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Abstract

So-called ordered variants of the classical notions of pathwidth and treewidth are introduced
and proposed as proof theoretically meaningful complexity measures for the directed acyclic
graphs underlying proofs. The ordered pathwidth of a proof is shown to be roughly the same as
its formula space. Length-space lower bounds for R(k)-refutations are generalized to arbitrary
infinity axioms and strengthened in that the space measure is relaxed to ordered treewidth.

1 Introduction
Proof complexity seeks to show that certain propositional contradictions do not admit short refu-
tations in certain propositional refutation systems; here, short means polynomial in the size of the
contradiction refuted. Of special interest are Resolution-based refutation systems and meaningful
contradictions expressing combinatorial principles in some natural way. Common instances of the
latter are given by propositional translations of first-order formulas, and in particular of infinity ax-
ioms1. By a Resolution-based system we mean one of the hierarchy R(1), R(2), . . . , R(log) [15];
R(1) is the same as Resolution and R(k) is a straightforward generalization of Resolution oper-
ating with k-DNFs instead of clauses, i.e., cutting on conjunctions of k literals instead of single
literals. From a practical perspective this special interest derives from the fact that SAT solvers
are based on such systems. From a more theoretical perspective the special interest derives from
the fact that lower bounds for these systems are prerequisite for understanding independence from
bounded arithmetic (cf. [4]).

Besides proof length the most popular complexity measure of proofs is proof space (formula-
space or clause-space) as introduced by Esteban and Toran [11]. Intuitively, a space 100 refutation
of a set Γ of clauses, say in Resolution, is one that can be presented as follows.

A teacher is in class equipped with a blackboard containing up to 100 clauses. The
teacher starts from the empty blackboard and finally arrives at one containing the
empty clause. The blackboard can be altered by either writing down a clause from Γ,

1Definitions are given in the following section.
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or by wiping out some clause, or by deriving a new clause from clauses currently
written on the blackboard by means of the Resolution rule.

A motivation for studying the space of refutations is to understand memory requirements for SAT
solvers [6]. The hierarchy of Resolution-based proof systems is not only strict with respect to
length (see [23] for a survey) but it is also strict with respect to space [10, 6]. A sequence of work
established lower bounds on space for R(k) refutations, and especially for (translations of) infinity
axioms [11, 1, 10]. Resolution lower bounds on space follow from lower bounds on width [11, 2]
but not the other way around [19].

Ben-Sasson showed that size and space cannot in general be simultaneously optimized [5],
laying the ground for so-called length-space trade-offs. An exponential length-space trade-off
states that there exists a sequence of contradictions that have short Resolution refutations in small
space while refutations in somewhat smaller space require exponential length (length-space lower
bound). Ben-Sasson and Nordström found such sequences for various settings for the qualifications
“small” and “somewhat smaller”, e.g., for O(n) versus o(n/ log n). Moreover, they managed to
extend the length-space lower bound to R(k) for constant k when taking the (k + 1)th root of
the qualification “somewhat smaller.” The contradictions are substitution instances of pebbling
contradictions. What Ben-Sasson and Nordström showed is how to transfer trade-off results for
pebbling games to Resolution proofs. We refer to the survey [6] for more information. The wording
trade-off has to be taken with some care in that the upper bounds are claimed only for the very
special contradictions constructed. In this paper we shall focus on the lower bound part of trade-
offs.

This paper. We revisit refutation space by means of natural invariants of the refutation DAG,
namely, we introduce so-called ordered variants of the notions of pathwidth and treewidth. These
notions play an important role in Robertson and Seymour’s graph minors project and have evolved
as very successful and ubiquitously used complexity measures (see, for instance, Bodlaender’s
survey [7]). In contrast to earlier adaptions of the width notions to digraphs [3], the ordered width
measures allow us to distinguish between DAGs. Our notions are well-motivated from a graph
theoretic point of view; for example on DAGs, ordered pathwidth coincides with a straightforward
variant of the vertex separation number [7] adapted to DAGs (Proposition 3.17). We show that the
notions have proof theoretic sense: Resolution refutations of minimal ordered pathwidth are just
Input Resolution refutations (Theorem 4.1), and those of minimal ordered treewidth are just the
treelike ones. More importantly, we show that ordered pathwidth is roughly the same as refutation
space (Theorem 5.1). Conceptually, these results allow to rethink space as a measure of how far a
Resolution proof is from being an Input Resolution refutation.

This gives interest to ordered treewidth, a notion that relaxes ordered pathwidth in much the
same way as treewidth relaxes pathwidth. Ordered treewidth of a refutation can be interpreted as
measuring how far a refutation is from being treelike (Theorem 4.1). We also propose an interpre-
tation of ordered treewidth in terms of space, using the following two player game, that continues
the metaphor above.

A student visits the teacher in her office asking her to explain the proof. The teacher
has a blackboard potentially containing up to 10 clauses and writes the empty clause on
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it. The student asks how to prove it. The teacher produces a length ≤ 10 proof from Γ
plus some additional clauses. The student chooses one of these additional clauses and
asks how to prove it. And so on. The game ends when the teacher comes up with a
proof using no additional clauses.

The new graph invariants also provide the means for making progress with respect to the already
mentioned length-space lower bounds from Ben-Sasson and Nordström [6]. Our main technical
result (Theorem 6.1) is a lower bound on length and ordered treewidth for R(k)-refutations of
infinity axioms in general. This makes progress with respect to the known length-space lower
bounds in that it applies to infinity axioms in general, and thereby to a large class of formulas
having a natural meaning. It relaxes the refutation space measure (i.e., ordered pathwidth) to
ordered treewidth, and it gives nontrivial lower bounds for allR(k) simultaneously, and forR(log).
The latter feature overcomes a bottleneck in constructions from [6] which give good lower bounds
for R(k) with constant k but become trivial for R(log).

We also get strong lower bounds on space, i.e., ordered pathwidth, for infinity axioms in general
(Corollary 6.3). While it is known that treelike R(log) refutations of infinity axioms need expo-
nential length, there are some very few examples of infinity axioms known to have short DAG-like
refutations, even in Resolution. We show that such short refutations need to be far from being
treelike in the sense that they require large ordered treewidth.

Proof idea. The lower bound proof follows the adversary type argument of [16] against treelike
R(log) refutations of infinity axioms. One uses restrictions that describe finite parts of some infinite
model of the infinity axiom. Starting with the empty restriction, first choose a node as in Spira’s
theorem, namely one that splits the refutation tree into two subtrees of size at most 2/3 of total.
Then distinguish two cases, namely whether no extension of the current restriction satisfies the
formula at the chosen node or not. In the first case stick with the current restriction and recurse
to the subtree rooted at the chosen node. In the second case delete this subtree and recurse with
a “small” restriction satisfying the formula at the chosen node. The invariant maintained is a
proof of a formula “forced false” from axioms plus some formulas “forced true.” If the proof has
length S, this process reaches a constant size proof after O(logS) steps. If S is not too large, it
is argued that the final restriction can be further extended to force all remaining axioms true and a
contradiction is reached. The proof of our lower bound proceeds similarly but by recursion on a
tree decomposition of the refutation. To make sense of this idea we show that we can always find a
tree decomposition whose underlying tree is binary (to find a Spira type split node) and whose size
is linear in the size of the refutation (Lemma 3.12). Further care is needed to ensure that the partial
tree decompositions during the recursion are decompositions of refutations with similar properties
as the invariant described above (Lemma 3.8).
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2 Preliminaries

2.1 Digraphs
We consider directed graphs (digraphs, for short) without self-loops and denote the set of vertices
and the set of directed edges of a digraph D by V (D) and E(D), respectively. If (u, v) ∈ E(D),
then u is a predecessor of v and v a successor of u. An ancestor of v ∈ V (D) is a vertex w such
that there is a directed path from w to v in D; we understand that there is a directed path from
any vertex to itself. The in-degree (out-degree) of v is the number of its predecessors (successors).
The in-degree (out-degree) of D is the maximal in-degree (out-degree) over all vertices. Vertices
of in-degree 0 are sources, vertices of out-degree 0 are sinks. An (induced) subdigraph of D is a
digraph D[X] induced on a nonempty X ⊆ V (D); if V (D) \X is nonempty, we write D−X for
D[V (D) \X]. The graph D underlying a digraph D has the same vertices as D and as edges the
symmetric closure of E(D). In general, a graph is a digraph D with symmetric E(D). A DAG is a
directed acyclic graph (i.e., a digraph without directed cycles), and a tree is a DAG T with a unique
sink rT called root such that for every v ∈ V (T ) there is exactly one directed path from v to rT .
We shall refer to vertices in a tree as nodes. The subtree Tt rooted at t ∈ V (T ) is the subtree of T
induced on the set of ancestors of t in T ; it has root rTt = t. The height of a tree is the maximal
length (number of edges) in a branch (leaf-to-root path) in T . By the perfect binary tree Bh of
height h we mean the tree where every node which is not a leaf has exactly two predecessors and
all branches have length exactly h.

