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Abstract

We design two deterministic polynomial time algorithms for variants of a problem introduced
by Edmonds in 1967: determine the rank of a matrix M whose entries are homogeneous linear
polynomials over the integers. Given a linear subspace B of the n×n matrices over some field F,
we consider the following problems: symbolic matrix rank (SMR) is the problem to determine the
maximum rank among matrices in B, while symbolic determinant identity testing (SDIT) is the
question to decide whether there exists a nonsingular matrix in B. The constructive versions of
these problems are asking to find a matrix of maximum rank, respectively a nonsingular matrix,
if there exists one.

Our first algorithm solves the constructive SMR when B is spanned by unknown rank one
matrices, answering an open question of Gurvits. Our second algorithm solves the constructive
SDIT when B is spanned by triangularizable matrices, but the triangularization is not given
explicitly. Both algorithms work over finite fields of size at least n + 1 and over the rational
numbers, and the first algorithm actually solves (the non-constructive) SMR independently from
the field size. Our main tool to obtain these results is to generalize Wong sequences, a classical
method to deal with pairs of matrices, to the case of pairs of matrix spaces.

1 Introduction

In [Edm67] Edmonds introduced the following problem: Given a matrix M whose entries are
homogeneous linear polynomials over the integers, determine the rank of M . The problem is the
same as determining the maximum rank of a matrix in a linear space of matrices over the rationals.
In this paper we consider the same question and certain of its variants over more general fields.

Let us denote by M(n,F) the linear space of n × n matrices over a field F. We call a linear
subspace B ≤ M(n,F) a matrix space. We define the symbolic matrix rank problem (SMR) over
F as follows: given {B1, . . . , Bm} ⊆ M(n,F), determine the maximum rank among matrices in
B = 〈B1, . . . , Bm〉, the matrix space spanned by Bi’s. The constructive version of SMR is to find
a matrix of maximum rank in B (this is called the maximum rank matrix completion problem in
[Gee99] and in [IKS10]). We refer to the weakening of SMR, when the question is to decide whether
there exists a nonsingular matrix in B, as the symbolic determinant identity testing problem (SDIT),
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the name used by [KI04] (in [Gur04] this variant is called Edmonds’ problem). The constructive
version in that case is to find a nonsingular matrix, if there is one in B. We will occasionally refer
to any of the above problems as Edmonds’ problem.

The complexity of the SDIT depends crucially on the size of the underlying field F. When
|F| is a constant then it is NP-hard [BFS99], on the other hand if the field size is large enough
(say ≥ 2n) then by the Schwartz-Zippel lemma [Sch79, Zip79] it admits an efficient randomized
algorithm [Lov79]. Obtaining a deterministic polynomial-time algorithm for the SDIT would be of
fundamental importance, since Kabanets and Impagliazzo [KI04] showed that such an algorithm
would imply strong circuit lower bounds which seem beyond current techniques.

Previous works on Edmonds’ problems mostly dealt with the case when the given matrices
B1, . . . , Bm satisfy certain property. For example, Lovász [Lov89] considered several cases of SMR,
including when the Bi’s are of rank 1, and when they are skew symmetric matrices of rank 2. These
classes were then shown to have deterministic polynomial-time algorithms [Gee99, Mur00, HKM05,
GIM03, GI05, IKS10], see Section 1.1 for more details.

Another direction also studied is when instead of the given matrices, the generated matrix
space B = 〈B1, . . . , Bm〉 satisfies certain property. Since such a property is just a subset of all
matrix spaces, we also call it a class of matrix spaces. Gurvits [Gur04] has presented an efficient
deterministic algorithm for the SDIT over Q, when the matrix space satisfies the so called Edmonds-
Rado property, whose definition we shall review in Section 1.1. For now we only note that this
class includes R1, the class of rank-1 spanned matrix spaces, where a matrix space B is in R1

if and only if B has a basis consisting of rank-1 matrices over some extension field F′ of the
underlying field F.1 This fact was first shown by Lovász [Lov89] via a theorem of Rado and
Edmonds [Rad42, Edm70, Wel70]. Gurvits stated as an open question the complexity of the SMR
for R1 over finite fields [Gur04, page 456].

The difference between properties of matrices and properties of matrix spaces is critical for
Edmonds’ problems. For example, given matrices B1, . . . , Bm, it is presumably hard to determine
whether B = 〈B1, . . . , Bm〉 is in R1, and to find generating rank-1 matrices for B. Thus the
existence of algorithms for SMR when the Bi’s are rank-1 does not immediately imply algorithms
for matrix spaces in R1.

Our results are in line with Gurvits’ work, namely we present algorithms for two classes of matrix
spaces. To be specific, we consider R1, the class of rank-1 spanned matrix spaces, and the class
of (upper-)triangularizable matrix spaces, where a matrix space B ≤M(n,F) is triangularizable, if
there exist nonsingular C,D ∈M(n,F′) where F′ is an extension field of F, such that for all B ∈ B,
the matrix DBC−1 is upper-triangular.

To ease the description of our results, we make a few definitions and notations. We denote by
rank(B) the rank of a matrix B, and we set corank(B) = n − rank(B). For a matrix space B we
set rank(B) = max{rank(B) | B ∈ B} and corank(B) = n − rank(B). We say that B is singular if
rank(B) < n, that is if B does not contain a nonsingular element, and nonsingular otherwise. For
a subspace U ≤ Fn, we set B(U) = 〈B(u) | B ∈ B, u ∈ U〉. Let c be a nonnegative integer. We say
that U is a c-singularity witness of B, if dim(U) − dim(B(U)) ≥ c, and U is a singularity witness
of B if for some c > 0, it is a c-singularity witness.

Note that if there exists a singularity witness of B then B can only be singular. Let us define
the discrepancy of B as disc(B) = max{c ∈ N | ∃ c-singularity witness of B}. Then it is also clear

1See [Gur02] for an example of a matrix space defined over Q, s.t. it has a rank-1 basis over an extension field,
but no rank-1 basis over Q.

2



that corank(B) ≥ disc(B).
We now state our main theorems.

Theorem 1. Let F be either Q or a finite field. There is a deterministic polynomial-time algorithm
which solves the SMR if B is spanned by rank-1 matrices. Furthermore, if the size of the field F is at
least n+ 1, the algorithm solves the constructive SMR, and it also outputs a corank(B)-singularity
witness.

Theorem 2. Let F be either Q or a finite field of size at least n + 1. There is a deterministic
polynomial-time algorithm which solves the constructive SDIT if B is triangularizable. Furthermore,
over finite fields, when B is singular it also outputs a singularity witness.

We remark that Theorem 1 remains true if we weaken the assumptions by only requiring that
B is rank-1 spanned over some extension field of F rather than over F. Also, instead of assuming
that the whole space B is rank-1 spanned it is actually sufficient to suppose that a subspace of B
of co-dimension one is spanned by rank one matrices. While the first extension can be achieved
easily, the second extension requires some more work (though mostly technical).

