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Abstract

Finding cliques in random graphs and the closely related “planted” clique variant,
where a clique of size t is planted in a random G(n, 1/2) graph, have been the focus of
substantial study in algorithm design. Despite much effort, the best known polynomial-
time algorithms only solve the problem for t = Θ(

√
n). Here we show that beating

√
n

would require substantially new algorithmic ideas, by proving a lower bound for the
problem in the sum-of-squares (or Lasserre) hierarchy, the most powerful class of semi-
definite programming algorithms we know of: r rounds of the sum-of-squares hierarchy
can only solve the planted clique for t ≥

√
n/(C log n)r

2
. Previously, no nontrivial

lower bounds were known. Our proof is formulated as a degree lower bound in the
Positivstellensatz algebraic proof system, which is equivalent to the sum-of-squares
hierarchy.

The heart of our (average-case) lower bound is a proof that a certain random
matrix derived from the input graph is (with high probability) positive semidefinite.
Two ingredients play an important role in this proof. The first is the classical theory of
association schemes, applied to the average and variance of that random matrix. The
second is a new large deviation inequality for matrix-valued polynomials. Our new tail
estimate seems to be of independent interest and may find other applications, as it
generalizes both the estimates on real-valued polynomials and on sums of independent
random matrices.

1 Introduction

Finding cliques in random graphs has been the focus of substantial study in algorithm design.
Let G(n, p) denote Erdös-Renyi random graphs on n vertices where each edge is kept in the
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graph with probability p. It is easy to check that in a random graph G ← G(n, 1/2), the
largest clique has size (2 + o(1)) log2 n with high probability. On the other hand, the best
known polynomial-time algorithms can only find cliques of size (1+o(1)) log2 n and obtaining
better algorithms remains a longstanding open problem: Karp [Kar76] even suggested that
finding cliques of size (1 + ε) log2 n could be a computationally hard problem.

Motivated by this, much attention has been given to the related planted clique problem or
hidden clique problem introduced by Jerrum [Jer92] and Kucera [Kuc95]. Here, we are given
a graph G← G(n, 1/2, t) generated by first choosing a G(n, 1/2) random graph and placing
a clique of size t in the random graph for t� log2 n. The goal is to recover the hidden clique
for as small a t as possible given G. The best known polynomial-time algorithms can solve
the problem for t = Θ(

√
n) [AKS98] and improving on this bound has received significant

attention.
In this work we show that indeed obtaining polynomial-time algorithms recognizing

cliques of size n1/2−ε requires significantly new algorithmic ideas: we exhibit a lower bound
for the problem in the powerful Lasserre [Las01] and “sum-of-squares” (SOS) [Par00] semi-
definite programming hierarchies1. As it happens, showing such lower bounds for the planted
clique problem reduces easily to showing integrality gap results for the natural formulation
of the maximum clique problem in these hierarchies on G(n, 1/2) graphs. Our main result
then is the following average-case lower bound for maximum clique (we defer the formal
definition of the semi-definite relaxation and hierarchies for now)2:

Theorem 1.1. With high probability, for G← G(n, 1/2) the natural r-round SOS relaxation
of the maximum clique problem has an integrality gap of at least

√
n/(C log n)r

2
.

As a corollary we obtain the following lower bound for the planted clique problem.

Corollary 1.2. With high probability, for G ← G(n, 1/2, t) the natural r-round SOS relax-
ation of the maximum clique problem has an integrality gap of at least

√
n/t(C log n)r

2
.

Linear and semi-definite hierarchies are one of the most powerful and well-studied tech-
niques in algorithm design. The most prominent of these are the Sherali-Adams hierarchy
(SA) [SA90], Lovasz-Schrijver hierarchy (LS) [LS91], their semi-definite versions SA+, LS+

and Lasserre and SOS hierarchies. The hierarchies present progressively stronger convex re-
laxations for combinatorial optimization problems parametrized by the number of rounds r
and the r round relaxation can be solved in nO(r) time on instances of size n. In terms of rel-
ative power (barring some minor technicalities about how the numbering starts), it is known
that LS+(r) < SA+(r) < SOS(r). On the flip side, because they capture most powerful
techniques for combinatorial optimization, lower bounds for hierarchies serve as strong un-
conditional evidence for computational hardness. Such lower bounds are even more relevant
and compelling in situations where we do not have NP-hardness results.

1For brevity, in the following, we will use SOS hierarchy as a common term for the formulations of Lasserre
[Las01] and Parrilo [Par00] which are essentially the same in our context.

2Throughout, c, C denote constants.
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Broadly speaking, our understanding of the SOS hierarchy is more limited than those of
LS+ and SA+ hierarchies and in fact the SOS hierarchy appears to be much more powerful.
A particularly striking example of this phenomenon was provided by a recent work of Barak
et al. [BBH+12]. They showed that a constant number of rounds of the SOS hierarchy
can solve the much studied unique games problem on instances which need super constant
number of LS+, SA+ rounds. It was also shown by the works of [BRS11, GS11] that the
SOS hierarchy captures the sub-exponential algorithm for unique games of [ABS10]. These
results emphasize the need for a better understanding of the power and limitations of the
SOS hierarchy.

From the perspective of proving limitations, all known lower bounds for the SOS hierarchy
essentially have their origins in the works of Grigoriev [Gri01b, Gri01a] some of which were
also independently rediscovered by Schoenebeck [Sch08]. These works show that even Ω(n)
rounds of SOS hierarchy cannot solve random 3XOR or 3SAT instances leading to a strong
unconditional average-case lower bound for a natural distribution.

Most subsequent lower bounds for SOS hierarchy such as those of [Tul09], [BCV+12]
rely on [Gri01b] and [Sch08] and gadget reductions. For example, Tulsiani [Tul09] shows
that 2O(

√
logn) rounds of SOS has an integrality gap of n/2O(

√
logn) for maximum clique in

worst-case. This is in stark contrast to the average-case setting: even a single round of SOS
gets an integrality gap of at most O(

√
n) for maximum clique on G(n, 1/2) [FK00]. Thus,

the worst-case and average-case problems have very different complexities. Finally, using
reductions is problematic for us as they almost always induce distributions that are far from
uniform and definitely not as natural as G(n, 1/2).

For max-clique on random G(n, 1/2) graphs, Feige and Krauthgamer [FK00] showed that
LS+(r), and hence SOS(r), has an integrality gap of at most

√
n/2O(r) with high probability.

Complementing this, they also showed [FK03] that the gap remains
√
n/2r for LS+(r) with

high probability. However, there were no non-trivial lower bounds known for the stronger
SOS hierarchy.

For the planted clique problem, Jerrum [Jer92] showed that a broad class of Markov chain
Monte-Carlo (MCMC) based methods cannot solve the problem when the planted clique has
size O(n1/2−δ) for any constant δ > 0. In a recent work, Feldman et al. [FGR+13] introduced
the framework of statistical algorithms which generalizes many algorithmic approaches like
MCMC methods and showed that such algorithms cannot find large cliques when the planted
clique has size O(n1/2−δ) in less than nΩ(logn) time3. However, their framework seems quite
different from hierarchy based algorithms. In particular, the statistical algorithms framework
is not applicable to algorithms which first pick a sample, fix it, and then perform various
operations (such as convex relaxations) on it, as is the case for hierarchies.

3The results of [FGR+13] actually apply to the harder bipartite planted clique problem, but this assump-
tion is not too critical.
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1.1 Proof systems and SDP hierarchies

We approach the problem of SOS lower bounds from the proof-complexity and positivstel-
lensatz proof system perspective of Grigoriev and Volobjov [GV01]. We explain this proof
system next.

Suppose we are given a system of polynomial equations or “axioms”

f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0,

where each fi : Rn → R is a n-variate polynomial. A positivstellensatz refutation of the
system F = ((fi)) is an identity of the form

m∑
i=1

figi ≡ 1 +
N∑
i=1

h2
i ,

where {g1, . . . , gm} and {h1, . . . , hN} are arbitrary n-variate polynomials. Clearly, the system
F is infeasible over reals if there exists an identity as above. Starting with the seminal work
of Artin on Hilbert’s seventeenth problem [Art27], a long line of important results in real
algebraic geometry – [Kri64, Ste73, Put93, Sch91]; cf. [BCR98] and references therein –
showed that, under some (important) technical conditions4, such certifying identities always
exist for an infeasible system. This motivates the following notion of complexity for refuting
systems of polynomial equations.

Definition 1.3 (Positivstellensatz Refutation, [GV01]). Let F ≡ {f1, . . . , fn : Rn → R},
be a system of axioms, where each fi is a real n-variate polynomial. A positivstellensatz
refutation of degree r (PS(r) refutation, henceforth) for F is an identity of the form

m∑
i=1

figi ≡ 1 +
N∑
i=1

h2
i , (1.1)

where g1, . . . , gm, h1, . . . , hN are n-variate polynomials such that deg(figi) ≤ 2r for all i ∈ [m]
and deg(hj) ≤ r for all j ∈ [N ].