2.2 Propositional Logic
A literal is a propositional variable X or its negation ¬X; for a literal ` we let ¬` denote ¬X ,
if ` = X , and X , if ` = ¬X . A (k-)term is a set of (at most k) literals. A (k-)DNF is a set of
(k-)terms. The empty DNF is denoted by 0 and the empty term by 1. A clause is a 1-DNF. An
assignment is a function from the propositional variables into {0, 1}. A restriction ρ is a finite
partial assignment. For a restriction or assignment ρ and a term t we let t � ρ be 0 if t contains a
literal falsified by ρ (in the usual sense) and otherwise the subterm obtained by deleting all literals
satisfied by ρ. For a DNF D we let D � ρ be 1 if t � ρ = 1 for some t ∈ D; otherwise D � ρ is
obtained from D by deleting all t ∈ D with t � ρ = 0 and deleting from every other t ∈ D all
literals satisfied by ρ. Note, if ρ is defined on all variables appearing in D then D � ρ equals the
truth value of D under ρ.

Definition 2.1. A (k-)DNF proof is a pair (D, (Fv)v∈V (D)) where D is a DAG with a unique sink
and in which every vertex has at most two predecessors, and Fv is a (k-)DNF for every v ∈ V (D).
The proof is said to be of F if F = Fv for v the sink of D, and from Γ if Fv ∈ Γ for all sources v
of D. It is said to be treelike if D is a tree. Proofs of 0 are refutations. The length of the proof is
|V (D)|. A refutation system is a set of refutations.

Usually one requires refutation systems to satisfy certain further properties like soundness or
completeness or being polynomial time decidable (cf. [8]).
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Definition 2.2. A DNF proof (D, (Fv)v∈V (D)) is sound if for every inner vertex v ∈ V (D) and
every assignment ρ we have Fv � ρ = 1 whenever Fu � ρ = 1 for all predecessors u of v in D.
It is strongly sound (cf. [24]) if for every inner vertex v ∈ V (D) and every restriction ρ we have
Fv � ρ = 1 whenever Fu � ρ = 1 for all predecessors u of v in D.

The next statement is obvious.

Lemma 2.3. If there is a strongly sound proof of F from Γ and ρ is a restriction such thatG � ρ = 1
for all G ∈ Γ, then F � ρ = 1.

We consider the following rules of inference, namely weakening, introduction of conjunction
and cut:

D
D ∪ {t}

D ∪ {t} D′ ∪ {t′}
D ∪D′ ∪ {t ∪ t′}

D ∪ {t} D′ ∪D′′
D ∪D′ ,

whereD,D′, D′′ are DNFs, t, t′ are terms and in the cut rule we assume ∅ 6= D′′ ⊆ {{¬`} | ` ∈ t}.
A k-DNF proof (D, (Fv)v∈V (D)) is anR(k)-proof if for every inner vertex v with predecessors u,w
the formula Fv is obtained from Fu and Fw by one of the three rules above. An R(k)-proof is an
R(log)-proof if its length is at least 2k. An R(1)-proof is a Resolution proof. The refutation system
consisting of all R(k)-refutations (resp. R(log)-refutations) is denoted R(k) (resp. R(log)).

Remark 2.4. R(k) is strongly sound. We have completeness in the sense that for every k-DNF F
implied by some set Γ of k-DNFs, there is an R(k)-proof of F from Γ plus some additional
‘axioms’ of the form (X ∨¬X), i.e., {{X}, {¬X}}. R(k) is refutation-complete in the sense that
no such axioms are needed in case F = 0. If one adds a new rule allowing to infer such an axiom
from any formula, then the system ceases to be strongly sound.

2.3 First-Order Logic and Propositional Translation
A vocabulary is a finite set τ of relation and function symbols, each with an associated arity;
function symbols of arity 0 are constants. The arity of τ is the maximum arity of one of its
symbols. τ -terms are first-order variables x, y, z . . . or of the form ft1 · · · tr where t1, . . . , tr are
again τ -terms and f ∈ τ is a function symbol of arity r. τ -atoms are of the form t1 = t2 or
Rt1 · · · tr where t1, t2, . . . , tr are τ -terms and R ∈ τ is a relation symbol of arity r. τ -formulas are
built from τ -atoms using ∧,∨,¬ and existential and universal quantifiers ∃x,∀x. For a tuple of
first-order variables x̄ we write ϕ(x̄) for a τ -formula ϕ to indicate that the free variables of ϕ are
among the components of x̄. A τ -sentence is a τ -formula without free variables. A τ -structure M
consists of a nonempty set, its universe, that we also denote by M and for every, say, r-ary relation
symbol R ∈ τ an interpretation RM ⊆ M r, and for every, say, r-ary function symbol f ∈ τ an
interpretation fM : M r → M ; we identify the interpretation of a constant with its unique value.
A τ -structure M is a model of a τ -sentence ϕ if ϕ is true in M .

The spectrum of a first-order sentence ϕ is the set of those naturals n ≥ 1 such that ϕ has a
model (with universe) of cardinality n. An infinity axiom is a satisfiable first-order sentence with
empty spectrum, i.e., a sentence without a finite but with an infinite model. Skolemization and
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elementary formula manipulation allows to compute from every first-order sentence ψ a sentence
ϕ with the same spectrum and of the form

∀x̄
∧
i∈I Ci(x̄), (1)

where I is a nonempty finite set, the Cis are first-order clauses (disjunctions of atoms and negated
atoms) whose atoms have the formRȳ or fȳ = z for some relation symbolR respectively function
symbol f and variables ȳ, z. Moreover, ϕ has an infinite model if and only if ψ does.

Following Paris and Wilkie (cf. [20], see also [22]) we define for every natural n ≥ 1 a set 〈ϕ〉n
of clauses that is satisfied exactly by those assignments that describe a model of ϕ with universe
[n] := {0, 1 . . . , n− 1}.

Let τ be the vocabulary of ϕ. We use as propositional variables Rā, f ā = b where r ∈ N, ā ∈
[n]r, b ∈ [n], R is an r-ary relation symbol in τ and f is an r-ary function symbol in τ . For i ∈ I
and ā ∈ [n]|x̄| substitute ā for x̄ in Ci(x̄); this transforms every literal into a propositional literal or
into an expression of the form a = a′ or ¬a = a′ where a, a′ are components of ā; the propositional
clause 〈Ci(ā)〉 is {1} if one of these expressions is “true” in the obvious sense; otherwise 〈Ci(ā)〉
is the clause whose terms are the singletons of the propositional literals (of the form Rā, f ā = b)
obtained by the substitution. Then 〈ϕ〉n is the set of the clauses 〈Ci(ā)〉 obtained this way plus the
functionality clauses {{fā = b} | b ∈ [n]}, {{¬fā = b}, {¬fā = b′}} for f ∈ τ an r-ary function
symbol, ā ∈ [n]r and distinct b, b′ ∈ [n].

It should be clear that the assignments that satisfy the functional clauses bijectively correspond
to τ -structures on [n]; moreover, such an assignment satisfies 〈ϕ〉n if and only if the corresponding
τ -structure is a model of ϕ. Hence, 〈ϕ〉n is unsatisfiable if and only if n is not in the spectrum of ϕ;
in particular, all 〈ϕ〉n, n ≥ 1, are contradictions if ϕ is an infinity axiom.

3 Width Notions for DAGs

3.1 Treewidth and Pathwidth
Let G be graph. A tree decomposition of G is a pair (T, χ) where T is a tree and χ is a function
from V (T ) into the powerset of V (G) such that:

(a) every vertex of G belongs to χ(t) for some t ∈ V (T );

(b) for every edge (v, w) ∈ E(G) of G there is some vertex t of T such that v, w ∈ χ(t);

(c) for every v ∈ V (G) the set {t ∈ V (T ) | v ∈ χ(t)} is connected in T .

Recall, T is the graph underlying T . The width of a tree decomposition (T, χ) is the maximum
|χ(t)| − 1 over all t ∈ V (T ). The treewidth tw(G) of G is the minimum width over all its tree
decompositions. A path decomposition is a tree decomposition (T, χ) where T is a (directed) path.
The pathwidth pw(G) of a graph G is the minimum width over all its path decompositions.

Let (T, χ) be a tree decomposition of a graph G. We say that a vertex v ∈ V (G) is introduced
at t ∈ V (T ) if v ∈ χ(t) but v /∈ χ(t′) for any predecessor t′ of t. Similarly, we say that v is
forgotten at t ∈ V (T ) if v ∈ χ(t) and either t = rT or v /∈ χ(t′) for the successor t′ of t. Note
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that every vertex v ∈ V (G) is introduced at at least one tree node (by condition (a)) and forgotten
at exactly one tree node (by condition (c)). In a path decomposition every vertex is introduced at
exactly one tree node.

The same definitions apply literally to digraphs, so we can also speak of tree and path decom-
positions of digraphs. Consequently, the treewidth and pathwidth of a digraph equal the treewidth
and pathwidth of the digraph’s underlying graph, respectively. Thus the direction of edges is com-
pletely irrelevant for the treewidth or pathwidth of a digraph. For some considerations, however,
one needs the direction of edges to be reflected in the decomposition and the associated width mea-
sure. For example [12] introduces the notion of directed treewidth, and it is known that every DAG
has directed treewidth 1. We introduce new width measures that can distinguish between DAGs.

3.2 Ordered Treewidth and Ordered Pathwidth
Although we shall be mainly interested in DAGs, we give the definitions and some first observa-
tions generally for digraphs. All arguments in this section follow familiar lines hence we omit
some of them.

Definition 3.1. A tree decomposition (T, χ) of a digraph D is ordered if the following condition
holds:

(d) for every directed edge (u, v) ∈ E(D) and every t ∈ V (t) where v is introduced, u ∈ χ(t).

