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Abstract

We consider the problem of verifying the identity of a distribution: Given the description
of a distribution over a discrete support p = (p1, p2, . . . , pn), how many samples (independent
draws) must one obtain from an unknown distribution, q, to distinguish, with high probability,
the case that p = q from the case that the total variation distance (L1 distance) ||p− q||1 ≥ ϵ?
We resolve this question, up to constant factors, on an instance by instance basis: there exist
universal constants c, c′ and a function f(p, ϵ) on distributions and error parameters, such that
our tester distinguishes p = q from ||p− q||1 ≥ ϵ using f(p, ϵ) samples with success probability
> 2/3, but no tester can distinguish p = q from ||p− q||1 ≥ c · ϵ when given c′ · f(p, ϵ) samples.

The function f(p, ϵ) is upper-bounded by a multiple of
||p||2/3

ϵ2 , but is more complicated, and
is significantly smaller in cases when p has many small domain elements, or a single large
one. This result significantly generalizes and tightens previous results: since distributions of
support at most n have L2/3 norm bounded by

√
n, this result immediately shows that for such

distributions, O(
√
n/ϵ2) samples suffice, tightening the previous bound of O(

√
npolylog n

ϵ4 ) for this
class of distributions, and matching the (tight) known results for the case that p is the uniform
distribution over support n.

The analysis of our very simple testing algorithm involves several hairy inequalities. To
facilitate this analysis, we give a complete characterization of a general class of inequalities—
generalizing Cauchy-Schwarz, Hölder’s inequality, and the monotonicity of Lp norms. Specif-
ically, we characterize the set of sequences a = a1, . . . , am, b = b1, . . . , bm, c = c1 . . . , cm, for
which it holds that for all finite sequences of positive numbers x = x1, . . . and y = y1, . . . ,

∏
i

∑
j

xai
j ybij

ci

≥ 1.

The characterization is of a perhaps non-traditional nature in that it uses linear programming
to compute a derivation that may otherwise have to be sought through trial and error, by
hand. We do not believe such a characterization has appeared in the literature, and hope its
computational nature will facilitate analyses like the one here.

1 Introduction

Suppose you have a detailed record of the distribution of IP addresses that visit your website. You
recently proved an amazing theorem, and are keen to determine whether this result has changed
the distribution of visitors to your website (or is it simply that the usual crowd is visiting your
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website more often?). How many visitors must you observe to decide this, and, algorithmically,
how do you decide this? We consider this basic question of verifying the identity of a distribution,
also known as the problem of “identity testing against a known distribution”. This problem has
been well studied, and yielded the punchline that it is possible to perform this task using far fewer
samples than would be necessary to accurately learn the distribution from which the samples were
drawn. Nevertheless, previous work on this problem either considered only the problem of verifying
a uniform distribution, or was from the perspective of worst-case analysis—aiming to bound the
number of samples required to verify a worst-case distribution of a given support size.

Here, we seek a deeper understanding of this problem. We resolve, up to constant factors,
the sample complexity of this task on an instance-by-instance basis—determining the number of
samples required to verify the identity of a distribution, as a function of the distribution in question.
To more cleanly present our results, we introduce the following notation.

Definition 1. For a probability distribution p, let p−max denote the vector of probabilities obtained
by removing the entry corresponding to the element of largest probability.

Definition 2. For a vector p and ϵ > 0, define p−ϵ to be the vector obtained from p by iteratively
removing the smallest domain elements and stopping before more than ϵ probability mass is removed.

Alternatively, consider the vector of probabilities, (p)i, assumed to be sorted in increasing order,
and let s be the largest integer for which

∑
i<s pi ≤ ϵ. Set p<s to be 0.

Our main result is the following:

Theorem 1. There exist constants c1, c2 such that for any ϵ > 0 and any known distribution p, for
any unknown distribution q on the same domain, our tester will distinguish q = p from ||p−q||1 ≥ ϵ

with probability 2/3 when run on a set of at least c1
||p−max

−ϵ/16
||2/3

ϵ2
samples, and no tester can do this

task with probability at least 2/3 with a set of fewer than c2
||p−max

−ϵ ||2/3
ϵ2

samples.

In short, over the entire range of potential distributions p, our tester is optimal, up to constant
factors in ϵ and the number of samples. The distinction of “constant factors in ϵ” is needed, as
||p−ϵ/16||2/3 might not be within a constant factor of ||p−ϵ||2/3 if, for example, the majority of the
2/3-norm of p comes from tiny domain elements that only comprise an ϵ fraction of the 1-norm.
Note that ||p−max

−ϵ ||2/3 < ||p−ϵ||2/3 ≤ ||p−ϵ/16||2/3 ≤ ||p||2/3, and hence ||p||2/3 is always an upper
bound on the number of samples required; for less pathological p, all these quantities are within a

small constant factor of each other, in which case the theorem says that Θ(
||p||2/3

ϵ2
) is the optimal

number of samples.
Because our tester is constant-factor tight, however, the subscript and superscript in the sample

complexity ||p−max
−ϵ ||2/3/ϵ2 both mark real phenomena, and are not just artifacts of the analysis.

Explicitly, the subscript and superscript each reduce the final value, and mark two ways in which
the problem might be “unexpectedly easy”. If the distribution p contains a single domain element
pm that comprises the majority of the probability mass, then in some sense it is hard to hide
changes in p: at least half of the discrepancy between p and q must lie in other domain elements,
and if these other domain elements comprise just a tiny fraction of the total probability mass,
then the fact that half the discrepancy is concentrated on a tiny fraction of the distribution makes
recognizing such discrepancy easier.

On the other hand, having many small domain elements makes the identity testing problem
harder, as indicated by the L2/3 norm, however only “harder up to a point”. If most of the L2/3
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norm of p comes from a portion of the distribution with tiny L1 norm, then it is also hard to “hide”
much discrepancy in this region, because high discrepancy on a region of tiny total probability
mass must necessarily greatly increase the probability mass on this region. We can thus hope to
estimate the probability mass of this region in q and thus detect such an occurrence.