Our interest in positivstellensatz refutations as above comes from the known relations
between such identities and SOS hierarchy. Informally (under appropriate technical condi-
tions), identities as above of degree r show that SOS hierarchy can certify infeasibility of the
axioms in 2r + Θ(1) rounds and vice versa. We will focus on showing degree lower bounds
for identities as above and use them to get integrality gaps for the hierarchies. We formalize
this in Section A. For a brief history of the different formulations from [GV01], [Las01],
[Par00] and the relations between them and results in real algebraic geometry we refer the
reader to [OZ13].

Given the above setup, we shall consider the following set of natural axioms to test if a
graph G has a clique of size k.

4We avoid going into the details here as the conditions are easily met in the presence of Boolean axioms.
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Definition 1.4. Given a graph G, let Clique(G, k) denote the following set of polynomial
axioms:

(Max-Clique): x2
i − xi, ∀i ∈ [n]

xi · xj, ∀ pairs {i, j} /∈ G (1.2)∑
i

xi − k.

Here, the equations on the first line are Boolean axioms restricting feasible solutions to
be in {0, 1}n. The equations on the second line constrain the support of any feasible x to
define a clique in G. Finally, the equation on the third line specifies the size of support of x.
Thus, for any graph G, Clique(G, k) is feasible if and only if G has a clique of size k. Our
core result is to show lower bounds on positivstellensatz refutations for Clique(G, k).

Theorem 1.5 (Main). With high probability over G ← G(n, 1/2), the system Clique(G, k)
defined by Equation 1.2 has no PS(r) refutation for k ≤

√
n/(C log n)r

2
.

Given the above theorem it is easy to deduce the integrality gap for the SOS hierarchy,
Theorem 1.1: see Section A. We next highlight some of our techniques which may be of
broader interest.

1.2 Techniques: Association schemes

As we will soon see, the essence of proving Theorem 1.5 involves showing that a certain
random matrix is positive semi-definite (PSD) with high probability. In our case, this calls
for showing a relation of the form A ≺ B5 for two matrices A,B whose rows and columns are
indexed by subsets of [n] of size r. Often, in such situations and especially those involving
random matrices, it suffices to show that the smallest eigenvalue of B is bigger than the norm
of A, but not for us. Luckily, the matrices we study, though complicated to describe, will be
set-symmetric - namely matrices whose entries depend only on the size of the intersection
of the corresponding row and column indexing sets. The set of all such matrices, called
the Johnson scheme, is quite well studied in combinatorics as a special case of association
schemes. In particular, all such matrices commute with one another and their common
eigenspaces are completely understood. This theory allows us to show that the eigenvalue
of B − A is non-negative on each of the specific eigenspaces of the Johnson scheme.

1.3 Techniques: Large deviation bounds for non-commutative poly-
nomials

As part of showing the requisite PSD’ness relation, our lower bound argument naturally calls
for understanding the spectrum of a random matrix. There is a lot of recent interest in such

5Here and henceforth ≺ denotes PSD ordering: A ≺ B if and only if B −A is positive definite.
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bounds, especially in the context of large deviation inequalities for sums of independent ma-
trices. The specific random matrix we study is more complicated and to bound its spectrum
we prove a large-deviation bound for non-commutative or matrix-valued polynomials .

Define P : Rn → RD×D to be a degree r matrix polynomial if it is a degree r multi-
linear polynomial in n variables where the coefficients are D-dimensional matrices: P (x) =∑

I:I⊆[n],0<|I|≤r
∏

i∈I xiAI , where AI ∈ RD×D. We say P is Hermitian if the individual matri-

ces AI are Hermitian. Let Var(P ) =
∑

I AIA
†
I = Ex∈u{1,−1}n P (x)P (x)†.

Our main claim is the following large deviation inequality for matrix polynomials:

Theorem 1.6. There exist constants c, C > 0 such that the following holds. Let P : Rn →
RD×D be a degree r Hermitian polynomial. Then, for all ∆ > 0, with probability at least
1− Cnr−1 ·D · exp(−c∆2/r) over ε ∈u {1,−1}n,

−∆Var(P )1/2 � P (ε) � ∆Var(P )1/2.

The above theorem combines two important classes of large-deviation inequalities. The
first are matrix-valued Chernoff bounds [AW02, Oli10], and non-commutative Khinchine in-
equalities [LP86, LPP91]. We refer to the excellent survey of [Tro12] for more details and
some of their applications. The second are the now well-known large deviation inequalities
for polynomials which follow from hypercontractivity [Jan97]. Such inequalities and hyper-
contractivity of polynomials are of considerable importance in analysis of Boolean functions;
see [O’D08] for instance. Our result gives a common generalization of these inequalities. We
give a more detailed comparison of the bounds in Section 5.

2 Outline

We now give an outline of our arguments. As in most previous works (cf. [Gri01a], [Gri01b],
[Sch08]) on showing lower bounds for PS(r) refutations, our main tool will be a dual certifi-
cate. Let P(n, 2r) : Rn → R be the set of n-variate real polynomials of total degree at most
2r.

Definition 2.1 (PSD Mappings). A linear mappingM : P(n, 2r)→ R is said to be positive
semi-definite (PSD) if M(P 2) ≥ 0 for all n-variate polynomials P of degree at most r.

Definition 2.2 (Dual Certificates). Given a set of axioms f1, . . . , fm, a dual certificate for
the axioms is a PSD mapping M : P(n, 2r) → R such that M(fig) = 0 for all i ∈ [m] and
all polynomials g such that deg(fig) ≤ 2r.

For readers more familiar with the optimization framework of SOS hierarchy, dual certifi-
cates correspond to feasible vector solutions for the r-round SOS-relaxation. Under reason-
able technical conditions which ensure strong duality, the converse also holds. For the clique
axioms from Equation 1.2, a dual certificate would correspond to a feasible vector solution
for the r-round SOS relaxation for maximum clique (see Figure A for the exact formulation)
with value k.

The following elementary lemma will be crucial.
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Lemma 2.3 (Dual Certificate). Given a system of axioms ((fi)), there does not exist a PS(r)
refutation of the system if there exists a dual certificate M : P(n, 2r)→ R for the axioms.

The existence of such a mapping trivially implies a lower bound for PS(r) refutations:
apply M to both sides of a purported PS(r) identity as in Equation 1.1 to arrive at a
contradiction.

The lemma suggests a general recipe for proving PS(r) refutation lower bounds:

• Design a dual certificateM: For the clique axioms we care about, it is easy to figure out
what the right dual certificateM “should be” by working backwards from the axioms.
The same happens also for the PS(r) refutation lower bounds of [Gri01a, Gri01b]. The
main hurdle then is to show that the obtained mapping M is indeed PSD. At a high
level, this reduces to proving a certain random matrix M ∈ RN×N is PSD, where N =∑r

`=0

(
n
`

)
. We consider E = E[M ] and (variance) Σ2 = Var(M) = E[(M−E)(M−E)†]

and prove M � 0 via E −M � E in two steps.

• Large deviation: with high probability E −M � ∆Σ, for some small factor ∆. In our
case, M can be written as a low-degree matrix polynomial, and we use Theorem 1.6
to show the claim.

• (Deterministic) Matrix analysis: ∆ Σ � E. In our case, both E,Σ have common
eigenspaces, and we compare their eigenvalues on each eigenspace via the theory of
association schemes.

The above high-level plan has various complications. For one, the matrices E,M will be
singular, so we need to handle the kernel differently. Moreover, the actual certificate M has
too high a variance. Instead, we work with a closely related matrix M ′ which suffices for us.
We gloss over these (important) issues in the high-level discussion of this section.

We next demonstrate the above three steps on the toy example r = 1, in a way that will
hint at generalizations.

Step 1: For r = 1, the matrix M ∈ Rn×n we study will be M = (k/2) ·D+
(
k
2

)
A, where

D denotes the diagonal matrix of degrees of the vertices and A is the adjacency matrix of
G.

For higher r, we build a similar looking matrix where instead of degrees of vertices we
look at a natural, generalized notion of degree for subsets of vertices.

Step 2: For r = 1, E = E[M ] = (kn/2)In + k(k− 1)/4Jn, where In is the n× n identity
matrix and Jn is the n × n all the one’s matrix. Ignoring the diagonal entries for now
(which are not too important), we can write E −M as a random matrix where each entry
is uniformly random in {−k(k − 1)/4, k(k − 1)/4}. Thus,

E −M ∼ (k2/4)
∑
i 6=j

εijEij,

where εij ∈u {1,−1} and Eij is the symmetric matrix with Eij(p, q) = 1 if {p, q} = {i, j} and
0 otherwise. Thus, we can write E−M as a sum of independent random matrices. Applying
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the matrix Chernoff bounds of Oliveira [Oli10], it follows that E −M ≺ O(
√

log n) Σ with
high probability6.

For higher r, we do not have a sum of independent matrices as above, but instead get
a degree O(r2) matrix polynomial and we apply Theorem 1.6 to this polynomial to get a
similar claim.