As above, we define the ordered treewidth otw(D) of D as the minimum width over all ordered
tree decompositions of D, and the ordered pathwidth opw(D) of D as the minimum width over all
ordered path decompositions of D.

We say that a class C of digraphs has bounded ordered pathwidth if there is a constant w ∈ N
such that every digraph in C has ordered pathwidth at most w; we say C has unbounded ordered
pathwidth if it does not have bounded ordered pathwidth. We use a similar mode of speech for the
other width notions.

The ordered width measures are different from their classical counterparts:

Remark 3.2. For every digraph D, otw(D) is at least the in-degree of D.

Examples 3.3.

1. The ordered treewidth of a tree (with edges directed towards the root) is its in-degree.

2. A directed path with at least one edge has ordered pathwidth 1.

3. The class of perfect binary trees (with edges directed towards the root) has unbounded or-
dered pathwidth and bounded ordered treewidth.

4. The class of perfect binary trees with all edges reversed (edges directed away from the root)
has unbounded ordered treewidth and bounded treewidth.
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Proof of (1)–(3). (1) and (2). A tree (path) T has the ordered (path) tree decomposition (T, χ)
where χ maps t ∈ V (T ) to the set containing t and its predecessors. It has minimal width by
Remark 3.2.

(3). Recall Bh denotes the the perfect binary tree of height h (see Section 2.1). By (1) otw(Bh)
is 2 for h > 0 and 0 for h = 0. It is well-known that pw(Bh) ≥ dh/2e (see, e.g., [7, Theorem 67]).
This implies (3) noting opw ≥ pw.

We prove (4) after Lemma 3.10 below.

Lemma 3.4. Let D be a digraph, (T, χ) an ordered tree decomposition of D and X ⊆ V (D) be
nonempty. Then (T, χ′) is an ordered tree decomposition of D[X] where χ′ maps t ∈ V (T ) to
χ(t) ∩X .

Lemma 3.5. Let D be a DAG and (T, χ) an ordered tree decomposition of D. Assume v ∈
V (D) has in-degree 1 and predecessor u and let D′ be obtained by contracting the edge to v,
i.e., by deleting v and adding edges from u to the successors of v. Then (T, χ′) is an ordered tree
decomposition of D′, where for t ∈ V (T )

χ′(t) :=

{
χ(t) if v /∈ χ(t);

(χ(t) \ {v}) ∪ {u} otherwise.

These two lemmas are easy to prove. They show that ordered treewidth or pathwidth is not
increased by taking “minors” in a certain sense (more restrictive than the one in [12, Section 5]).

Example 3.6. A star with n vertices and all edges directed towards the center can be obtained
from Bh by contracting edges provided h is sufficiently large. Then otw(Bh) = 2 while the star
has ordered treewidth n− 1.

Definition 3.7. A subtree T ′ of a tree T is fully in T if for every node of T ′ either all or none of its
predecessors in T are in V (T ′).

Lemma 3.8. Let (T, χ) be an ordered tree decomposition of a digraph D, let T ′ be a subtree of T
and set χ′ := χ � V (T ′). Assume

⋃
t′∈V (T ′) χ(t′) 6= ∅ and set D′ := D[

⋃
t′∈V (T ′) χ(t′)]. Then

1. (T ′, χ′) is an ordered tree decomposition of D′;

2. if T ′ is fully in T , then there exists for every edge (u, v) ∈ E(D) with u /∈ V (D′) and
v ∈ V (D′) a leaf t of T ′ which is not a leaf of T such that v ∈ χ(t).

Proof. (1). That (T ′, χ′) satisfies conditions (a) and (c) is easy to see. To verify (b), let (u, v) ∈
E(D′) and choose tu, tv ∈ V (T ′) such that u ∈ χ(tu) and v ∈ χ(tv). By condition (b) for (T, χ)
we find tuv ∈ V (T ) such that u, v ∈ χ(tuv). Choose `minimal such that there is a path t1 · · · t` in T
with t1 = tuv and t` ∈ V (T ′). Then every path in T from tuv to some node in V (T ′) contains t`.
In particular, this holds for all paths in T connecting tu and tuv. Then u ∈ χ(t`) since (T, χ)
satisfies condition (c). Similarly v ∈ χ(t`), and (b) for (T ′, χ′) follows. Thus (T ′, χ′) is a tree
decomposition of D′.
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We verify condition (d), i.e., that (T ′, χ′) is ordered. Consider an edge (u, v) ∈ E(D′) and
choose a node t1 of T ′ where v is introduced in (T ′, χ′). We have to show u ∈ χ(t1). In (T, χ), the
vertex v must be introduced at some ancestor t2 of t1, that is, at some t2 ∈ V (Tt1). Since (T, χ)
is ordered, u ∈ χ(t2). We already verified (b) for (T ′, χ′), so there must be a node t3 ∈ V (T ′)
with u, v ∈ χ(t3). If t3 = t1 we are done, so assume t3 6= t1. Then t3 cannot be an ancestor of t1:
otherwise, by condition (c) for (T, χ), v is contained in the bag at the predecessor of t1 in T on
the path from t3 to t1; since T ′ is a subtree containing t3 and t2 it also contains this predecessor,
contradicting that v is introduced at t1 in T ′. Hence t3 ∈ V (T )\V (Tt1). Then every path between t2
and t3 in T contains t1. By condition (c) for (T, χ) then u ∈ χ(t1).

(2). Assume T ′ is fully in T and let (u, v) ∈ E(D) with u /∈ V (D′) and v ∈ V (D′). Choose
t′ ∈ V (T ′) such that v ∈ χ(t′). In (T, χ), v is introduced at some ancestor t of t′. Then u ∈ χ(t)
because (T, χ) is ordered. Since u 6∈ V (D′), we have t /∈ V (T ′). In (T, χ), v is contained in every
bag on the directed path from t /∈ V (T ′) to t′ ∈ V (T ′), and in particular, in the bag of the first node
t′′ ∈ V (T ′) that we reach on this path. Then t′′ is not a leaf of T (since t′′ has ancestor t 6= t′′). It
also has some predecessor outside V (T ′), namely its predecessor on the mentioned path. Since T ′

is fully in T , all predecessors of t′′ are outside V (T ′), i.e. t′′ is a leaf of T ′.

Definition 3.9. A tree decomposition (T, χ) is succinct if every node forgets some vertex.

Lemma 3.10. Every digraph D has a succinct ordered tree decomposition of width otw(D), and
a succinct ordered path decomposition of width opw(D).

Proof. We only prove the first statement. Let (T, χ) be a width otw(D) ordered tree decomposition
of D with the smallest number of nodes. We claim (T, χ) is succinct. Assume there is a node
s ∈ V (T ) that does not forget some vertex. It suffices to construct a new tree decomposition
(T ′, χ′) with χ′ := χ � V (T ′) where V (T ′) = V (T ) \ {s}.

If s = rT , then χ(rT ) = ∅. In this case, rT has predecessors t1, . . . , tr for some r > 0. We
define T ′ by (declaring t1 to be the new root and) adding edges (ti, t1) for 1 < i ≤ r.

If s 6= rT , then s has a successor t in T with χ(s) ⊆ χ(t). In this case we define T ′ by adding
all edges (t′, t) for (t′, s) ∈ E(T ).

Proof of Examples 3.3 (4). Write B−1
h for Bh with all edges reversed. Clearly, tw(B−1

h ) is 1 for
h > 0 and 0 for h = 0. For h > 0 we show that

otw(B−1
h ) ≥ 1

2
log h. (2)

By Lemma 3.10 there exists a succinct ordered tree decomposition (T, χ) of B−1
h of minimal

width w := otw(B−1
h ).

Claim 1. T has at most 2w+1 − 1 many leaves.

Proof of Claim 1. For every leaf t of T let Nt ⊆ χ(t) be the set of vertices forgotten at t; this set is
nonempty by succinctness. Consider a leaf t of T and a vertex v ∈ Nt. Because t is a leaf and the
decomposition is ordered, χ(t) contains all ancestors of v in B−1

h . Since |χ(t)| ≤ w+ 1, it follows
that v has at most w+1 ancestors in B−1

h , hence v is of distance at most w from the root rBh
of Bh.
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Now, B−1
h has exactly 2w+1 − 1 vertices that are of distance at most w from the root. Since each

such vertex can occur in at most one set Nt for a leaf t, the claim follows. a

Claim 2. pw(B−1
h ) < (2w+1 − 1)(w + 1).

Proof of Claim 2. Let P be a longest branch in T , and let t1, . . . , tm = rT be its nodes in order.
For i ∈ [m] let χ′(ti) be the union of all sets χ(s) where s ∈ V (T ) is a node in T of distance
exactly m − i from the root tm = rT . By Claim 1 there are at most 2w+1 − 1 such nodes s.
Then (P, χ′) is a path decomposition (in fact, even an ordered one) of B−1

h and has width at most
(2w+1 − 1)(w + 1)− 1. a

As mentioned above pw(B−1
h ) = pw(Bh) ≥ dh/2e, so h < 2(2w+1 − 1)(w + 1) < 22w+2 by

Claim 2. This implies (2).

Lemma 3.11. A succinct ordered tree decomposition of a digraph D has at most |V (D)| many
nodes.

