
Exact Perfect Matching in Complete Graphs 1

R. Gurjar2 A. Korwar2 J. Messner3 T. Thierauf3

August 12, 2013

Abstract

A red-blue graph is a graph where every edge is colored either red or
blue. The exact perfect matching problem asks for a perfect matching
in a red-blue graph that has exactly a given number of red edges.

We show that for complete and bipartite complete graphs, the exact
perfect matching problem is logspace equivalent to the perfect match-
ing problem. Hence an efficient parallel algorithm for perfect matching
would carry over to the exact perfect matching problem for this class
of graphs. We also report some progress in extending the result to
arbitrary graphs.

1 Introduction

The matching problem is one of the most studied problem in complexity
theory. The problem is especially interesting with respect to its parallel
complexity. It appears in various versions, some of them are perfect match-
ing (PM), maximum matching (MM), and exact perfect matching (xPM)
introduced by Papadimitriou and Yannakakis [PY82]. All of these prob-
lems are known to be solvable by efficient randomized parallel algorithms,
they are in the class RNC [MVV87]. They are known to be in the class
NC, i.e., solvable by efficient parallel algorithms without randomization, for
some restricted classes of graphs only, for example, planar graphs [Vaz89].
These results seem to indicate that the problems are of similar complexity.
However, while we know polynomial time algorithms for PM and MM, it is
not known whether xPM is in P.

For complete graphs and complete bipartite graphs, Karzanov [Kar87]
gave a characterization of when such a graph has an exact perfect match-
ing. The characterization immediately gives an easy test for the existence

1Work supported in part by the Indo-German DST-DFG program, DFG grant TH
472/4-1 and DST grant DST/CS/20100251. The first author is partially supported by
TCS research fellowship.

2IIT Kanpur, India
3Aalen University, Germany

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 112 (2013)

of an exact perfect matching. Karzanov also developped a polynomial-
time algorithm to construct an exact perfect matching. Yi, Murty, and
Spera [YMS02] gave a simpler construction algorithm for bipartite complete
graphs. Whereas Karzanov gave separate proofs for the cases of complete
and complete bipartite graphs, Geerdes and Szabó [GS11] gave a unified
proof for for both cases of Karzanov’s characterization theorem, but they
left open a unified construction algorithm.

In this paper, we improve and extend these results as follows.

• We give unified proofs and construction algorithms for the case of
bipartite and non-bipartite graphs, whereas the argument in [YMS02]
is just for the bipartite case.

• Our polynomial-time algorithms are in fact logspace reduction from
the exact perfect matching problem for complete graphs and complete
bipartite graphs (cxPM) to the perfect matching problem (PM). This
ties the complexity of cxPM to that of PM. Recall that for PM it is
still open whether it can be solved efficiently in parallel.

• We report some progress in extending the results from complete graphs
to arbitrary graphs. As in [YMS02], our algorithm has two major
phases. The first phase constructs an exact pseudo perfect matching ,
which is a set of edges that comes very close to the exact perfect
matching, in some sense. By adapting an argument of Yuster [Yus12],
we are actually able to construct the exact pseudo perfect matching
for arbitrary graphs, instead of just complete graphs as in [YMS02].
However, the second phase of our algorithm still works for complete
graphs only.

• Finally, our paper might be considered as the first complete exposition
of a proof of Karzanov’s characterization theorem. Whereas Karzanov
himself leaves wide parts of the proof to the reader, [YMS02] is still
somewhat handwaving at crucial points. The exposition of [GS11] is
very succint; we were not able to completely follow it.

In the next section, we define the problems considered in this paper. In
Section 3 we show logspace reductions between these problems. The main
part of the paper is Section 4. We show a logspace reduction from exact
perfect matching to perfect matching for complete graphs and complete
bipartite graphs. The results in Section 4 are written in a way that the
mathematical arguments for the existence of an exact perfect matching are
cleanly separated from the complexity considerations. A reader who is only
interested in the mathematical proofs that an exact perfect matching exists
can easily skip the complexity arguments.

2

2 Preliminaries

Graphs and Matchings. Let G = (V,E) be an undirected graph. For
a node v ∈ V let Γ(v) = {u ∈ V | (v, u) ∈ E } be the set of neighbors
of v. A matching in G is a set M ⊆ E, such that no two edges in M have
a common vertex. We say that an edge e ∈M covers a vertex v if v is one
of its endpoints. The number |M | of edges in M is called the size of M .
A matching M is called maximal if there is no edge e such that M ∪ {e}
is a matching, it is called perfect if every vertex is covered by some edge
in M . For a weight function w : E → N = {0, 1, 2, . . . } of G the weight of a
matching M is defined as w(M) =

∑
e∈M w(e).

In the exact perfect matching problem defined below, every edge of
graph G = (V,E) is colored either red or blue. We call G red-blue graph.
Let ER and EB be the red, resp. blue edges of G. By GR = (V,ER), resp.
GB = (V,EB) we denote the subgraphs consisting of all the red, resp. blue,
edges of G. We call a red-blue graph monochromatic if all its edges have the
same color.

The square of G is the graph G2 = (V,E2), where E2 = { (u,w) |
there exists a v ∈ V such that (u, v) ∈ E and (v, w) ∈ E }.

For a unified treatment of the general and the bipartite case, we call a
graph G full if G is a complete graph Kn or a complete bipartite graph Km,n.
We call a full graph G balanced if it is a K2n or a Kn,n. For a set V of
nodes we also write KV to denote the complete graph on V . Similarly, for a
partition U, W of the nodes, we write KU,W to denote the complete bipartite
graph according to partition U, W .

Problems. We define the problems considered in this paper.

• Perfect matching (PM): Given a graph G, decide if G has a perfect
matching.

• Maximum matching (MM): Given a graph G and a number k, decide
if there is a matching of size ≥ k.

• Weighted perfect matching (wPM): Given a graph G, a weight func-
tion w : E → N and threshold weight W , decide if there is a perfect
matching of weight ≥W .

• Weighted maximum matching (wMM): Given a graph G, a weight
function w : E → N and threshold weight W , decide if there is a
matching of weight ≥W .

• Weighted exact perfect matching (wxPM): Given a graph G, a weight
function w : E → N and threshold weight W , decide if there is a
perfect matching in G of weight exactly W .

3

• Exact perfect matching (xPM): Given a red-blue graph G and a num-
ber r, decide if there is a perfect matching in G with exactly r red
edges.

• Complete exact perfect matching (cxPM) is the same as xPM, but
restricted to complete graphs Kn and Kn,n.

We assume here that the input graph G is given by its adjacency matrix.
In case of a weighted or colored graph, the weights and colors are encoded
in the adjacency matrix.

For the weight function w : E → N in the above problems we as-
sume a unary encoding for the weights. Equivalently one may allow a
binary encoding with the restriction that weights are bounded by a fixed
polynomial in |V |. Note that wxPM with unrestricted binary weights is
NP-complete [PY82, GKM+11]. However wMM with unrestricted binary
weights is in P [Edm65].

The other extreme is to allow only weights from the set {0, 1}. We
indicate by w01xPM,w01PM and w01MM, the problems wxPM,wPM and
wMM respectively with weights in the set {0, 1}. Observe that w01xPM is
the same problem as xPM if one identifies red edges with weight 1 edges and
blue edges with weight 0 edges.

For each of the above decision problems there is a corresponding con-
struction version. For example, in the construction version of MM one has to
construct a matching of size ≥ k, or output that there is no such matching.
For MM, wPM, wMM we also consider their optimization versions. Here,
the constructed matching has to be of maximum cardinality, resp. weight.
Hence, the threshold parameter k, resp. W , is omitted from the input.