Step 3: For r = 1, an easy calculation shows that Σ = Var(M)1/2 ∼ (k2
√
n)/4 · In and

for k < n/2, E � (kn/4)In. Thus, by the above arguments,

E −M ≺ O(
√

log n)Σ ≺ ∆E,

where ∆ = O(
√

log n)k/
√
n. It follows that M � 0, as long as k �

√
n/ log n, so that

∆ < 1. The above argument also suggests how
√
n arises as a natural limit for the lower

bound we seek.
For higher r, we show similar inequalities but with ∆ ∼ (log n)r

2/2 · k/
√
n, so that we

get M � 0 as long as k �
√
n/(log n)r

2/2. However, as indicated above, this step is not
as simple and we in fact have to study all the eigenvalues of E,Σ; we do so, by appealing
to theory of association schemes. Another important point is that, while the expectation
matrix is easy to write explicitly for all r, the variance is quite complicated for higher r and
we only give sufficiently good estimates for its entries.

We now start with some preliminaries.

3 Preliminaries

We shall use the following notations7:

1. P(n, 2r) denotes the set of n-variate polynomials of degree at most 2r.

2. PS(r) denotes positivstellensatz refutations of degree at most r as defined in Defini-
tion 1.3.

3. A linear mapping M : P(n, 2r) → R is said to be positive semi-definite (PSD) if
M(P 2) ≥ 0 for all P ∈ P(n, r).

4. For 0 ≤ r ≤ n, let
(

[n]
r

)
,
(

[n]
≤r

)
denote all subsets of size exactly and at most r, respec-

tively.

5. For 0 ≤ r ≤ n, R([n]
r )×([n]

r ) denotes matrices with rows and columns indexed by subsets

of [n] of size exactly r. Similarly, R([n]
≤r)×([n]

≤r) denotes matrices with rows and columns
indexed by subsets of [n] of size at most r.

6For this special case, we can remove the
√

log n factor–see [Ver] for instance, but this is not important
for us.

7Some are repeated from the introduction so as to have them at one place.
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6. We will view linear functionals M : P(n, 2r) → R as matrices M ∈ R([n]
≤r)×([n]

≤r),
where for I, J ∈

(
[n]
≤r

)
, MIJ = M

(∏
s∈I∪J xs

)
. In general, this correspondence is not

bijective. However, as we only deal with mappings which are constant under multi-
linear extensions throughout, the correspondence is one-to-one. It is a standard fact
that a mapping M is PSD if and only if the matrix M is PSD.

7. For I ⊆ [n], let XI =
∏

i∈I xi.

8. By default all vectors are column vectors. For a set I, 1(I) denotes the indicator vector
of the set I.

9. For a matrix A ∈ Rm×n, A† ∈ Rn×m denotes its conjugate matrix.

We shall use the following fact about matrices which follows easily from the variational
characterization of eigenvalues.

Fact 3.1. For M ∈ RN×N , let M ′ ∈ RN ′×N ′ be a principal submatrix of M . Then, M has
at least N ′ eigenvalues that are at least λmin(M ′).

4 Johnson scheme

Association schemes is a classical area in combinatorics and coding theory (cf. for instance
[vLW01]). We shall use a few classical results (lemmas 4.6, 4.7 below), about the eigenspaces
and eigenvalues of association schemes and the Johnson scheme in particular. We also
introduce two bases for the Johnson scheme, which will play a key role in bounding the
eigenvalues of various matrices later.

We start with some basics about the Johnson scheme - some of our notations are non-
standard but they fit better with the rest of the manuscript.

Definition 4.1 (Set-Symmetry). A matrix M ∈ R([n]
r )×([n]

r ) is set-symmetric if for every
I, J ∈

(
[n]
r

)
, M(I, J) depends only on the size of |I ∩ J |.

Definition 4.2 (Johnson Scheme). For n, r ≤ n/2, let J ≡ Jn,r ⊆ R([n]
r )×([n]

r ) be the subspace
of all set-symmetric matrices. J is called the Johnson scheme.

As we will soon see, J is also a commutative algebra. There is a natural basis for the
subspace J :

Definition 4.3 (D-Basis). For 0 ≤ ` ≤ r ≤ n, let D` ≡ Dn,r,` ∈ R([n]
r )×([n]

r ) be defined by8

D`(I, J) =

{
1 |I ∩ J | = `

0 otherwise.
(4.1)

8We will often omit the subscripts n, r.
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For example, D0 is the well-studied disjointness matrix. Clearly, {D` : 0 ≤ ` ≤ r} span
the subspace J . Also, it is easy to check that the D`’s and hence all the matrices in J ,
commute with one another.

Another important collection of matrices that come up naturally while studying PSD’ness
of set-symmetric matrices is the following which gives a basis of PSD matrices for the Johnson
scheme.

Definition 4.4 (P-Basis). For 0 ≤ t ≤ r, let Pt ≡ Pn,r,t ∈ R([n]
r )×([n]

r ) be defined by9

Pt(I, J) =

(
|I ∩ J |
t

)
.

Equivalently, for T ⊆ [n], if we let PT be the PSD rank one matrix

PT = 1 ({I : I ⊆ [n], I ⊇ T}) · 1 ({I : I ⊆ [n], I ⊇ T})† ,

then
Pt =

∑
T :T⊆[n],|T |=t

PT . (4.2)

The equivalence of the above two definitions follows from a simple calculation: there is
a non-zero contribution to (I, J)’th entry from the T ’th summand from Equation 4.2 if and
only if T ⊆ I ∩ J . Clearly, Pt � 0 for 0 ≤ t ≤ r. We will exploit this relation repeatedly
by expressing matrices in J as linear combinations of Pt’s. The following elementary claim
relates the two bases ((D`)) and ((Pt)) for fixed n, r.

Claim 4.5. For fixed n, r, the following relations hold:

1. For 0 ≤ t ≤ r, Pt =
∑r

`=t

(
`
t

)
D`.

2. For 0 ≤ ` ≤ r, D` =
∑

t≥`(−1)t−`
(
t
`

)
Pt.

Proof. The first relation follows immediately from the definition of Pt. The second relation
follows from inverting the set of equations given in (1).

The main nontrivial result from the theory of association schemes we use is the fol-
lowing characterization of the eigenspaces of matrices in J . The starting point for these
characterizations is the fact that matrices in J commute with one another and hence are
simultaneously diagonalizable. We refer the reader to Section 7.4 in [God] (the matrices Pt
in our notation correspond to matrices Ct in [God]) for the proofs of these results.

Lemma 4.6. Fix n, r ≤ n/2 and let J ≡ J (n, r) be the Johnson scheme. Then, for Pt as

defined by Equation 4.2, there exist subspaces V0, V1, . . . , Vr ∈ R([n]
r ) that are orthogonal to

one another such that:

9We will often omit the subscripts n, r.
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1. V0, . . . , Vr are eigenspaces for {Pt : 0 ≤ t ≤ r} and consequently for all matrices in J .

2. For 0 ≤ j ≤ r, dim(Vj) =
(
n
j

)
−
(
n
j−1

)
.

3. For any matrix Q ∈ J , let λj(Q) denote the eigenvalue of Q within the eigenspace Vj.
Then,

λj(Pt) =

{(
n−t−j
r−t

)
·
(
r−j
t−j

)
j ≤ t

0 j > t
. (4.3)

The above lemma helps us estimate the eigenvalues of any matrix in Q ∈ J if we can
write Q as a linear combination of the Pt’s or D`’s. To this end, we shall also use the following
estimate on the eigenvalues of such linear combinations.

Lemma 4.7. Let Q =
∑

` α`D` ∈ J (n, r), and βt =
∑

`≤t
(
t
`

)
α`, where α` ≥ 0. Then, for

0 ≤ j ≤ r,

λj(Q) ≤
∑
t≥j

βt ·
(
n− t− j
r − t

)
·
(
r − j
t− j

)
.

Proof. By Claim 4.5,∑
`

α`D` =
∑
`

α`

(∑
t≥`

(−1)t−`
(
t

`

)
Pt

)
=
∑
t

Pt

(∑
`≤t

(−1)t−`
(
t

`

)
α`

)

�
∑
t

Pt

(∑
`≤t

(
t

`

)
α`

)
=
∑
t

βtPt.

Therefore, as Q and Pt’s have common eigenspaces, by Lemma 4.6,

λj(Q) ≤ λj

(∑
t

βtPt

)
≤
∑
t

βtλj(Pt) =
∑
t≥j

βt ·
(
n− t− j
r − t

)
·
(
r − j
t− j

)
.

5 Large deviation bounds for non-commutative poly-

nomials

In this section we prove Theorem 1.6. For comparison, we first state the matrix deviation
bound for the linear r = 1 case and the scalar large-deviation inequality for polynomials.
The specific version follows from non-commutative Khinchine inequalities [LP86, LPP91] or
from [Oli10]10 11.

10The version here follows easily from the main statement of [Oli10] by applying Fact 5.5.
11An essential advantage of [Oli10] over [AW02] is that the former bounds the deviation in terms of the

“norm-of-sum” ‖
∑

i AiA
†
i‖1/2, whereas [AW02] obtains a bound in terms of “sum-of-norm”

(∑
i ‖AiA

†
i‖
)1/2

.

Our main theorem also gets the stronger norm-of-sum bound and having such a bound is critically important
for us (even for the degree r = 2, PS(2) refutations, case). See Section 3.1 of [Oli10] for further discussion.
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Theorem 5.1 ([Oli10]). There exist constants c, C > 0 such that the following holds. For
all Hermitian matrices A1, . . . , An ∈ RD×D, and ∆ > 0, with probability at least 1 − CD ·
exp(−c∆2) over ε ∈u {1,−1}n,

−∆

(
n∑
i=1

AiA
†
i

)1/2

�
∑
i

εiAi � ∆

(
n∑
i=1

AiA
†
i

)1/2

.