In these two ways—represented by the subscript and superscript of p−max
−ϵ in our results—the

identity testing problem may be “easier” than the simplified O(
||p||2/3

ϵ2
) bound. But our correspond-

ing lower bound shows that these are the only ways.
We note that, since x2/3 is concave, for distributions p of support size at most n the L2/3 norm

is maximized on the uniform distribution, yielding that ||p||2/3 ≤
√
n, with equality if and only

if p is the uniform distribution. This immediately yields a bound of O(
√
n/ϵ2) on the number

of samples required to test such distributions, tightening the previous bound of O(
√
npolylog n

ϵ4
)

from [3], and matching the tight bound on the number of samples required for testing the uniform
distribution [10]. Of course there are distributions p supported on [n] for which identity testing
can be done with far fewer samples, for example a uniform distribution on a tiny fraction of the
elements (recall that in this model, the distribution p is known by the tester), though traditional
testers will fail to take advantage of this.

By contrast, our results are of a new style that we call “instance-by-instance optimal”: if, for
a specific distribution p, it is possible to conduct identity testing efficiently, then our tester will
do so, in essentially the best possible way. Having p explicitly provided to the tester enables our
approach, but it is tantalizing to ask whether this style of “instance-by-instance” optimal testers
may be extended beyond this setting.

While the algorithm we propose is extremely simple, the analysis involves sorting through several
messy inequalities. To facilitate this analysis, we give a complete characterization of a general class
of inequalities. We characterize the set of sequences a = a1, . . . , am, b = b1, . . . , bm, c = c1 . . . , cm,
for which it holds that for all finite sequences of positive numbers x = x1, . . . and y = y1, . . . ,

∏
i

∑
j

xaij ybij

ci

≥ 1. (1)

We note that the constant 1 on the right hand side cannot be made larger, for all such inequalities
are false when the sequences x and y consist of a single 1; also, as we will show later, if this inequality
can be violated, it can be violated by an arbitrary amount, so if any right hand side constant works,
for a given (a)i, (b)i, (c)i, then 1 works, as stated above.

Such inequalities are typically proven by hand, via trial and error. One basic tools for this

is the Cauchy-Schwarz inequality,
(∑

j Xj

)1/2 (∑
j Yj

)1/2
≥

∑
j

√
XjYj , or the slightly more

general Hölder inequality, a weighted version of Cauchy-Schwarz, where for λ ∈ (0, 1) we have(∑
j Xj

)λ (∑
j Yj

)1−λ
≥

∑
j X

λ
j Y

1−λ
j . Writing this in the form of Equation 1, and substitut-

ing arbitrary combinations of x and y for X and Y yields families of inequalities of the form:(∑
j x

a1
j yb1j

)λ (∑
j x

a2
j yb2j

)1−λ (∑
j x

λa1+(1−λ)a2
j y

λb1+(1−λ)b2
j

)−1
≥ 1, and we can multiply inequal-

ities of this form together to get further cases of the inequality in Equation 1. This inequality is
tight when the two sequences X and Y are proportional to each other.

A second and different basic inequality of our general form, for λ ∈ [0, 1), is:
(∑

j Xj

)λ
≤∑

j X
λ
j , which is the fact that the Lp norm is a decreasing function of p. (Intuitively, this is a
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slight generalization of the trivial fact that x2 + y2 ≤ (x+ y)2, and follows from the fact that the
derivative of xλ is a decreasing function of x, for positive x). As above, products of powers of x
and y may be substituted for X to yield a general class of inequalities. Unlike the previous case,
these inequalities are tight when there is only a single nonzero value of X, and the inequality may
seem weak for nontrivial cases.

We show that the cases where Equation 1 holds are exactly those cases expressible as a product
of inequalities of the above two forms.:

Theorem 2. The inequality
∏

i

(∑
j x

ai
j ybij

)ci
≥ 1 holds for all finite sequences of positive numbers

(x)j , (y)j if and only if it can be expressed as a finite product of positive powers of the Hölder

inequalities
(∑

j x
a′
j y

b′
j

)λ (∑
j x

a′′
j yb

′′
j

)1−λ
≥

∑
j x

λa′+(1−λ)a′′
j y

λb′+(1−λ)b′′
j , and the Lp monotonicity

inequalities
(∑

j x
a
jy

b
j

)λ
≤

∑
j x

λa
j yλbj , for λ ∈ [0, 1].

This characterization seems to be a useful and general tool, and seems absent from the literature.

1.1 Related Work

Over the past fifteen years, there has been a body of work exploring the general question of how
to estimate or test properties of distributions using fewer samples than would be necessary to
actually learn the distribution in question. Such properties include “symmetric” properties (prop-
erties whose value is invariant to relabeling domain elements) such as entropy, support size, and
distance metrics between distributions (such as L1 distance), with work on both the algorithmic
side (e.g. [4, 2, 7, 8, 9, 1, 5]), and on establishing lower bounds [11, 15]. Such problems have been
almost exclusively considered from a worst-case standpoint, with bounds on the sample complexity
parameterized by an upper bound on the support size of the distribution. The recent work [13, 14]
resolved the worst-case sample complexities of estimating many of these symmetric properties..
Also see [12] for a recent survey.

The specific question of verifying a distribution was one of the first questions considered in this
line of work. Motived by a connection to testing the expansion of graphs, Goldreich and Ron [6]
first considered the problem of distinguishing whether a set of samples was drawn from the uniform
distribution of support n versus from a distribution that is least ϵ far from the uniform distribution,

with the tight bound of Θ(
√
n

ϵ2
) subsequently given by Paninski [10]. For the more general problem

of verifying an arbitrary distribution, Batu et al. [3], showed that for worst-case distributions of

support size n, O(
√
npolylog n

ϵ4
) samples are sufficient.

1.2 Definitions

We use [n] to denote the set {1, . . . , n}, and denote a distribution of support size n by p = p1, . . . , pn,
where pi is the probability of the ith domain element. Throughout, we assume that all samples are
drawn independently from the distributions in question.

We denote the Poisson distribution with expectation λ by Poi(λ), which has probability density

function poi(λ, i) = e−λλi

i! . We made heavy use of the standard “Poissonization” trick. That is,
rather than drawing k samples from a fixed distribution p, we first select k′ ← Poi(k), and then
draw k′ samples from p. Given such a process, the number of times each domain element occurs
is independent, with the distribution of the number of occurrences of the ith domain element
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distributed as Poi(k ·pi). This independence yielded from this Poissonization significantly simplifies
analysis. Additionally, since Poi(k) is closely concentrated around k, from both the perspective of
upper bounds as well as lower bounds, at the cost of only a subconstant factor one may assume,
without loss of generality that one is given Poi(k) samples rather than exactly k.