Proof. We proceed by induction on n = |V (D)|. The statement is trivial for n = 1. Hence
let n > 1 and assume the statement of the lemma holds for all digraphs D′ with |V (D′)| < n.
Let (T, χ) be a succinct tree decomposition of a digraph D with n = |V (D)|. If |V (T )| = 1
there is nothing to show, so suppose |V (T )| > 1. Then T has a leaf s with a successor t. For
N := χ(s) \ χ(t) consider the digraph D′ := D−N . By Lemma 3.8, (T − {s}, χ � V (T − {s}))
is an ordered tree decomposition ofD′, and it is succinct because (T, χ) is. Since (T, χ) is succinct,
N 6= ∅, and so V (D′) < n. By induction, |V (T − {s})| ≤ n− 1, and hence |V (T )| ≤ n.

Lemma 3.12. For every digraph D there exists an ordered tree decomposition (T, χ) of width
otw(D) where T has in-degree at most 2 and |V (T )| < 2|V (D)|.

Proof. Let D be a DAG with |V (D)| = n. By Lemmas 3.10 and 3.11, D has a an ordered tree
decomposition (T, χ) of width otw(D) and |V (T )| ≤ n. Let `(T ) be the sum of all in-degrees of
those vertices in T that have in-degree bigger than 2.

Clearly, `(T ) ≤ |E(T )| = |V (T )| − 1 = n − 1. If `(T ) = 0 then all nodes have in-degree
at most 2 and we are done. Hence assume `(T ) > 0 and consider a node t0 ∈ V (T ) of in-degree
d > 2 and let t1, . . . , td be its predecessors. We transform (T, χ) into a new tree decomposition
(T ′, χ′) as follows. From T we remove the edges (t1, t0), . . . , (td, t0) and add instead a binary tree
with root r and leaves t1, . . . , td; we also add the edge (r, t0). Let T ′ denote the tree obtained.
Observe that `(T ′) = `(T ) − d and that |V (T ′)| = |V (T )| + d − 1 (a binary tree with d leaves
has d − 1 inner nodes). Let N be the vertices introduced at t0 let χ′ be the extension of χ giving
every new node t′ ∈ V (T ′) \ V (T ) the bag χ(t0) \ N . It is easy to check that (T ′, χ′) is a tree
decomposition of D of the same width as (T, χ). To see that it is ordered, note that no new node
introduces some vertex.

By repeating the above replacement we can successively replace all nodes whose in-degree
exceeds 2, and we end up with an ordered tree decomposition (T ∗, χ∗) of D of width otw(D)
where all nodes have in-degree at most 2. In total we have added < `(T ) ≤ n − 1 many nodes
to T , so |V (T ∗)| < n+ n− 1.
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Proposition 3.13. Let w, ` ≥ 1 and (T, χ) a width w ordered tree decomposition of a digraph D
such that T has height `. Then opw(D) < (w + 1) · (`+ 1).

Proof. By adding if necessary some nodes with empty bags we can assume that all branches of T
have the same length, say, `. If we order V (T ) in an arbitrary way, then every branch naturally
corresponds to a tuple from [d]` where d is the in-degree of T . Then branches are ordered via
the lexicographical order on [d]`. Use the path of branches according to this order as the path
underlying a path decomposition. The bag at the ith path node is the union of the ` + 1 many
bags χ(t) for t ranging over the ith branch in T . It is straightforward to verify that this defines an
ordered path decomposition of D. The size of bags is bounded by (w + 1) · (`+ 1).

3.3 Vertex Separation Numbers
A linear layout (or linear arrangement) of a graphGwith n vertices is a bijection φ : V (G)→ [n].
For every i ∈ [n] we define four sets of vertices:

LG(i, φ) := {u ∈ V (G) | φ(u) ≤ i},
RG(i, φ) := {u ∈ V (G) | φ(u) > i},
L∗G(i, φ) := {u ∈ LG(i, φ) | ∃v ∈ RG(i, φ) : (u, v) ∈ E(G)},
R∗G(i, φ) := {v ∈ RG(i, φ) | ∃u ∈ LG(i, φ) : (u, v) ∈ E(G)}.

The in-degree and the out-degree of φ is defined as maxi∈[n−1] |R∗G(i, φ)| and maxi∈[n−1] |L∗G(i, φ)|,
respectively. The vertex separation number vsn(G) of G is defined as the smallest out-degree over
all linear layouts of G (which equals the smallest in-degree over all linear layouts of G).

Proposition 3.14 ([13]). pw(G) = vsn(G) for every graph G.

Note that the definition of in-degree and out-degree of a linear layout makes sense for digraphs.
Recalling that a digraph is a DAG if and only if there exist linear layouts such that all (directed)
edges run from left to right, it is natural to consider the following variant of the vertex separation
number (for DAGs):

Definition 3.15. A linear layout φ of a DAG D is ordered if for every (u, v) ∈ E(D) we have
φ(u) < φ(v). The ordered vertex separation number ovsn(D) of a DAG D is the smallest out-
degree over all ordered linear layouts of D.

We note that this definition is not symmetric in the sense that, in general, if we replace “smallest
out-degree” by “smallest in-degree” we get a different number.

Example 3.16. Let D be a star with n vertices and all edges directed towards the center v. Then
every ordered linear layout φ satisfies φ(v) = n, has in-degree 1 and out-degree n− 1.

We prove an ordered analogue of Proposition 3.14.

Proposition 3.17. opw(D) = ovsn(D) for every DAG D.
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Proof. Let D be a DAG with n vertices. First we show that opw(D) ≥ ovsn(D). Let (T, χ) be
an ordered path decomposition of D of width w. Let t1, . . . , tm be the vertices of T given in the
ordering as we visit them when traversing T from the leaf to the root. Recall that every vertex of D
is introduced at exactly one node in T . Let ψ : V (D) → [m] be the function such that a vertex v
of D is introduced at node tψ(v). We define the inverse φ−1 of a linear layout φ of D recursively
as follows. To determine φ−1(j), let r be minimal such that Nr := χ(tr) \ {φ−1(i) | i < j} 6= ∅;
choose a source v (say, the smallest according to some fixed order of V (G)) of the DAG D[Nr]
induced on Nr, and set φ−1(j) := v.

To see that the linear layout φ is ordered, consider a directed edge (u, v) ∈ E(D). Let φ(v) = j
and ψ(v) = r. We have u ∈ χ(tψ(v)) since (T, χ) is ordered, so ψ(u) ≤ ψ(v). If ψ(u) < ψ(v),
then clearly φ(u) < φ(v). If ψ(u) = ψ(v), then in the above process we assign φ(u) before we
assign φ(v), hence φ(u) < φ(v) as well.

To see that the out-degree of φ is at most w, consider L∗D(i, φ) for some i ∈ [n − 1]. Let
v = φ−1(i+1) and consider a vertex u ∈ L∗D(i, φ). By definition, u has a successor u′ ∈ RD(φ, i),
and clearly φ(u) ≤ φ(v) ≤ φ(u′). This implies ψ(u) ≤ ψ(v) ≤ ψ(u′). Since φ is ordered and
(u, u′) ∈ E(D) it follows that u ∈ χ(tψ(u′)), and by definition, u ∈ χ(tψ(u)). By condition (c)
of a tree decomposition, it follows that u ∈ χ(tj) for all ψ(u) ≤ j ≤ ψ(u′), and in particular
u ∈ χ(tψ(v)). Thus L∗D(i, φ) ⊆ χ(tψ(v)). Moreover, we have v ∈ χ(tψ(v)) \ L∗D(i, φ). Thus
L∗D(i, φ) ⊆ χ(tψ(v)) \ {v}, and hence |L∗D(i, φ)| ≤ |χ(tψ(v)) \ {v}| ≤ w.

Next we show that opw(D) ≤ ovsn(D). Let φ be an ordered layout of D with out-degree w.
We define a path decomposition (T, χ) letting T be the directed path ([n], {(i, i+1) | i ∈ [n−1]})
and setting χ(i) := L∗D(i − 1, φ) ∪ {φ−1(i)} for i ∈ [n]; here, we understand L∗D(i − 1, φ) = ∅
for i = 0. It is easy to verify that (T, χ) is a path decomposition of D and each bag has size at
most w + 1. To see it is ordered, let (u, v) ∈ E(D) and note that v is introduced at node φ(v).
We claim u ∈ χ(φ(v)). But since φ is ordered, φ(u) < φ(v) and in particular φ(v) 6= 0. Then
u ∈ L∗D(φ(v)− 1, φ) ⊆ χ(φ(v)) as claimed.

4 Resolution Proofs of Minimal Width
Recall, the ordered treewidth of a proof containing an application of the cut rule is at least 2
(Remark 3.2). Clearly, when talking about the ordered pathwidth or ordered treewidth of a proof
we mean the ordered pathwidth or ordered treewidth of its underlying DAG.

4.1 Minimal Ordered Pathwidth
A Resolution refutation of Γ is in Input Resolution if it contains only applications of the cut rule
and each such application has at least one premiss (i.e., label of a predecessor) in Γ (see, e.g., [14]).

Theorem 4.1. Let ` be a natural and Γ a set of clauses. There is a Resolution refutation of Γ
of ordered pathwidth at most 2 and length at most ` if and only if there is an Input Resolution
refutation of Γ of length at most `.
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This allows us to think of ordered pathwidth as a measure of how far a Resolution refutation is
from being in Input Resolution.

To prove this we need some preparations. A digraph is triangle-free if so is its underlying
graph. A clause is tautological if it contains (as a term) a variable and its negation.