1.1 Comparison with previous works

The idea of singularity witnesses was already present in Lovász’s work [Lov89]. Lovász showed that
for the rank-1 spanned case, the equality corank(B) = disc(B) holds, by reducing it to Edmonds’
Matroid Intersection theorem [Edm70], which in turn can be deduced from Rado’s matroidal gen-
eralization of Hall’s theorem [Rad42] (see also [Wel70]). Inspired by this fact, Gurvits defined
the Edmonds-Rado property as the class of matrix spaces which are either nonsingular, or have a
singularity witness. He has listed several subclasses of the Edmonds-Rado class, including R1 and
triangularizable matrices. A well-known example of a matrix space without the Edmonds-Rado
property is the linear space of skew symmetric matrices of size 3 [Lov89].

As we stated already, Gurvits has presented a polynomial-time deterministic algorithm for the
SDIT over Q for matrix spaces with the Edmonds-Rado property. Therefore over Q, his algorithm
covers the SDIT for R1 and for triangularizable matrices. Our algorithms are valid not only over
Q but also over finite fields. In the triangularizable case we also deal with the SDIT, but for R1 we
solve the SMR. In fact, it is not hard to reduce SMR for the general to SMR for the triangularizable
case (see Lemma 26), so we do not expect to solve SMR for the triangularizable case at present. In
both cases the algorithms solve the constructive version of the problems, and they also construct
singularity witnesses, except for the SDIT over the rationals. Finally they work in polynomial time
when the field size is at least n + 1. Moreover, for R1 the algorithm solves the non constructive
SMR in polynomial time regardless of the field size, settling the open problem of Gurvits.

Over fields of constant size, the SMR has certain practical implications [HKM05, HKY06], but
is shown to be NP-hard [BFS99] in general. Some special cases have been studied, mostly in the
form of the mixed matrices, that is linear matrices where each entry is either a variable or a field
element. Then by restricting the way variables appear in the matrices some cases turn out to have
efficient deterministic algorithms, including when every variable appears at most once ([HKM05],
building on [Gee99, Mur00]), and when the mixed matrix is skew-symmetric and every variable
appears at most twice ([GIM03, GI05]). Finally in [IKS10], Ivanyos, Karpinski and Saxena present
a deterministic polynomial-time algorithm for the case when among the input matrices B1, . . . , Bm
all but B1 are of rank 1.
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As a computational model of polynomials, determinants with affine polynomial entries turn
out to be equivalent to algebraic branching programs (ABPs) [Val79, Ber84] up to a polynomial
overhead. Thus the identity test for ABPs is the same as SDIT. For restricted classes of ABPs,
(quasi)polynomial-time deterministic identity test algorithms have been devised (cf. [FS12] and the
references therein). Note that identity test results for SDIT and ABPs are generally incomparable.
An interesting application of SDIT to quantum information processing can be found in [CDS10].

Let us comment briefly on the main technical tool we use in our algorithms. We generalize
the first and second Wong sequences for matrix pencils (essentially two-dimensional matrix spaces)
which have turned out to be useful among others in the area of linear differential-algebraic equa-
tions (see the recent survey [Tre13]). These were originally defined in [Won74] for a pair of matrices
(A,B), and were recently used to compute the Kronecker normal form in a numerical stable way
[BT12, BT13]. We generalize Wong sequences to the case (A,B) where A and B are matrix spaces,
and show that they have analogous basic properties to the original ones. We relate the general-
ized Wong sequences to Edmonds’ problems via singularity witnesses. Essentially this connection
allows us to design the algorithm for R1 using the second Wong sequence, and the algorithm for
triangularizable matrix spaces using the first Wong sequence. We remark that techniques similar
to the second Wong sequence were already used in [IKS10].

Organization. In Section 2 we define Wong sequences of a pair of matrix spaces, and present their
basic properties. In Section 3 the connection between the second Wong sequence and singularity
witnesses is shown. Based on this connection we introduce the power overflow problem, and reduce
the SMR problem to it. We also prove here Theorem 1 under the hypothesis that there is a
polynomial time algorithm for the power overflow problem. In Section 4 we show an algorithm for
the power overflow problem that works in polynomial time for rank-1 spanned matrix spaces. In
Section 5 the algorithm for Theorem 2 is described, which works for triangularizable matrix spaces.
In Section 6 we propose and investigate some natural subclasses of the Edmonds-Rado class.

2 Wong sequences for pairs of matrix spaces

For n ∈ N, we set [n] = {1, . . . , n}. We use 0 to denote the zero vector space. In this section
we generalize the classical Wong sequences of matrix pencils to the situation of pairs of matrix
subspaces. This is the main technical tool in this work. Let V and V ′ be finite dimensional vector
spaces over a field F, and let Lin(V, V ′) be the vector space of linear maps from V to V ′. We set
n = dim(V ) and n′ = dim(V ′). For A ∈ Lin(V, V ′), and linear subspaces A ≤ Lin(V, V ′), U ≤ V
and W ≤ V ′, we define:

• A(U) = {A(u) | u ∈ U}, and A(U) = 〈{A(u) | A ∈ A, u ∈ U}〉;

• A−1(W ) = {v ∈ V | A(v) ∈W}, and A−1(W ) = {v ∈ V | ∀A ∈ A, A(v) ∈W}.

Observe that A(U), A(U) are linear subspaces of V ′, whereas A−1(W ) and A−1(W ) are subspaces
of V . Also note that A(U) = 〈∪A∈AA(U)〉 and A−1(W ) = ∩A∈AA−1(W ). Moreover, if A is spanned
by {A1, . . . , Am}, then A(U) = 〈∪i∈[m]Ai(U)〉, and A−1(W ) = ∩i∈[m]A

−1
i (W ).

Some easy and useful facts are the following.

Fact 3. For A,B ≤ Lin(V, V ′), and U, S ≤ V , W,T ≤ V ′, we have:
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1. If U ⊆ S and W ⊆ T , then A(U) ⊆ A(S) and A−1(W ) ⊆ A−1(T );

2. If B(U) ⊆ A(U) and B(S) ⊆ A(S), then B(〈U ∪ S〉) ⊆ A(〈U ∪ S〉);

3. If B−1(W ) ⊇ A−1(W ) and B−1(T ) ⊇ A−1(T ), then B−1(W ∩ T ) ⊇ A−1(W ∩ T );

4. A−1(A(U)) ⊇ U , and A(A−1(W )) ⊆W .

We now define the two Wong sequences for a pair of matrix subspaces.

Definition 4. Let A,B ≤ Lin(V, V ′). The sequence of subspaces (Ui)i∈N of V is called the
first Wong sequence of (A,B), where U0 = V , and Ui+1 = B−1(A(Ui)). The sequence of sub-
spaces (Wi)i∈N of V ′ is called the second Wong sequences of (A,B), where W0 = 0, and Wi+1 =
B(A−1(Wi)).

When A = 〈A〉 and B = 〈B〉 are one dimensional matrix spaces, the first Wong sequence
corresponds to the classical first Wong sequence for the matrix pencil Ax − B, and (A−1(Wi))i∈N
corresponds to the classical second Wong sequence for the matrix pencil Ax−B [Won74, BT12].

The following properties are straightforward generalizations of those for classical Wong se-
quences. We start by considering the first Wong sequence.

Proposition 5. Let (Ui)i∈N be the first Wong sequence of (A,B). Then for all i ∈ N, we have
Ui+1 ⊆ Ui. Furthermore, Ui+1 = Ui if and only if B(Ui) ⊆ A(Ui).