The following classical large-deviation inequality for polynomials follows from hypercon-
tractivity: see [Jan97] for instance.

Theorem 5.2. There exist constants c, C such that the following holds. Let P : Rn →
R be a polynomial of degree at most d. Then, for all ∆ > 0, with probability at least
1− C exp(−c∆2/d) over ε ∈u {1,−1}n,

−∆Var(P )1/2 ≤ P (ε) ≤ ∆Var(P )1/2.

Let us now compare Theorem 1.6 with the above results. To this end, let 1−err(n, d,D,∆)
be the minimum success probability for the conclusion in Theorem 1.6 to hold. Then, our
bound is

err(n, d,D,∆) = nd−1 ·D · exp
(
−c∆2/d

)
.

The second factor is necessary because of the d = 1 case. The third factor is necessary from
the D = 1 case. The first factor should be at least Cd for a constant C from the D = 1
case. However, for us the dimension of the matrices D ≈ nd−1 so it does not matter much.
In addition, if one desires the error probability to be polynomially small (in the number of
variables), which is often the case, the additional factor only costs us a constant factor in the
deviation ∆. Nevertheless, we believe that the nd−1 factor is not needed and can be replaced
by Cd.

To prove Theorem 1.6, we first show a similar claim for decoupled multi-linear polynomi-
als. For any degree d multi-linear polynomial P : Rn → RD×D, let P̃ (x1, . . . , xd) : (Rn)d →
RD×D denote the multi-linear polynomial, where every monomial xi1 · · ·xij , i1 < i2 < · · · <
ij, j ≤ d in P is replaced by x1

i1
x2
i2
· · ·xjij . Further, we call a degree d polynomial decoupled

if it has the above structure.

Lemma 5.3. For a constant C1 > 0 the following holds. Let P : (Rn)d → RD×D be a
decoupled degree d Hermitian polynomial. Then, for all δ ∈ (0, 1), ∆ = (C1 log(nd−1D/δ))d/2,
with probability at least 1− δ, over ε1, . . . , εd ∈u {1,−1}n,

−∆Var(P )1/2 � P (ε1, . . . , εd) � ∆Var(P )1/2.

Proof. The proof will be by induction on the degree d with Theorem 5.1 serving as a base
case. Suppose the statement is true for polynomials of degree d with ∆ = (C1 log((n +
1)d−1D/δ))d/2. Let P be a decoupled degree d + 1 polynomial, where ε1 = (ε1

1, ε
1
2, . . . , ε

1
n).

Write
P (ε1, . . . , εd, εd+1) = ε1

1P1(ε′) + ε1
2P2(ε′) + · · ·+ ε1

nPn(ε′),

12



where ε′ ≡ (ε2, . . . , εd+1) and each Pi is a decoupled polynomial of degree at most d. Let
δ′ = δ/(n+ 1).

Note that for any fixed ε′, the resulting function P is linear in ε1 and hence, we can
apply the degree 1 case Theorem 5.1 to the polynomial Pε′(ε

1) = P (ε1, ε′). Doing so with
∆1 = (C1 log(D/δ′))1/2, we get that for any fixed ε′ ∈ ({1,−1}n)d, with probability at least
1− δ′ over ε1,

−∆1

(∑
i

Pi(ε
′)Pi(ε

′)†

)1/2

� Pε′(ε
1) = P (ε1, ε′) � ∆1

(∑
i

Pi(ε
′)Pi(ε

′)†

)1/2

.

Further, as each Pi(ε
′) is in turn a degree d decoupled polynomial, by the induction

hypothesis, for ∆d = (C1 log((n+ 1)d−1D/δ′))d/2, with probability at least 1− δ′,

−∆d Var(Pi)
1/2 � Pi(ε

′) � ∆d Var(Pi)
1/2.

By combining the above inequalities and using a union bound, we get that with probability
at least 1− (n+ 1)δ′ = 1− δ,

P (ε1, ε2, . . . , εd+1) � ∆1

(∑
i

Pi(ε
′)Pi(ε

′)†

)1/2

� ∆1

(∑
i

(
∆d Var(Pi)

1/2
)
·
(
∆d Var(Pi)

1/2
)†)1/2

= ∆1∆d

(∑
i

Var(Pi)

)1/2

= ∆1∆d Var(P )1/2.

By a similar argument for the lower bounds, we get that with probability at least 1− δ,

−∆Var(P )1/2 � P (ε1, . . . , εd+1) � ∆Var(P )1/2,

where

∆ = ∆1∆d = (C1 log(D/δ′))1/2 · (C1 log((n+ 1)d−1D/δ′))d/2 ≤ (C1 log((n+ 1)dD/δ))(d+1)/2.

It follows by induction that the statement holds for ∆ = (C1 log((n + 1)d−1D/δ))d/2. We
can get the bound stated in the theorem by choosing a slightly bigger constant C1 so as to
replace (n+ 1) with n in the expression for ∆.

We now prove Theorem 1.6. To do so we shall use the following claim of de La Peña and
Montgomery-Smith [dlPnMS95].

Lemma 5.4. There exists a constant C0 > 0 such that the following holds. Let P : Rn →
RD×D be a degree d polynomial and let P̃ be the decoupled version of P . Then, for every
t > 0, and ε, ε1, . . . , εd ∈u {1,−1}n,

Pr [‖P (ε)‖ > t] ≤ Cd
0 Pr

[ ∥∥∥P̃ (ε1, . . . , εd)
∥∥∥ > t/Cd

0

]
.
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Finally, we shall also use the following elementary fact that helps us relate bounding
spectral norms to obtaining PSD relations.

Fact 5.5. For any A,B ∈ RD×D, with B Hermitian and B � 0, ‖B−1A‖ ≤ ∆ if and only if
−∆B � A � ∆B.

Proof. Note that ‖B−1A‖ = ‖B−1/2AB−1/2‖ ≤ ∆. Given any x ∈ RD, let y = B1/2x. Then,

x†Ax = y†(B−1/2AB−1/2)y ≤ ∆ · y†y = ∆ · x†Bx.

This shows that A � ∆B. The inequality −∆B � A follows similarly.

Proof of Theorem 1.6. Let P be the given polynomial and let P̃ be its decoupling. Let
δ′ = δ/Cd

0 and t = (C1 log(nd−1D/δ′))d/2 · Cd
0 · ‖Var(P )1/2‖. Then, from Lemma 5.4 and the

tail bound for decoupled polynomials, Lemma 5.3, for ε, ε1, . . . , εd ∈u {1,−1}n,

Pr [‖P (ε)‖ > t] ≤ Cd
0 Pr

[
‖P̃ (ε1, . . . , εd)‖ > t/Cd

0

]
≤ Cr

0 · δ′ = δ.

Therefore, for C a sufficiently large constant, we get that

Pr
[
‖P (ε)‖ > (C log(nd−1D/δ))d/2 · ‖Var(P )1/2‖

]
≤ δ.

Now, let Q = Var(P )−1/2P . Then, Var(Q) = ID (the D ×D identity matrix). Applying
the above inequality for Q, we get that for ∆ = (C log(nd−1D/δ))d/2, with probability at
least 1− δ, ‖Var(P )−1/2P (ε)‖ ≤ ∆. The claim now follows by applying Fact 5.5 and writing
the error probability δ in terms of the deviation ∆.

6 Dual certificate for PS(r) refutations of max-clique

We will specify the dual certificate M by defining it for polynomials where each individual
variable has degree at most 1 and extend M multi-linearly to all polynomials: for any
polynomial P , M(P ) = M(P̃ ) where P̃ is obtained from P by reducing the individual
degrees of all variables to 1. We can do this without loss of generality because of the
Boolean axioms.

As mentioned in the introduction, we can often work out what the dual certificate should
be from the axioms and basic linear algebra. As an example, we first work out the case
where the graph G is the complete graph; this will also help us draw a concrete connection
to the work of [Gri01a].

6.1 Complete graph and knapsack

For complete graph, the clique axioms simplify to

(Max-Clique): x2
i − xi, ∀i ∈ [n]∑
i

xi − k.
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These incidentally also correspond to proving lower bounds for knapsack as studied by Grig-
oriev [Gri01a] (and was what lead us to the specific dual certificate we study). However, in
the context of lower bounds for knapsack, the axioms are mainly interesting for non-integer k
and Grigoriev shows that for non-integer k ≤ n/2, the above system has no PS(r) refutation
for r < k.

The above axioms tell us that any candidate dual certificate MGr ≡: P(n, 2r) → R
should satisfy:

MGr

((
n∑
i=1

xi − k

)(∏
i∈I

xi

))
= 0, ∀I, |I| < 2r.

Now, as the above equation is symmetric, it is natural to assume thatMGr is also symmetric
in the sense that MGr(XI) = f(|I|) for some function f : {0, . . . , 2r} → R+. Working from
this assumption, Grigoriev derives the following recurrence relation for f : {0, . . . , 2r} → R+,

f(i+ 1) =
k − i
n− i

f(i).