Lemma 4.2. Let w ∈ N and (D, (Fv)v∈V (D)) be a Resolution refutation of a set Γ of clauses
such that D has a width w ordered tree decomposition with underlying tree T . Then there is a
Resolution refutation (D′, (F ′v)v∈V (D)) of Γ such that

1. V (D′) ⊆ V (D) contains the sink of D;

2. D′ has an ordered tree decomposition with underlying tree T of width at most w;

3. no vertex in V (D′) has in-degree 1 in D′;

4. no v ∈ V (D′) has a tautological label F ′v;

5. D′ is triangle-free.

Proof. Let Γ be a set of clauses, (D, (Fv)v∈V (D)) a Resolution refutation of Γ, and (T, χ) an or-
dered tree decomposition of D of width at most w. Let v∗ denote the sink of D.

In a first step we transform (D, (Fv)v∈V (D)) into a Resolution refutation (D1, (Fv)v∈V (D1))
where no Fv for v ∈ V (D1) is tautological, and where D1 is a sub-DAG of D with unique sink v∗.
If there is some v ∈ V (D) with tautological Fv, then there is such a v having a successor w with
non-tautological Fw (the sink label is not tautological). Clearly Fw must be obtained by a cut
from Fv and Fw′ , where w′ is the other predecessor of w. Then Fw is a weakening of Fw′ and we
delete the edge (v, w). The deletion of (v, w) may have caused that v has become a sink. Then we
repeatedly delete sinks different from v∗. Iterating this leads to a refutation (D1, (Fv)v∈V (D1)) as
desired.

In a second step we transform (D1, (Fv)v∈V (D)) into a Resolution refutation (D2, (F
′
v)v∈V (D2))

such that F ′v ⊆ Fv for all v ∈ V (D2) and all weakenings are improper in the sense that if F ′v is
obtained from F ′u by weakening, then F ′v = F ′u. Let φ : V (D1) → [|V (D1)|] be a linear layout
of D1 and write vi = φ−1(i). Define F ′vi recursively for each i ∈ [|V (D1)|] as follows. If vi is
a source in D1, we set F ′vi := Fvi (in particular this is the case for i = 0). If Fvi is obtained by
weakening from Fvj for j < i, we set F ′vi := F ′vj . If Fvi is obtained by a cut from Fvj and Fvk for
j, k < i, then

– either Fvi is a weakening of F ′vj or of F ′vk and we set F ′vi := F ′vj resp. F ′vi := F ′vk ;

– or otherwise Fvi is a weakening of a clause F obtainable by cut on F ′vj and F ′vk and we set
F ′vi := F .

The digraph D′2 is obtained from D1 by deleting edges (vj, vi) resp. (vk, vi) in the first case above.
Then D2 is the digraph induced in D′2 on the ancestors of the sink v∗.

Finally, in a third step we obtain a DAGD′ fromD2 by contracting all edges (u, v) such that F ′v
is obtained by weakening from F ′v. As weakenings are improper, such contractions preserve the
property of being a refutation. In fact, (D′, (F ′v)v∈V (D′)) is as desired: (1), (3) and (4) are easy to see
and (2) follows from Lemmas 3.4 and 3.5. We verify (5). For contradiction, assume D′ contains a
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triangle. As D′ is a acyclic, this means there are u,w, v ∈ V (D′) such that (u, v), (w, v), (u,w) ∈
E(D). Choose literals `, `′ from Fu such that Fv is obtained cutting Fu with Fw on ` and Fw is
obtained cutting Fu with Fw′ on `′, where w′ is the second predecessor of w. In particular, ¬`′ is
in Fw′ and ¬` in Fw. First note that ¬`′ is not in Fw as it is cut from Fw′ , so would have to appear
in Fu and then Fu would be tautological. That Fu is not tautological, clearly implies ` 6= ¬`′.
Further ` 6= `′ because otherwise ¬`′ = ¬` would be in Fw. Hence, ` and `′ are literals over
distinct variables. But then ` comes into Fw from the premiss Fu. As ¬` is in Fw, this clause is
tautological, a contradiction.

Proof of Theorem 4.1. To see the backward direction, let (D, (Fv)v∈V (D)) be an Input Resolution
refutation of Γ. We can assume that D has vertices V (D) = {vi | i ≤ n} ∪ {v′i | i < n} and
edges E(D) = {(vi, vi+1), (v′i, vi+1) | i ≤ n − 1} for some suitable natural n. Then we have an
ordered path decomposition (P, χ) of D where V (P ) := [n], E(P ) := {(i, i + 1) | i < n} and
χ(i) := {vi, v′i, vi+1} for i ∈ [n].

To verify the forward direction, let (D, (Fv)v∈V (D)) be a refutation of Γ and let (T, χ) be a path
decomposition of D of width at most 2. By Lemma 4.2 we can assume that D satisfies (3) and (5).
We claim that every non-source has at least one source as a predecessor.

Assume otherwise, say v ∈ V (D) has predecessors u1, u2 in D which are not sources of D.
By Proposition 3.17 there exists an ordered linear layout φ of D of out-degree 2. As the layout is
ordered φ(u1), φ(u2) < φ(v). Assume φ(u1) < φ(u2) (the case φ(u2) < φ(u1) is symmetrical) and
consider the predecessors w1, w2 of u2 in D′. We can assume φ(w1) < φ(w2) < φ(u2). Further
we have that w1, w2, u1 are pairwise distinct because otherwise u1, u2, v would form a triangle
in D, a contradiction. Hence φ(w2) < φ(u1) or φ(w2) > φ(u1). In the first case, w1, w2, u1 ∈
L∗D(φ(u1), φ), so |L∗D(φ(u1), φ)| > 2, a contradiction. In the second case, φ(w2) > φ(u1) and
w1, w2, u1 ∈ L∗D(φ(w2), φ), again a contradiction.

4.2 Minimal Ordered Treewidth
Recall that treelike refutations have ordered treewidth 2 (Example 3.3 (1)). We prove a weak
converse to this observation. This allows us to think of ordered treewidth as a measure of how far
a Resolution refutation is from being treelike.

Theorem 4.3. Let ` be a natural and Γ a set of clauses. If there is a Resolution refutation of Γ of
ordered treewidth at most 2 and length at most `, then there is a treelike Resolution refutation of Γ
of length at most 3`.

Proof. Let (D, (Fv)v∈V (D)) be a refutation of Γ with otw(D) = 2. By Lemma 4.2 we can as-
sume that D satisfies (3) and (5). Let (T, χ) be a width 2 ordered tree decomposition of D. We
claim that D is almost treelike in the sense that all its vertices of out-degree ≥ 2 are sources.
This implies the theorem: for each source v with ` ≥ 2 successors w1, . . . , w` replace the edges
(v, w2), . . . , (v, w`) by edges (v2, w2), . . . , (v`, w`) for `−1 new vertices v2, . . . , v`; this transforms
D in a treelike refutation D′ and adds at most two new vertices per successor of some source, so
|V (D′)| is at most 3|V (D)|.
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To prove our claim, we show that Dv is almost treelike for every v ∈ V (D); here, Dv is the
sub-DAG of D induced on the ancestors of v in D.

This is clear for sources v. If v is not a source, but has predecessors u1, u2 we assume that
both Du1 and Du2 are almost treelike, and show that also Dv is almost treelike.

Assume u ∈ V (Dv) has out-degree ≥ 2 in Dv. We have to show that u is a source.

Claim 1. u ∈ V (Du1) ∩ V (Du2).

Proof of Claim 1. Since V (Dv) = V (Du1) ∪ V (Du2) ∪ {v} and u 6= v we can assume that u
is in V (Du1). For the sake of contradiction assume u /∈ V (Du2). As Du2 is closed under pre-
decessors, no successor of u is in V (Du2). But u has at least two successors w,w′ and these
cannot be both in V (Du1) because Du1 is almost treelike. Hence one of them, say w, equals v, and
w′ ∈ V (Du1). Then u is a predecessor of v outside V (Du2), so u = u1. It follows that w′ is both a
successor and an ancestor of u and this contradicts acyclicity. a

If one of u1, u2 is a source, say u1, then V (Du1) = {u1}. By Claim 1 then u = u1 and we
are done. Hence, assume that none of u1, u2 is a source. Choose t ∈ V (T ) where v is introduced.
Then u1, u2 ∈ χ(t) so we find ancestors t1, t2 of t in T where u1, u2 are introduced respectively.

Claim 2. t1, t2 are incomparable in the sense that none is an ancestor of the other.

Proof of Claim 2. Assume otherwise, say, t2 is an ancestor of t1. Then t1 lies on the path in T
from t2 to t and hence u2 ∈ χ(t1). As u1 is not a source and introduced at t1, the bag χ(t1) also
contains the two predecessors w1, w2 of u1. Then u1, u2, w1, w2 ∈ χ(t1) so these vertices cannot
be pairwise distinct. Then u2 ∈ {w1, w2}. It follows that {u1, u2, v} induces a triangle in D, a
contradiction. a

So we know t1, t2 are incomparable, say with t0 as least upper bound, i.e., t0 has both t1, t2 as
ancestors but no predecessor of t0 has this property. This t0 lies on all paths in T from t1 or t2 to t,
so u1, u2 ∈ χ(t0).

It is not hard to show that all ancestors of u1 in D are introduced at an ancestor of t1 in T ;
similarly for u2 and t2. In particular u is introduced at ancestors s1, s2 of t1, t2 respectively. All
paths in T from s1 to s2 contain a path from t1 to t2, and hence contain t0. We finally show that u
is a source. Otherwise its two predecessors are different from u1 and from u2. As they are in χ(s1)
and well as in χ(s2), it follows they are in χ(t0). As χ(t0) also contains u1, u2 it has cardinality at
least 4, a contradiction.

