, we
can see that H ∈ Minterms(uSTConn) =⇒ H⊕(s, t) ∈ Cycles =⇒ H ∈ L1.
Statement 2 now follows from Lemma 1.
Proof of 3: Let A be the adjacency matrix output by the the NC0 proof system
for Cycles. The proof system for L1 outputs A′ such that A′[s, t] = A[s, t] and
rest of A′ is same as A.
Proof of 4: This is of independent interest, and is proved in theorem 9 below.

This completes the proof of theorem 8. ut

We now construct NC0 proof systems for the language Cycles.

Theorem 9. The language Cycles has an NC0 proof system.

Proof. To design an NC0 proof system for Cycles, we derive our intuition from
algebra.

Let T be a family of graphs. We say that an edge e is generated by a sub-
family S ⊆ T if the number of graphs in S which contain e is odd. We say
that the family T generates a graph G if there is some sub-family S ⊆ T such
that every edge in G is generated by S, and no other edge is generated. We first
observe that to generate every graph in the set Cycles, we can set T to be the
set of all triangles. Given any cycle, it is easy to come up with a set of traingles
that generates the cycle; namely, take any triangulation of the cycle. Therefore,
if we let T be the set of all triangles on n vertices, it will generate every graph
in Cycles. Also, no other graph will be generated because any set S ⊆ Cycles
generates a set contained in Cycles (see Lemma 2 below). This immediately
gives a proof system for Cycles: given a vector x ∈

(
n
3

)
, we will interpret it as

a subset S of triangles. We will output an edge e if it is a part of odd number
of triangles in S. Finally, because of the properties observed above, any graph
generated in this way will be a graph from the set Cycles.

Unfortunately, this is not an NC0 proof system because to decide if an edge is
generated, we need to look at Ω(n) triangles. For designing an NC0 proof system

we need to come up with a set of triangles such that for any graph G ∈ Cycles,
every edge in G is a part of O(1) triangles.

So on the one hand, we want the set of triangles to generate every graph in
Cycles, and on the other hand we need that for any graph G ∈ Cycles, every
edge in G is a part of O(1) triangles. We show that such a set of triangles indeed
exists.

Thus our task now is to find a set of triangles T ⊆ Cycles such that:

1. Every graph in Cycles can be generated using triangles from T . i.e.,

Cycles ⊆ Span(T) ,


|T |∑
i=1

aiti | ∀i, ai ∈ {0, 1}, ti ∈ T


2. Every graph generated from triangles in T is in Cycles; Span(T) ⊆ Cycles.
3. ∀u, v ∈ [n], the edge (u, v) is contained in at most 6 triangles in T .

Once we find such a set T , then our proof system asks as input the coefficients
ai which indicate the linear combination needed to generate a graph in Cycles.
An edge e is present in the output if, among the triangles that contain e, an
odd number of them have coefficient set to 1 in the input. By property 3, each
output edge needs to see only constant many input bits and hence the circuit
we build is NC0. We will now find and describe T in detail.

Let the vertices of the graph be numbered from 1 to n. Define the length of
an edge (i, j) as |i − j|. A triple 〈i, j, k〉 denotes the set of triangles on vertices
(u, v, w) where |u− v| = i, |v − w| = j, and |u− w| = k. We now define the set

T =

n/2⋃
i=1

〈i, i, 2i〉 ∪ 〈i, i+ 1, 2i+ 1〉

Observation It can be seen that |T | ≤ 3
2n

2. This is linear in the length of the
output, which has

(
n
2

)
independent bits.

We now show that T satisfies all properties listed earlier.
T satisfies property 3: Take any edge e = (u, v). Let its length be l = |u−v|. e
can either be the longest edge in a triangle or one of the two shorter ones. If l is
even, then e can be the longest edge for only 1 triangle in T and can be a shorter
edge in at most 4 triangles in T . If l is odd, then e can be the longest edge for
at most 2 triangles in T and can be a shorter edge in at most 4 triangles. Hence,
any edge is contained in at most 6 triangles. T satisfies property 2: To see
this, note first that T ⊆ Cycles. Next, observe the following closure property
of cycles:

Lemma 2. For any G1, G2 ∈ Cycles, the graph G1 ⊕G2 ∈ Cycles.

Proof. A well-known fact about connected graphs is that they are Eulerian if and
only if every vertex has even degree. The analogue for general (not necessarily
connected) graphs is Veblen’s theorem [16], which states that G ∈ Cycles if
and only if every vertex in G has even degree.