Proof. Firstly we show that Ui+1 ⊆ Ui, for every i ∈ N. For i = 0, this holds trivially. For i > 0,
by Fact 3 (1) we get Ui+1 = B−1(A(Ui)) ⊆ B−1(A(Ui−1)) = Ui, since Ui ⊆ Ui−1.

Suppose now that B(Ui) ⊆ A(Ui), for some i. Then Ui ⊆ B−1(B(Ui)) ⊆ B−1(A(Ui)) respectively
by Fact 3 (4) and (1), which gives Ui+1 = Ui. On the other hand, if B(Ui) 6⊆ A(Ui) then there
exist B ∈ B and v ∈ Ui such that B(v) 6∈ A(Ui). Thus v 6∈ B−1(A(Ui)) = Ui+1, which gives
Ui+1 ⊂ Ui.

Given Proposition 5, we see that the first Wong sequence stabilizes after at most n steps at
some subspace. That is, for any (A,B), there exists ` ∈ {0, . . . , n}, such that U0 ⊃ U1 ⊃ · · · ⊃ U` =
U`+1 = . . . . In this case we call the subspace U` the limit of (Ui)i∈N, and we denote it by U∗.

Proposition 6. U∗ is the largest subspace T ≤ V such that B(T ) ⊆ A(T ).

Proof. By Proposition 6 we know that U∗ satisfies B(U∗) ⊆ A(U∗). Consider an arbitrary T ≤ V
such that B(T ) ⊆ A(T ), we show by induction that T ⊆ Ui, for all i. When i = 0 this trivially
holds. Suppose that T ⊆ Ui, for some i. Then by repeated applications of Fact 3 we have
T ⊆ B−1(B(T )) ⊆ B−1(A(T )) ⊆ B−1(A(Ui)) = Ui+1.

Analogous properties hold for the second Wong sequence (Wi)i∈N. In particular the sequence
stabilizes after at most n′ steps, and there exists a limit subspace W ∗ of (Wi)i∈N. We summarize
them in the following proposition.

Proposition 7. Let (Wi)i∈N be the second Wong sequence of (A,B). Then

1. Wi+1 ⊇Wi, for all i ∈ N. Furthermore, Wi+1 = Wi if and only if B−1(Wi) ⊇ A−1(Wi).

2. The limit subspace W ∗ is the smallest subspace T ≤ V ′ s.t. B−1(T ) ⊇ A−1(T ).
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It is worth to note that the second Wong sequence can be viewed as the dual of the first one
in the following sense. Assume that V and V ′ are equipped with nonsingular symmetric bilinear
forms, both denoted by 〈, 〉. For a linear map A : V → V ′ let AT : V ′ → V stand for the transpose
of A with respect to 〈, 〉. This is the unique map with the property 〈AT(u), v〉 = 〈u,A(v)〉, for all
u ∈ V ′ and v ∈ V . For a matrix space A, let AT be the space {AT|A ∈ A}. For U ≤ V , the
orthogonal subspace of U is defined as U⊥ = {v ∈ V | 〈v, u〉 = 0 for all u ∈ U}. Similarly we define
W⊥ for W ≤ V ′. Then we have ((AT)−1(U)))⊥ = A(U⊥), and (AT(U))⊥ = A−1(U⊥). It can be
verified that if (Wi)i∈N is the second Wong sequence of (A,B) and (Ui)i∈N the first Wong sequence
of (AT,BT), then Wi = U⊥i .

For a matrix space A and a subspace U ≤ V given in terms of a basis we can compute A(U)
by applying the basis elements for A to those of U and then selecting a maximal set of linearly
independent vectors. A possible way of computing A−1(U) for U ≤ V ′ is to compute first U⊥, then
AT(U⊥) and finally A−1(U) = (AT(U⊥))⊥. Therefore we have

Proposition 8. Wong sequences can be computed using (n+ n′)O(1) arithmetic operations.

Unfortunately, we are unable to prove that over the rationals the bit length of the entries of the
bases describing the Wong sequences remain polynomially bounded in the length of the data for A
and B. However, in Section 3.1 we will show that if A = 〈A〉, then the first few members of the
second Wong sequence which happen to be contained in im(A) can be computed in polynomial time
using an iteration of multiplying vectors by matrices from a basis for B and by a pseudo-inverse of
A.

We also observe that if we consider the bases for A and B as matrices over an extension field F′
of F then the members of the Wong sequences over F′ are just the F′-linear spaces spanned by the
corresponding members of the Wong sequences over F. In particular, the limit of the first Wong
sequence over F is nontrivial if and only if the limit of the first Wong sequence over F′ is nontrivial.

3 The second Wong sequence and singularity witnesses

3.1 The connection

As in Section 2, let V and V ′ be finite dimensional vector spaces over a field F, of respective
dimensions n and n′. For A ∈ Lin(V, V ′) we set corank(A) = dim(ker(A)). For B ≤ Lin(V, V ′),
the concepts of c-singularity witnesses, disc(B) and corank(B), defined for the case when n = n′,
can be generalized naturally to B. We also have that corank(B) ≥ disc(B), and that a corank(B)-
singularity witness of B doesn’t exist necessarily. Let A ∈ B, and consider (Wi)i∈N, the second
Wong sequence of (A,B). The next lemma states that the limit W ∗ is basically such a witness
under the condition that it is contained in the image of A. Moreover, in this specific case the limit
can be computed efficiently.

Lemma 9. Let A ∈ B ≤ Lin(V, V ′), and let W ∗ be the limit of the second Wong sequence of (A,B).
There exists a corank(A)-singularity witness of B if and only if W ∗ ⊆ im(A). If this is the case,
then A is of maximum rank and A−1(W ∗) is a corank(B)-singularity witness.

Proof. We prove the equivalence. Firstly suppose that W ∗ ⊆ im(A). Then dim(A−1(W ∗) =
dim(W ∗) + dim(ker(A)). Since W ∗ = B(A−1(W ∗)) and dim(ker(A)) = corank(A), it follows that
A−1(W ∗) is a corank(A)-singularity witness of B.
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Let us now suppose that some U ≤ V is a corank(A)-singularity witness, that is dim(U) −
dim(B(U)) ≥ corank(A). Then dim(U)−dim(A(U)) ≥ corank(A) because A ∈ B. Since the reverse
inequality always holds without any condition on U , we have dim(U) − dim(A(U)) = corank(A).
Similarly we have dim(U)− dim(B(U)) = corank(A) which implies that dim(A(U)) = dim(B(U)),
and therefore A(U) = B(U). For a subspace S ≤ V the equality dim(S)− dim(A(S)) = corank(S)
is equivalent to ker(A) ⊆ S, thus we have ker(A) ⊆ U from which it follows that U = A−1(A(U)).
But then B−1(A(U)) = B−1(B(U)) ⊇ U = A−1(A(U)). Since W ∗ is the smallest subspace T ≤ V ′

satisfying B−1(T ) ⊇ A−1(T ), we can conclude that W ∗ ⊆ A(U).
The existence of a corank(A)-singularity witness obviously implies that A is of maximum rank,

and when W ∗ ⊆ im(A) we have already seen that A−1(W ∗) is a corank(A)-singularity witness of
B. Since corank(A) = corank(B), it is also a corank(B)-singularity witness.

We would like to find an efficient way of testing whether W ∗ ⊆ im(A) for a given A ∈ B. In
the computation of the limit W ∗ of the second Wong sequence of (A,B) the computationally hard
step is applying iteratively A−1. We overcome this difficulty by introducing a pseudo-inverse of A
in the computation. We describe now this method.