5 Proof Space
Let k, w, ` > 0 be naturals, F a k-DNF and Γ a set of k-DNFs.

5.1 Ordered Pathwidth is Proof Space
In the Introduction we informally explained a bounded space proof by a sequence of blackboards.
Formally, we follow [11] and define a space w R(k)-proof of F from Γ to be a finite sequence
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(B0, . . . ,B`−1) of sets Bi of k-DNFs, called blackboards, each of cardinality at most w such that
B0 = ∅ and F ∈ B`−1 and for all 0 < i < ` there is a formula G such that

(B1) Bi = Bi−1 ∪ {G} and G ∈ Γ, or
(B2) Bi = Bi−1 ∪ {G} and G is derived from at most two formulas in Bi−1 by one

application of some inference rule of R(k), or
(B3) Bi = Bi−1 \ {G}.

The space measure above is known as “formula space” or, in case k = 1, as “clause space.”
This is roughly the same as ordered pathwidth:

Theorem 5.1.

1. If there is a space w R(k)-proof of F from Γ of length `, then there is an R(k)-proof of F
from Γ of length < ` and ordered pathwidth < w.

2. If there is a R(k)-proof of F from Γ of length ` and ordered pathwidth w, then there is a
space (w + 1) R(k)-proof of F from Γ of length at most (2w`+ w + 1).

Proof. (1). Let (B0, . . . ,B`−1) be a space w R(k)-proof of F from Γ. We can assume that B1 6= ∅.
It suffices to show that for every 0 < i < ` there are a positive ni ∈ N, a map verti from [ni] into⋃
j≤i Bj , an irreflexive set Ei ⊆ [ni]

2 and a set Xi ⊆ [ni] such that

(a) the identity on [ni] is an ordered linear layout of the digraph ([ni], Ei) (cf. Definition 3.15);
in particular, this is a DAG.

(b) verti labels every source of ([ni], Ei) with an element from Γ and every inner vertex with a
k-DNF that can be obtained by one application of an inference rule of R(k) from the labels
of its predecessors;

(c) verti � Xi is injective and has image Bi;
(d) (Pi, (Xj)1<j<`) is an ordered path decomposition of ([ni], Ei);

(e) ni ≤ i.

Here, Pi denotes the path ({1, . . . , i}, {(j, j + 1) | 0 < j < i}). We prove this by induction on i.
For i = 1, note B1 = {G} for some G ∈ Γ, and take n1 := 1, E1 := ∅, vert1 := {(0, G)} and

X1 := {0}. Assume you found the desired objects up to i. If Bi+1 = Bi we take the the same
objects for i+ 1, so assume Bi 6= Bi+1.

If Bi+1 ( Bi then Bi+1 = Bi\{G} for someG ∈ Bi; in this case we setXi+1 := Xi\vert−1
i (G)

and keep the other objects unchanged.
If Bi+1 ) Bi, then Bi+1 = Bi ∪ {G} for some G /∈ Bi. We set ni+1 := ni + 1, verti+1 :=

verti ∪ {(ni, G)} and Xi+1 := Xi ∪ {ni}. If G ∈ Γ, we set Ei+1 := Ei. If G /∈ Γ, then there
are G′, G′′ ∈ Bi such that G is obtained from G′, G′′ by an R(k)-rule. Using (c) for i there are
m′,m′′ ∈ Xi with verti(m′) = G′ and verti(m′′) = G′′. We set Ei+1 := Ei ∪ {(m′, ni), (m′′, ni)}.

In all cases it is easy to verify (a)–(e) for i+ 1.

(2). Let (D, (Fv)v∈V (D)) be a length ` proof of F from Γ of ordered pathwidth w. By
Lemma 3.10 we find a succinct ordered path decomposition (T, χ) ofD of widthw. By Lemma 3.11
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we have |V (T )| ≤ `. Using the notation from above we can assume T = P`. Define (`+ 1) many
blackboards B0 = ∅ and Bi := {Fv | v ∈ χ(i)} for 1 ≤ i ≤ `. Then each Bi has cardinality at
most w + 1.

Between Bi and Bi+1 add blackboards deleting all labels Fv ∈ Bi \ Bi+1 one by one. This
gives inferences of type (B3) and ends with blackboard B0 := Bi ∩ Bi+1. Note that B0 contains
the set {Fv | v ∈ χ(i + 1) ∩ χ(i)}. We remark that B0 6= ∅: otherwise the bags χ(i) and χ(i + 1)
are disjoint, and it is straightforward to see that then there is no edge in D between a vertex in⋃

1≤i′≤i χ(i′) and a vertex in
⋃
i+1≤i′≤` χ(i′); since the decomposition is succinct both sets are

nonempty, so D is not connected; but then D has at least two sinks, a contradiction.
If B0 6= Bi+1 add further blackboards as follows. Every formula in Bi+1 \B0 is a label of some

vertex in χ(i+1)\χ(i). Choose a linear layout φ ofD[χ(i+1)\χ(i)] and letm := |χ(i+1)\χ(i)|.
Note m ≤ w since χ(i + 1) ∩ χ(i) 6= ∅ as seen above. Set Bj := B0 ∪ {Fφ−1(j′) | j′ < j} for
1 ≤ j ≤ m. Then Bm = Bi+1 and we add blackboards B1, . . . ,Bm−1 between B0 and Bi+1. We
verify that each Bj, 1 ≤ j ≤ m, can be obtained from Bj−1 by an inference of type (B1) or (B2).

Note Bj = Bj−1 ∪ {Fv} for v := φ−1(j − 1). If v is a source of D, then Fv ∈ Γ and Bj can
be obtained by an inference of type (B1). If v is not a source of D, then Bj can be obtained by
an inference of type (B2). To see this we show that every predecessor u of v in D has label Fu
in Bj−1. But u ∈ χ(i+ 1) since v is introduced at i+ 1 and the decomposition is ordered; so either
u ∈ χ(i), and then Fu ∈ B0 ⊆ Bj−1, or φ(u) < j − 1, and then too Fu ∈ Bj−1.

This adds at most |Bi \ B0| + (m − 1) ≤ 2w − 1 many blackboards between Bi and Bi+1,
each contained in Bi or in Bi+1. Further, between B0 = ∅ and B1 at most w many blackboards
are added. In total, this gives (` + 1) + (2w − 1)` + w many blackboards each of cardinality at
most w + 1.

Combining with Theorem 4.1 this result allows to think of the space of a Resolution refutation
as a measure of how far it is from being in Input Resolution.

5.2 Ordered Treewidth as Interactive Proof Space
The conversation of a teacher with her student described informally in the Introduction is described
more formally by a game Πk

w(Γ, F ) between two players called Student and Teacher on the fol-
lowing game graph.

Its vertices are partitioned into Student positions and Teacher positions, the former are R(k)-
proofs of length at most w and the latter are k-DNFs. Its directed edges run from each k-DNF to
all length ≤ w proofs of it, and from each proof to all labels of its sources that are outside of Γ.
In particular, precisely the proofs from Γ are sinks. The initial position is the Teacher position F .
Paths starting at the initial position are plays.

A strategy for Teacher (in Πk
w(Γ, F )) is a function that maps plays ending in a Teacher position

to a successor of this position; it is positional in case this value depends only on the Teacher
position reached by the play. A play is conform to the strategy if every Student position in it is the
value of the strategy on the initial segment of the play up to it. The strategy is winning if all plays
conform to it are finite, and `-winning if all plays conform to it have length at most 2` − 1, i.e.,
Teacher wins making at most ` moves.
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Remark 5.2. The game Πk
w(Γ, F ) can be seen as a parity game, so it is memory-less determined;

in particular, if a winning strategy for Teacher exists, then so does a positional one [18].

By a standard argument we get the following result.

Proposition 5.3. If there is an `-winning strategy for Teacher in Πk
w(Γ, F ), then there is also a

positional one.

Proof. Assume there is an `-winning strategy for Teacher in Πk
w(Γ, F ). Let Wi be the set of

Teacher positions G such that an i-winning strategy for teacher in Πk
w(Γ, G) exists. Then W1 is the

set of predecessors of sinks, i.e., formulas that have length ≤ w R(k)-proofs from Γ. Recursively,
Wi+1 equals Wi plus those G that have an i-good successor, namely one all of whose successors
are inWi; in other words, Wi+1 is the set of formulas with length≤ w R(k)-proofs fromWi∪Γ. If
an i-winning strategy for Teacher exists in Πk

w(Γ, G), then G ∈ Wi. An “attractor strategy” maps
every G ∈ W1 to a sink and every G ∈ Wi+1 \Wi to an i-good successor of it. Such a strategy is
positional and `-winning in Πk

w(Γ, F ); note F ∈ W` by assumption.

Theorem 5.4. There is an `-winning strategy for Teacher in Πk
w(Γ, F ) if and only if there is an

R(k)-proof of F from Γ with an ordered tree-decomposition of width < w and height < `.