Much of the analysis in this paper centers on Lp norms, where for a vector q, we use the standard

notation ||q||c to denote (
∑

i q
c
i )

1/c. The notation ||q||bc is just the bth power of ||q||c. For example,

||q||2/32/3 =
∑

i q
2/3
i .

As mentioned in Definitions 1 and 2, we use p−ϵ to denote the vector of probabilities p≥s =
ps, ps+1, . . . defined by sorting the probabilities p1 ≤ p2 ≤ ... and letting s be the maximum
integer such that

∑
i<s pi ≤ ϵ. Additionally, we use p−max to denote the vector of probabilities

with the maximum probability omitted. Hence the frequently used notation p−max
−ϵ is the vector of

probabilities obtained from p by both removing the largest entry, and removing the smallest entries
until the weight of the small entries removed is at most ϵ.

2 An optimal tester

Assume the domain elements of p are sorted in increasing order of probability. Let s be the largest
integer such that

∑
i<s pi ≤ ϵ/8, and for each domain element i let Xi be the number of times

element i occurs in the sample. Note that p≥s is by definition the same as p−ϵ/8 as defined above,
though we prefer to explicitly work with s in what follows, and thus will not use the p−ϵ notation.

Given a set of k samples drawn from q, with Xi representing the number of times the ith
domain element occurs, and a parameter ϵ > 0:

1. If
∑

i≥s,i ̸=argmax pi

[
(Xi − kpi)

2 −Xi

]
p
−2/3
i > 4k||p−max

≥s ||1/32/3, or

2. If
∑

i<sXi >
3
16ϵk, then output “DIFFERENT”, else output “SAME”

2.1 Analysis of the tester

We now analyze the performance of the above tester, establishing the upper bounds of Theorem 1.
When ||p−q||1 ≥ ϵ, note that at most ϵ/2 of the discrepancy is accounted for by the most frequently
occurring domain element of p, since the total probability masses of p and q must be equal (to 1).
We split the analysis into two cases: when a significant portion of the remaining ϵ/2 discrepancy falls
above s then we show that case 1 of the algorithm will recognize it; otherwise, if ||p≥s−q≥s|| ≥ 3/8,
then case 2 of the algorithm will recognize it.

We first analyze the mean and variance of the left hand side of the first condition of the tester,
under the assumption (as discussed in Section 1.2) that a Poisson-distributed number of samples,
Poi(k) is used. This makes the number of times each domain element is seen, Xi, be distributed
as Poi(kqi), and makes all Xi independent of each other. It is thus easy to calculate the mean and
variance of each term. Explicitly, defining ∆i = pi − qi we have

E
Xi←Poi(kqi)

[
[(Xi − kpi)

2 −Xi]p
−2/3
i

]
= k2∆2

i p
−2/3
i
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and
V ar

Xi←Poi(kqi)

[
[(Xi − kpi)

2 −Xi]p
−2/3
i

]
=

[
2k2(pi −∆i)

2 + 4k3(pi −∆i)∆
2
i

]
p
−4/3
i

In the case that a significant portion of the ϵ deviation between p and q occurs in the region
above s, we show that for suitable k, the variance is somewhat greater than the square of the
expectation. Note that when p = q, the expectation is 0, since ∆i ≡ 0.

The motivation for the convoluted steps in the derivations in the following lemma comes entirely
from the general inequality result of Theorem 2, though as guaranteed by that theorem, the resulting
inequalities can all be derived by elementary means without reference to the theorem.

As defined in the tester, let s be the largest integer such that
∑

i<s pi ≤ ϵ/8, where we take the
elements of p to be sorted by probability.

Lemma 1. For any c ≥ 1, if k = c·max{
||p−max

≥s ||1/3
2/3

p
1/3
s ·(ϵ/8)

,
||p−max

≥s ||2/3
(ϵ/8)2

} and if at least ϵ/8 of the discrepancy

falls above s, namely
∑

i≥s,i ̸=argmax pi
|∆i| ≥ ϵ/8, then

∑
i≥s,i ̸=argmax pi

[
2k2(pi −∆i)

2 + 4k3(pi −∆i)∆
2
i

]
p
−4/3
i <

16

c

 ∑
i≥s,i ̸=argmax pi

k2∆2
i p
−2/3
i

2

Proof. Dividing both sides by k4, the left hand side has terms proportional to (pi −∆i)/k and its
square. We bound such terms from the triangle inequality and the definition of k as (pi −∆i)/k ≤(
pi

(ϵ/8)2

||p−max
≥s ||2/3

+ |∆i| p
1/3
s (ϵ/8)

||p−max
≥s ||1/3

2/3

)
/c. Expanding, yields the left hand side divided by k4 bounded as

the sum of 5 terms:

∑
i≥s,i ̸=argmax pi

2

c2

p
2/3
i

(ϵ/8)4

||p−max
≥s ||22/3

+ 2|∆i|p−1/3i

p
1/3
s (ϵ/8)3

||p−max
≥s ||4/32/3

+∆2
i p
−4/3
i

p
2/3
s (ϵ/8)2

||p−max
≥s ||2/32/3


+
4

c

∆2
i p
−1/3
i

(ϵ/8)2

||p−max
≥s ||2/3

+ |∆3
i |p
−4/3
i

p
1/3
s (ϵ/8)

||p−max
≥s ||1/32/3

 .

We bound each of the five terms separately, using the fact that 1
c2
≤ 1

c , and sum the constants
2(1 + 2 + 1) + 4(1 + 1) to yield 16 on the right hand side.

1. Cauchy-Schwarz yields
∑

i∆
2
i p
−2/3
i ≥ (

∑
i |∆i|)2

/(∑
i p

2/3
i

)
≥ ( ϵ8)

2/||p−max
≥s ||2/32/3. Squaring

this inequality and noting that, by definition,
∑

i≥s,i ̸=argmax pi
p
2/3
i = ||p−max

≥s ||2/32/3 bounds the first
term as desired.