Let n = dim(V ) and n′ = dim(V ′). First of all we can assume without loss of generality that
n = n′. Indeed, in case n < n′ we can add as a direct complement a suitable space to V on which
B acts as zero, and in case n > n′, we can embed V ′ into a larger space. In terms of matrices, this
means augmenting the elements of B by zero columns or zero rows to obtain square matrices. This
procedure affects neither the ranks of the matrices in B nor the singularities.

We say that a nonsingular linear map A′ : V ′ → V is a pseudo-inverse of A if the restriction
of A′ to im(A) is the inverse of the restriction of A to a direct complement of ker(A). Such a map
can be efficiently constructed as follows. Choose a direct complement U of ker(A) in V as well as
a direct complement U ′ of im(A) in V ′. Then take the map A′0 : im(A)→ U such that AA′0 is the
identity of im(A) and take an arbitrary nonsingular linear map A′1 : U ′ → ker(A). Finally let A′

be the direct sum of A′0 and A′1.

Lemma 10. Let A ∈ B ≤ Lin(V, V ′) and let A′ be a pseudo-inverse of A. There exists a corank(A)-
singularity witness if and only if

(BA′)i(ker(AA′)) ⊆ im(A),

for i ∈ [n]. This can be tested in polynomial time, and if the condition holds then A is of maximum
rank and A′(W ∗) is a corank(B)-singularity witness which also can be computed in polynomial time.

Proof. By Lemma 9 a corank(A)-singularity witness exists if and only if Wi ⊆ im(A), for i =
1, . . . , n. We claim that for i = 1, . . . , n, if Wi−1 ≤ im(A) then Wi = (BA′)i(ker(AA′)), from which
the equivalence follows. The proof is by induction. For i = 1 the claim W1 = BA′(ker(AA′)) holds
since ker(AA′) = A′−1(ker(A)). For i > 1, by definition Wi = BA−1(Wi−1). Since every subspace
W ≤ im(A) satisfies A−1W = A′W , we get Wi = BA′(Wi−1), and can conclude by the inductive
hypothesis using ker(AA′) = A′−1 ker(A)

Based on this equivalence, testing the existence of a corank(A)-singularity witness can be ac-
complished by the following simple algorithm. First compute a basis for B, and then multiply it by
A′ to obtain a basis for BA′. Compute also a basis for ker(AA′). We now describe how to compute
bases for the subspaces in the second Wong sequence until either we find i such that Wi 6⊆ im(A)
or we compute W ∗. A basis for W1 can be obtained by applying the basis elements of BA′ to the
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basis elements of kerAA′ and then selecting a maximal set of linearly independent vectors. Having
computed a basis for Wi, we stop if it contains an element outside im(A). Otherwise we apply the
basis elements of BA′ to the basis elements of Wi, and select a maximal set of linearly independent
vectors to obtain a basis for Wi+1. When Wi+1 = Wi we can stop since W ∗ = Wi.

If we find that the condition holds than A′(W ∗) by Lemma 9 is a corank(B)-singularity witness,
and it can be easily computed from W ∗.

3.2 The power overflow problem

For A ∈ B ≤ Lin(V, V ′), we would like to know whether A is of maximum rank in B. With the help
of the limit W ∗ of the second Wong sequence of (A,B) we have established a sufficient condition:
we know that if W ∗ ⊆ im(A) then A is indeed of maximum rank. Our results until now don’t give a
sufficient condition for the maximum rank. Now we show that the second Wong sequence actually
allows to translate this question to the power overflow problem (PO) which we define below. As
a consequence an efficient solution of the PO guarantees an efficient solution for the SMR. The
reduction is mainly based on a theorem of Atkinson and Stephens which essentially says that over
big enough fields, in 2-dimensional matrix spaces B, the equality corank(B) = disc(B) holds.

Proposition 11 ([AS78]). Assume that |F| > n, and let A,B ∈ Lin(V, V ′). If A is a maximum
rank element of 〈A,B〉 then there exists a corank(A)-singularity witness of 〈A,B〉.

Combining Lemma 10 and Proposition 11 we get also a sufficient (actually equivalent) condition
for A being of maximum rank.

Lemma 12. Assume that |F| > n. Let A ∈ B ≤ Lin(V, V ′), and let A′ be a pseudo-inverse of A.
Then A is of maximum rank in B if and only if for every B ∈ B and for all i ∈ [n], we have

(BA′)i(ker(AA′)) ⊆ im(A).

Proof. First observe that A is of maximum rank in B if and only if for every B ∈ B, it is of
maximum rank in 〈A,B〉. For a fixed B, by Proposition 11 and Lemma 10, A is of maximum rank
in 〈A,B〉 exactly when (〈B,A〉A′)i(ker(AA′)) ⊆ im(A), for all i ∈ [n]. From that we can conclude
since A′ is the inverse of A on im(A).

This lemma naturally leads us to reduce the problems of deciding if A is of the maximum rank,
and finding a matrix of rank larger than A when this is not the case, to the following question.

Problem 13 (The power overflow problem). Given D ≤ M(n,F), U ≤ Fn and U ′ ≤ Fn, output
D ∈ D and ` ∈ [n] such that D`(U) 6⊆ U ′, if there exists such (D, `). Otherwise say no.

The power overflow problem admits an efficient randomized algorithm when |F| = Ω(n). For
the rank-1 spanned case we show a deterministic solution regardless of the field size.

Theorem 14. Let D ≤ M(n,F) be spanned by rank-1 matrices. Then there exists D ∈ D and
` ∈ [n] such that D`(U) 6⊆ U ′ if and only if there exists ` ∈ [n] such that D`(U) 6⊆ U ′. The power
overflow problem for D can be solved in polynomial time.

Using this result we are now ready to prove Theorem 1.
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Proof of Theorem 1. First we suppose that |F| ≥ n + 1. Let A be an arbitrary matrix in
B. The algorithm iterates the following process until A becomes of maximum rank.

We run the algorithm of Lemma 10 to test whether (BA′)i(ker(AA′)) ⊆ im(A) for i ∈ [n].
If this condition holds then A is of maximum rank, and the algorithm also gives a corank(B)-
singularity witness. Otherwise we know by Theorem 14 that there exists B ∈ B and i ∈ [n] such
that (BA′)i(ker(AA′)) 6⊆ im(A). We apply the algorithm of Theorem 14 with input BA′, ker(AA′)
and im(A), which finds such a couple (B, i). Lemma 12 applied to 〈A,B〉 implies that A is not
of maximum rank in 〈A,B〉. If A has rank r ≤ n − 1 which is not maximal in 〈A,B〉, then the
determinant of an appropriate (r + 1) × (r + 1) minor is a nonzero polynomial of degree at most
r+ 1 which has at most r+ 1 ≤ n roots. We then pick n+ 1 arbitrary field elements λ1, . . . , λn+1,
and we know that for some 1 ≤ j ≤ n + 1 we have rank(A + λjB) > rank(A). We replace A by
A+ λjB and restart the process from the beginning.