Sketch of proof. Assume there is an `-winning strategy for Teacher in Πk
w(Γ, F ). By the previous

proposition, we can assume the strategy is positional. Consider the following tree T with nodes t
labeled with Student positions π(t). The label of the root is the value the winning strategy gives
the initial position. Every node t has exactly one predecessor (in T ) for each of the at most w many
successors of π(t) in the game graph; the label of such a node is the value given by the strategy
to the corresponding successor. Note that, the leafs of T are labeled with sinks in the game graph,
i.e., with length≤ w proofs from Γ. The labels on branches of this tree correspond to the sequence
of Student positions in a play conform to the strategy. Since the strategy is `-winning, T has height
at most `− 1.

First assume that the sets of vertices (of the DAG underlying) the proofs π(t), t ∈ V (T ), are
pairwise disjoint. Then for each t with successor t′ in T identify the sink of π(t), say labeled F ,
and all sources of π(t′) with label F . This ensures that the union of the π(t), t ∈ V (T ), is an
R(k)-proof. Letting χ(t) denote the vertices of π(t), then (T, χ) witnesses that this proof has of
ordered treewidth at most w − 1.

Conversely, let (D, (Fv)v∈V (D)) be an R(k)-proof of F from Γ and (T, χ) an ordered tree
decomposition of D of height < ` and width < w. We can assume that χ(t) 6= ∅ for all t ∈ V (T ).
For t ∈ V (T ) and v ∈ χ(t) let π(t, v) be the proof induced on the ancestors of v in D[χ(t)]. We
informally describe a winning strategy for Teacher.

On the initial position F , Teacher chooses v1 ∈ V (D) and t1 ∈ V (T ) such that Fv1 = F and
v1 is introduced at t1, and moves to π(t1, v1). If Student moves to source label G, Teacher chooses
a source v2 of π(t1, v1) such that G = Fv2 , chooses an ancestor t2 of t1 where v2 is introduced
and answers π(t2, v2). And so on. Note that a strategy implementing such moves is not positional.
Namely, for her ith move Teacher remembers a vertex vi ∈ V (D) and a node ti ∈ V (T ) and these
satisfy
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(a) Fvi is a Teacher position in the play,

(b) vi is introduced at ti,

(c) vi+1 is a source in π(ti, vi),

(d) ti+1 is an ancestor of ti.

Note, no Student position in the play is a formula in Γ (here we assume F /∈ Γ; otherwise there
is a 1-winning strategy). In particular, Fvi+1

/∈ Γ (by (a)), so vi+1 has predecessors in D. By
(c), these predecessors are not in π(ti, vi) and, by definition of π(ti, vi), also not in χ(ti). As the
tree-decomposition is ordered, vi+1 is not introduced at ti. As vi+1 is introduced at ti+1 (by (b)) we
have ti+1 6= ti. By (d) then the sequence t1, t2, . . . has length ≤ `. This implies that the strategy is
`-winning.

Remark 5.5. Assume Γ is a set of clauses. If Teacher wins Πk
w(Γ, 0) then Γ is contradictory and

hence has a treelike Resolution refutation; by Theorems 4.1 and 5.4, Teacher wins Π1
3(Γ, 0). It

follows that for w ≥ 3, Teacher wins Πk
w(Γ, 0) if and only if Teacher wins Π1

3(Γ, 0). Thus, the
parameters k and w only matter when taking into account how fast Teacher can win, that is, when
considering `-winning strategies.

As a side remark we observe that if the teacher knows how to convince visiting students very
quickly then she also does not need a large blackboard in class.

Corollary 5.6. If Teacher has an `-winning strategy in Πk
w(Γ, F ), then there is a space `w R(k)-

proof of F from Γ.

Proof. Teacher has an `-winning strategy in Πk
w(Γ, F ). By the previous result there is aR(k)-proof

of F from Γ with an ordered tree decomposition (T, χ) of width ≤ w − 1 and height ≤ `− 1. By
Proposition 3.13 this proof has ordered pathwidth < w · `. Now apply Theorem 5.1 (2).

Remark 5.7. It is well-known and easy to see that every contradictory set of clauses Γ has a treelike
Resolution refutation of height at most the number n of variables in Γ. By the previous remark this
gives an n-winning strategy of Teacher in Π1

3(Γ, 0) and the last corollary thus shows that Γ has a
Resolution refutation in space 3n. Even n+ 1 is known and proved in [11, Theorem 12].

6 Lower Bounds
Theorem 6.1. Let ϕ be a first-order τ -sentence of the form (1) that has an infinite model. Let r be
the maximal arity of some function symbol in τ and assume r ≥ 1. Then there exists a real cϕ > 0
such that for every natural n ≥ 1 and every natural k ≥ 1, every strongly sound k-DNF refutation
(D, (Fv)v∈V (D)) of 〈ϕ〉n satisfies

k · otw(D) · log |V (D)| > cϕ · n1/r.
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Remark 6.2. The assumption that r ≥ 1 does not exclude interesting cases. If r = 0, all function
symbols of τ are constants. In an infinite model of ϕ every nonempty set containing the interpre-
tations of these constants carries a submodel which too is a model of ϕ (being universal). Hence,
the spectrum of ϕ is co-finite, so all but finitely many translations 〈ϕ〉n are satisfiable and have no
sound refutations at all.

Proof. Let a τ -sentence ϕ and a natural r accord the assumption of the theorem, and let M be
an infinite model of ϕ. Let m0, . . . ,m`−1 be a list without repetitions of the interpretations of
constants of τ in M . It suffices to find cϕ > 0 satisfying our claim for every positive n ≥ `.

So let n ≥ ` and k be positive naturals, and let (D, (Fv)v∈V (D)) be a strongly sound k-DNF
refutation of 〈ϕ〉n. Write w := otw(D). By Lemma 3.12, D has an ordered tree decomposition
with a tree of in-degree at most 2 and at most 2|V (D)|many nodes. Add the sink ofD to all bags on
nodes on the path from the node where it is forgotten to the root. The resulting tree decomposition
(T0, χ) has width at most w + 1 with the sink of D contained in χ(rT0), the bag at the root.

For X ⊆ V (T0) we write
χ(X) :=

⋃
t∈X χ(t).

Conditions For N ⊆ M let ∂N :=
⋃
f im(fM � N), where f ranges over the function symbols

of τ , i.e., ∂N contains the values which M ’s functions take on N . Note m0, . . . ,m`−1 ∈ ∂N for
every N ⊆M and

|∂N | ≤ |τ | · |N |r. (3)

We define a condition to be a pair (κ, λ) of partial bijections from [n] to M such that κ ⊆ λ
and im(λ) = im(κ) ∪ ∂im(κ). We say a condition (κ∗, λ∗) extends another (κ, λ) if κ ⊆ κ∗

and λ ⊆ λ∗. With a condition (κ, λ) we associate the restriction ρ(κ, λ) which is defined on a
propositional atom of the form Rā or fā = b if and only if κ is defined on all components of ā; in
this case it maps

– Rā to 1 if κ(ā) ∈ RM , and to 0 otherwise;

– fā = b to 1 if λ−1(fM(κ(ā))) = b, and to 0 otherwise;

note that λ−1 is defined on fM(κ(ā)) ∈ ∂im(κ). Naturally, here κ(ā) for a tuple ā = a1 · · · ar
stands for the tuple κ(a1) · · ·κ(ar).

Observe that, if (κ∗, λ∗) extends (κ, λ) in the sense above, then ρ(κ∗, λ∗) extends ρ(κ, λ) as
a partial function. The rank of (κ, λ) is |dom(κ)|. For example, (∅, λ0) is a condition of rank 0,
where λ0 is the function that maps i < ` to mi.

Claim 1. If (κ, λ) is a condition and C a clause in 〈ϕ〉n, then C � ρ(κ, λ) 6= 0.

Proof of Claim 1. We assume ρ(κ, λ) is defined on all variables appearing in C (otherwise there
is nothing to show). If C is a functionality clause

∨
b fā = b or ¬fā = b ∨ ¬fā = b′, then

ρ(κ, λ) is defined on all variables of the form fā = c for c ∈ [n]. By definition it evaluates
exactly one of them, namely the one for c := λ−1(fM(κ(ā))), to 1 and all others to 0. This implies
C � ρ(κ, λ) = 1.
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Suppose C is 〈Ci(ā)〉 and choose an injection λ′ : [n] → M extending λ (we only need it to
be defined on all components of ā). As 〈Ci(ā)〉 6= 1, all pure equality literals in Ci(x̄) become
“false” under the replacement of ā for x̄. Since λ′ is injective, the tuple λ′(ā) falsifies all these
literals in M . But since M is a model of ϕ, the tuple λ′(ā) satisfies Ci(x̄) in M , so satisfies
some literal mentioning a symbol from τ . Writing x̄ = x0 · · ·xs−1 and ā = a0 · · · as−1 we can
write our literal as (¬)fxi0 · · ·xir−1 = xir or (¬)Rxi0 · · ·xir−1 where f,R ∈ τ are r-ary symbols
for some r ∈ N and i0, . . . , ir ∈ [s]. Assume our literal is fxi0 · · ·xir−1 = xir , the other cases
are treated analogously. Then fM(λ′(ai0), . . . , λ′(air−1)) = λ′(air) and fai0 · · · air−1 = air is a
propositional literal in 〈Ci(ā)〉. Since we assumed ρ(κ, λ) to be defined on all atoms in 〈Ci(ā)〉,
we have ai0 , . . . , air−1 ∈ dom(κ) and fM(κ(ai0), . . . , κ(air−1)) = λ′(air). Hence λ′(air) ∈ im(λ),
and as λ′ ⊇ λ is an injection, λ−1(λ′(air)) = air . By definition then the restriction ρ(κ, λ)
evaluates fai0 · · · air−1 = air to 1 and C � ρ(κ, λ) = 1 follows. a
Claim 2. Let B ⊆ [n] and assume (κ, λ) is a condition of rank at most d. If

n ≥ 3|τ | · (d+ |B|)r, (4)

then there exists a condition (κ′, λ′) extending (κ, λ) such that B ⊆ dom(κ′).