Reductions and complexity classes. Let C be a class of functions and
A,B be two problems. Then A is C many-one reducible to B if there is a
function f ∈ C such that x ∈ A ⇐⇒ f(x) ∈ B.

When we consider the construction versions of A and B, we say that A
is C many-one reducible to B if there are two functions f, g ∈ C such that
x ∈ A ⇐⇒ f(x) ∈ B and for any certificate w that f(x) ∈ B, we have that
w′ = g(x,w) is a certificate for x ∈ A.

We will consider the following complexity classes:

• AC0 is the class of circuit families with unbounded fan-in and- and
or-gates, polynomial size, and constant depth.

• TC0 is defined as AC0 with additional unbounded threshold gates.

• NC1 is the class of circuit families with fan-in 2 and- and or-gates,
polynomial size, and logarithmic depth.

4

• L and P are the classes of problems that can be decided by logarithmic-
space bounded resp. polynomial-time bounded Turing machines.

It is known that
AC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ P.

We use the same notation for the functional versions of the classes. It will be
clear from the context whether we consider functions. We will also consider
Turing reductions to decision, construction and optimization versions. In
case of Turing reductions to construction or optimization versions the answer
to a query will also consist of an appropriate certificate. See [Vol99] for some
more details on reductions and the considered complexity classes.

For later use, we collect some problems that can be solved within these
complexity class.

Lemma 2.1. Given a graph G. In AC0 one can decide whether each con-
nected component of G is full and, in this case, compute the components. If
G is bipartite, then also the bipartition can be computed in AC0.

In TC0 one can decide whether all components of G are balanced.

Proof. For each vertex v verify in parallel whether the component that con-
tains v is full.

• The component is complete if for each u ∈ Γ(v) we have Γ(u)−{v} =
Γ(v) − {u}. Note that Γ(v) can be read from the vth row in the
adjacency matrix.

• The component is bipartite complete if Γ(u) = Γ(v) for each u ∈ Γ(v),
and for each w1, w2 ∈ Γ(v) we have Γ(w1) = Γ(w2).

To compute a list of the components (and their possible bipartition) without
duplicates additionally verify that v is the smallest vertex in its component.
All this can be done in AC0.

To verify whether the component that contains v is balanced, addition-
ally check whether the number of nodes |E(v) ∪ {v}| is even, in case the
component is complete, respectively check whether |E(v)| = |E(w1)|, in
case the component is bipartite. This can be done in TC0.

Lemma 2.2. There are logspace algorithms that on input of a graph G

1. compute a list of its connected components,

2. decide whether G is bipartite and, in this case, compute a bipartition
of G.

Proof. For the first claim assume some order on the vertices of G = (V,E).
For each vertex v ∈ V loop through all vertices w and test whether v is
the smallest vertex reachable from v. Recall that undirected reachability is

5

in L [Rei08]. If v is the smallest vertex reachable from v, then output all
other vertices reachable from v as a connected component.

This way we obtain a list of the connected components of G, ordered
by the minimal vertex they contain. Clearly, on can transform them to
the corresponding subgraph in logarithmic space. Let G1, . . . , Gl be the of
connected components of G.

To decide whether G is bipartite compute for each connected component
Gi = (Vi, Ei) the graph G2

i . Note that Gi is bipartite if, and only if, it is
a single node or G2

i has exactly two components. This can be decided in
logspace by part 1 of the lemma. We also obtain the components Vi,1, Vi,2

of G2
i that form a bipartition of Gi. Then Vj =

⋃
1≤i≤l Vi,j , for j ∈ {1, 2}, is

the bipartition of G.

Lemma 2.3. Given a full graph G with n vertices and a matching M of
size k in G. An extension of M to a maximum matching can be computed
in TC0.

Proof. Let VM be the vertices covered by M , For G = Kn, we extend M
by bn2 c − k pairs of nodes from V − VM . These pairs are found by sorting
V − VM and pairing consecutive vertices. Note that sorting can be done in
TC0, see [Vol99].

For G = Kn,m, let n ≤ m and V = (U,W) be the bipartition of the
nodes. We sort U − VM and W − VM separately and extend M by pairing
the ith vertices in both sets for 1 ≤ i ≤ n− k.

If the graph G in Lemma 2.3 is balanced, then the maximum matching
will be a perfect matching.

3 A Chain of Reductions

In this section we prove reductions between the various matching problems
which puts them in a reduction chain. The borderline with respect to com-
plexity lies between wPM and xPM: wPM is in P whereas the complexity of
xPM is still unclear. RNC is an upper bound for it [MVV87]. All reductions
are logspace (in fact, AC0) many-one reductions.

Theorem 3.1. Via AC0 many-one reductions, for both decision and con-
struction, we have

PM ≡ MM ≡ w01MM ≤ wMM ≡ wPM ≡ w01PM ≤ xPM ≡ wxPM.

Proof. We work our way from left to right in the chain of reductions. We
just give the proof for the decision versions, the proof for the construction
versions is always an obvious extension.

6

(i) PM ≡ MM ≡ w01MM. The reduction from PM to MM is straight-
forward: let G be the input graph with n nodes, then G ∈ PM ⇐⇒
(G, dn/2e) ∈ MM.

To reduce MM to PM, let G = (V,E) be the input graph with n nodes
and k ≥ 1. Add n − 2k new vertices and add an edge between each new
vertex and each node of G. Call the new graph G′. Then (G, k) ∈ MM ⇐⇒
G′ ∈ PM.

The reduction MM ≤ w01MM is straightforward: define the weight func-
tion w to be 1 for every edge. For the reverse reduction w01MM ≤ MM, just
remove the weight function and the weight 0 edges.

(ii) w01MM ≤ wMM. Clearly, w01MM is just a special case of wMM which
means that the identity function will do as a reduction.

(iii) wMM ≡ wPM ≡ w01PM. To show that wMM ≤ wPM, add a new
node v to the input graph G if the number of nodes is not even and add new
edges with weight 0 to make the graph complete. Let the new graph be G′

and w′ be the extended weight function. Now any matching of weight ≥W
in G can be extended to a perfect matching of weight ≥ W in G′, and
vice versa (cf. the reduction MM ≤ wPM in [KUW86]). Hence (G,w,W) ∈
wMM ⇐⇒ (G′, w′,W) ∈ wPM.

To show that wPM ≤ wMM we use a standard technique that guar-
antees that each matching of a certain minimum weight is perfect (see,
e.g., [Yus12]). Let G have 2n vertices. Define a new weight function w′

by w′(e) = w(e) + nw0 for any e ∈ E, where w0 ≥ max{w(e) | e ∈ E }
(for simplicity, w0 can be the length of the unary encoded input G,w,W).
According to the new weight function a non-perfect matching has weight
≤ (n − 1)(w0 + nw0) = (n2 − 1)w0. A perfect matching of weight W
according to w will have weight ≥ W + n2w0 according to w′. Hence
(G,w,W) ∈ wPM ⇐⇒ (G,w′,W + n2w0) ∈ wMM.

To see wPM ≤ w01PM, replace each edge e in a given polynomially
weighted graph G with a simple path of length 2w(e) − 1 such that the
edges on the path have weight 1 and 0 alternatingly (beginning with weight
1). Call the new 01-weighted graph G′. Then there is a direct correspon-
dence between the perfect matchings in G and G′ of the same weight. The
reduction w01PM ≤ wPM is simply an identity mapping.

(iv) wPM ≤ wxPM. We first describe a weighted graph Ht that has a
perfect matching of weight s for 0 ≤ s ≤ 2t − 1: Ht consists of t disjoint
length 4 cycles where the i-th cycle has one edge of weight 2i−1 and three
edges of weight 0, for i = {1, 2, . . . , t}.

