
A note on average-case sorting

Shay Moran∗ Amir Yehudayoff†

Abstract

This note studies the average-case comparison-complexity of sorting n ele-

ments when there is a known distribution on inputs and the goal is to minimize

the expected number of comparisons. We generalize Fredman’s algorithm which

is a variant of insertion sort and provide a basically tight upper bound: If µ is

a distribution on permutations on n elements, then one may sort inputs from µ

with expected number of comparisons that is at most H(µ) + 2n, where H is the

entropy function. The algorithm uses less comparisons for more probable inputs:

For every permutation π, the algorithm sorts π by using at most log2(
1

Prµ(π)
)+2n

comparisons. A lower bound on the expected number of comparisons of H(µ)

always holds, and a linear dependence on n is also required.

1 Introduction

Sorting n elements is one of the most studied and fundamental problems in the theory

of computing. The information theoretic lower bound for comparison-based sorting

of n elements states that any comparison-based sorting algorithm must make at least

log2(n!) comparisons. The idea of the proof is to represent such an algorithm by a

binary comparison tree and observe that the leaves in the tree define a prefix-free

binary encoding of the n! permutations/orders. This argument actually shows that

even if the algorithm is allowed to ask any yes-no questions1 about the input, it will

still make at least log2(n!) questions.

Sorting has also been studied when there is additional partial information on the

input e.g. [5, 4]. We consider the average-case comparison complexity of sorting. The

input is a random permutation π that is drawn from an arbitrary known distribution

∗Department of Computer Science, Technion-IIT, Israel and Max Planck Institute for Informatics,
Saarbrücken, Germany, . smoran@mpi-inf.mpg.de.
†Department of Mathematics, Technion-IIT, Israel. amir.yehudayoff@gmail.com. Horev fellow

– supported by the Taub foundation. Research also supported by ISF and BSF.
1A question of the form “is π ∈ Γ?′′ where π is the input permutation and Γ ⊆ Sn is any subset of

permutations.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 106 (2013)

µ. The goal is to minimize the expected number of comparisons required for sorting.

Information theory provides a general lower bound of H(µ) on the expected number

of any yes/no questions required, where H is Shannon’s entropy. On the other hand,

Huffman coding implies that there are algorithms that ask at most H(µ) + 1 yes/no

questions (see, e.g. [1]). It is natural to ask whether there are comparison-based algo-

rithms that are (roughly) as efficient. We show that there are:

Theorem 1. Let Sn be the set of permutations of [n]. For every distribution µ on Sn,

there is a comparison algorithm that for every π ∈ Sn such that Prµ(π) > 0 asks Q(π)

questions of the form “is π(i) < π(j)?” for some i, j ∈ [n] and always finds π so that

Eπ∼µQ(π) ≤ H(µ) + 2n.

Moreover, for every π ∈ Sn such that Prµ(π) > 0, we have Q(π) ≤ log(1
Prµ(π)

) + 2n.

The algorithm is a generalization of an algorithm by Fredman [2] which is a variant

of insertion sort.

The upper bound is tight up to constants: As mentioned, a lower bound of H(µ)

always holds. The linear dependence on n follows since there are full support distri-

butions2 µ with say H(µ) = 2. Such distributions require at least n − 1 comparisons

on expectation: Indeed, after n−2 comparisons the comparison-graph is disconnected.

(The comparison graph has [n] as vertices and two vertices are connected by an edge

if they were compared during the execution of the algorithm.) So, there are at least

two permutations that are consistent with the comparisons made so far. This means

that a comparison-based algorithm can never stop before making n− 1 comparisons.

It is worth noting, however, that there are interesting distributions for which the

linear dependence on n is not necessary. For example, let P be a partial order on [n]

and let E ⊆ Sn be the set of all linear orders that extend P . Kahn and Kim [4] provided

a comparison based algorithm that uses only O(log(|E|)) comparisons. Specifically, if

µ is the uniform distribution over E then O(H(µ)) comparisons suffice.

Worst-case complexity: Can we hope for an algorithm whose worst-case number of

comparisons depends on H(µ)? If it is required that the algorithm never errs then if

µ has a full support then the worst-case number of comparisons for any comparison

based algorithm for inputs from µ is at least log2(n!). Thus, there are full-support

distributions with entropy say 2 for which the worst-case number of comparisons is

at least log2(n!). However, by allowing the probability of error to be at most ε > 0,

one may clearly obtain a worst-case guarantee: For every µ, there is an algorithm that

asks for at most H(µ)+2n
ε

comparisons in the worst-case and succeeds with probability

at least 1 − ε over µ. Indeed, stop the algorithm from Theorem 1 after H(µ)+2n
ε

many

2Distributions which give a positive probability for every permutation in Sn.

2

comparisons, and report “error” if the algorithm did not yet terminate. By Markov

inequality, the resulting algorithm errs with probability at most ε over µ and has the

desired worst-case guarantee.