Using this, we see that if for i ∈ [2], Gi ∈ Cycles and if we add the adjacency
matrices modulo 2, then degrees of vertices remain even and so the resulting
graph is also in Cycles. ut

It follows that Span(T) ⊆ Cycles.
T satisfies property 1: We will show that any graph G ∈ Cycles can be
written as a linear combination of triangles in T . Define, for a graph G, the
parameter d(G) = (l,m) where l is the length of the longest edge in G and m is
the number of edges in G that have length l. For graphs G1, G2 ∈ Cycles, with
d(G1) = (l1,m1) and d(G2) = (l2,m2), we say d(G1) < d(G2) if and only if either
l1 < l2 holds or l1 = l2 and m1 < m2. Note that for any graph G ∈ Cycles
with d(G) = (l,m), l ≥ 2.

Claim. Let G ∈ Cycles. If d(G) = (2, 1), then G ∈ T .

Proof. It is easy to see that G has to be a triangle with edge lengths 1, 1 and 2.
All such triangles are contained in T by definition. ut

Lemma 3. For every G ∈ Cycles with d(G) = (l,m), either G ∈ T or there is
a t ∈ T , and H ∈ Cycles such that G = H ⊕ t and d(H) < d(G).

Proof. If G ∈ T , then we are done. So now consider the case when G /∈ T :
Let e be a longest edge in G. Let C be the cycle which contains e. Pick t ∈ T

such that e is the longest edge in t. G can be written as H ⊕ t where H = G⊕ t.
From Lemma 2 and since T ⊆ Cycles, we know that H ∈ Cycles. Let t have
the edges e, e1, e2. Any edge present in both G and t will not be present in H.
Since e ∈ G ∩ t, e /∈ H. Length of e1 and e2 are both less than l since e was the
longest edge in t. Hence the number of times an edge of length l appears in H
is reduced by 1 and the new edges added(if any) to H (namely e1 and e2) have
length less then l. Hence if m > 1, then d(H) = (l,m − 1) < d(G). If m = 1,
then d(H) = (l′,m′) for some m′ and l′ < l, and hence d(H) < d(G). ut

By repeatedly applying Lemma 3, we can obtain the exact combination of
triangles from T that can be used to give any G ∈ Cycles. A more formal
proof will proceed by induction on the parameter d(G) and each application of
Lemma 3 gives a graph H with a d(H) < d(G) and hence allows for the induction
hypothesis to be applied. The base case of the induction is given by Lemma 4.
Hence T satisifes property 1.

Since T satisfies all three properties, we obtain an NC0 proof system for
Cycles, proving the theorem. ut

The above proof does not work for directed Reach. However, we can show
that directed un-reachability can be captured by NC0 proof systems.

Theorem 10. The language UnReach defined below has an NC0 proof system
under the standard adjacency matrix encoding.

UnReach =

{
A ∈ {0, 1}n×n| A is the adjacency matrix of a directed graph G

with no path from s = 1 to t = n.

}

Proof. As proof, we take as input an adjacency matrix A and an n-bit vector
X with X(s) = 1 and X(t) = 0 hardwired. Intuitively, X is like a characteristic
vector that represents all vertices that can be reached by s.

The adjacency matrix B output by our proof system is:

B[i, j] =

{
1 if A[i, j] = 1 and it is not the case that X(i) = 1 and X(j) = 0,
0 otherwise

Soundness: No matter what A is, X describes an s, t cut since X(s) = 1 and
X(t) = 0. So any gaph output by the proof system will not have a path from s
to t.
Completeness: For any G ∈ UnReach, use the adjacency matrix of G as A and
give input X such that X(v) = 1 for a vertex v if and only if v is reachable from
s. ut

5 Pushing the Bounds

We know that any language in NP has AC0 proof systems. Srikanth Srinivasan
recently showed that AC0, or more precisely Ω(log n) depth in a bounded fanin
model, is necessary for some languages in NP. We sketch his proof below.

Theorem 11 (Srikanth Srinivasan (private communication)). There is a
language A in NP such that any bounded-fanin proof system for A needs Ω(log n)
depth.

Proof. Let A ⊆ {0, 1}n be an error correcting code of constant rate and linear
distance that can be efficiently computed. Such codes are known to exist. See for
example [17]. Suppose there is a proof system Cn : {0, 1}m −→ {0, 1}n of depth
d that outputs exactly the strings in A. Assume that C is non-degenerate. i.e.,
for every input position i, ∃x ∈ {0, 1}m such that C(x) 6= C(x ⊕ ei). Note that
m ≥ n since A is constant rate (|A ∩ {0, 1}n| = 2Ω(n)). Note that each output
bit is a function of at most 2d input bits. By an averaging argument, there exists
an input position i such that xi is connected to at most 2d output positions.
For this i, let x be an input such that C(x) 6= C(x ⊕ ei). But since C(x) and
C(x ⊕ ei) are both codewords in A, they must differ in at least 2Ω(n) positions
since A is has linear distance. This implies that xi is connected to at least 2Ω(n)

output positions and so d = Ω(log n). ut

However, we note that proof systems for a big fragment of NP do not require
the full power of AC0. In particular, for every language in NP, an extremely
simple padding yields another language with simpler proof systems.