Let (G,w,W) be an input to wPM. Let w0 ≥ max{w(e) | e ∈ E }
and fix k ≥ log(|V | · w0). Let G′ = G ∪

⋃k
i=0Ht be the disjoint union of

7

the graphs G and Ht for 0 ≤ t ≤ k, and let w′ denote the weight function
w extended to the edges in Ht as described above. Then it is clear that
(G,w,W) ∈ wPM ⇐⇒ (G′, w′,W + 2t − 1) ∈ wxPM.

(v) xPM ≡ wxPM. We already mentioned above that xPM is identical to
w01xPM which is a special case of wxPM. Therefore xPM ≤ wxPM.

For the reverse reduction wxPM ≤ w01xPM we use the same function as
for the reduction wPM ≤ w01PM from above.

Note that the theorem also holds if we consider the bipartite versions
of all the problems. Only the proof of MM ≤ PM needs an adjustment: in
the bipartite case, let G = (V1 ∪ V2, E), where |Vi| = ni for i = 1, 2. Add
n− 2k vertices and connect n1 − k of them with all nodes in V2, and n2 − k
of them with all nodes in V1. Call the new graph G′. Then G′ is bipartite
and (G, k) ∈ MM ⇐⇒ G′ ∈ PM.

If the bipartition is given as part of the input, as we usually assume, this
is an AC0-reduction. If the bipartition is not given, we can compute it in
logspace by Lemma 2.2. Consequently we get a logspace-reduction in this
case.

4 PM vs. xPM

By the chain of reductions in the previous section, PM is reducible to xPM.
Whether there is a polynomial-time reduction in the reverse direction is a
longstanding open problem. We approach this problem. We first show that
with two queries to wPM, one can construct in logarithmic space an exact
pseudo perfect matching (see definition below), an intermediate problem that
comes already very close to an exact perfect matching.

For this construction we use ideas from Yuster [Yus12]. Instead of a
perfect matching with r red edges, Yuster constructs a matching that has
r red edges but may have one edge less than a perfect matching. Our con-
struction widely generalizes and simplifies a polynomial-time construction
from Yi, Murty, and Spera [YMS02] that works only for complete bipartite
graphs.

The second step in [YMS02] turns the exact pseudo perfect matching
in a complete bipartite graph into an exact perfect matching in polynomial
time. We use ideas from [GS11] and [Kar87] and show that this can be done
uniformly for bipartite and non-bipartite complete graphs. Moreover, our
construction provides a logspace reduction to PM.

4.1 Definitions

In the rest of this section, G = (V,E) is a red-blue graph that has |V | = 2n
vertices. An l-cycle is a cycle with l edges. An (r, b)-cycle is a cycle with r

8

red edges and b blue edges.
If G has a perfect matching, we denote by MR and MB some perfect

matching in G with the maximum number of red edges and the maximum
number of blue edges, respectively. By rmax and rmin we denote the number
of red edges in MR, resp. MB. Note that a perfect matching with r red
edges will have n − r blue edges. A perfect matching in G with exactly r
red edges is called r-perfect matching or r-pm, for short.

A pseudo perfect matching P is a subset of edges of G of size n = |V |/2
such that at most one node is covered by exactly two edges, where one edge
is red and the other is blue. This node is called the bad node. If there is
a bad node, then there is one node that is not covered, which is called an
exposed node. All other nodes are covered by exactly one edge. If P has r
red edges, it is also called an r-pseudo perfect matching or r-ppm, for short.
Note that an r-ppm has n− r blue edges.

4.2 Constructing an exact pseudo perfect matching

Let G be a red-blue graph such that there are perfect matchings in G. Then
there are perfect matchings MB and MR with rmin and rmax red edges, re-
spectively. Clearly, we must have rmin ≤ r ≤ rmax for an r-perfect matching
to exist. Our first step is to show that there always is an r-pseudo perfect
matching.

Theorem 4.1. Let G be a red-blue graph that has a perfect matching and
r ≥ 0.

rmin ≤ r ≤ rmax =⇒ G has an r-ppm P .

Furthermore, P can be computed in logspace with two queries to the con-
struction version of wPM, or with one query to the optimization version
of wPM.

Proof. Since G has a perfect matching, MR and MB are defined. If r = rmin

or r = rmax, we can set M = MB or M = MR, respectively, and are done.
It remains to consider the case when rmin < r < rmax.

Consider the graph MR4MB. The components are disjoint simple cy-
cles C1, C2, . . . , Ck of even length ≥ 4, where the edges in each cycle are
alternately from MR and MB. For convinience, the Ci’s are defined here as
sets of edges.

To construct the r-pseudo perfect matching, we start with M0 = MB,
which has < r red edges. Then we successively swap the edges on cycles
C1, C2, That is, we consider the perfect matchings

Mi = MB4(C1 ∪ C2 ∪ · · · ∪ Ci)

for i = 0, . . . , k. Observe that Mk = MR, which has > r red edges. Hence
there must be an intermediate point i0 < k such that Mi0 has < r red edges

9

and Mi0+1 has ≥ r red edges. In the lucky case, Mi0+1 has exactly r red
edges and we are done. So assume that Mi0+1 has > r red edges.

Let us denote C = Ci0+1. We construct the r-ppm out of Mi0 and C.
The edges of cycle C can be split into two parts, C0 = C ∩Mi0 , which are
the edges from MB, and the remaining edges C1 = C −Mi0 which come
from MR. By the construction, C1 has strictly more red edges than C0.
Therefore there must be a red edge in C1 which is adjacent to a blue edge
in C0. Let us denote

C = {(u0, u1), (u1, u2), . . . , (u2l−1, u0)}
C0 = {(u0, u1), (u2, u3), · · · , (u2l−2, u2l−1)}
C1 = {(u1, u2), (u3, u4), · · · , (u2l−1, u0)},

such that (u0, u1) is blue and (u1, u2) is red.
We define a ppm P3 by adding (u1, u2) to Mi0 and removing (u2, u3).

Then u1 becomes the bad node and u3 becomes exposed.

P3 = (Mi0 ∪ {(u1, u2)}) − {(u2, u3)}.

The number of red edges in P3 is either the same as in Mi0 , if (u2, u3) is
red, or increases by one, if (u2, u3) is blue. Hence the number of red edges
in P3 is ≤ r.

Now we successively increase the C1-part of the ppm by swapping more
edges of cycle C. This results in moving the exposed vertex. The next step
is to add (u3, u4) ∈ C1 to P3 and to remove (u4, u5) ∈ C0. Then u5 becomes
the exposed node and we get ppm P5,

P5 = (P3 ∪ {(u3, u4)}) − {(u4, u5)}.

It is possible that the number of red edges decreases when going from P3

to P5. But because we only swap two edges, the number of red edges
in P3 and P5 differ by ≤ 1. Continuing that way, we finally have ppm’s
P3, P5, P7, . . . , P2l−1, with exposed node u3, u5, u7, . . . , u2l−1, respectively,
and the number of red egdes in successive ppm’s differ by ≤ 1.

Let us consider the last ppm, P2l−1. Observe that P2l−1 almost
agrees with perfect matching Mi0+1, they only differ on edges (u0, u1)
and (u2l−1, u0),

Mi0+1 = (P2l−1 ∪ {(u2l−1, u0)}) − {(u0, u1)}.

Recall that (u0, u1) is blue. Therefore the number of red edges in P2l−1 is
either the same or one less than the number of red edges in Mi0+1. Hence
the number of red edges in P2l−1 is ≥ r. It follows that at least one of the
ppm’s Pj constructed above has exactly r red edges.