2. We bound ϵ

p
1/3
s

= ϵ
||∆−max

≥s ||1

∑
i≥s,i ̸=argmax pi

|∆i|p−1/3s ≥ ϵ
||∆−max

≥s ||1

∑
i≥s,i ̸=argmax pi

|∆i|p−1/3i .

Multiplying this inequality by the square of the Cauchy-Schwarz inequality of the previous case:(∑
i≥s,i ̸=argmax pi

∆2
i p
−2/3
i

)2
≥ ||∆−max

≥s ||41/||p
−max
≥s ||4/32/3 and the bound ||∆−max

≥s ||31 ≥ ( ϵ8)
3 yields the

desired bound on the second term.
3. Simplifying the third term via p

−4/3
i p

2/3
s ≤ p

−2/3
i lets us bound this term as the product of

the Cauchy-Schwarz inequality of the first case:
∑

i≥s,i ̸=argmax pi
∆2

i p
−2/3
i ≥ ||∆−max

≥s ||21/||p
−max
≥s ||2/32/3

and the bound ||∆−max
≥s ||21 ≥ ( ϵ8)

2.
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4. Here and in the next case we use the basic fact that for β > α > 0 and a (nonnegative)
vector z we have ||z||β ≤ ||z||α (with equality only when z has at most one nonzero entry). Thus∑

i≥s,i ̸=argmax pi
∆2

i p
−1/3
i ≤

(∑
i≥s,i ̸=argmax pi

∆
4/3
i p

−2/9
i

)3/2
, which Hölder’s inequality bounds by(∑

i≥s,i ̸=argmax pi
∆2

i p
−2/3
i

)(∑
i≥s,i ̸=argmax pi

p
2/3
i

)1/2
. Multiplying this inequality by the Cauchy-

Schwarz inequality of the first case: ||∆−max
≥s ||21/||p

−max
≥s ||2/32/3 ≤

∑
i≥s,i ̸=argmax pi

∆2
i p
−2/3
i and the

bound ( ϵ8)
2 ≤ ||∆−max

≥s ||21 yields the desired bound on the fourth term.
5. The norm inequality from the previous case also yields

∑
i≥s,i ̸=argmax pi

∆3
i p
−4/3
i ≤

 ∑
i≥s,i ̸=argmax pi

∆2
i p
−8/9
i

3/2

≤ p−1/3s

 ∑
i≥s,i ̸=argmax pi

∆2
i p
−2/3
i

3/2

.

Multiplying by the square root of the Cauchy-Schwarz bound of the first case, ||∆−max
≥s ||1/||p−max

≥s ||1/32/3 ≤(∑
i≥s,i ̸=argmax pi

∆2
i p
−2/3
i

)1/2
and the bound ϵ

8 ≤ ||∆
−max
≥s ||1 yields the desired bound on the fifth

term.

We now prove the upper bound portion of Theorem 1.

Proposition 1. There exists a constant c1 such that for any ϵ > 0 and any known distribution
p, for any unknown distribution q on the same domain, our tester will distinguish q = p from

||p− q||1 ≥ ϵ with probability 2/3 using a set of k = c1
||p−max

−ϵ/16
||2/3

ϵ2
samples.

Proof. We first show that if p = q then the tester will recognize this fact with high probability.

Consider the first test of the algorithm, whether
∑

i≥s,i ̸=argmax pi

[
(Xi − kpi)

2 −Xi

]
p
−2/3
i >

4k||p−max
≥s ||1/32/3. As calculated above, the expectation of the left hand side is 0 in this case, and the

variance is 2k2||p−max
≥s ||2/32/3. Thus Chebyshev’s inequality yields that this random variable will be

greater than 2
√
2 standard deviations from its mean with probability at most 1/8, and thus the

first test will be accurate with probability at least 7/8 in this case.
For the second test, whether

∑
i<sXi >

3
16ϵk, recall that s was defined so that the total prob-

ability mass among elements < s is at most ϵ/8. Denote this total mass by m. Thus
∑

i<sXi

is distributed as Poi(mk), which has mean and variance both mk ≤ ϵk
8 . Thus Chebyshev’s in-

equality yields that the probability that this quantity exceeds 3
16ϵk is at most

( √
mk

(3/16)ϵk−mk

)2
≤( √

ϵk√
8(1/16)ϵk

)2
= 25

ϵk . Hence provided k ≥ 28

ϵ , this probability will at most 1/8. Note that for

a suitable c1, since ϵ ≤ 1 (otherwise the testing problem is trivial), we trivially have that k =

c1
||p−max

−ϵ/8
||2/3

ϵ2
≥ 28

ϵ .
We now show that when ||p− q||1 ≥ ϵ the tester will correctly recognize this too. Note that at

most ϵ/2 of this discrepancy can be explained by the discrepancy in the probability of the most
probable element of p since the total probability masses of p and q are equal (to 1). There are
two cases. If ||(p − q)−max

<s ||1 ≥ 3
8ϵ, namely if most of the remaining at least ϵ/2 discrepancy

occurs for elements < s, then since ||p<s||1 ≤ 1
8ϵ by assumption, the triangle inequality yields
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that ||q<s||1 ≥ 1
4ϵ. Consider the second test in this case. Analogously to the argument above,

Chebyshev’s inequality shows that this test will pass except with probability at most 64
ϵk . Hence for

an appropriate constant c1 the algorithm will be successful in this case with probability at least
7/8.