Theorem 12. Let L be any language in NP.

1. If L contains 0∗, then L has a proof system where negations appear only at
leaf level, ∧ gates have unbounded fanin, ∨ gates have O(1) fanin, and the
depth is O(1). That is, L has a coSAC0 proof system.

2. If L contains 1∗, then L has a proof system where negations appear only at
leaf level, ∨ gates have unbounded fanin, ∧ gates have O(1) fanin, and the
depth is O(1). That is, L has an SAC0 proof system.

3. The language ({1}·L·{0})∪0∗∪1∗ has both SAC0 and coSAC0 proof systems.

Proof. Let L be a language in NP. Then there is a family of uniform polynomial-
sized circuits (Cn), where each Cn has q(n) gates, n standard inputs x and p(n)
auxiliary inputs y, such that for each x ∈ {0, 1}n, x ∈ L⇐⇒ ∃y : Cn(x, y) = 1.
We use this circuit to construct the proof system. The input to the proof system
consists of words x = x1 . . . xn, y = y1 . . . yp(n), z = z1 . . . zq(n). The intention
is that y represents the witness such that Cn(x, y) = 1, and z represents the
vector of values computed at each gate of Cn on input x, y. There are two ways
of doing self-correction with this information:

– Check for consistency: Check that every gate gi = gj ◦gk satisfies zi = zj ◦zk.

Output the string w where 〈w〉 = 〈x〉∧ (
∧q(n)
i=1 [zi = zj ◦ zk]). If even one gate

is inconsistent, w equals 0∗, otherwise w is the input x that has been certified
by y, z; hence w is in L ∪ 0∗. Every string in L can be produced by giving
witness y and consistent z. The expression shows that this is a coSAC0

circuit.
– Look for an inconsistency: Find a gate gi = gj ◦ gk where zi 6= zj ◦ zk.

Output the string w where 〈w〉 = 〈x〉∨ (
∨q(n)
i=1 [zi 6= zj ◦ zk]). If even one gate

is inconsistent, w equals 1∗, otherwise w equals the input x that has been
certified by y, z; hence w is in L ∪ 1∗. Every string in L can be produced by
giving suitable y, z. The expression shows that this is an SAC0 circuit.

ut

Ideally, we would like to have a notion of a reduction ≤ such that if A ≤ B
and if A needs Ω(d) depth in proof systems, then so does B. Such a notion was
implicitly used in proving Theorem 8; we showed that a lower bound for Cycles
translated to a lower bound for uSTConn. However, part 3 of theorem 12 sug-
gests that for NC0 proof systems in general, such “reductions” are necessarily
rather fragile, and we do not yet see what is a reasonable and robust definition to
adopt. Using some reduction-like techniques, we can give depth lower bounds for
proof systems for some more languages. We collect some such results in Lemma 4
below; all start from the hardness of Maj.

Using Lemma 1 and the known lower bound for Maj from [11], we can show
that the following languages have no NC0 proof systems:

Lemma 4. The following languages do not have NC0 proof systems.

1. ExMaj, consisting of strings x with exactly d|x|/2e 1s.
2. EqualOnes = {xy | x, y ∈ {0, 1}∗, |x| = |y|, |x|1 = |y|1}.
3. GI = {G1, G2 | Graph G1 is isomorphic to graph G2}.

Here we assume that G1 and G2 are specified via their 0-1 adjacency matri-
ces, and that 1s on the diagonal are allowed (the graphs may have self-loops).

Proof. 1. To show that ExMaj does not have NC0 proof systems, note that:

– The language Maj does not have NC0 proof systems (See [11]).

– Minterms(Maj) = ExMaj; Maj = UpClose(ExMaj).

– Lemma 1 now implies ExMaj does not have an NC0 proof system.

By the same argument, ExMaj restricted to even-length strings, call it
ExMajEven, has no NC0 proof systems.

2. We will show that if EqualOnes has an NC0 proof system, then so does
the language ExMajEven. Consider the slice

EqualOnes=2n = {xy | |x| = |y| = n; x and y have an equal number of 1s}.

If x, y are length-n strings, then xy ∈ EqualOnes=2n if and only if xy′ ∈
ExMajEven, where y′ is the bitwise complement of y. Thus a depth d proof
system for EqualOnes implies a depth d+1 proof system for ExMajEven.