Complexity : Assume first that we have given MR and MB. Applying
Lemma 2.2 to (V,MR4MB), the cycles C1, C2, . . . , Ck can be computed in

10

logspace. The remaining operations in the above argument can be performed
in logspace as well.

The queries to wPM are as follows. Define the weight function wR as

wR(e) =

{
0 if e is red

1 if e is blue

Then the query (G,wR, n − r) to the construction version of wPM gives a
perfect matching N1 in G with ≥ n− r blue edges. Therefore N1 has r1 ≤ r
red edges.

Similarly we define the weight function wB as wB(e) = 1, if e is red, and 0
otherwise. Then the query (G,wB, r) to the construction version of wPM
gives a perfect matching N2 in G with r2 ≥ r red edges.

Now observe that the above proof for the existence of ppm P works as
well if we use N1 and N2 instead of MB and MR. This shows that P can be
constructed with two queries to the construction version of wPM. Note that
with r1 and r2 in hand, we can also verify the condition rmin ≤ r ≤ rmax.

To combine the two queries into one query, define the graph G′ as the
disjoint union of two copies of G. Define the weight function w′ to be wR

on the first copy of G and wB on the second copy. Then the single query
(G′, w′) to the optimization version of wPM will give us a perfect matching
in G′ which consists of MR in the first copy of G and of MB in the second
copy.

If we consider balanced graphs instead of arbitrary graphs, the complex-
ity bound in Theorem 4.1 can be slightly improved. In a balanced graphs any
matching can be extended to perfect matching. In an arbitrary graph this
might not be possible. Moreover, Lemma 2.3 states that such an extension
can be computed efficiently in balanced graphs.

We show that the two queries to wPM in Theorem 4.1 can be replaced
by two queries to MM which in turn can be replaced by one query to PM.

We define

• Complete exact pseudo perfect matching (cxPPM): Given a red-blue
graph G and a number r, verify that G is balanced and has an r-ppm.

Corollary 4.2. Let G be a balanced red-blue graph and r ≥ 0.

G ∈ cxPPM ⇐⇒ rmin ≤ r ≤ rmax.

Furthermore, cxPPM ≤ PM. The many-one reduction is in AC0 for the
decision version and in logspace for the construction version.

Proof. By Theorem 4.1 it suffices to show the direction from left to right.
Let G be balanced and P be an r-ppm in G. The r red edges of P form
a matching in GR and the n − r blue edges of P form a matching in GB.

11

Therefore (GR, r), (GB, n− r) ∈ MM. As explained above, one can extend a
matching with ≥ r red edges in the balanced graph G to a perfect matching
with ≥ r red edges in G. Therefore we have

(GR, r) ∈ MM ⇐⇒ rmin ≤ r.

Similarly, a matching with ≥ n− r blue edges can be extended to a perfect
matching in G with ≥ n− r blue edges, and hence ≤ r red edges. Therefore

(GB, n− r) ∈ MM ⇐⇒ r ≤ rmax.

We show cxPPM ≤ PM. Let G be a given graph. We first check that G
is full. This can be done in AC0 by Lemma 2.1. Then we have

G ∈ cxPPM ⇐⇒ (GB, n− r), (GR, r) ∈ MM and G ∈ PM.

By Theorem 3.1, MM ≤ PM. Hence we can compute graphs G1 and G2

in AC0 such that (GB, n − r), (GR, r) ∈ MM ⇐⇒ G1, G2 ∈ PM. Define
G′ = G1 ∪G2 ∪G. Then we have G ∈ cxPPM ⇐⇒ G′ ∈ PM.

To construct an r-ppm in G from a perfect matching M ′ in G′, we
split M ′ into perfect matchings for G1, G2 and G. From these one obtains
matchings M ′1 in GB of size ≥ n−r and M ′2 in GR of size ≥ r. By Lemma 2.3
we can extend M ′1 and M ′2 in TC0 to an r1-pm N1 and an r2-pm N2 of G
with r1 ≤ r ≤ r2. Using the construction in the proof of Theorem 4.1 we
obtain an r-ppm for G.

4.3 Constructing an exact perfect matching in full graphs

We show that cxPM is many-one reducible to PM in logspace. What remains
to do is to reduce the exact pseudo perfect matching from the previous
subsection to exact perfect matching in logspace. We use ideas from [GS11]
and [Kar87] and show that this can be done uniformly for bipartite and
non-bipartite complete graphs.

The following definition partitions full graphs into four classes. The
classes are already considered implicitely in Karzanov [Kar87] and are de-
fined explicitely by Geerdes and Szabó [GS11]. Unlike [GS11], we keep the
classes disjoint.

Definition 4.3. Let G be a balanced graph. We write G ∼ (cx) if G is of
class (cx) for x ∈ {1, 2r, 2b, 3}, where the classes are defined as follows.

• Class (c1): All components of GR and GB are full.

• Class (c2r): G 6∼ (c1) and all components of GR are balanced.

• Class (c2b): G 6∼ (c1) and all components of GB are balanced.

• Class (c3): G 6∼ (c1), (c2r), (c2b).

12

(d)(a) (b) (c)

Figure 1: (a) A bipartite complete graph in class (c1). (b) A bipartite
complete graph in class (c2r). (c) A complete graph in class (c1). (d) A
complete graph in class (c2r). Solid and dashed lines represent red and blue
edges, respectively.

See Figure 1 for some examples. By Lemma 2.1 one can determine in TC0

to which of the classes (c1), (c2r), (c2b), or (c3) a given graph belongs.
We start by considering graphs in class (c1).

Lemma 4.4. A balanced graph G ∼ (c1) is of one of the following forms.

• If G is bipartite with bipartition U,W then there is a partition U =
U1 ∪ U2 and W = W1 ∪ W2 such that GR = KU1,W1 ∪ KU2,W2 and
GB = KU1,W2 ∪KU2,W1.

• If G is complete then there is a partition V = V1 ∪ V2 such that one
of GR or GB is KV1 ∪KV2 while the other is KV1,V2.

Proof. Note that the sets Ui, Vi,Wi may also be empty, for i = 1, 2. For
the correctness of the charcaterization of class (c1) observe that GR and GB

cannot have ≥ 3 full components with at least two vertices, respectively.
Assume that, say, GB has ≥ 3 components, and let (u0, v0), (u1, v1), (u2, v2)
be edges in GB from three different components. Then, for i 6= j, all edges
(ui, vj) are red. Therefore the six nodes u0, v0, u1, v1, u2, v2 are in one com-
ponent in GR. But this component is non-full because edges (ui, vi) are blue,
for i = 0, 1, 2.

As a consequence of this description we get the following lemma.

Lemma 4.5. Every even length simple cycle in a graph G ∼ (c1) has an
even number of red edges.

With these observations we can completely resolve the exact perfect
matching problem for graphs of class (c1). I.e., for this class we do not need
the pseudo perfect matching from above. The existential part was shown
by Karzanov [Kar87], see also [GS11]. We add the complexity bound on the
construction.

Theorem 4.6. Let G ∼ (c1).

G has an r-pm ⇐⇒ rmin ≤ r ≤ rmax and r ≡ rmax (mod 2).

13

v1v1

v3 v3v4 v4

v2 v2

Figure 2: From a 2-pm we get a 0-pm by swapping two matched pairs.

Decision and construction of an r-perfect matching is in TC0.

Proof. Let M be an r-perfect matching. The symmetric difference M 4MR

consists of disjoint even simple cycles in G. By Lemma 4.5 each of these
cycles has an even number of red edges. Therefore r ≡ rmax (mod 2).