In the remaining case, ||(p−q)−max
≥s ||1 ≥ 1

8ϵ, and we apply Lemma 1. We first show that the num-

ber of samples k = c1
||p−max

−ϵ/16
||2/3

ϵ2
is at least as many as needed for the lemma, c·max{

||p−max
≥s ||1/3

2/3

p
1/3
s (ϵ/8)

,
||p−max

≥s ||2/3
(ϵ/8)2

},
provided c1 ≥ 128c. The second component of the maximum is trivially bounded since by definition
||p−max
≥s ||2/3 = ||p−max

−ϵ/8 ||2/3 ≤ ||p
−max
−ϵ/16 ||2/3. To bound the first component, we let r (analogously

to s) be defined as the largest integer such that
∑

i<r pi ≤ ϵ/16. Since
∑

i≤s pi ≥ ϵ/8, the dif-
ference of these expressions yields

∑s
i=r pi ≥ ϵ/16. Since each pi in this last sum is at most ps,

we have that p
−1/3
i ≥ p

−1/3
s for such i, which yields

∑s
i=r p

2/3
i ≥ ϵ

16p
1/3
s

. Thus ||p−max
−ϵ/16 ||

2/3
2/3 =∑

i≥r,i̸=argmax pi
p
2/3
i ≥ ϵ

16p
1/3
s

. Multiplying by the inequality ||p−max
−ϵ/16 ||

1/3
2/3 ≥ ||p

−max
−ϵ/8 ||

1/3
2/3 yields the

bound.
We thus invoke Lemma 1, which shows that, for any c ≥ 1, the expectation of the left hand

side of the first test,
∑

i≥s,i ̸=argmax pi

[
(Xi − kpi)

2 −Xi

]
p
−2/3
i , is at least

√
c/16 times its standard

deviation; further, we note that the triangle-inequality expression by which we bounded the stan-
dard deviation is minimized when p = q, in which case, as noted above, the standard deviation

is
√
2k||p−max

≥s ||1/32/3. Thus the expression on the right hand side of the first test, 4k||p−max
≥s ||1/32/3, is

always at least
√

c/16− 2
√
2 standard deviations away from the mean of the left hand side. Thus

for c ≥ 512, Chebyshev’s inequality yields that the first test will correctly report that p and q are
different with probability at least 7/8.

Thus by the union bound, in either case p = q or ||p− q||1 ≥ ϵ, the tester will correctly report
it with probability at least 3

4 .

3 Lower bounds

Let Poi(λ± ϵ) denote the probability distribution with pdf over nonnegative integers i: 1
2poi(λ+

ϵ) + 1
2poi(λ − ϵ), which is only defined for ϵ ≤ λ. Recall the Hellinger distance H(p, q) =

1√
2

√∑
i(
√
pi −

√
qi)2.

Lemma 2. H(Poi(λ), Poi(λ± ϵ)) ≤ O( ϵ
2

λ )

Proof. Assume throughout this proof that ϵ ≤ 1
2

√
λ, for otherwise the lemma is trivially true.

We bound H(Poi(λ), Poi(λ±ϵ))2 = 1
2

∑
i≥0

(√
e−λλi

i! −
√

1
2

[
e−λ−ϵ(λ+ϵ)i

i! + e−λ+ϵ(λ−ϵ)i
i!

])2

term-

by-term via the inequality |
√
a−
√
b| ≤ |a−b|√

b
. We let a = e−λλi

i! and b = 1
2

[
e−λ−ϵ(λ+ϵ)i

i! + e−λ+ϵ(λ−ϵ)i
i!

]
.

We will make use of the bound that there is an absolute constant c such that for any x ∈ [λ−ϵ, λ+ϵ]
we have poi(x, i) ≤ c · b.

We note that |a− b| =
∣∣∣ e−λλi

i! − 1
2
e−λ−ϵ(λ+ϵ)i

i! − 1
2
e−λ+ϵ(λ−ϵ)i

i!

∣∣∣ is bounded by 1
2ϵ

2 times the max-

imum magnitude of the second derivative with respect to x of poi(x, i) for x ∈ [λ − ϵ, λ + ϵ].

Explicitly, d2

dx2
e−xxi

i! = poi(x, i) (i−x)
2−i

x2 . Let x∗ be the value of x in the interval [λ− ϵ, λ+ ϵ] where

poi(x, i) is maximized. Note that the denominator
√
b is at least

√
1
cpoi(x

∗, i). For λ ≥ 1 we

8



thus have λ − ϵ ≥ 1
2 , and thus we may bound |a−b|√

b
≤
√
c
2 ϵ2

√
poi(x∗, i)maxx∈[λ−ϵ,λ+ϵ]

∣∣∣ (i−x)2−ix2

∣∣∣ =
O(ϵ2

√
poi(x∗, i) (i−λ)

2+i
λ2 ). Summing the square of this, over all i ≥ 0, where as defined above, x∗ is

the value of x in the interval [λ− ϵ, λ+ ϵ] where poi(x, i) is maximized, and ϵ ≤ 1
2

√
λ yields O( ϵ

4

λ2 )

because poi(λ, i) dies off rapidly outside an interval of width O(
√
λ), as attested by the moments

of the Poisson distribution.
For the case λ < 1, note that the second derivative of poi(x, i) is globally bounded by a constant,

and thus for i ∈ {0, 1, 2} we this bound and the bound b = Ω(λ2) to conclude that the first 3 terms

in the expression for H2 are bounded as O( ϵ
4

λ2 ). For i ≥ 3 we have, for x ∈ (0, λ + 1
2

√
λ) that

d2

dx2 poi(x, i) = poi(x, i) (i−x)
2−i

x2 = O( e
−xxi−2i2

i! ) = O((λ+ ϵ)i−2 i
2

i! ). Since b ≥ 1
2poi(λ+ ϵ, i), we have

that the bound on the square root of the ith term is O(ϵ2(λ+ ϵ)i/2−2 i2√
i!
). The sum of the squares

of these terms clearly is o( ϵ
4

λ2 ), since λ < 1 and ϵ ≤ 1
2

√
λ.

Thus in all cases the square of the Hellinger distance is O( ϵ
4

λ2 ), yielding the lemma.

This lemma yields the following general lower bound.

Theorem 3. Given a distribution p, and associated values ϵi such that ϵi ∈ [0, pi], define the
distribution over distributions Qϵ by the process: for each domain element i, randomly choose
qi = pi ± ϵi, and then normalize q to be a distribution. There exists a constant c such that it takes

at least c
(∑

i
ϵ4i
p2i

)−1/2
samples to distinguish p from Qϵ with success probability 2/3. Further, with

probability at least 1/2, the L1 distance between a random distribution from Qϵ and p is at least
min{(

∑
i ϵi)−maxi ϵi,

1
2

∑
i ϵi}.