3. Let G1, G2 be n-node isomorphic graphs with adjacency matrices A1, A2.

Then (A1, A2) is in GI=2n2

. Let yb be the string appearing on the diagonal
of Ab. Then y1y2 ∈ EqualOnes=2n.

Conversely, for each xy ∈ EqualOnes=2n where |x| = |y| = n, the pair

(Diag(x),Diag(y)) is in GI=2n2

. (For an n-bit vector w, Diag(w) is the n×n
matrix with w on the diagonal and zeroes elsewhere.)

Thus a depth d proof system for G implies a depth d proof system for
EqualOnes.

ut

6 Discussion

For Maj, we have given a proof system with O(log log n) depth (and O(1) al-
ternations), and it is known from [11] that ω(1) depth is needed. Can this gap
between the upper and lower bounds be closed?

Can we generalize the idea we use in Theorem 8 and apply it to other lan-
guages? In particular, can we obtain good upper bounds using this technique
for the language of s-t connected directed graphs? From the results of [11] and
this paper, we know languages complete for NC1, L, P and NP with NC0 proof
systems. A proof system for Reach would bring NL into this list.

Our construction from Theorem 5 can be generalized to work for languages
accepted by growing-monoids or growing-non-uniform-automata with poly-log
growth rate (see eg [18]). Can we obtain good upper bounds for linearly growing
automata?

In [19], proof systems computable in DLOGTIME are investigated. The tech-
niques used there seem quite different from those that work for small-depth cir-
cuits, especially poly log AC0. Though in both cases each output bit can depend
on at most poly log n input bits, the circuit can pick an arbitrary set of poly log n
bits whereas a DLOGTIME proof system needs to write the index of each bit
on the index tape using up log n time.

References

1. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
annual ACM symposium on Theory of Computing. (1971) 151–158

2. Hirsch, E.A.: Optimal acceptors and optimal proof systems. In: Proceedings of 7th
Annual Conference on Theory and Applications of Models of Computation TAMC,
Springer (2010)

3. Hirsch, E.A., Itsykson, D.: On optimal heuristic randomized semidecision proce-
dures, with application to proof complexity. In: Proceedings of 27th International
Symposium on Theoretical Aspects of Computer Science, STACS. (2010) 453–464

4. Cook, S.A., Kraj́ıček, J.: Consequences of the provability of NP ⊆ P/poly. Journal
of Symbolic Logic 72(4) (2007) 1353–1371

5. Pudlák, P.: Quantum deduction rules. Ann. Pure Appl. Logic 157(1) (2009) 16–29
See also ECCC TR07-032.

6. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44(1) (1979) 36–50

7. Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future.
In: Current Trends in Theoretical Computer Science. World Scientific (2001) 42–70

8. Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic Logic
13(4) (2007) 417–481

9. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-
archy. Mathematical Systems Theory 17(1) (1984) 13–27

10. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: Proceedings
of the 18th Annual ACM Symposium on Theory of Computing STOC. (1986) 6–20

11. Beyersdorff, O., Datta, S., Krebs, A., Mahajan, M., Scharfenberger-Fabian, G.,
Sreenivasaiah, K., Thomas, M., Vollmer, H.: Verifying proofs in constant depth.
ACM Trans. Comput. Theory 5(1) (May 2013) 2:1–2:23 See also ECCC TR012-79.
A preliminary version appeared in [20].

12. Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In: Proceedings
of 26th Symposium on Mathematical Foundations of Computer Science. (2001)
272–284

13. Barrington, D.: Bounded-width polynomial size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences 38
(1989) 150–164

14. Barrington, D., Thérien, D.: Finite monoids and the fine structure of NC1. Journal
of the Association of Computing Machinery 35 (1988) 941–952

15. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008) (Origi-
nally appeared in STOC ’05).

16. Veblen, O.: An application of modular equations in analysis situs. Annals of
Mathematics 14(1/4) (1912) pp. 86–94

17. Justesen, J.: Class of constructive asymptotically good algebraic codes. Informa-
tion Theory, IEEE Transactions on 18(5) (1972) 652–656

18. Bedard, F., Lemieux, F., McKenzie, P.: Extensions to Barrington’s M-program
model. Theoretical Computer Science 107 (1993) 31–61

19. Krebs, A., Limaye, N.: Dlogtime-proof systems. Electronic Colloquium on Com-
putational Complexity (ECCC) 19 (2012) 186

20. Beyersdorff, O., Datta, S., Mahajan, M., Scharfenberger-Fabian, G., Sreenivasaiah,
K., Thomas, M., Vollmer, H.: Verifying proofs in constant depth. In: Proceedings of
36th Mathematical Foundations of Computer Science Symposium, MFCS. (2011)
84–95

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