From the above it follows that we can define f and hence M as follows:

MGr(XI) = f(|I|) = f(0) · k(k − 1) · · · (k − |I|)
n(n− 1) · · · (n− |I|)

Grigoriev takes f(0) = 1. Here we set f(0) =
(
n
2r

)
with a view towards what is to come.

Thus, the final certificate is

MGr(XI) =

(
n

2r

)
· k(k − 1) · · · (k − |I|)
n(n− 1) · · · (n− |I|)

=

(
n− |I|
2r − |I|

)
·

(
k
|I|

)(
2r
|I|

) . (6.1)

Grigoriev shows the following:

Theorem 6.1 ([Gri01a]). For k < n/2, the mapping MGr defined above is PSD for r < k.

6.2 Certificate for clique axioms

Following a similar approach, we now derive the dual certificate for the clique axioms from
Equations 1.2, which we restate below for convenience: given a graph G on n vertices, k ≤ n,
the axioms of Clique(G, k) are

(Max-Clique): x2
i − xi, ∀i ∈ [n]

xi · xj, ∀ pairs {i, j} /∈ G (6.2)∑
i

xi − k.
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The above axioms tell us that any candidate dual certificate M ≡MG : P(n, 2r) → R
should satisfy:

M (XI) = 0, ∀I, |I| ≤ 2r, I is not a clique in G,

M

((
n∑
i=1

xi − k

)
XI

)
= 0, ∀I, |I| < 2r. (6.3)

The above equations give us a system of linear equations that M needs to satisfy. By
working with the equations, it is easy to guess a natural solution for the system.

Given a graph G on [n], and I ⊆ [n], |I| ≤ 2r, let

degG(I) = |{S ⊆ [n] : I ⊆ S, |S| = 2r, S is a clique in G}|.

For instance, if r = 1 and v ∈ G, then degG({v}) is the degree of vertex v.
We define M≡MG : P(n, 2r)→ R for monomials as follows: for I ⊆ [n], |I| ≤ 2r, let

M

(∏
i∈I

xi

)
= degG(I) · k(k − 1) · · · (k − |I|+ 1)

2r(2r − 1) · · · (2r − |I|+ 1)
= degG(I) ·

(
k
|I|

)(
2r
|I|

) . (6.4)

It is easy to check the following claim:

Claim 6.2. For any graph G, M≡MG defined by Equation 6.4 satisfies Equations 6.3.

Proof. The first equation in Equation 6.3 follows immediately from the definition of M.
Now, for I ⊆ [n], |I| < 2r,

M

((∑
i

xi − k

)
X(I)

)
= (|I| − k)M(X(I)) +

∑
j /∈I

M(X(I ∪ {j}))

= (|I| − k) · degG(I) ·

(
k
|I|

)(
2r
|I|

) +
∑
j /∈I

degG(I ∪ {j}) ·

(
k
|I|+1

)(
2r
|I|+1

)
=

(
k
|I|+1

)(
2r
|I|+1

) ·
−(2r − |I|) · degG(I) +

∑
j /∈I

degG(I ∪ {j})

 .

Observe that our notion of degree, degG, satisfies the following recurrence: for |I| < 2r,

degG(I) =
1

2r − |I|
·

∑
j /∈I, j adjacent to all of I

degG(I ∪ {j}) =
1

2r − |I|
∑
j /∈I

degG(I ∪ {j}).

The above two equations imply that M satisfies the second equation in 6.3.
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Thus, to prove our main theorem Theorem 1.5, it suffices to show that M as defined
above is PSD with high probability. This is equivalent to showing that the following matrix

M ≡MG ∈ R([n]
≤r)×([n]

≤r) is PSD with high probability for G← G(n, 1/2): for I, J ∈
(

[n]
≤r

)
,

M(I, J) = degG(I ∪ J) ·

(
k
|I∪J |

)(
2r
|I∪J |

) . (6.5)

We will show that M is PSD for k ≤
√
n/(C log n)r

2
over the next two sections:

Lemma 6.3 (Main Technical Lemma). With high probability over G← G(n, 1/2), the matrix
MG defined by Equation 6.5 is PSD for k ≤

√
n/(C log n)d

2
.

7 PSD’ness of the expectation matrix

As first steps and as a warmup for the final proof we first show that the expectation matrix
E[M ] is PSD. We start by writing down E ≡ E[M ].

Claim 7.1. For I, J ∈
(

[n]
≤r

)
, and E ≡ E[M ],

E(I, J) =

(
n− |I ∪ J |
2r − |I ∪ J |

)
·

(
k
|I∪J |

)(
2r
|I∪J |

) · 2−(2r
2 ). (7.1)

Proof. The claim follows from observing that for any set K, E[degG(K)] =
(
n−|I|
2r−|I|

)
· 2−(2r

2 ).

For, all K, there are
(
n−|K|
2r−|K|

)
sets of size 2r containing K, and each is a clique with probability

2−(2r
2 ).

Note that, the expectation matrix above is just a scalar multiple of MGr (viewed as a
matrix) as defined in Equation 6.1. Therefore, by Theorem 6.1, E as defined above is PSD
for r < k. We give a simpler proof of this claim here. We then build on these ideas to get
lower bounds not only for the least eigenvalue of E, but for all of them, which will be critical
for what follows.

The main claim of the section is the following.

Theorem 7.2. The matrix E is PSD for r < min(k, n− k).

As E is singular, one needs to exhibit extra care while trying to show E is PSD. Fortu-
nately, the kernel of E has a simple structure and we exploit this. The next lemma is proved
in [GHP02], and we repeat the simple proof here as we will also use a similar argument later.

Lemma 7.3. The kernel of E has dimension at least
∑r−1

i=0

(
n
i

)
.
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Proof. For any J ⊆ [n], |J | < r, let fJ ∈ R([n]
≤r) be the vector defined by

fJ(K) =


1 K = J ∪ {j}, j /∈ J
(|J | − k) K = J

0 otherwise

.

We claim that the vectors {fJ : J ⊆ [n], |J | < r} are (1) in the kernel of E and (2) are
linearly independent.

Proof of (1): For any fJ and K, |K| ≤ r,

(E · fJ)(I) =
∑

K:|K|≤r

E(I,K)fJ(K) = (|J | − k)E(I, J) +
∑
j /∈J

E(I, J ∪ {j})

= (|J | − k)E(I, J) +
∑
j∈I\J

E(I, J) +
∑

j /∈(I∪J)

E(I, J ∪ {j})

(E(I,J) only depends on I ∪ J .)

= (|I ∪ J | − k)E (XI∪J) +
∑

j /∈(I∪J)

E (xj ·XI∪J) ,

where in the last equation we used the interpretation of E as a linear mapping. It now
follows that fJ is in the kernel as, E satisfies the relation

0 = E

((∑
i

xi − k

)
XI∪J

)
=
∑
i

E (xiXI∪J)− kE (XI∪J)

= (|I ∪ J | − k)E (XI∪J) +
∑
j /∈I

E (XI∪J∪j) .

Proof of (2): Look at the vectors ((fI)) in decreasing order of the sizes |I|. Then, each
vector fI introduces a new non-zero coordinate, fI(I), that was not covered before. Thus
the collection of vectors is linearly independent.

Now that we have a handle on the kernel of E, we use a trick due to Laurent [Lau03] to
show PSD’ness of E. Let Er be the principal sub-matrix of E corresponding to the subsets
of size exactly r. We will show that Er is positive definite and conclude that E is PSD
by appealing to the interlacing eigenvalues theorem, Lemma 3.1. Technically, the proof of
the next lemma is where we differ in the proof Theorem 7.2 from similar claims in [Lau03],
[GHP02] who use various results about hyper-geometric series.

Lemma 7.4. For r < min(k, n− k), the matrix Er is positive definite.

Proof. We will show this by writing Er as a suitable positive linear combination of the PSD
matrices Pt’s from Section 3. More concretely, for any α0, . . . , αt > 0, we have

0 ≺
∑
t

αtPt =
r∑
`=0

(∑̀
t=0

αt

(
`

t

))
D`.
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Now, let e` = E(X(I)) for any I, |I| = 2r − `, i.e.,

e` = 2−(2r
2 ) ·

(
n− 2r + `

d− 2r + `

)
·
(

k
2r−`

)(
d

2r−`

) .
Then, E =

∑r
`=0 e`D`. Therefore, we will be done if we can find αt’s such that for every

0 ≤ ` ≤ r, e` =
∑`

t=0 αt
(
`
t

)
. By examining the first values of `, it is easy to guess what the

αt should be. First observe that e` = e0 ·
(
n−2r+`

`

)
/
(
k−2r+`

`

)
and let αt = e0

(
n−k
t

)
/
(
k−2r+t−1

t

)
.

Then,

e0

(
n− 2r + `

`

)
= e0

∑̀
t=0

(
n− k
t

)
·
(
k − 2r + `− 1

`− t

)

=
∑̀
t=0

αt ·
(
k − 2r + t− 1

t

)(
k − 2r + `− 1

`− t

)

=
∑̀
t=0

αt ·
(
`

t

)
·
(
k − 2r + `

`

)
.

Therefore, e` =
∑

t

(
`
t

)
αt and the lemma now follows:

Er =
r∑
`=0

e`D` =
r∑
`=0

(∑̀
t=0

αt

(
`

t

))
D` � αrI.