Proof. Consider the following related distributions, which emulate the number of times each domain
element is seen if we take Poi(k) samples: first randomly generate q̄i = pi± ϵi without normalizing,
and then for each i draw a sample from Poi(q̄i · k); compare this to, for each i, drawing a sample
from Poi(pi · k). We note that with probability at least 1

2 , we have
∑

i q̄i ≥ 1; further, with
probability at least 1

2 a Poisson distribution with parameter at least k will yield a sample at least
k. Thus with probability at least 1

8 we have “a set of at least k samples” from both distributions.
Thus if it were possible to distinguish p from Qϵ in k samples with probability 2/3, then we could
distinguish these two Poisson processes with probability 1

2 + 1
6·8 . However, note that these two

Poisson processes are both product distributions, and we can thus compare them from the fact
that the squared Hellinger distance is subadditive on product distributions. For each i, the squared
Hellinger distance is H(Poi(kpi), Poi(k[pi ± ϵi]))

2 which by Lemma 2 is at most c1k
2 ϵ4

p2i
. Summing

over i and taking the square root yields a bound on the Hellinger distance of k
(
c1

∑
i
ϵ4

p2i

)1/2
, which

thus bounds the L1 distance. Thus for small enough c, when k satisfies the bound of the theorem,
the statistical distance between a set of k samples drawn from p versus drawn from a random
distribution of Qe is arbitrarily small, and the two cannot be distinguished.

To analyze the distance between a distribution q ← Qϵ and p, we note that the total excess
probability mass in the process of generating q that must subsequently be removed (or added, if it
is negative) by the normalization step is distributed as

∑
i±ϵi, and thus by the triangle inequality,

the L1 distance between q and p is at least as large as a sample from
∑

i ϵi − |
∑

i±ϵi|. We thus
show that with probability at least 1/2, a random value from |

∑
i±ϵi| is at most either maxi ϵi or

1
2

∑
i ϵi.
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Consider the sequence ϵi as sorted in descending order. We have two cases. Suppose ϵ1 ≥
1
2

∑
i ϵi. Consider the random number |

∑
i±ϵi|, where without loss of generality the plus sign is

chosen for ϵ1. By symmetry, with probability at most 1/2, the sum of the remaining elements will
be positive; otherwise, the sum of the remaining elements cannot be smaller than −ϵ1. Thus with
probability at least 1/2, we have |

∑
i±ϵi| ≤ ϵ1, as desired.

Otherwise ϵ1 < 1
2

∑
i ϵi. Consider randomly choosing signs si ∈ {−1,+1} for the elements

iteratively, stopping before choosing the sign for the first element j for which it would be possible

for
∣∣∣(∑i<j siϵi)± ϵj

∣∣∣ to exceed 1
2

∑
i ϵi. Since by assumption ϵ1 <

1
2

∑
i ϵi, we have j ≥ 2. Without

loss of generality, assume
∑

i<j siϵi ≥ 0. We have
∑

i<j siϵi <
1
2

∑
i ϵi, and (by symmetry) with

probability at most 1/2 the sum of the remaining elements with randomly chosen signs will be
positive. Further, since s1ϵ1 + s2ϵ2 + . . . + sj−1ϵj−1 + ϵj ≥ 1

2

∑
i ϵi, and by assumption s1 ≥ sj

and j ≥ 2, we have s1ϵ1 + s2ϵ2 + . . . + sj−1ϵj−1 −
∑

i≥j ϵi ≥ −
1
2

∑
i ϵi, for otherwise we would

have
∑

i ϵi ≥ ϵ1 +
∑

i≥j ϵi ≥ ϵj +
∑

i≥j ϵi >
∑

i ϵi, a contradiction. Thus a random choice of the

remaining signs will yield a total sum at most 1
2

∑
i ϵi, with probability at least 1/2, as desired.

We apply this result as follows.

Corollary 1. There is a constant c′ such that for for all probability distributions p and each α > 0,

there is no tester that, via a set of c′ ·
(∑

i̸=m
min{pi,αp

2/3
i }4

p2i

)−1/2
samples can distinguish p from

distributions with L1 distance 1
2

∑
i ̸=mmin{pi, αp2/3i } from p with probability 0.6, where m is the

index of the element of p with maximum probability.

Note that for sufficiently small α, the min is superfluous and the bound on the number of

samples becomes c′

α2||p−max||1/3
2/3

and the L1 distance bound becomes 1
2α||p

−max||2/32/3, which rephrases

the result in terms of basic norms, for this range of parameters.

Proof. We apply Theorem 3, letting ϵi = min{pi, αp2/3i } for i ̸= m, and ϵm = maxi̸=m ϵi to show

that p and Qϵ cannot be distinguished given a set of
√
2c ·

(∑
i ̸=m

min{pi,αp
2/3
i }4

p2i

)−1/2
samples.

Also from Theorem 3, with probability at least 1/2, the distance between p and an element of

Qϵ is at least the min of
∑

i̸=mmin{pi, αp2/3i } and
1
2

∑
imin{pi, αp2/3i }, which we trivially bound

by 1
2

∑
i̸=mmin{pi, αp2/3i }. We derive a contradiction as follows. If a tester with the parameters

of this corollary existed, then repeating it a constant number of times and taking the majority
output would amplify its success probability to at least 0.9; such a tester could be used to violate
Theorem 3 via the procedure: given a set of samples drawn from either p or Qϵ, run the tester,
and if it outputs “Qϵ” then do the same, and if it outputs “p” then flip a coin and with probability
0.7 output “p” and otherwise output “Qϵ”. If the distribution is p then our tester will correctly
output this with 0.7 > 0.6 probability. If the distribution was drawn from Qϵ then with probability
at least 1/2 the distribution will be far enough from p for the tester to apply and report this with
probability 0.9; otherwise the tester will report “Qϵ” with probability at least 1− 0.7 = 0.3. Thus
the tester will correctly report “Qϵ” with probability at least 0.9+0.3

2 = 0.6 in all cases, the desired
contradiction.

We now prove the lower-bound portion of Theorem 1.
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Proposition 2. There exists a constant c2 such that for any ϵ ∈ (0, 1) and any known distribution
p, no tester can distinguish for an unknown distribution q whether q = p or ||p − q||1 ≥ ϵ with

probability ≥ 2/3 when given a set of samples of size c2
||[p−max−ϵ]||2/3

ϵ2
.