For the reverse direction, consider the partition of the nodes of G as
described above, i.e., of U and W into U1, U2,W1,W2 if G is bipartite, and
of V into V1, V2 if G is complete. In case that any of these sets is empty,
the problem becomes trivial: then we have rmin = rmax, i.e., all perfect
matchings in G have the same number of red edges. In the following we
assume that none of these sets is empty in either case.

We consider the case that GR has two full components. Otherwise GB

has two full components and an analogous argument works for GB. We
start with a maximum red perfect matching MR in G that has rmax red
egdes. Take two red edges e1 = (v1, v2) and e3 = (v3, v4) in MR, one from
each component of GR. Then the edges e2 = (v2, v3) and e4 = (v4, v1) are
both blue. Now we swap the edges on the cycle (e1, e2, e3, e4): remove e1, e3
from MR and instead add edges e2, e4. The resulting perfect matching has
rmax − 2 red egdes. See Figure 2 for an example.

We iterate this process until the current perfect matching has no more
red egde in one of the components of GR. Then we have reached a perfect
matching a maximum number of blue edges, and therefore with rmin many
red egdes. Hence at some intermediate stage, we have an r-perfect matching.

Complexity : We first show how to compute MR. By Lemma 2.1 we
can compute the components of GR and GB and check, whether we are in a
trivial case, i.e., whether GR or GB has no edges. In this case, MR can be
computed by Lemma 2.3. Suppose now that GR has two full components,
otherwise we work with GB instead of GR. To obtain MR, we first compute
maximum matchings in GR in each component of GR by Lemma 2.3. The
union of the two matchings is a maximum matching M in GR. Then we
extend M to a perfect matching MR in G. This can be done again by
Lemma 2.3, because the extension is from GB which is a full graph.

To compute an r-perfect matching, we do the swapping of red and blue
edges in the cycles in parallel. Let k = rmax − r. Note that k is even. We

14

choose k red edges in MR, k/2 in each component of GR. To do so, we
sort the red egdes of MR in each component of GR and then pair up the
i-th edges in each component, for i = 1, . . . , k/2. Swapping the edges in all
cycles in parallel gives the final r-perfect matching.

Next we consider graphs in classes (c2r) and (c2b) where a component
of GB, respectively GR is not full. In [GS11] it is shown that these classes
can be detected by looking at 4-cycles, i.e. cycles of length 4 in GR and GB.
We give a simplified proof of this fact. Recall that an (r, b)-cycle is a cycle
with r red and b blue edges.

Lemma 4.7. Let G = (V,E) be a full red-blue graph. Then

1. GB has a non-full component ⇐⇒ there exists a (1, 3)-cycle in G.

2. GR has a non-full component ⇐⇒ there exists a (3, 1)-cycle in G.

Proof. We show the first statement. The proof for the second one is analo-
gous. We start with the direction from right to left. Let (v1, v2, v3, v4) be a
(1, 3)-cycle in G with red edge (v1, v4). Then v1, v2, v3, v4 all lie in the same
component of GB. In case that this component is bipartite, v1 and v4 lie in
different partitions. Since (v1, v4) is red, this component of GB can neither
be a complete graph nor a complete bipartite graph.

For the reverse direction, let CB be a component of GB that is not full,
and let G′B be the graph induced by GB on component CB.

First we consider the case when G′B is bipartite. Since G′B is not com-
plete, there are u, v ∈ CB such that the edge (u, v) is red. Because u and v
are in the same component CB, there is a shortest blue path (u, u1, . . . , uk, v)
from u to v in G′B. Because it is a shortest path, edges (u, ui) are red, for
all i ∈ {2, . . . , k} such that (u1, ui) ∈ E. Note that if G is bipartite, edge
(u1, ui) exists in G only for odd i. Since u and v are in different partitions
of G′B, k must be even. If k = 2, then (u, u1, u2, v) is a (1, 3)-cycle with red
egde (u, v). If k ≥ 4, then (u, u1, u2, u3) is a (1, 3)-cycle with red egde (u, u3).

Now, let us consider the case when component G′B is non-bipartite. Note
that then G is also non-bipartite. Let C = (u1, u2, . . . , uk) be a blue odd
cycle in G′B of smallest length. If the edge (u1, ui) is blue for any i ∈
{3, . . . , k− 1} then either (u1, u2, . . . , ui) or (u1, ui, ui+1, . . . , uk) would be a
blue odd cycle. This would contradict the fact that C is the smallest blue
odd cycle. Hence, all edges (u1, ui) must be red, for i = 3, . . . , k − 1. If
k ≥ 5, then (u1, u2, u3, u4) is a (1, 3)-cycle with red egde (u1, u4).

It remains to consider the case k = 3, i.e., C = (u1, u2, u3) is a triangle
in G′B. Because G′B is not complete there must be vertices in CB other than
the triangle vertices of C.

• Case 1 : All vertices in CB are connected to triangle C by a blue edge.
Since G′B is not complete there are vertices v, w ∈ CB such that the
edge (v, w) is red. Then (v, u1, u2, w) is a (1, 3)-cycle.

15

• Case 2 : There is a vertex v0 ∈ CB connected to triangle C by a red
edge, say to u1. If (v0, u2) or (v0, u3) is blue then (u1, u2, u3, v0), resp.
(u1, u3, u2, v0), is a (1, 3)-cycle with red egde (v0, u1).

It remains the case when edges (v0, u2) and (v0, u3) are red as well.
Since v0 is in CB there is a blue path that connects v0 to C, say to u3.
The cases when the path ends in u1 or u2 instead are analogous. Let
(v0, v1, v2, . . . , vk, u3) be a shortest path in G′B, for some k ≥ 1. I.e.,
all edges (vi, u3) are red, for i = 0, . . . , k − 1, because otherwise there
would be a shorter blue path from v0 to u3.

– If k = 1 then (v0, v1, u3, u1) is a (1, 3)-cycle with red edge (v0, u1).

– If k ≥ 2 then (vk−2, vk−1, vk, u3) is a (1, 3)-cycle with red
edge (vk−2, u3).

Recall that a graph G is in class (c2r), if GR is full, in fact balanced,
and GB is not full. By Lemma 4.7, G must have a (1, 3)-cycle, but no (3, 1)-
cycle. Because GR is balanced, there must be red perfect matching in G,
i.e., rmax = n. The case G ∼ (c2b) is similar. On the other hand, if G
neither has (1, 3)-cycle nor a (3, 1)-cycle, then GR and GB are both full, and
hence G is in class (c1).

Corollary 4.8. Let G be a balanced red-blue graph. Then

1. G ∼ (c1) ⇐⇒ every 4-cycle in G has an even number of red edges.

2. G ∼ (c2r) ⇐⇒ G has a (1, 3)-cycle, but no (3, 1)-cycle, and rmax = n.

3. G ∼ (c2b) ⇐⇒ G has a (3, 1)-cycle, but no (1, 3)-cycle, and rmin = 0.

The next lemma shows that when graph G is not in class (c1) then an
r-perfect matching always exists whenever rmin ≤ r ≤ rmax, barring a few
special cases. Namely, the case when r = 1 or r = n − 1 are handled
separately in Lemma 4.10 below, and we now consider the case where 2 ≤
r ≤ n − 2. Yi, Murty, and Spera [YMS02] proved the lemma for bipartite
complete graphs. We extend the proof to the non-bipartite case. For the
complexity bound, we show that an r-perfect matching can be constructed
from an r-pseudo perfect matching of G. Recall that the latter can be
computed with one query to PM, by Corollary 4.2.