Proof of Theorem 7.2. From the previous claim and Lemma 3.1, E has at least
(
n
r

)
eigen-

values which are positive. The claim now follows by Lemma 7.3.

8 PSD’ness of dual certificate

We are now ready to prove our main result, Theorem 1.5, by showing that the mapping
M will be PSD with high probability (Theorem 6.3). This will bring together the tools
developed in the previous sections.

As it turns out, the matrix M is a little unwieldy because of high variance entries. We
will instead work with a new matrix M ′

r such that M ′
r � 0 implies M is PSD. We then show

PSD’ness of M ′
r by applying the high-level approach from the introduction to M ′

r (instead
of M as sketched originally).

In Section 8.1 we define our main object, the matrix M ′
r, a variant of the principal minor

of M corresponding to subsets of size exactly r. In Section 8.2.1 we show how to write
M ′

r as a matrix polynomial in independent, uniform {1,−1}-valued random variables. In
Section 8.2.2 we compute the eigenvalues of the expectation of M ′

r. In Section 8.3 we estimate
the entries of the variance matrix of M ′

r, and in Section 8.2.3 we use the estimates to bound
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the eigenvalues of the variance. It will be clear from these bounds that the corresponding
eigenvalues of the expectation and variance are roughly within a factor of (k2)/n. We put
all the pieces together to show the PSD’ness of dual certificate in Sections 8.2.4 and 8.4.

8.1 Reduction to positive definiteness of M ′
r

As was done in Section 7, we will lower bound the dimension of kernel of M and then find
a large principal submatrix which is positive definite. To this end, let Mr be the principal
submatrix of M corresponding to the rows and columns of size exactly r.

We shall use the following notations for brevity: For any set I ⊆ [n], let E(I) = {{i, j} :
i 6= j ∈ I}. For 0 ≤ i ≤ r, let k(i) =

(
k

2r−i

)
/
(

2r
2r−i

)
.

A problem with the matrix Mr is that the diagonal entries have very large variance: The
expected value of each diagonal entry is roughly Θr(n

rkr). However, with probability Θr(1),
the actual entry will be zero (if the corresponding set is not a clique) which in turn will
also lead to the entire row and column being zero as well. This leads to strong technical
difficulties. To overcome this, we study a closely related matrix which does not have the
same variance issues.

For every T ⊆ [n], let MT ∈ R([n]
r )×([n]

r ), with MT (I, J) = k(|I ∩ J |) if I ∪ J ⊆ T , and G
contains every edge in E(T ) \ E(I) ∪ E(J) (i.e., the only edges in T missing in G are those
with both end points in one of I or J). We will study the matrix

M ′
r =

∑
T :|T |=2r

MT . (8.1)

Intuitively, for every I, J , M ′
r(I, J) is what M(I, J) would be had we added cliques on

the subsets I, J to the graph. The above definition avoids the problem of the whole row
and column corresponding to I or J becoming zero if either was not a clique, and controls
the variance.

We now reduce PSD’ness of M to that of M ′
r.

Lemma 8.1. For any graph G, the kernel of MG has dimension at least
∑r−1

`=0

(
n
`

)
+ |{I :

|I| = r, I not a clique in G}|.

Compared to Lemma 7.3, the difference is the last additive term.

Proof. The same proof as in Lemma 7.3 shows that the vectors {fJ : |J | < r} defined there
also lie in the kernel of MG. The reason is that the proof of Lemma 7.3 only relied on the
equations defining the dual certificate - last equation in 6.3, which MG also satisfies.

Let N =
∑r

`

(
n
`

)
and for a set I, let eI ∈ RN be the vector with 1 in the I’th coordinate

and 0’s elsewhere. Observe that if a set I, |I| ≤ r, is not a clique then, the I’th row and I’th
column of MG are identically zero. Therefore, for every such vector I, eI is in the kernel of
MG.

Let V = {fJ : |J | < r} ∪ {eJ : |J | = r, J not a clique in G}. We claim that the vectors
in V are linearly independent. Look at the vectors in V in decreasing order of the sizes
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|I|. Then, each vector f ∈ V introduces a new non-zero coordinate (corresponding to the
set describing f) that was not covered before. Thus the collection of vectors is linearly
independent.

Lemma 8.2. If M ′
r is positive definite, then the mapping M is PSD.

Proof. First note that, for any I, J , Mr(I, J) = M ′
r(I, J) if I and J are cliques in G and

Mr(I, J) = 0 otherwise. For, suppose that I and J are cliques in G. Then, MT (I, J) =
k(|I ∩ J |) if I ∪ J ⊆ T and T is a clique and 0 otherwise. Therefore,

M ′
r(I, J) =

∑
T

MT (I, J) = k(|I ∩ J |) · |{T : I ∪ J ⊆ T, T clique}| = Mr(I, J).

Therefore, the principal submatrix of Mr corresponding to cliques of size exactly r is the
same as in M ′

r and hence is positive definite by the assumption. Thus, if we let Nr be the
number of cliques of size exactly r in G, then by Lemma 3.1, Mr and hence M , has at least
Nr positive eigenvalues. The claim now follows from the fact that the kernel has dimension
at least

∑r
`=0

(
n
`

)
−Nr by the previous lemma.

8.2 Positive definiteness of M ′
r

We now show that the M ′
r defined in the last section is positive definite with high probability.

Lemma 8.3 (Main Technical Lemma). For c a sufficiently large constant the following holds.

The matrix M ′
r ∈ R([n]

r )×([n]
r ) defined by Equation 8.1 is positive definite with probability at

least 1− δ, for k <
√
n/(c log(nr/δ))r

2
.

The proof follows the two-step strategy described in the introduction: show that E[M ′
r]−

M ′
r ≺ E[M ′

r] with high probability. To do so, we first write M ′
r − E[M ′

r] as a matrix
polynomial in independent random variables. We then apply our tail bounds for matrix
polynomials, Theorem 1.6, to argue that E[M ′

r] −M ′
r ≺ ∆ · Σ, where ∆ is not too large

and Σ is the variance of M ′
r − E[M ′

r]. Finally, we exploit the set-symmetry of the variance
and expectation matrices Σ, E[M ′

r] to characterize their eigenvalues using the theory of
association schemes. Using these estimates we conclude that ∆Σ ≺ E[M ′

r], thus proving the
theorem. While the entries of E[M ′

r] are easy to get a handle on, estimating the eigenvalues
of Σ requires some careful calculations to estimate the entries of Σ.

For the remainder of this section, we shall use the following additional notations:

• For 0 ≤ i ≤ r, let

k′(i) = k(i)/2r
2+(i

2) =

(
k

2r − i

)
/

(
2r

2r − i

)
· 2r2+(i

2).

• In the following we will adopt the convention that I, J,K denote elements of
(

[n]
r

)
and

T, T ′ denote elements of
(

[n]
2r

)
.
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• In the following H denotes a graph on at most 2r vertices from [n].

• All matrices considered below will be over R([n]
r )×([n]

r ).

• We write A ≈r B if there exist constants c, C such that cr
2
B ≤ A ≤ Cr2B.

8.2.1 Writing M ′
r as a matrix polynomial

We first write M ′
r as a matrix polynomial in independent random variables. For every edge

e ∈
(

[n]
2

)
, let ye denote the indicator random variable that is 1 if e ∈ G and 0 otherwise. Let

εe = 2ye − 1. Then, by Equation 8.1,

M ′
r(I, J) = k(|I ∩ J |) ·

∑
T

 ∏
e∈E(T )\E(I)∪E(J)

ye


= k(|I ∩ J |) ·

∑
T

 ∏
e∈E(T )\E(I)∪E(J)

1 + εe
2

 .

For any I, J, T with I ∪ J ⊆ T , let H(I, J, T ) denote all graphs whose edges are contained
in E(T ) \ E(I) ∪ E(J). Note that |E(T ) \ E(I) ∪ E(J)| = r2 +

(|I∩J |
2

)
. Then, we can expand

the above equation further as

M ′
r(I, J) =

k(|I ∩ J |)
2r

2+(|I∩J|2 )
·
∑
T

∑
H∈H(I,J,T )

(∏
e∈H

εe

)
= k′(|I ∩ J |) ·

∑
T

∑
H∈H(I,J,T )

(∏
e∈H

εe

)

= k′(|I ∩ J |)
∑
H

(∏
e∈H

εe

) ∑
T :H(I,J,T )3H

1

 .

Now, for any graph H on at most 2r vertices, define the matrix AH where

AH(I, J) = k′(|I ∩ J |) · |{T : H ∈ H(I, J, T )}|. (8.2)

Then, from the above two equations

M ′
r =

∑
H

(∏
e∈H

εe

)
AH . (8.3)

Note that the right hand side is a matrix polynomial in independent, uniformly random
{1,−1} variables {{εe}}; a setting, where we can apply Theorem 1.6. But to do so, we need
to first understand the expectation matrix E[M ′

r] and the variance matrix

Σ2 =
∑
H:H 6=∅

A2
H . (8.4)

Note that both E[M ′
r] and Σ are clearly set-symmetric. Thus, we can apply the results

of Section 4.