Proof. We apply Corollary 1. Letting m be the index at which pi is maximized, consider the value

of α for which 1
2

∑
i̸=mmin{pi, αp2/3i } = ϵ, and let s be the largest integer such that

∑
i<s pi ≤ ϵ,

where we assume pi is sorted in ascending order. We note that for i ≥ s the min is never pi, or else

(since pi are sorted in ascending order and the inequality pi ≤ αp
2/3
i gets stronger for smaller pi),

the sum would be at least
∑

i≤s pi which is greater than ϵ by definition of s. Thus α
∑m−1

i=s p
2/3
i =∑m−1

i=s min{pi, αp2/3i } ≤
∑

i ̸=mmin{pi, αp2/3i } = 2ϵ, which yields α ≤ 2||p−max
≥s ||−2/32/3 ϵ. The lower

bound on k from Corollary 1 is thus bounded (since the min of two quantities can only increase if

we replace one by a weighted geometric mean of both of them) as c′ ·
(∑

i̸=m
min{pi,αp

2/3
i }4

p2i

)−1/2
≥

c′ ·
(
α3

∑
i̸=mmin{pi, αp2/3i }

)−1/2
≥ c′ ·

(
16||p−max

≥s ||−22/3ϵ
4
)−1/2

= c′

4 ·
||p−max

≥s ||2/3
ϵ2

. A constant number

of repetitions lets us amplify the accuracy of the tester from the 0.6 of Corollary 1 to the 2/3 of
this theorem.

4 A class of inequalities generalizing Cauchy-Schwarz

In this section we consider a general class of inequality which we have used repeatedly in Section 2,
and which we have not been able to find in the literature in suitable generality.

The basic question we resolve is: for what sequences (a)i, (b)i, (c)i is it true that for all sequences
of positive numbers (x)j , (y)j we have

∏
i

∑
j

xaij ybij

ci

≥ 1 (2)

We note that the constant 1 on the right hand side cannot be made larger, for all such inequalities
are false when the sequences x and y consist of a single 1; also, as we will show later, if this inequality
can be violated, it can be violated by an arbitrary amount, so if any right hand side constant works,
for a given (a)i, (b)i, (c)i, then 1 works, as stated above.

Such inequalities are typically proven by hand, via trial and error. One basic tools for this

is the Cauchy-Schwarz inequality,
(∑

j Xj

)1/2 (∑
j Yj

)1/2
≥

∑
j

√
XjYj , or the slightly more

general Hölder inequality, a weighted version of Cauchy-Schwarz, where for λ ∈ (0, 1) we have(∑
j Xj

)λ (∑
j Yj

)1−λ
≥

∑
j X

λ
j Y

1−λ
j . Writing this in the form of Equation 2, and substitut-

ing arbitrary combinations of x and y for X and Y yields families of inequalities of the form:(∑
j x

a1
j yb1j

)λ (∑
j x

a2
j yb2j

)1−λ (∑
j x

λa1+(1−λ)a2
j y

λb1+(1−λ)b2
j

)−1
≥ 1, and we can multiply inequal-

ities of this form together to get further cases of the inequality in Equation 2. This inequality is
tight when the two sequences X and Y are proportional to each other.

A second and different basic inequality of our general form, for λ ∈ [0, 1), is:
(∑

j Xj

)λ
≤∑

j X
λ
j , which is the fact that the Lp norm is a decreasing function of p. (Intuitively, this is a
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slight generalization of the trivial fact that x2 + y2 ≤ (x+ y)2, and follows from the fact that the
derivative of xλ is a decreasing function of x, for positive x). As above, products of powers of x
and y may be substituted for X to yield a general class of inequalities. Unlike the previous case,
these inequalities are tight when there is only a single nonzero value of X, and the inequality may
seem weak for nontrivial cases.

The main result of this section, however, is that the cases where Equation 2 holds are exactly
those cases expressible as a product of inequalities of the above two forms.

Theorem 2 The inequality
∏

i

(∑
j x

ai
j ybij

)ci
≥ 1 holds for all finite sequences of positive numbers

(x)j , (y)j if and only if it can be expressed as a finite product of positive powers of the Hölder

inequalities
(∑

j x
a′
j y

b′
j

)λ (∑
j x

a′′
j yb

′′
j

)1−λ
≥

∑
j x

λa′+(1−λ)a′′
j y

λb′+(1−λ)b′′
j , and the Lp monotonicity

inequalities
(∑

j x
a
jy

b
j

)λ
≤

∑
j x

λa
j yλbj , for λ ∈ [0, 1].

Proof. One direction of the implication is trivial. We prove the other direction via two steps:
letting I be the size of the index set of i, we construct a linear program on the I-tuple of values ℓi
representing log

∑
j x

ai
j ybij , and show that if the desired inequality is true then this linear program

has objective value 0; we then note that the solution to the dual of this linear program is an explicit
(finite) combination of the Hölder and Lp monotonicity inequalities that yields a derivation of the
inequality as desired.

Given sequences (x)j , (y)j , consider the function ℓ : R2 → R defined as ℓ(a, b) = log
∑

j x
a
jy

b
j .

The Hölder inequalities explicitly represent the fact that ℓmust be convex, namely for each λ ∈ (0, 1)
and each pair (a′, b′), (a′′, b′′) we have λℓ(a′, b′)+(1−λ)ℓ(a′′, b′′) ≥ ℓ(λa′+(1−λ)a′′, λb′+(1−λ)b′′).
The Lp monotonicity inequalities can correspondingly be expressed in terms of ℓ, intuitively as “any
secant of ℓ that passes through the origin must past through or above the origin,” explicitly, for
all (a′, b′) and all λ ∈ (0, 1) we have λℓ(a′, b′) ≤ ℓ(λa′, λb′). Let F represent this family of functions
from R2 to R, namely, those functions that are convex and whose secants pass through-or-above
the origin.