Lemma 4.9. Let G 6∼ (c1) be a balanced graph with 2n nodes, where n ≥ 4.
Let rmin ≤ r ≤ rmax and also 2 ≤ r ≤ n − 2. Then G has an r-perfect
matching. It can be constructed from an r-ppm of G in AC0.

16

Proof. Let G = (V,E) be a balanced graph with 2n nodes, n ≥ 4, rmin ≤
r ≤ rmax and also 2 ≤ r ≤ n− 2. The proof is by induction on n.

In the base case n = 4, only the case r = 2 needs to be considered
because of the restrictions on r. Let V = {u1, u2, u3, u4, v1, v2, v3, v4}. In
the bipartite case, ui’s and vi’s will be the two partitions.

As G 6∼ (c1), G has a (3, 1)-cycle or a (1, 3)-cycle by Corollary 4.8. We
consider the case that G has a (3, 1)-cycle. The case of a (1, 3)-cycle is
analogous. Let (u1, v1, u2, v2) be a (3, 1)-cycle with (u2, v2) being blue. We
will show that in every case how the remaining edges are colored, there is
2-pm in G.

Assume first that (u3, v3) is blue.

• If (u4, v4) is blue then {(u1, v2), (u2, v1), (u3, v3), (u4, v4)} is a 2-pm.

• If (u4, v4) is red then {(u1, v1), (u2, v2), (u3, v3), (u4, v4)} is a 2-pm.

Hence, we assume that (u3, v3) is red. Analogously, we may assume that
(u3, v4), (u4, v3) and (u4, v4) are red as well. In the non-bipartite case,
similarly, we may assume that the edges (u3, u4) and (v3, v4) are also red.
Hence G is purely red on {u3, u4, v3, v4}.

By our assumption rmin ≤ 2. If rmin = 2 then there is a 2-pm. So, let
us assume that rmin < 2. This implies that there exist three independent
blue edges in G. Clearly, at least one of these three edges is independent of
(u2, v2). By symmetry, we may w.l.o.g. assume that this edge is (u1, v3).

Now, if (u3, v1) is red then {(u1, v3), (u2, v2), (u3, v1), (u4, v4)} is a 2-pm.
So, we assume that (u3, v1) is blue as well.

Similarly, we may assume that (u4, v1) is blue. Now, if (u1, v4) is red then
{(u1, v4), (u2, v2), (u3, v1), (u4, v3)} is a 2-pm. So, we assume that (u1, v4) is
blue as well. Next, if (u2, v4) is blue then {(u1, v2), (u2, v4), (u3, v1), (u4, v3)}
is a 2-pm. So, we assume that (u2, v4) is red. Similarly, (u4, v2) is red.
Now, {(u1, v3), (u2, v4), (u3, v1), (u4, v2)} is a 2-pm. Hence, we have shown
the existence of a 2-pm in every case.

In the induction step we show

there is no r-perfect matching in G =⇒ G ∼ (c1) .

Let n ≥ 5 and assume the statement is true for balanced graphs with 2(n−1)
nodes.

By Theorem 4.1, there exist a r-pseudo perfect matching P in G. Let
PR = P ∩ER and PB = P ∩EB be the red and blue part of P , respectively.
Let u0 be the bad node of P and u1 be the exposed node. Let v0 and v1 be
the two neighbors of u0 such that (u0, v0) ∈ PR and (u0, v1) ∈ PB. Observe
that in the bipartite case u0 and u1 are in the same partition, since G is
balanced (see Figure 3).

W.l.o.g. we assume that r ≥ n − r and hence r ≥ 3. Otherwise we
complement the colors in G and go for an (n − r)-perfect matching in the

17

u3v3

u1v1

u0v0

u2v2

Figure 3: Showing the pseudo perfect matching P with r = 3. Solid and
dashed lines represent red and blue edges, respectively. Bold lines represent
matched edges.

complemented graph. Therefore there exist at least two further red edges
(u2, v2), (u3, v3) ∈ PR apart from (u0, v0). Recall that u1 is the exposed node
in P . Hence the red egde (u1, v1) does not belong to P . In the bipartite
case let u2, u3 be in the same partition as u0, u1.

Consider the graphs G′ and G′′:

G′ = G− {u2, v2}
G′′ = G− {u3, v3}

Claim 1. G′, G′′ ∼ (c1).

Proof. We argue that the induction hypothesis applies to G′. Since G has
no r-perfect matching, G′ has no (r−1)-perfect matching. Let r′min and r′max

be the minimum and maximum number of red edges of a perfect matching
in G′. Let P ′R = PR−{(u2, v2)} and P ′B = PB and P ′ = P ′R ∪P ′B. Hence P ′

is an (r − 1)-ppm in G′. Its monochromatic components P ′R and P ′B are
matchings in G′ of cardinality r− 1 and n− r, respectively. P ′R and P ′B can
be extended to perfect matchings in G′ with ≥ r − 1 red edges and ≥ n− r
blue edges, respectively. Therefore r′min ≤ r − 1 ≤ r′max. Because r ≥ 3
and also r ≤ n − 2 by assumption, we have 2 ≤ r − 1 ≤ n − 3. Hence,
by the induction hypothesis, G′ ∼ (c1). Similarly G′′ ∼ (c1). This proves
Claim 1.

We collect some observations about the colors of some egdes.

Claim 2. We have the following properties for the colors.

(i) (ui, vi) is red, for i ∈ {0, 1, 2, 3}.

(ii) (ui, vj) and (uj , vi) have the same color, for i, j ∈ {0, 1, 2}. In partic-
ular, because (u0, v1) is blue, also (u1, v0) is blue.

(iii) (u0, u2) and (v0, v2) have the same color.

18

(iv) (u2, v0) and (u2, v1) have different colors.

Proof. Ad (i): Let N4 = {u0, u1, v0, v1}. Since G does not have an r-perfect
matching by assumption, it should not be possible to modify P on N4 to
obtain an r-perfect matching. This would be the case if (u1, v1) would be
blue, because then we could replace (u0, v1) by (u1, v1) in P .

Ad (ii): Consider the 4-cycles (ui, vi, uj , vj) for i, j ∈ {0, 1, 2}. Since
G′′ ∼ (c1), every 4-cycle in G′′ has either 2 or 4 red edges by Corollary 4.8.
Because (ui, vi) and (uj , vj) are red, the other two edges must have the same
color.

Ad (iii): This concerns only the non-bipatite case because otherwise,
these edges do not exist. In the 4-cycle (u0, u2, v2, v0) in G′′, edges (u0, v0)
and (u2, v2) are red. Again, the other two edges must have the same color.

Ad (iv): Similarly, in the 4-cycle (u0, v0, u2, v1) in G′′, the edge (u0, v0)
is red and (u0, v1) is blue. Therefore the other two edges must have different
colors. This proves Claim 2.

W.l.o.g. let us fix one color, namely that (u2, v0) is red. In the case when
(u2, v0) is blue, the proof is completely analogous. Then (u0, v2) is red as
well, by Claim 2 (ii), and (u2, v1) is blue, by Claim 2 (iv). Again by (ii),
(u1, v2) is blue as well.

• (u0, v2) and (u2, v0) are red,

• (u1, v2) and (u2, v1) are blue.

Claim 3. For all w ∈ V

(i) (u0, w) and (u2, w) have the same color, for w 6= u0, u2,

(ii) (v0, w) and (v2, w) have the same color, for w 6= v0, v2.

Proof. We show the first claim, the proof for the second claim is analogous.
Recall that in the bipartite case, the u-nodes are in the same partition.
Hence either all u-nodes are connected to w, or none of them.

Consider the cycle C,

C = (u0, w, u2, v2).