At the end each iteration we can achieve by a reduction procedure described in [dGIR96] that
the matrix A, written as a linear combination of B1, . . . , Bm has coefficients form a fixed subset
K ⊆ F of size n + 1. In fact, if A = α1B1 + α2B2 . . . + αmBm has rank r then for at least one
κ1 ∈ K the matrix κ1B1 + α2B2 . . . + αmBm has rank at least r. This way all the coefficients αj
can be replaced with an appropriate element from K.

The number of iterations is at most n, and each iteration takes polynomial many steps since
the processes of Lemma 10 and Theorem 14 are polynomial. Therefore the overall running time is
also polynomial. 2

We can compute the maximum rank over a field of size less than n + 1 by running the above
procedure over a sufficiently large extension field. The maximum rank will not grow if we go over
an extension. This follows from the fact that the equality corank(B) = disc(B) holds over any field
if B is spanned by an arbitrary matrix and by rank one matrices, see [IKS10].

4 The power overflow problem for rank-1 spanned matrix spaces

In this section we prove Theorem 14. Suppose we are given subspaces U,U ′ of Fn as well as a basis
{D1, . . . , Dm} for a matrix space D ≤ M(n,F). We will show is that in polynomial time we can
decide if D`(U) 6⊆ U ′ for some `, and if this holds then find D ∈ D such that D`(U) 6⊆ U ′.

Formally we define ` = `(D) as the smallest integer j such that Dj(U) 6⊆ U ′ if such an integer
exists, and n otherwise. We start with computing ` and for 1 ≤ j ≤ `, bases Tj for Dj . We set
T1 = {D1, . . . , Dm}. If Dj(U) 6⊆ U ′ then we set ` = j and stop constructing further bases. If
j = n and Dn(U) ⊆ U ′ then we stop the algorithm and output no. Otherwise we compute Tj+1 by
selecting a maximal linearly independent set form the products of elements in Tj and T1.

We are now looking for D such that D`(U) 6⊆ U ′. For i ∈ [`], we define subspaces Hi of D,
which play a crucial role in the algorithm:

Hi = {X ∈ D | D`−jXDj−1(U) ⊆ U ′, j = 1, . . . , i− 1, i+ 1, . . . , `}.

That is, X ∈ Hi if and only if whenever X appears in a place other than the ith in a product P of
` elements from D then P (U) ⊆ U ′. The subspaces Hi can be computed as follows. Let x1, . . . , xm
be formal variables, a generic element in D can be written as X =

∑
k∈[m] xkDk. The condition

D`−jXDj−1(U) ⊆ U ′
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is equivalent to the set of the following homogeneous linear equations in the variables xk:

〈Z(
∑
k∈[m]

xkDk)Z
′u, v〉 = 0,

where Z is from T`−j , Z ′ is from Tj−1, u is from a basis for U and v is from a basis for U ′⊥. Thus
Hi can be computed by solving a a system of polynomially many homogeneous linear equations.
Note that the coefficients of the equations are scalar products of vectors from a basis for U ′⊥ by
vectors obtained as applying products of ` matrices from {D1, . . . , Dm} to basis elements for U .
The definition of Hi implies the following.

Lemma 15. For a matrix X = X1 + . . . + X` with Xi ∈ Hi, we have X`(U) ⊆ U ′ if and only if
X` · · ·X2X1(U) ⊆ U ′.

Proof. We have Xm =
∑

σXσ(`) · · ·Xσ(1), where the summation is over the maps σ : [`] →
[`]. When σ is not the identity map then there exists an index j such that σ(j) 6= j. Then
Xσ(`) · · ·Xσ(1)(U) ⊆ U ′ by the definition of Hσ(j).

In general,Hi can be zero. In our setting, due to the existence of rank one generators, fortunately
this is far from the case. Recall that ` is the smallest integer such that D`(U) 6⊆ U ′.

Lemma 16. We have H` · · ·H1(U) 6⊆ U ′.

Proof. Assume that D is spanned by the rank one matrices C1, . . . , Cm. Then there exist indices
k1, . . . , k` such

Ck` · · ·Ck1(U) 6⊆ U ′.

We show that Cki ∈ Hi, for i ∈ [`], this implies immediately H` · · ·H1(U) 6⊆ U ′. Assume by
contradiction that Cki 6∈ Hi, for some i ∈ [`]. Then

D`−jCkiD
j−1(U) 6⊆ U ′

for some j 6= i. On the other hand Cki satisfies that

D`−iCkiD
i−1(U) 6⊆ U ′.

Since Cki is of rank 1 we have that

CkiD
j−1(U) = CkiD

i−1(U),

which yields that neither D`−iCkiDj−1(U) nor D`−jCkiDi−1(U) is contained in U ′. However one of
these products is shorter than `, contradicting the minimality of `.

To finish the algorithm, we compute bases for products Hi · · ·H1, for i ∈ [n], in a way sim-
ilar to computing bases for Di. Then we search the basis of H` for an element Z such that
ZH`−1 · · ·H1(U) 6⊆ U ′. We put X` = Z and continue searching the basis of H`−1 for an element Z
such that X`ZH`−2 · · ·H1(U) 6⊆ U ′. Continuing the iteration, Lemma 16 ensures that eventually
we find Xi ∈ Hi, for i ∈ [`], such that X` · · ·X1(U) 6⊆ U ′. We set D = X1 + . . . + X`, then by
Lemma 15 we have D`(U) 6⊆ U ′. We return D and `. 2
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5 The first Wong sequence and triangularizable matrix spaces

5.1 An algorithm over finite and black box fields

Suppose we are given a basis {B1, . . . , Bm} for B ≤ M(n,F) which is triangularizable over an
extension field F′ of F, i. e., Bi = DB′iC

−1 for some nonsingular C,D ∈M(n,F′), and B′i ∈M(n,F′)
is upper triangular for every i ∈ [m]. Our problem is to determine whether there exists a nonsingular
matrix in B or not and finding such a matrix if exists.

Our starting point is to observe the following lemma, which connects first Wong sequences with
singularity witnesses.

Lemma 17. Let A ∈ B ≤ M(n,F), and let U∗ be the limit of the first Wong sequence of (A,B).
Set d = dim(U∗). Then either U∗ is a singularity witness of B, or there exist nonsingular matrices

P,Q ∈ M(n,F), such that ∀B ∈ B, QBP−1 is of the form

[
X Y
0 Z

]
, where X is of size d × d,

and B is nonsingular in the X-block.

Proof. If dim(U∗) > dim(B(U∗)) then U∗ is a singularity witness. If dim(U∗) = dim(B(U∗)) then
the choice of P and Q corresponds to an appropriate basis change transformation. To see that B
is nonsingular in the X-block, note that A ∈ B and A(U∗) = B(U∗).

Lemma 17 suggests a recursive algorithm: take an arbitrary A ∈ B and compute U∗, the limit
of the first Wong sequence of (A,B). If we get a singular witness, we are done. Otherwise, if U∗ 6= 0
we can focus on the nonsingularity of Z-block which is of smaller size. To make this idea work, we
have to satisfy essentially two conditions. We must find some A such that U∗ 6= 0, and to allow for
recursion the specific property of the matrix space B we are concerned with has to be inherited by
the subspace corresponding to the Z-block. It turns out that in the triangularizable case these two
problems can be taken care of by the following lemma.