Another interesting aspect is that the number of yes/no questions is 2n!, whereas

the number of comparisons is only n(n− 1). The class of comparison-based algorithms

is therefore a tiny subset of the class of algorithms that are allowed to ask any yes-no

question. Yet, comparison-based algorithms are rich enough to (almost) achieve the

optimal bound.

A natural approach toward proving Theorem 1 is to iteratively choose a comparison

that roughly halves the weight of the distribution. This approach, however, can not

work since there are distributions for which such a comparison does not exist. An ex-

ample is a distribution with a large mass on a single permutation. A related structural

result from [7] is that if there is no comparison that is close to halving the weight then

the entropy of the distribution is not full (see [7] for more details).

The algorithm from Theorem 1 is a variant of insertion sort and iteratively solves

the following search problem: Assume we have a distribution ν on a linearly ordered

set B, that b is chosen at random from ν, and that we wish to find the unknown b using

as few B-comparisons as possible on average. We show that few comparisons always

suffice:

Lemma 2. For every distribution ν on a finite linearly ordered set B, there is an

algorithm that for every b ∈ B so that Prν(b) > 0, finds b by asking C(b) questions of

the form “is b ≤ b′?” for some b′ ∈ B, and it holds that

Eb∼νC(b) ≤ H(ν) + 2.

Moreover, for every b ∈ B so that Prν(b) > 0, we have C(b) ≤ log(1
Prν(b)

) + 2.

Lemma 2 is proved in Section 2.1. The proof uses an alphabetical code of Gilbert

and Moore [3]. The way the search algorithm of Lemma 2 is used in the sorting

algorithm of Theorem 1 is explained in Section 2.2, where it is also explained what the

ordered set B is and how the distribution µ on Sn induces a distribution ν on B (there

are in fact several sets B and distributions on them).

This upper bound is tight: Again, the information theoretic lower bound says that

H(ν) comparisons are necessary. To see why the additive factor of 2 is necessary, let ν

be a distribution on {1 < 2 < 3} such that ν(1) = ν(3) = ε where ε > 0 is arbitrarily

small. If the input is 2 then at least two comparisons are needed to verify it. The

average number of comparisons required is thus at least 2(1 − 2ε). However, H(ν)

approaches zero as ε approaches zero.

Previous work: Our results are related to the results of Fredman in [2] which show

that for any Γ ⊆ Sn there exists a comparison based algorithm which sorts any π ∈ Γ

3

using at most log2(|Γ|) + 2n comparisons. These results provide worst-case guarantees

on the number of comparisons, and in this aspect, they are incomparable with our

average case analysis. On one hand, a worst-case guarantee is always better than an

average-case one. On the other hand, if e.g. µ has full support and entropy n then

the worst-case guarantee is log2(n!) but the average-case guarantee is only 3n. Also,

Fredman’s result can be interpreted as over distributions that are uniform on their sup-

port, whereas we consider arbitrary distributions. His algorithm is based on weighting

according to set-sizes, and the variant we present uses weighting according to the un-

derlying distribution. The weighting we consider is, nevertheless, quite natural given

Fredman’s one. The context of average-case complexity allows for a clean statement

and provides additional insight.

We note that both Fredman’s algorithm and ours require knowledge of the underly-

ing structure/distribution. For the algorithms to be implemented efficiently, we should

be able to get efficiently answers to queries of the form “what is the µ-probability that

π(j1) < π(j2) < . . . < π(ji)?” for some j1 < j2 < . . . < ji in [n].

2 Algorithms

2.1 Searching

We now prove Lemma 2. Think of B as the set {1, 2, . . . , |B|}. For every j ∈ B, let

νj = Pr
ν

[b = j].

We map B into the interval [0, 1] in an order-preserving manner using the weights

defined by ν: Let

mj =
νj
2

+

j−1∑
i=1

νi,

where the empty sum is zero. It is also technically convenient to define m0 = 0. Thus

0 = m0 ≤ m1 ≤ . . . ≤ 1, and if mj = mj′ for j < j′ then νj = νj+1 = . . . = νj′ = 0. For

every r ∈ [0, 1], define

J(r) = max{j ≥ 0 : mj ≤ r}.

The following observation is useful: For every j ≥ 0 and r ∈ [0, 1],

j ≤ J(r) ⇔ mj ≤ r.

This implies that the question “is mb ≤ r?” is equivalent to the question “is b ≤ J(r)?”

and for each r we can find J(r) since we know ν.

4

Let b ∈ B be so that Prν(b) > 0. Find b using a binary search as follows. Ask

“is mb ≤ 1/2?” and if the answer is “yes” then ask “is mb ≤ 1/4?” and so forth. In

other words, we start with L0 = [0, 1] and after asking q questions we have an interval

Lq ⊂ [0, 1] of length 2−q so that mb ∈ Lq. Let

Sq =
{
j ∈ B : Pr

ν
(j) > 0, mj ∈ Lq

}
.