Suppose that (u0, w) and (u2, w) have different colors. Then C is a (3, 1)-
cycle. By Corollary 4.8 applied to G′′ this is not possible for w ∈ G′′. Hence
we have w ∈ {u3, v3}.

Let N8 = {u0, . . . , u3, v0, . . . , v3}. Recall that P is a 3-ppm on the ver-
tices of N8. Therefore it should not be possible to modify P to a 3-pm on N8

since otherwise one obtains an r-pm for G. Since C is a (3, 1)-cycle we can
match its vertices with a 1-pm M1 or a 2-pm M2.

19

• If w = v3, then M1 ∪ {(u1, v1), (u3, v0)} is a 3-pm on N8 if (u3, v0) is
red, and M2 ∪ {(u1, v1), (u3, v0)} is a 3-pm on N8 if (u3, v0) is blue.

• If w = u3, then M1 ∪ {(u1, v1), (v3, v0)} is a 3-pm on N8 if (v3, v0) is
red, and M2 ∪ {(u1, v1), (v3, v0)} is a 3-pm on N8 if (v3, v0) is blue.

Hence we get a contradiction in both cases. This proves Claim 3.

With the above claims and observations we can finally show that
G ∼ (c1). We first consider the case when G is bipartite. Let D be a 4-
cycle in G. Construct D′ from D by replacing every occurence of u2 by u0,
and every occurence of v2 by v0. Then D′ is a 4-cycle in G′. Note that
edges (u0, u2) and (v0, v2) do not exist in the bipartite case. By Claim 3,
D′ has the same colors on the respective edges as D. Since G′ ∼ (c1), it
follows that D′, and hence D, has an even number of red edges. Therefore
G ∼ (c1). Note that D′ may be a non-simple cycle if u0 or v0 are in D. But
the above argument ist still valid in this case.

It remains to consider the case when G is non-bipartite. Let G′R and G′B
be the red and blue subgraph of G′ = (V ′, E′), respectively. Because
G′ ∼ (c1), by Lemma 4.4, there is a partition V ′ = V ′1 ∪ V ′2 such that
the monochromatic parts of G′ are

G′1 = KV ′
1 ,V

′
2

G′2 = KV ′
1
∪KV ′

2
.

W.l.o.g. let us assume that u0 ∈ V ′1 .

• Case 1 : v0 ∈ V ′1 . Then the red subgraph is not bipartite, i.e., we have
G′1 = G′B and G′2 = G′R. In particular, KV ′

1
is red. We have

– u2, v2 ∈ V ′1 , because (u0, v2) and (u2, v0) are red,

– u1, v1 ∈ V ′2 , because (u0, v1) and (u1, v0) are blue,

– (u0, u2) is red, because otherwise (u0, u2, v0, v1) would be a (1, 3)-
cycle in G′′. Note that (v0, v1) is blue because v0 ∈ V ′1 and
v1 ∈ V ′2 .

– (v0, v2) is red, because it has the same color as (u0, u2) by
Claim 2 (iii).

Define V1 = V ′1∪{u2, v2} and V2 = V ′2 . We show that GB = KV1×KV2

and GR = KV1,V2 , and therefore G ∼ (c1) by Lemma 4.4:

– Edges (u2, w) and (v2, w) are red for every w ∈ V1, because, by
the above properies, (u0, w) and (v0, w) are red for every w ∈ V1,
and have the same color as (u2, w) and (v2, w) by Claim 3.

20

– Edges (u2, w) and (v2, w) are blue for every w ∈ V2, because
(u0, w) and (v0, w) are blue for w ∈ V2 and have the same color
as (u2, w) and (v2, w).

• Case 2 : v0 ∈ V ′2 . Then the red subgraph is bipartite, i.e., we have
G′1 = G′R and G′2 = G′B. In particular, KV ′

1 ,V
′
2

is red. We have

– v1 ∈ V ′1 , because (u0, v1) is blue,

– u1 ∈ V ′2 , because (u1, v1) is red,

– (u0, u2) is blue, because otherwise (u0, u2, v0, v1) would be a (3, 1)-
cycle in G′′. Note that (v0, v1) is red because v0 ∈ V ′2 and v1 ∈ V ′1 .

Define V1 = V ′1 ∪ {u2} and V2 = V ′2 ∪ {v2}. In an analogous way as
in the first case, we get that GR = KV1 ×KV2 and GB = KV1,V2 , and
therefore G ∼ (c1).

Complexity : Since G 6∼ (c1), G has a (1, 3)- or (3, 1)-cycle C which can
be found in AC0 by trying all possible 4-cycles. Let P be an r-ppm of G.
If P does not have a bad node then we are done. So assume that P has one
bad node and one exposed node.

Define N ⊆ V as

• the nodes of C and the nodes they are matched with in P ,

• the exposed node, and

• the bad node and its two neighbors in P .

Note that some of these nodes might actually be the same. With exception
of the exposed node, all nodes in N are matched by an edge of P , the bad
node actually twice. Hence, |N | is even, |N | ∈ {4, 6, 8, 10, 12}.

Let P ′ be those edges of P which are incident on a node of N . Since the
bad node is covered by a red and a blue edge, P ′ has ≥ 1 edge of each color.
We assume that P ′ actually has ≥ 2 edges of each color. Otherwise add a
further red, respectively blue edge from P to P ′. Let N ′ denote the set of
nodes covered by P ′. Hence |N ′| ≤ 14. Let r′ and b′ denote the number of
red, respectively blue edges of P ′. We have n′ = r′ + b′ = |N ′|/2 ≤ 7.

The graph G′ induced by G on N ′ is a balanced graph with 2n′ vertices.
Let r′min and r′max be the minimum, respectively maximum number of red
edges in a perfect matching in G′. We have r′min ≤ r′ ≤ r′max:

• We can extend the r′ red edges of P ′ to a perfect matching in G′.
Therefore r′ ≤ r′max.

• We can extend the b′ blue edges of P ′ to a perfect matching in G′.
Therefore r′ ≥ r′min.

21

Since r′, b′ ≥ 2, we also have 2 ≤ r′ ≤ n′ − 2. Note that G′ 6∼ (c1) since it
contains C. By the first part of the lemma, G′ has an r′-perfect matching M ′.
We can find M ′ by trying all of the constantly many possibilities. We
replace P ′ by M ′ in P , i.e., define M = (P − P ′) ∪ M ′. Then M is an
r-perfect matching in G.

The next lemma takes care of the case when r = 1 or r = n− 1. Again,
the lemma has been proven by Yi et al. [YMS02] for bipartite graphs. We
extend the proof to the non-bipartite case. For the complexity bound, we
show again as in the previous lemma that an r-perfect matching can be
constructed from an r-pseudo perfect matching of G which yields a reduction
to PM, by Corollary 4.2.

Lemma 4.10. Let G be a balanced graph.

1. If rmax = n, then

G has an (n− 1)-perfect matching ⇐⇒ G has a (3, 1)-cycle.

2. If rmin = 0, then

G has a 1-perfect matching ⇐⇒ G has a (1, 3)-cycle.

Let r ∈ {0, 1, n − 1, n}. If G has an r-pm it can be constructed from an
r-ppm of G in AC0.

Proof. We show the first statement. The proof for the second statement is
analogous. Let MR be a perfect matching with rmax = n red edges, i.e., MR

is purely red.
Let M be an (n − 1)-perfect matching in G, i.e., M has one blue edge.

Consider M 4MR. There is one cycle C in M 4MR that contains the blue
edge of M . If C has length 4 we are done. So assume that |C| > 4.