Lemma 18. Let B ≤M(n,F) given by a basis {B1, . . . , Bm}, and suppose that there exist nonsin-
gular matrices C,D ∈M(n,F′) such that Bi = DB′iC

−1 and B′i ∈M(n,F′) is upper triangular for
every i ∈ [m]. Then we have the following.

1. Either ∩i∈[m] ker(Bi) 6= 0, or there exists j ∈ [m] and 0 6= U ≤ Fn such that Bj(U) = B(U).

2. Suppose that there exists U ≤ Fn such that dim(B(U)) = dim(U). For i ∈ [m], let B∗i :
Fn/U → Fn/B(U) be the linear map induced by Bi. Then B∗ = 〈B∗1 , . . . , B∗m〉 is triangulariz-
able.

Proof. 1. Let {ei | i ∈ [n]} be the standard basis of F′n, and ci = C(ei) and di = D(ei) for i ∈ [n].
If B′i(1, 1) = 0 for all i ∈ [m] then c1 is in the kernel of every Bi’s. If there exists j such that
B′j(1, 1) 6= 0, we set U ′ = 〈c1〉 ≤ F′n. Then it is clear that 〈d1〉 = Bj(U

′) = B(U ′). It follows that
the first Wong sequence of (Bj ,B) over F′ has nonzero limit, and therefore the same holds over F.
We can choose for U this limit.

2. First we recall that for a vector space V of dimension n, a complete flag of V is a nested
sequence of subspaces 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V . For A ≤ Lin(V, V ′) with dim(V ) =
dim(V ′) = n, the matrix space A is triangularizable if and only if there exist complete flags
0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V and 0 = V ′0 ⊂ V ′1 ⊂ · · · ⊂ V ′n = V ′ such that A(Vi) ⊆ V ′i for i ∈ [n].
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For U ≤ Fn and F′ an extension field of F, let F′U be the linear span of U in F′n. We think
of Bi’s and B∗i ’s as linear maps over F′ in a natural way. Let ` = dim(F′n/F′U). For 0 ≤ i ≤ n
set Si = 〈c1, . . . , ci〉 and Ti = 〈d1, . . . , di〉. Obviously B(Si) ⊆ Ti for 0 ≤ i ≤ n. Let S∗i = Si/F′U
and T ∗i = Ti/B(F′U), and consider S∗0 ⊆ · · · ⊆ S∗n and T ∗0 ⊆ · · · ⊆ T ∗n . As B∗(S∗i ) ⊆ T ∗i ,
dim(S∗i+1) − dim(S∗i ) ≤ 1, and dim(T ∗i+1) − dim(T ∗i ) ≤ 1, there must be a pair of complete flags
S∗0 ⊂ S∗j1 ⊂ · · · ⊂ S

∗
j`

= S∗n and T ∗0 ⊂ T ∗k1 ⊂ · · · ⊂ T
∗
k`

= T ∗n , such that B∗(Sjh) ⊆ Tkh for all h ∈ [`].
It follows that B∗ is triangularizable over F′.

Given the above preparation, here is the outline of an algorithm using polynomially many
arithmetic operations. The algorithm recurses on the size of the matrices, with the base case being
the size 1. It checks at the beginning whether ∩i∈[m] ker(Bi) = 0. If this is the case then it returns
∩i∈[m] ker(Bi) which is a singularity witness. Otherwise, for all i ∈ [m], it computes the limit U∗i
of the first Wong sequence for (Bi,B). By Lemma 18 (1) there exists j ∈ [m] such that U∗j 6= 0
and Bj(U) = B(U). The algorithm then recurses on the induced actions B∗i ’s of Bi’s, which are
also triangularizable by Lemma 18 (2). When B is nonsingular the algorithm should return a
nonsingular matrix. This nonsingular matrix is built step by step by the recursive calls, at each
step we have to construct a nonsingular linear combination of Bj and the matrix returned by the
call. For this we need n+ 1 field elements.

We expand the above idea into a rigorous algorithm, called TriAlgo and present it in Al-
gorithm 1. This algorithm requires polynomially many arithmetic operations, and therefore of
polynomial complexity in finite fields. The input of the algorithm can be an arbitrary matrix space
(not necessarily triangularizable), but it may fail in certain cases. For triangularizable matrix spaces
the algorithm would not fail due to Lemma 18. Note that though the algorithm works assuming
triangularizability over some extension field, the algorithm itself does not need to deal with the
field extension explicitly by Lemma 18, given that F is large enough. To allow for recursion, the
output of the algorithm can be one of the following: the first is an explicit linear combination of
the given matrices, which gives a nonsingular matrix. The second is a singular subspace witness.
The third one is Fail.

Regarding implementation, it might be needed to comment on Line 13. At this point we have
that dim(U∗) ≤ dim(B(U∗)) ≤ dim(Bj(U

∗)) ≤ dim(U∗). Thus dim(B(U∗)) = dim(U∗), and note
that Bi(U

∗) ⊆ B(U∗), for all i ∈ [m]. Then two bases of Fn can be formed by extending bases of U∗

and B(U∗) respectively, and w.r.t. these two bases the induced action Bi from Fn/U∗ to Fn/B(U∗)
can be read off easily.

For correctness we distinguish among the types of output of the algorithm, and show that they
indeed have the required property.

If (α1, . . . , αm) is returned: This case occurs in Line 2 and Line 20. Line 2 is trivial. If the
algorithm reaches Line 20, we claim that there exists (λ, µ) ∈ Λ × Λ s.t. λBj + µE is
nonsingular. Let P and Q be the matrices from Lemma 17. Thus ∀i ∈ [m], QBiP

−1 is of

the form:

[
Xi Yi
0 Zi

]
, where Xi is of size (n − `) × (n − `) and Zi is of size ` by `. As Xj

is nonsingular and
∑

i∈[m] αiZi is nonsingular, det(xBj + yE) is a nonzero polynomial, thus
from Schwartz-Zippel lemma the existence of (λ, µ) in Λ× Λ is ensured.

If a subspace of Fn is returned: This case occurs in Line 2, 4, 8 and 16. All are straightforward.

The case of Fail: After Line 3 ∩i∈[m] ker(Bi) = 0. Then Lemma 18 ensures that Fail cannot be
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Algorithm 1: TriAlgo(B1, . . . , Bm)

Input: B = 〈B1, . . . , Bm〉 ⊆M(n,F).
Output: One of the following: (1) (α1, . . . , αm) ∈ Fm s.t.

∑
i∈[m] αiBi is nonsingular. (2) A

singular subspace witness U ≤ Fn. (3) Fail.
// Base case

1 if n = 1 then
2 If ∃ nonzero Bi, return (0, . . . , 1, . . . , 0) where 1 is at the ith position. Otherwise

return Fn.

// Start of the recursive step.

// If ∩i∈[m] ker(Bi) 6= 0 then ∩i∈[m] ker(Bi) is a singular witness itself.

3 if ∩i∈[m] ker(Bi) 6= 0 then

4 return ∩i∈[m] ker(Bi).

5 forall the i ∈ [m] do
6 U∗i ← the limit of the first Wong sequence of (Bi,B).

7 if ∃i ∈ [m], dim(B(U∗i )) < dim(U∗i ) then
8 return U∗i

9 if 6 ∃j s.t. dim(U∗j ) > 0 then

10 return Fail

11 U∗ ← U∗j where U∗j satisfies that dim(U∗j ) > 0;

12 forall the i ∈ [m] do
13 B∗i ← the induced linear map of Bi from Fn/U∗ to Fn/B(U∗).