22



8.2.2 Estimating the eigenvalues of the expectation matrix

We now estimate the spectrum of E[M ′
r]. In the following, we recall the notation from

Lemma 4.6.

Lemma 8.4. If k < n/2cr
2

for a sufficiently large constant c, then, for 0 ≤ j ≤ r,
λj(E[M ′

r]) ≥ k2r−jnr/2O(r2).

Proof. Let Q = E[M ′
r]. Then, by Equation 8.1, Q(I, J) = k′(|I ∩ J |) ·

(
n−|I∪J |
2r−|I∪J |

)
as there

are
(
n−|I∪J |
2r−|I∪J |

)
many T ’s that contain I, J and every such T contributes to MT (I, J) by an

additive k′(|I ∩J |) amount. Therefore, Q =
∑

` α`D`, where α` ≈r k2r−`n`. We next express
Q as a linear combination of Pt’s: Q =

∑
t βtPt. Then, by Claim 4.5,

βt =
∑
`≤t

(−1)t−`
(
t

`

)
α`.

Now, if k < n/2O(r2) for a sufficiently big constant, then α`’s increase geometrically and the
above sum will be dominated by the last term so that βt ≥ αt/2 ≈r k2r−tnt. Therefore, by
Lemma 4.6 and the fact that Pt’s are PSD,

λj(Q) =
∑
t

βtλj(Pt) =
∑
t≥j

βt

(
n− t− j
r − t

)(
r − t
t− j

)
≥ 2−O(r2)

∑
t≥j

k2r−`nt · nr−t ≥ k2r−jnr/2O(r2).

8.2.3 Estimating the eigenvalues of the variance matrix

We now estimate the spectrum of Σ2. Again, we use the notation from Lemma 4.6.

Lemma 8.5. For Σ as defined in Lemma 8.6, λj( ) defined as in Lemma 4.6, if k2 < n,
then λj(Σ) ≤ 2O(r2)k2r−jnr(k/

√
n).

The proof of the above lemma involves first estimating the entries of Σ up to factors
depending only on r.

Lemma 8.6. Let Σ be defined by Equation 8.4. Then, Σ is symmetric and if k <
√
n/2, the

following holds: For any I, J , Σ2(I, J) ≈r
(
nrk4r

(
n
k2

)|I∩J |−1
)

.

The proof of the lemma involves a somewhat tedious calculation. We remark that the
−1 appearing in the exponent of (n/k2) above will be significant. We defer the proof of the
lemma for now and proceed with the proof of Lemma 8.5.
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Proof of Lemma 8.5. Note that Σ2 is set-symmetric and hence has eigenspaces V0, . . . , Vr as
in Lemma 4.6. Further by Lemma 8.6, if we write Σ2 =

∑
` α`D`, then α` ≈r nrk4r(n/k2)`−1.

Further, if βt =
∑

`≤t
(
t
`

)
α`, then as k2 < n,

βt ≈r nrk4r
∑
`≤t

(n/k2)`−1 ≈r nrk4r(n/k2)t−1.

Therefore, by Lemma 4.7, we get that for 0 ≤ j ≤ r,

λj(Σ
2) ≤

∑
t≥j

βt ·
(
n− t− j
r − t

)
·
(
r − j
t− j

)
≤ Cr

∑
t≥j

nrk4r
( n
k2

)t−1

· nr−t

≤ Crn
2r−1k4r

∑
t≥j

1

k2(t−1)
≤ Crn

2r−1k4r · O(1)

k2(j−1)

≤ Crk
4r−2jn2r

(
k2

n

)
,

where Cr = 2O(r2). The claim now follows by noting that λj(Σ) =
√
λj(Σ2).

We defer the proof of Lemma 8.6 till the end of this section.

8.2.4 Positive definiteness of M ′
r

We are now ready to show positive definiteness of M ′
r and prove Lemma 8.3.

Proof of Lemma 8.3. By Equation 8.3,

M ′
r = E[M ′

r] +
∑
H:H 6=∅

(∏
e∈H

εe

)
AH .

We now apply Theorem 1.6 to the matrix polynomial from the second term. Note that the
degree of the polynomial is at most (2r)2/2 = 2r2. Fix δ > 0, and let N =

(
n
r

)
. Then, for C

large enough, and ∆ = (C log(N/δ))r
2
, by Theorem 1.6, with probability at least 1− δ,

M ′
r � E[M ′

r]−∆

(∑
H

A2
H

)1/2

= E[M ′
r]−∆Σ.

Let Q = E[M ′
r]−∆Σ. Then, Q is set-symmetric and by Lemmas 8.4 and 8.5, for 0 ≤ j ≤ r,

λj(Q) ≥ λj(E[M ′
r])−∆ · λj(Σ)

≥ k2r−jnr/2O(r2) − (C log(N/δ))r
2 · k2r−jnr(k/

√
n) · 2O(r2)

=
k2r−jnr

2O(r2)
·
(

1−
(

k√
n

)
· 2O(r2) · (C log(N/δ))r

2

)
.
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Therefore, if k <
√
n/(c log(N/δ))r

2
for a sufficiently large constant c, the last expression

above will be positive so that λj(Q) > 0. Thus, M ′
r � Q � 0, proving the lemma.

8.3 Estimating the entries of the variance matrix

We now prove Lemma 8.6.

Proof of Lemma 8.6. Σ is clearly set-symmetric as we sum over all possible graphs H. We
have,

Σ2(I, J) =
∑
H:H 6=∅

A2
H(I, J)

=
∑
H:H 6=∅

∑
K

AH(I,K)AH(J,K)

=
∑
H:H 6=∅

∑
K

k′(|I ∩K|) k′(|J ∩K|) · |{T : H(I,K, T ) 3 H}| · |{T ′ :∈ H(J,K, T ′) 3 H}|,

where the last equality follows from the definition of AH from Equation 8.2. Continuing with
the above computation, we have

Σ2(I, J) =
∑
H:H 6=∅

∑
K

k′(|I ∩K|) · k′(|J ∩K|)

 ∑
T :H∈H(I,K,T )

1

 ∑
T ′:H∈H(J,K,T )

1


=
∑
T,T ′

∑
K

k′(|I ∩K|) · k′(|J ∩K|)

 ∑
H:H∈H(I,K,T )∩H(J,K,T ′)

1


(Interchanging the order of summation)

=
∑
T,T ′

∑
K

k′(|I ∩K|) · k′(|J ∩K|) · |{H 6= ∅ : H ∈ H(I,K, T ) ∩H(J,K, T ′)}|

Now, the last term above counts the number of non-empty graphs in H(I,K, T ) ∩
H(J,K, T ′). First observe that there exist such graphs only if (I ∪ K) ⊆ T, (J ∪ K) ⊆
T ′. In particular, only if I ⊆ T, J ⊆ T ′, and K ⊆ T ∩ T ′. Further, any graph in
H(I,K, T ) ∩ H(J,K, T ′) must have its vertex set contained in T ∩ T ′. Thus, for fixed
T, T ′, the number of such graphs is at most 2O(r2). We will essentially just use this trivial
bound but for one important exception when |T ∩T ′| = r. We claim that when |T ∩T ′| = r,
there are no non-empty graphs in H(I,K, T ) ∩ H(J,K, T ′) so that the inner summand is
actually 0. For, if H ∈ H(I,K, T ) ∩H(J,K, T ′), then all edges of H must (1) be in T ∩ T ′,
and (2) cannot be in E(K) (by definition). These two conditions are contradictory as if
|T ∩ T ′| = r and K ⊆ T ∩ T ′, then K = T ∩ T ′.

Therefore, combining the above arguments, we get

Σ2(I, J) = 2O(r2)
∑

T,T ′:|T∩T ′|>r
I⊆T,J⊆T ′

∑
K⊆T∩T ′

k′(|I ∩K|) · k′(|J ∩K|). (8.5)
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I To

T ′o

J

I ′

I
∩ J J ′

Figure 1: Enumerating over the sets T = I ∪T0 and T ′ = J ∪T ′o. R is the blue shaded region
and K should be in R. Notation: |R| = r + e, |I ′| = i, |J ′| = j.

We next estimate the last summation which is somewhat tricky. Our final goal will be to get
an appropriate geometrically decreasing series parameterized by |T ∩ T ′|. We then exploit
the fact that we only sum over T, T ′ with |T ∩ T ′| > r.

We will choose T, T ′ as follows. Let R = T ∩ T ′. Then, I ∩ J ⊆ R. Now, pick T, T ′ by
picking in order (see Figure 8.3): I ′ = (R ∩ I) \ (I ∩ J), J ′ = (R ∩ J) \ (I ∩ J), R \ (I ∪ J),
T \ (R ∪ I) and T ′ \ (R ∪ J). See Figure 8.3 for a pictorial representation: R is the blue
shaded region, T is the two circles on the horizontal axis and T ′ is the two circles on the
vertical axis.

We will use the following notations for brevity:

• R = T ∩ T ′, |R| = r + e. Recall that e ≥ 1.

• |I ∩ J | = m, |I ′| = i and |J ′| = j.