Let C = (v1, v2, . . . , v2s) for s > 2, and let (v1, v2s) be the blue edge.
Consider the edge (v2, v2s−1). If it is red then (v1, v2, v2s−1, v2s) is a (3, 1)-
cycle. If it is blue then we proceed with edge (v3, v2s−2). If it is red then
again we get a (3, 1)-cycle. We can continue so on. If the edges (vi, v2s−i+1)
are all blue, for i = 1, . . . , s − 1, then we end up at (vs, vs+1), which is red
and we have the (3, 1)-cycle (vs−1, vs, vs+1, vs+2), where (vs−1, vs+2) is the
blue edge.

For the reverse direction, let C = (u1, u2, u3, u4) be a (3, 1)-cycle in G
with blue edge (u1, u4). The edges of MR either connect nodes within C
or connect a node of C with some node not in C. Let NC be the nodes
of C plus the nodes connected to C by an edge in MR. We show that we
can alter MR on NC such that the resulting perfect matching M has 1 blue
edge.

Note that NC contains 4, 6, or 8 vertices. We examine each case.

22

• |NC | = 4: in this case MR contains the red edges (u1, u2) and u3, u4).
We can simply swap the edges on C, i.e. we put (u1, u4) and (u2, u3)
into M instead of (u1, u2) and (u3, u4).

• |NC | = 6: one red edge of C is in MR.

– If (u1, u2) ∈MR, then there are nodes v3, v4 outside C such that
(u3, v3), (u4, v4) ∈ MR. If edge (v3, v4) is red, then we alter MR

on NC to {(u1, u4), (u2, u3), (v3, v4)}. If edge (v3, v4) is blue, we
take {(u1, u2), (u3, u4), (v3, v4)}.

– The case (u3, u4) ∈MR is symmetric to the previous case.

– If (u2, u3) ∈MR, then there are nodes v1, v4 outside C such that
(u1, v1), (u4, v4) ∈ MR. If edge (v1, v4) is red, then we alter MR

on NC to {(u1, u4), (u2, u3), (v1, v4)}. If edge (v1, v4) is blue, we
take {(u1, u2), (u3, u4), (v1, v4)}.

• |NC | = 8: no edge of C is in MR. There are nodes v1, v2, v3, v4 out-
side C such that (ui, vi) ∈M , for i = 1, . . . , 4.

If edge (v1, v4) is red, we put (v1, v4) and (u1, u4) into M instead of
(u1, v1) and (u4, v4). So assume that (v1, v4) is blue.

If edge (v2, v3) is blue, we put (v2, v3) and (u2, u3) into M instead of
(u2, v2) and (u3, v3). So assume that (v2, v3) is red.

We alter MR on NC to {(v1, v4), (u1, u2), (u3, u4), (v2, v3)}.

Note that the above argument works for bipartite and non-bipartite graphs.
Complexity : We consider the case r ≥ n − 1, the case r ≤ 1 can be

handled by exchanging the colors. Let P be an r-ppm. If r = n then P is
also an r-pm and we are done. Otherwise r = n − 1 and M = P ∩ ER is a
matching in GR of size n − 1. Let e be the edge between the vertices in G
not covered by M . If e is blue, then M ∪ {e} is the required (n − 1)-pm.
So assume that e is red. Then MR = M ∪ {e} is a perfect matching with
rmax = n red edges.

Next we go through all 4-cycles and search for a (3, 1)-cycle C. If there
is no (3, 1)-cycle, then G has no (n − 1)-pm. Otherwise we construct an
(n− 1)-pm from MR and C as described above. Since MR is changed only
locally on constantly many edges, this can be accomplished in AC0.

If G ∼ (c2r), then we have rmax = n and G has no (3, 1)-cycle by
Corollary 4.8. By Lemma 4.10, G has no (n−1)-perfect matching. Similarly,
if G ∼ (c2b), then G has no 1-perfect matching. If G ∼ (c3), then it has both,
(1, 3)- and (3, 1)-cycles, and hence there is an r-perfect matching for every r
such that rmin ≤ r ≤ rmax. In summary, we get the main theorem from
Karzanov [Kar87] that characterizes the existence of an r-perfect matching
for graphs in classes (c2r), (c2b), and (c3). We add the complexity bound for
constructing such an r-perfect matching from an r-pseudo perfect matching.

23

Theorem 4.11. Let G be a balanced graph and rmin ≤ r ≤ rmax. Then G
has an r-perfect matching if

• G ∼ (c2r) and r 6= n− 1,

• G ∼ (c2b) and r 6= 1, or

• G ∼ (c3).

If G 6∼ (c1) has an r-pm it can be constructed in AC0 from an r-ppm of G.

Theorem 4.6 and 4.11 together resolve the complexity of the exact perfect
matching problem for all full graphs. Recall that we can find out in TC0

the class to which a given graph belongs to. By Corollary 4.2 we get a
many-reduction to PM.

Theorem 4.12. cxPM ≤ PM. The many-one reduction is TC0 for decision
and logspace for construction, also for the bipartite versions.

We can now put cxPM into the chain of reductions from Theorems 3.1,

PM ≡ MM ≡ cxPM ≤ wMM ≡ wPM ≤ xPM ≡ wxPM

The reductions are logspace many-one reductions, also for the bipartite ver-
sions, and for both decision and construction.

Discussion

The reduction wxPM ≤ wPM, which would put wxPM in P, is still open.
Our procedure for constructing an exact pseudo perfect matching works for
arbitrary graphs. But the second step, which constructs an exact perfect
matching from an exact pseudo perfect matching, uses the completeness of
the graph at several places. It is not at all clear how to generalize the second
step to arbitrary graphs.

Other open problems are whether there are NC-reductions from weighted
perfect matching to perfect matching, or from the construction of a perfect
matching to the decision version.

References

[Edm65] J. Edmonds. Maximum matching and a polyhedron with
0,1-vertices. Journal of research of the Na tional Bureau of
Standards–B. Mathematics and Mathematical Physics, 69B:125–
130, 1965.

24

[GKM+11] R. Gurjar, A. Korwar, J. Messner, S. Straub, and T. Thierauf.
Planarizing gadgets for perfect matching do not exist. Techni-
cal Report TR11-148, Electronic Colloquium on Computational
Complexity (ECCC), 2011. Revised version appears in proceed-
ings of MFCS 2012.

[GS11] H.-F. Geerdes and J. Szabó. A unified proof for Karzanov’s ex-
act matching theorem. Technical Report QP-2011-02, Egerváry
Research Group, Budapest, 2011. www.cs.elte.hu/egres.

[Kar87] A.V. Karzanov. Maximum matching of given weight in com-
plete and complete bipartite graphs. Cybernatics and Systems
Analysis, 23(1):8–13, 1987.

[KUW86] M. Karp, R. E. Upfal, and A. Wigderson. Constructing a perfect
matching is in random NC. Combinatorica, 6(1):35–48, 1986.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy
as matrix inversion. Combinatorica, 7:105–113, 1987.

[PY82] C. H. Papadimitriou and M. Yannakakis. The complexity of
restricted spanning tree problems. J. ACM, 29:285–309, April
1982.

[Rei08] O. Reingold. Undirected connectivity in log-space. J. ACM,
55:17:1–17:24, 2008.

[Vaz89] V. Vazirani. NC algorithms for computing the number of perfect
matchings in K3,3-free graphs and related problems. Information
and computation, 80(2):152–164, 1989.

[Vol99] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[YMS02] T. Yi, K. G. Murty, and C. Spera. Matchings in colored bipar-
tite networks. Discrete Applied Mathematics, 121(1-3):261–277,
2002.

[Yus12] R. Yuster. Almost exact matchings. Algorithmica, 63:39–50,
2012.

25

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