// Recursive call.

14 X ← TriAlgo(B∗1 , . . . , B
∗
m);

15 if X is a singular subspace witness W/U∗ then
16 return the full preimage of W/U∗ in the canonical projection Fn → Fn/U∗.
17 else if X is (α1, . . . , αm) then
18 Λ← a set of field element of size n+ 1;
19 E ←

∑
i∈[m] αiBi;

20 Choose (λ, µ) ∈ Λ× Λ, s.t. λBj + µE is nonsingular;
21 return (µα1, . . . , µαj−1, µαj + λ, µαj+1, . . . , µαm)

22 else if X = Fail then
23 return Fail
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returned for triangularizable matrix spaces.

5.2 An algorithm over rationals

To obtain a polynomial-time algorithm over rationals, we give first a characterization of triangu-
larizability of a nonsingular matrix space.

Lemma 19. Assume B ≤ M(n,F) contains a nonsingular matrix S. Then B is triangularizable
over F if and only if there exists a nonsingular matrix D ∈M(n,F) such that D−1BS−1D consists
of upper triangular matrices.

Proof. ⇒: Assume thatD−1BC consists of upper triangular matrices. Then C−1S−1D = (D−1SC)−1

is upper triangular as well, whence – as products of upper triangular matrices remain upper trian-
gular – D−1BS−1D = (D−1BC)(C−1S−1D) also consists of upper triangular matrices.
⇐: Assume that D−1BS−1D consists of upper triangular matrices. Put C = S−1D.

We have the following criterion of triangularizability:

Lemma 20. Let A ≤M(n,F) containing the identity matrix and let F′ be the algebraic closure of
F. Then there exists D ∈ M(n,F′) such that D−1AD consists of upper triangular matrices (over
F′) if and only if

(An2
[A,A]An2

)n = (0).

Here [A,A] is the space spanned by the commutators [X,Y ] = XY − Y X (X,Y ∈ A).

Proof. Put D = (A)n
2
. Then D is the matrix algebra generated by A. The formula expresses that

the two-sided ideal of D generated by the commutators from A is nilpotent. Let D′ = F′⊗D. Then
the formula is also equivalent to that the ideal of D′ generated by the commutators is nilpotent.
This is further equivalent to that the factor algebra D′/Rad(D′) is commutative. However, over
an algebraically closed fields a matrix algebra is nilpotent if it is a conjugate of a subalgebra of
the upper triangular matrices. (To see one direction, observe that the whole algebra of the upper
triangular matrices and hence every subalgebra of it has this property. As for reverse implication,
note that all the irreducible representations of an algebra over an algebraically closed field which
is commutative by its radical are one-dimensional and hence a composition series gives a complete
flag consisting of invariant subspaces.)

Corollary 21. Let F be either a finite field or Q. Assume that we are given a nonsingular S ∈ B.
Then there is a polynomial time algorithm which decides whether or not there exists an extension
of F over which B is triangularizable.

Again, we actually have an algorithm using a polynomial number of arithmetic operations and
equality tests in the black box model for F.

With these preparations we are now ready to prove Theorem 2.

Proof of Theorem 2. Over finite fields Algorithm 1 is all we need. Over rationals we shall
perform a reduction to finite fields via Lemma 20.

We assume that B is given by matrices B1, . . . , Bm over Q. Multiplying by a common denom-
inator for the entries, we can achieve the situation when the entries of B1, . . . , Bm are integers.
Let b be a bound on the of absolute values of the entries of B1, . . . , Bm. Then a polynomial-time
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algorithm should run in time polynomial in n and log b. If B is nonsingular then there exist integers
λ1, . . . , λm, each between 0 and n such that S = λ1B1 + . . .+ λmBm is nonsingular. The absolute
value of the determinant of S is a nonzero integer whose logarithm is bounded by a polynomial in
log b and n. It follows that there is a prime p bounded by an (explicit) polynomial in log b and n
that does not divide the determinant of S.

Let S′ = det(S)S−1. We reduce the problem modulo p. We see that S and S′ are integral matri-
ces and both are invertible module p. Furthermore, if B is triangularizable over an extension of Q, by
Lemma 20 all length-n products of elements of the formBi1S

′ · · ·Bin2S
′[Bj1S

′, Bj2S
′]Bk1S

′ · · ·Bkn2S
′

vanish, and this will be the case modulo p as well. It follows that the subspace of matrices over Fp,
spanned by the matrices BiS

′, reduced modulo p, can be triangularized over an extension field of
Fp. But then the space spanned by Bi is also triangularizable.

Thus if B is nonsingular and triangularizable over an extension of Q then there is a prime p
greater than n but smaller than the value of an explicit polynomial function in log b and n, such
that the reduction modulo p gives a nonsingular matrix space which is triangularizable over an
extension field of Fp. The algorithm consists of taking the primes p up the the polynomial limit
and applying the generic method over Fp to the reduced setting. The method either finds a p and
an integer combination of B1, . . . , Bm which is nonsingular even modulo p or, concludes that B
cannot be nonsingular and triangularizable at the same time. 2

6 On the Edmonds-Rado class and some subclasses

6.1 Matrix spaces not in the Edmonds-Rado class

Recall that B ≤ M(n,F) is in the Edmonds-Rado class if either B contains nonsingular matrices,
or B is singular and there exists a singularity witness of B. Recall that in Section 1.1 we defined
the discrepancy disc(B) = max{c ∈ N | ∃ c-singularity witness of B}, and from the definition it
is clear that corank(B) ≥ disc(B). In terms of discrepancy, B is in the Edmonds-Rado class, if
disc(B) = 0 ⇐⇒ corank(B) = 0.

A well-known example of a matrix space not in the Edmonds-Rado class is the class sk3 of 3
dimensional skew symmetric matrices, generated for example be the following:

sk3 =

〈 0 1 0
−1 0 0
0 0 0

 ,
 0 0 0

0 0 1
0 −1 0

 ,
 0 0 1

0 0 0
−1 0 0

〉 .
Consider the following problem: if a matrix space B has a basis consisting of matrices with

certain property, does it imply that B is in the Edmonds-Rado class? Gurvits has observed that
if B has a basis consisting of triangular or semidefinite matrices then it is in the Edmonds-Rado
class. We now show that the other two basis properties, namely consisting of projections or positive
matrices, do not necessarily imply that B is in the Edmonds-Rado class. Recall that a matrix over
R is positive if every entry in it is positive.

Let B = 〈B1, . . . , Bm〉 ≤M(n,F), and let A ∈M(n,F) be an arbitrary nonsingular matrix. For

i ∈ [m], we define Yi =

[
A Bi
0 0

]
and Z =

[
0 0
A 0

]
, and let A = 〈Y1, . . . , Ym, Z〉.