We will estimate the right hand side of Equation 8.5 by parametrizing over 1 ≤ e ≤ r,
and 0 ≤ i, j ≤ r. To this end, first note that K ⊆ R and |K| = r. Therefore,

|I ∩K|+ |J ∩K| ≥ 2|K ∩ I ∩ J | ≥ 2 (|I ∩ J | − e) = 2(m− e).

Hence,
k′(|I ∩K|) · k′(|J ∩K|) ≤ k2r−|I∩K|k2r−|J∩K| ≤ k4r−2m+2e.

Thus, if we fix T, T ′ and sum over all possible K ⊆ T ∩ T ′, the inner summand from
Equation 8.5 becomes ∑

K⊆T∩T ′
k′(|I ∩K|) · k′(|J ∩K) ≤ 22rk4r−2m+2e. (8.6)

We have to now enumerate the number of ways of choosing T, T ′. If we fix e, i, j as above,
then the number of sets T, T ′ achieving these sizes is exactly the number of ways to choose
I ′ ⊆ I \ J , J ′ ⊆ J \ I, R \ (I ∪ J), T \ (R ∪ I), T ′ \ (R ∪ J). Further,

|R \ (I ∪ J)| = r + e− |I ∩ J | − |I ′| − |J ′| = r + e−m− i− j,
|T \ (R ∪ I)| = 2r − |R ∪ I| = 2r − (2r + e−m− i) = m+ i− e,
|T ′ \ (R ∪ J)| = 2r − |R ∪ J | = 2r − (2r + e−m− j) = m+ j − e.
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Thus, the number of ways to pick T, T ′ is at most (again, this is easier to see pictorially from
Figure 8.3)(

I

i

)
·
(
J

j

)
·
(

n

r + e−m− i− j

)
·
(

n

m+ i− e

)
·
(

n

m+ j − e

)
≤

22r · nr+e−m−i−j · nm+i−e · nm+j−e = 22rnr+m−e. (8.7)

Combining Equations 8.5, 8.6, 8.7, we get

Σ2(I, J) = 2O(r2)
∑

1≤e≤r,
0≤i,j≤r

24rk4r−2m+2e · nr+m−e

= 2O(r2) · k4r−2m · nr+m
∑
e≥1

(
k2

n

)e
≤ 2O(r2) · k4r−2m · nr+m

(
k2

n

)
= 2O(r2)k2rn2r

(
k2

n

)r+1−m

,

where we used the fact that if k <
√
n/2 we have a geometrically decreasing series. The

claim now follows.

8.4 Putting things together

We bring the arguments from previous sections together to prove our main results Theo-
rem 6.3 and Theorem 1.5.

Proof of Theorem 6.3. Follows immediately from Lemma 8.2 and Lemma 8.3.

Proof of Theorem 1.5. Follows immediately from Lemma 2.3, Claim 6.2 and Theorem 6.3.

Theorems 1.1 and 1.2 follow immediately from our PS(r)-refutation lower bound using
standard arguments. We defer these to the appendix.

9 Conclusion and future work

In this work we showed a lower bound for the maximum clique problem on random G(n, 1/2)
graphs in the SOS hierarchy and positivstellensatz proof system. Besides the specific appli-
cation to clique lower bounds, the PSD’ness of the matrix M from Equation 6.5 seems to
carry further information that could be potentially useful elsewhere, perhaps for studying
various sub-graph statistics. Further, the arguments related to association schemes and non-
commutative polynomial tail inequalities could also be useful elsewhere, especially for other
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SOS hierarchy lower bounds. One natural and interesting candidate is the densest subgraph
problem.

The most obvious open problem is to solve the planted clique problem for k = n1/2−δ for
any constant δ > 0 in polynomial time. As our results show, this may require some very
new techniques.

Another obvious open problem arising from this work is to close the gap between the
upper and lower bounds for the SOS hierarchy in terms of number of rounds, r: 1/2O(r2) vs
1/2r. Concretely, we could ask if r = O(

√
log n) rounds of SOS hierarchy can beat the

√
n

barrier for planted clique. In our current arguments, we lose factors of 2O(r2) mainly in two
places:

1. In Sections 8.2.2 and 8.2.3, the latter of which in turn comes from the estimates in
Section 8.3.

2. In Section 8.2.1, when we apply the tail inequality for matrix polynomials to a poly-
nomial of degree r2.

We believe that the losses in (1) can be improved to losses of 2O(r) with more tenuous
calculations. In fact, the improvements are not too hard for the bounds in Section 8.2.2.

On the other hand, the losses coming from (2) seem more critical and intrinsic to the
current analysis. Large deviation inequalities of the form we use in Section 8.2.1 need to lose
an exponential factor in the degree even for the scalar case. However, if the polynomial has
a special form, then better large deviation bounds may be possible. For example consider
the polynomial P (x1, . . . , xn) = x1x2 · · · xd + xd+1xd+2 · · ·x2d + · · · + xn−d+1xn−d+2 · · ·xn.
Then, using tail inequalities for degree d polynomials gives you losses of exp(d), however P
is effectively a linear polynomial and hence much stronger bounds independent of the degree
d hold. Intuitively, the worst degree d polynomials in terms of large deviation bounds are
polynomials which can be expressed as powers (or other functions) of few linear polynomials
and hence are quite “structured”. The work of Latala [Lat06] (also see [Kan11] for {1,−1}-
valued random variables) in fact gives tight large deviation bounds for (scalar) polynomials
taking into account the structure of the specific polynomial. One plausible avenue for im-
proving the bounds in Section 8.2.1 is to see if the polynomial we study has any special
structure (or lack thereof).

Another question is to remove the dependence on the number of variables n from our
non-commutative polynomial tail inequality, Theorem 1.6, which seems unnecessary.
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SOS-relaxation for Max-Clique. Input: Graph G = (V,E), r - number of rounds. Variables
of the SDP are vectors US, where S ⊆ [n], |S| ≤ r.

maximize
∑
i∈V

‖U{i}‖2
2.

such that 〈U{i},U{j}〉 = 0, ∀i, j, {i, j} /∈ E
〈US1 ,US2〉 = 〈US3 ,US4〉, S1 ∪ S2 = S3 ∪ S4, |S1 ∪ S2| ≤ r

〈US1 ,US2〉 ∈ [0, 1], |S1|, |S2| ≤ r

‖U∅‖2
2 = 1

Figure 2: r-round SOS-relaxation for Maximum Clique

A Hierarchy Gaps and Positivstellensatz Refutations

For a detailed discussion of the hierarchies and PS(r)-refutations we refer the reader to
the discussions in [OZ13]. The basic principle is that, typically, PS(r)-refutations are more
robust and stronger than the hierarchy formulations.

The SOS (or Lasserre) relaxation for maximum clique is stated in Figure A (cf. [Tul09]).
Although, the formulation itself is not in terms of an SDP, it is a standard fact that as
the program only involves inner products of vectors, the optimization can be done by semi-
definite programming. The connection between Figure A and PS(r)-refutations comes from
the following straightforward lemma stating that a certificate for PS(r)-refutations is simply
a primal solution to the standard r-round SOS-relaxation of the problem.

Lemma A.1. Let G = (V,E) be a graph and let Clique(G, k) denote the clique axioms as
defined by Equations 1.2. Suppose that there exists a dual certificate M : P(n, 2r) → R for
Clique(G, k) as defined in Definition 2.2. Then, the value of the r-round SOS-relaxation for
maximum clique given by Figure A is at least k.

Proof. LetM : P(n, 2r)→ R be the dual certificate and M ∈ R([n]
≤r)×([n]

≤r) be the correspond-
ing PSD matrix. Without loss of generality suppose that M(∅, ∅) = 1. Let M = UU †, where

U = R([n]
≤r)×N for some N . Finally, for S ∈

(
[n]
≤r

)
, let US be the S’th row of U . We claim that

the collection (US, |S| ≤ r) gives a feasible solution for the SDP in Figure A.
Observe that for any two subsets S1, S2 ∈

(
[n]
≤r

)
,

〈US1 ,US2〉 = M(S1, S2) =M(XS1∪S2).

Therefore, the vectors (US : |S| ≤ r) satisfy the first two constraints of Figure A as M is a
dual certificate. Further, ‖U∅‖2 = M(∅, ∅) = 1 and for any set S,

‖US‖2
2 = 〈US,US〉 = 〈US,U∅〉 ≤ ‖US‖2,

32



so that ‖US‖ ≤ 1. Thus, (US: |S| ≤ r) give a feasible solution for the program in Figure A.
Finally, the value of the solution is∑

i∈V

‖U{i}‖2
2 =

∑
i∈V

M(X{i}) = k.

This proves the lemma.

Our main theorems now follows.

Proof of Theorem 1.1. Let G ← G(n, 1/2). Then, from the above lemma and the proof of
Theorem 1.5 (where we showed the existence of a dual certificate for the clique axioms),
the value of the r-round SOS-relaxation for max-clique on G is at least

√
n/(C log n)r

2

with high probability. The claim follows as the integral value is (2 + o(1)) log2 n with high
probability.

Proof of Corollary 1.2. The value of the relaxation in Figure A is clearly monotone with
respect to adding edges. Therefore, from the above argument, for G ← G(n, 1/2, t) the
value of the r-round SOS-relaxation for max-clique on G is at least

√
n/(C log n)r

2
with high

probability. The claim follows as the integral value is t with high probability.
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