Consider, for sequences (a)i, (b)i the I-tuples of values ℓi = ℓ(ai, bi) that can be extended to
a member of F. We express this set of I-tuples via the following constraints. For each 4-tuple
i1, i2, i3, i4, if (ai1, bi1) is in the (closed) triangle formed by the other three points, then add the
constraint that the point (ai1, bi1, ℓi1) lies on-or-below the plane formed by the other three values;
also, for each 3-tuple (ai1, bi1), (ai2, bi2), (ai3, bi3) where there is a ray from (ai1, bi1) through the
edge (ai2, bi2), (ai3, bi3) that passes through the origin, the corresponding ray in 3-dimensions passes
through-or-above the origin (equivalently, the plane through these 3 points passes through-or-above
the origin). For each sequence (a)i, (b)i this defines a linear program of at most

(
I
4

)
+
(
I
3

)
constraints.

For a feasible point of the linear program, expressed as an I-tuple of values ℓi, and any δ > 0
we show that for sufficiently small ϵ > 0 there exist finite sequences (x)j , (y)j such that for all i we

have ϵ log
∑

j x
ai
j ybij is within δ of ℓi, namely that, up to the ϵ scaling, we can instantiate solutions of

the linear program arbitrarily well. Consider the lower convex hull of the points (ai, bi, ℓi); because
the constraints impose convexity, each of the i points is on the lower convex hull. For each i, choose
a triangle on the lower convex hull passing through (ai, bi, ℓi) and two other such points such that
there is a ray from (ai, bi) through the other edge passing through the origin. Let the equation of
the plane defined by this triangle be zi(a, b) = αia+βib+γi. By the second set of constraints, each
such plane passes through-or-above the origin, and thus γi ≥ 0. Let C(a, b) be the function defined
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as the max of these i planes. By the first set of constraints, C passes through each point (ai, bi, ℓi).
Consider (x)j , (y)j consisting of ti copies respectively of eαi/ϵ and eβi/ϵ. In this case, for all a, b

we have that ϵ log
∑

j x
a
jy

b
j equals αia + βib + ϵ log ti. Since γ ≥ 0, we let ti = round(eγi/ϵ) and

can approximate γi arbitrarily well for small enough ϵ. Finally, we concatenate this construction
for all i. Namely, let (x)j , (y)j consist of the concatenation, for all i, of ti = round(eγi/ϵ) copies
respectively of eαi/ϵ and eβi/ϵ. The values of

∑
j x

a
jy

b
j will be the sum of the values of these I

components, thus at least the maximum of these I components, and at most I times the maximum.
Thus the values of ϵ log

∑
j x

a
jy

b
j will be within ϵ log I of ϵ times the logarithm of the max of these

components. Since each of the I components approximates zi arbitrarily well, for small enough ϵ,
the function ϵ log

∑
j x

a
jy

b
j is thus a δ–good approximation to our target C (defined as the maximum

over i of zi) and in particular is a δ–good approximation to ℓ(ai, bi) when evaluated at (ai, bi), for
each i.

Recall our goal for the first step of the proof of the theorem, constructing a linear program on
(ℓ)i that has objective value 0 if our desired inequality is true.

We have already defined the constraints to the linear program; we now define the objective:
minimize

∑
i ℓi ·ci, where recall that ci are the exponents around each term of the desired inequality.

Note that all the constraints of our linear program are homogenous, and thus satisfied for (ℓ)i
uniformly 0, so 0 is certainly a feasible objective value. We show the contrapositive of our claim:
if the linear program can have negative objective value, then the desired inequality is false.

Consider a solution (ℓ)i to the linear program with negative objective value −v, and let δ > 0
be such that δ

∑
i |ci| < v. Let ϵ > 0 and the sequences (x)j , (y)j be as constructed above so

that ϵ log
∑

j x
ai
j ybij is a δ–good approximation to ℓi, for all i. Summing over i and weighting by

the coefficients ci yields that
∑

i ciϵ log
∑

j x
ai
j ybij is within v of −v, and hence is strictly less than

0. Dividing by ϵ and exponentiating yields via the triangle inequality that
∏

i

(∑
j x

ai
j ybij

)ci
< 1,

namely that our desired inequality is violated, concluding this part of the proof.
We have thus shown that if the desired inequality is true then the linear program over the

I-tuple (ℓ)i minimizing objective function
∑

i ℓi · ci has optimal value 0 subject to the constraints
that 1) For each 4-tuple i1, i2, i3, i4, if (ai1, bi1) is in the (closed) triangle formed by the other three
points, then add the constraint that its value ℓ(ai1, bi1) lies on-or-below the plane formed by the
other three values; and 2) For each 3-tuple (ai1, bi1), (ai2, bi2), (ai3, bi3) where there is a ray from
(ai1, bi1) through the edge (ai2, bi2), (ai3, bi3) that passes through the origin, the corresponding ray
in 3-dimensions passes through-or-above the origin.

By linear programming duality, there is thus a nonnegative linear combination of the constraints
that sums up to the inequality

∑
i ℓi · ci ≥ 0. Interpreting, as above, ℓi = ℓ(ai, bi) = log

∑
j x

ai
j ybij ,

and exponentiating, we thus have the desired inequality expressed as a product of powers of the
exponentials of the linear program constraints. We conclude by noting that the exponential of
each linear program constraint is the product of positive powers of at most 3 of the basic Hölder
and Lp inequalities. Explicitly, the first set of inequalities, that a point inside a triangle has value
on-or-below the plane defined by the triangle is a consequence of the convexity of the function ℓ,
and can be expressed as the sum of two instances of the basic 3-point definition of convexity, which
is the Hölder inequality in our context. For the second set of inequalities, if a point (a, b, z) lies
on the edge (ai2, bi2, ℓi2), (ai3, bi3, ℓi3), then by the convexity of ℓ, z ≥ ℓ(a, b); thus if the ray from
(ai1, bi1) through (a, b) passes through the origin, the ray in 3-dimensions from (ai1, bi1, ℓi1) through
(a, b, ℓ(a, b)) passes through-or-above the origin by the Lp monotonicity inequality—assuming the
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triangle does not contain the origin—and thus so does the ray through (a, b, z). If the triangle
contains the origin, then two applications of convexity imply that ℓ(0, 0) must lie on-or-below the
triangle, and one application of the Lp monotonicity inequality with λ = 0 and arbitrary starting
point implies that ℓ(0, 0) ≥ 0.

Thus since there are at most
(
I
4

)
+

(
I
3

)
constraints, our desired inequality can be expressed as

the product of positive powers of at most three times this many Hölder and Lp inequalities, as
claimed.
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