Stop the search at the first time that |Sq| ≤ 1, and then decide that b is the only j ∈ Sq.
We claim that the number of questions C = C(b) satisfies C ≤ dlog2

2
νb
e ≤ 2 +

log2
1
νb

, and that the answer is always correct. First, if q ≥ log2
2
νb

then |Lq| ≤ νb
2

.

Second, for every j 6= b so that Prν(j) > 0, we have |mj − mb| > νb
2

. Third, we

always have mb ∈ Lq. Thus, for q ≥ log2
2
νb

, we have Sq = {b}, which indeed implies

C ≤ dlog2
2
νb
e.

The average number of comparisons can therefore be bounded by

EC ≤
∑
j∈B

νj

(
2 + log2

1

νj

)
= H(ν) + 2.

2.2 Sorting

We use Lemma 2 to prove Theorem 1. Let π ∈ Sn such that µ(π) > 0, as in [6], define

the inversion table t = t(π) = (t1, . . . , tn) of π by

ti = |{j ∈ {1, 2, . . . , i} : π(j) ≤ π(i)}|.

One way to think of ti is as the position in which i is inserted to in an insertion sort

algorithm with inputs 1, 2, . . . , n. For example, if π(2) < π(1) then t2 = 1 and 2 is

inserted to the first position, and if π(2) > π(1) then t2 = 2 and 2 is inserted to the

second position.

Claim 3. The map π 7→ t is one-to-one.

Proof sketch. The permutation π can be thought of as an order on [n]. It follows by

induction on i that knowledge of t1, . . . , ti implies knowledge of the π-order restricted

to [i]. In particular t1, . . . , tn uniquely define π.

Let µ be a distribution on Sn and let T = (T1, ..., Tn) denote the random inversion

5

table. Fix π ∈ Sn so that Prµ(π) > 0 and let t = t(π) = (t1, . . . , tn). Observe that:

Pr
µ

(π) = Pr
µ

(T = t(π)) (π 7→ t(π) is one-to-one)

= Pr
µ

(T1 = t1, . . . , Tn = tn)

= Pr
µ

(T1 = t1) Pr
µ

(T2 = t2|T1 = t1) . . .Pr
µ

(Tn = tn|T1 = t1, . . . , Tn−1 = tn−1).

The sorting algorithm is a variant of insertion sort. It runs in n iterations. At iteration

i ∈ [n], we use the already known π-order on [i − 1] to find out the π-order of [i]. In

order to do so it is enough to determine Ti, the number of elements in [i] that are not

more than i according to π. In other words, given T1 = t1, . . . , Ti−1 = ti−1 we wish to

find Ti. Think of B = Bi as the set {1, . . . , i} of possible values for Ti. The distribution

µ induces a distribution ν on B: For every b ∈ B,

Pr
ν

(b) = Pr
µ

(Ti = b|T1 = t1, . . . , Ti−1 = ti−1).

Using the search algorithm from Lemma 2, we may find ti with number of comparisons

of the form “is ti ≤ j?” for some j ∈ B that is at most

log

(
1

Prν(ti)

)
+ 2 = log

(
1

Prµ(Ti = ti|T1 = t1, . . . , Ti−1 = ti−1)

)
+ 2.

These questions can be simulated by comparisons of the form “is π(i) ≤ π(k)?” for

k ∈ [i− 1] since we already know the π-order on [i− 1].

So we have used comparisons to find t and therefore π. The total number of

comparisons required to find π is at most:

Q(π) ≤
n∑
i=1

(
log

(
1

Prµ(Ti = ti|T1 = t1, . . . , Ti−1 = ti−1)

)
+ 2

)
= log

(
1

Πn
i=1Prµ(Ti = ti|T1 = t1, . . . , Ti−1 = ti−1)

)
+ 2n

= log

(
1

Prµ(π)

)
+ 2n.

Finally, the overall expected number of comparisons is

EQ =
∑
π∈Sn

Pr
µ

(π)Q(π) ≤
∑
π∈Sn

Pr
µ

(π) log

(
1

Prµ(π)

)
+ 2n = H(µ) + 2n.

6

Acknowledgements

We thank Jeff Kahn, Kurt Mehlhorn, Shlomo Moran, Amir Shpilka, Manfred Warmuth

and Avi Wigderson for helpful conversations. We also thank the anonymous referees

for useful comments on an earlier version of this text.

References

[1] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley 2006, ISBN

978-0-471-24195-9, pages 1–748.

[2] M. L. Fredman. How good is the information theory bound in sorting? Theoretical

Computer Science 1, pages 355-361, 1976.

[3] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell Syst. Tech.

J. 38(4), pages 933–968, 1959.

[4] J. Kahn and J. H. Kim. Entropy and sorting. J. Comput. Syst. Sci. 51(3), pages

390–399, 1995.

[5] J. Kahn and M. Saks. Balancing poset extensions. Order 1, pages 113–126, 1984.

[6] D. E. Knuth. The art of computer programming. Vol. 3, Addison-Wesley, Reading,

Mass., 1973.

[7] T. Leighton and A. Moitra. On entropy and extensions of posets. Manuscript, 2011.

7

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