Lemma 22. We have disc(A) = disc(B).
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Proof. Let E1 ≤ F2n be the coordinate subspace generated by the first n coordinates, and E2 ≤ F2n

be the coordinate subspace generated by the last n coordinates.
To show that disc(A) ≥ disc(B), we take a disc(B)-discrepancy witness U of B, and embed U

into E2. Then 〈E1 ∪ U〉 is a disc(B)-singularity witness of A.
To show that disc(A) ≤ disc(B), let W be disc(A)-singularity witness of A. Let W ′1 = W ′ ∩E1

and W ′2 = W ′ ∩ E2. Due to the form of the Yi’s and Z, W ′ = W ′1 ⊕W ′2. In particular note that
W ′2 = Z(W ), and A is nonsingular. So if we set R = {w ∈ W | Z(w) = 0}, we have R ≤ E2,
dim(R) = dim(W )− dim(W ′2), and dim(W ′1) ≥ dim(B(R)). Thus disc(A) = dim(W )− dim(W ′) =
(dim(W )− dim(W ′2))− dim(W ′1) ≤ dim(R)− dim(B(R)) ≤ disc(B).

Theorem 23. There exist matrix spaces generated by projections or positive matrices which don’t
have the Edmonds-Rado property

Proof. For i ∈ [m], we define Y ′i , Z
′ ∈M(2n,F) by Y ′i =

[
A Bi +A
0 0

]
and Z ′ =

[
0 0
A A

]
, and

let A′ = 〈Y ′1 , . . . , Y ′m, Z ′〉. It is easy to see that the Y ′i ’s and Z ′ can be obtained from the Yi’s and Z
via simultaneous row and column operations. Note that simultaneous row and column operations do
not change the rank or the discrepancy of a space, that is corank(A′) = corank(A) and disc(A′) =
disc(A). Observe that corank(A) = corank(B), and by Lemma 22 we have disc(A) = disc(B).
Therefore taking some B not in the Edmonds-Rado class (for example sk3) it follows that A and A′
are not in the Edmonds-Rado class. To finish the proof just note that if A = I, then Y ′i ’s and Z ′

are projections, and if A is a positive matrix with entries at least the absolute values of the entries
in the Bi’s, then Y ′i ’s and Z ′ are positive matrices.

6.2 The quantitative Edmonds-Rado class

If rank(B) is of primary interest, in analogy with the Edmonds-Rado class we can define the
following matrix class. Here we allow non-square matrices from M(n × n′,F). Recall that for
A ∈ M(n × n′,F), its rank is dim(im(A)), its co-rank is dim(ker(A)), and A is nonsingular if
rank(A) = min(n, n′).

Definition 24. A matrix space B ≤ M(n × n′,F) is in the quantitative Edmonds-Rado class if B
possesses corank(B)-singularity witnesses.

For brevity we call this class q-Edmonds-Rado class in the following. In terms of discrepancy,
B is in the q-Edmonds-Rado class if corank(B) = disc(B). As to Wong sequences, from Lemma 9
we immediately have that if B ≤M(n×n′,F) is in the q-Edmonds-Rado class, then for any A ∈ B,
A is of maximum rank if and only if the limit of the second Wong sequence of (A,B) is contained
in im(A).

It is clear that when n = n′, if B is in the q-Edmonds-Rado class then it is in the Edmonds-Rado
class. The converse is not true.

Theorem 25. There exists a matrix space in the Edmonds-Rado class which is not in the q-
Edmonds-Rado class.

The proof of Theorem 25 relies on the following lemma, which also explains why we do not
expect to achieve rank maximization for upper triangular matrices in Theorem 2.

Lemma 26. Rank maximization of matrix spaces can be reduced to rank maximization of matrix
spaces with a basis of pairwise commuting, and strictly upper triangular matrices.
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Proof. For B = 〈B1, . . . , Bm〉 ≤ M(n × n′,F) we first pad 0’s to make it a matrix space of
M(max(n, n′),F). Then consider the matrix space in M(2 ·max(n, n′),F) generated by C1, . . . , Cm

where Ci =

[
0 Bi
0 0

]
.

Proof of Theorem 25. Consider the following matrix space: apply the construction in Lemma 26
with sk3, and let the resulting matrix space be B ≤M(6,Q). B is in the Edmonds-Rado class as it
is spanned by upper-triangular matrices. On the other hand B is not in the Edmonds-Rado class
as corank(B) = 4 while disc(B) = 3.

6.3 The black-box Edmonds-Rado class

Definition 27. Let B ≤ M(n × n′,F). B is in the black-box Edmonds-Rado class if the following
two conditions hold: (1) there exists a corank(B)-singularity witness; (2) for any A ∈ B, either A
is of maximum rank, or B(ker(A)) 6⊆ im(A).

By the first condition, the black-box Edmonds-Rado class is a subclass of the q-Edmonds-Rado
class. Also note that B(ker(A)) is just the first item in the second Wong sequence of (A,B). The
second condition says that if A is non-maximum rank then already the first item in the second
Wong sequence excludes existence of corank(A)-singularity witnesses. In this case for any matrix
B from B with B(ker(A)) 6⊆ im(A), we have rank(B) > rank(A). Therefore in matrix spaces in
this class the following simple algorithm finds an element of maximum rank over sufficiently large
base fields.

Proposition 28. Let B ≤M(n,F) be in the black-box Edmonds-Rado class, and assume |F| = Ω(n).
Then there exists a deterministic algorithm that solves the constructive SMR for B using polynomial
number of arithmetic operations.

Proof. Given A ∈ B, we compute the rank of A+λB where λ is from a subset of F of size rank(A)+1
and B is from a basis of B. If none of these matrices have rank larger than A, conclude that A is of
maximum rank. Otherwise replace A with an A+ λB of larger rank. Iterate the above procedure
to obtain A ∈ B of maximum rank.

As a justification for the name of the subclass, observe that this algorithm does not make use
of any properties of matrices other that their rank. It even works in the setting that instead of
inputting the basis B1, . . . , Bm explicitly, we only know m and have an oracle which, on input
(α1, . . . , αm) returns the rank of α1B1, . . . , αmBm.

Some matrix spaces in the black-box Edmonds-Rado class. While this class seems quite
restrictive, it contains some interesting cases.

A first example is when B has a basis of positive semidefinite matrices. Let B = 〈B1, . . . , Bm〉 ≤
M(n,R), where Bi’s are positive semidefinite. Then it is seen easily that A is of maximum rank if
and only if ker(A) = ∩i∈[m] ker(Bi). In particular if A is not of maximum rank then there exists
v ∈ ker(A) such that Bj(v) 6∈ im(A), for some j ∈ [m].

Another more interesting scenario is from [CIK97] (see also [IKS10], Lemma 4.2). Let G be
a finite dimensional associative algebra over F and let V, V ′ be semisimple G-modules. Let B =
HomG(V, V ′). Recall that a semisimple module is the direct sum of simple modules and that in a
semisimple module every submodule has a direct complement. We know that A ∈ B is of maximum
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rank if and only if for every isomorphism type S of simple modules for A, the multiplicity of S in
im(A) is the minimum of the multiplicities of S in U and V .

If A is not of maximum rank, then for some simple module S there is an isomorphic copy S1 of
S in ker(A) and there is a copy S2 of S in V ′ intersecting im(A) trivially. Also, there are nontrivial
homomorphisms mapping the first copy of S to the second one. For instance, any isomorphism
S1 → S2 can be extended to a homomorphism V → V ′ by the zero map on a direct complement of
S1.

On the other hand, if A is of maximum rank then for every simple submodule in ker(A), the
copies in V ′ isomorphic to it are in im(A), therefore no simple constituent can be moved out of
im(A) via the second Wong sequence.
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[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT, pages
565–574, 1979.
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