Proof of Claim 2. By (3) we have |dom(λ)| ≤ |τ | · dr + d. Choose some minimal injective
extension κ′ of κ such that B ⊆ dom(κ) and then a minimal injective extension λ′ of λ such
that im(λ′) ⊇ ∂im(κ′) ∪ im(κ′ � B). The choice of κ′ is possible if n − d ≥ |B| – and this
follows from (4) (note |τ | > 0 as r ≥ 1). By (3) we see that the choice of λ′ is possible if
n − |dom(λ)| ≥ |τ | · |dom(κ′)|r + |B|, and hence if n ≥ |τ | · (d + |B|)r + (|τ | · dr + d) + |B|.
This is implied by (4). a

Adversary positions Recall Definition 3.7. An adversary position is a tuple (T, L, κ, λ) such
that

(A1) T is a subtree of T0 which is fully in T0;

(A2) L ⊆ V (T0) contains every leaf of T which is not a leaf of T0;

(A3) (κ, λ) is a condition such that

(A3a) Fv � ρ(κ, λ) = 1 for all v ∈ χ(L), and
(A3b) for every condition (κ∗, λ∗) such that (κ∗, λ∗) extends (κ, λ) there exists v ∈ χ(rT )

such that Fv � ρ(κ∗, λ∗) 6= 1.

Adversary positions exist: for example, (T0, ∅, ∅, λ0) is one; property (A3b) holds because χ(rT0)
contains the sink v of D and Fv = 0.

Claim 3. Suppose (T, L, κ, λ) is an adversary position and v ∈ χ(rT ). Let

ΓT := {Fu | u ∈ χ(V (T )) is a source in D}.

Then there exists a strongly sound k-DNF proof of Fv from ΓT ∪ {Fu | u ∈ χ(L)}.
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Proof of Claim 3. Let D′ := D[χ(T )]. It suffices to show that for every v ∈ V (D′) either all
predecessors of v in D are in V (D′) or v ∈ χ(L). But if (u, v) ∈ E(D) and u /∈ V (D′), then
Lemma 3.8 (2) and (A1) imply that v ∈ χ(t) for some leaf t of T which is not a leaf in T0; by (A2)
then v ∈ χ(L). a

Recall that Tt denotes the subtree of a tree T rooted at t. An adversary position (T, L, κ, λ) has
as successor any tuple (T ′, L′, κ′, λ′) that can be obtained as follows.

Choose t ∈ V (T ) such that both V (Tt) and V (T ) \ (V (Tt) \ {t}) have cardinality at
most b2|V (T )|/3c+ 1. Such a t exists because T has in-degree at most 2 (as a subtree
of T0).

Case 1. Property (A3b) holds for t, i.e. for every extension (κ∗, λ∗) of (κ, λ) there
exists v ∈ χ(t) such that Fv � ρ(κ∗, λ∗) 6= 1.

Set T ′ := Tt, L
′ := L, κ′ := κ and λ′ := λ.

Case 2. Otherwise, choose an extension (κ∗, λ∗) of (κ, λ) of minimal rank among
those satisfying Fv � ρ(κ∗, λ∗) = 1 for all v ∈ χ(t).

Set T ′ := T − (V (Tt) \ {t}), L′ := L ∪ {t}, κ′ := κ∗ and λ′ := λ∗.

Claim 4. If (T, L, κ, λ) is an adversary position with successor (T ′, L′, κ′, λ′), then (T ′, L′, κ′, λ′)
too is an adversary position. The rank of (κ′, λ′) is at most (w + 2) · k · rϕ bigger than the rank of
(κ, λ) where rϕ denotes the maximal arity of some symbol in τ .

For the proof, we use a mode of speech from [9] and say that the propositional variables Rā
and fā = b mention an element a ∈ [n] if a is a component of ā; in particular fā = b does not
necessarily mention b. A formula mentions an element if so does some variable appearing in it.

Proof of Claim 4. Let t ∈ V (T ) be the node chosen to compute (T ′, L′, κ′, λ′) from (T, L, κ, λ).
Both subtrees Tt and T − (V (Tt) \ {t}) are fully in T . Since T is a fully in T0, so is T ′ and
(T ′, L′, κ′, λ′) satisfies (A1). Properties (A2) and (A3a) are clear. Property (A3b) follows in Case 1
because rT ′ = t, and in Case 2 because rT ′ = rT , (κ′, λ′) extends (κ, λ) and (T, L, κ, λ) satis-
fies (A3b).

To see the second statement, assume (T ′, L′, κ′, λ′) is obtained according to Case 2 (in Case 1
there is nothing to show). Choose a condition (κ̃, λ̃) extending (κ, λ) such that Fv � ρ(κ̃, λ̃) = 1
for every v ∈ χ(t). For v ∈ χ(t) choose a k-term tv in the k-DNF Fv such that tv � ρ(κ̃, λ̃) = 1.
Any restriction ρ that agrees with ρ(κ̃, λ̃) on the atoms appearing in these k-terms is such that
Fv � ρ = 1 for every v ∈ χ(t). In particular, this is the case for ρ(κ̃ � (A ∪ dom(κ)), λ̃′)
where A is the set of elements mentioned by

∧
v∈χ(t) tv and λ̃′ is a suitable restriction of λ̃ such

that (κ̃ � (A∪dom(κ)), λ̃′) is a condition. Every k-term tv mentions at most k · rϕ many elements,
and there are at most |χ(t)| ≤ w + 2 many terms tv. Thus, the rank of (κ̃ � (A ∪ dom(κ)), λ̃′) and
hence of (κ′, λ′) is at most |A| ≤ (w + 2) · k · rϕ bigger than the rank of (κ, λ). a
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Wrapping up Let ((Ti, Li, κi, λi))i∈N be a sequence such that for all i ∈ N, (Ti+1, Li+1, κi+1, λi+1)
is a successor of (Ti, Li, κi, λi) and (T0, L0, κ0, λ0) is (T0, ∅, ∅, λ0); we already noted that this
is an adversary position. By Claim 4 all tuples (Ti, Li, κi, λi) are adversary positions. Further,
|V (Ti+1)| ≤ b2|V (Ti)|/3c + 1, so |V (Tm)| ≤ 3 for m := dlog3/2 |V (T0)|e. Recalling that
|V (T0)| ≤ 2|V (D)| the theorem follows once we show

n < 3|τ | · (m · (w + 2) · k · rϕ + 3(w + 2) · wϕ · rϕ)r, (5)

where wϕ is the maximal number of literals in some first order clause Ci(x̄) of ϕ. We now ver-
ify (5).

Since (κ0, λ0) has rank 0, Claim 4 implies that (κm, λm) has rank at most

dm := m · (w + 2) · k · rϕ.

Recall the notation ΓTm from Claim 3 and let B ⊆ [n] denote the set of elements mentioned by
formulas in ΓTm . Note ΓTm ⊆ 〈ϕ〉n. Since |V (Tm)| ≤ 3 we have |ΓTm| ≤ 3(w + 2) and hence

|B| ≤ 3(w + 2) · wϕ · rϕ.

Assume for contradiction that (5) fails. Then n ≥ 3|τ | · (dm + |B|)r. By Claim 2 there exists
a condition (κ, λ) extending (κm, λm) such that B ⊆ dom(κ). By (A3b) there exists vm ∈ χ(rTm)
such that Fvm � ρ(κ, λ) 6= 1. By Claim 3 there is a strongly sound k-DNF proof of Fvm from
ΓTm ∪ {Fu | u ∈ χ(Lm)}. For every clause C ∈ ΓTm ⊆ 〈ϕ〉n, we have that dom(κ) contains all
elements mentioned by C. Hence ρ(κ, λ) evaluates every atom in C, so C � ρ(κ, λ) ∈ {0, 1}, and
hence C � ρ(κ, λ) = 1 by Claim 1. Further we have Fu � ρ(κ, λ) = 1 for every u ∈ χ(Lm) since
ρ(κ, λ) extends ρ(κm, λm) and (A3a). In summary, Fvm does not restrict to 1 under ρ(κ, λ) and
there is a strongly sound k-DNF proof of Fvm from formulas that do restrict to 1 under ρ(κ, λ).
This contradicts Lemma 2.3.

This proof has the following corollary.

Corollary 6.3. Let ϕ be a first-order τ -sentence of the form (1) that has an infinite model. Let r be
the maximal arity of some function symbol in τ and assume r ≥ 1. Then there exists a real cϕ > 0
such that for every natural n ≥ 1 and every natural k ≥ 1, every strongly sound k-DNF refutation
(D, (Fv)v∈V (D)) of 〈ϕ〉n satisfies

k · opw(D) > cϕ · n1/r.

Proof. Let (D, (Fv)v∈V (D)) be a strongly sound k-DNF refutation of 〈ϕ〉n with path decomposition
(T, χ) of width w := opw(D). Assume the nodes of the path T are 0, 1, 2 . . . , ` in order. We can
assume that for each i there is vi such that χ(i) \ {vi} = χ(i + 1) or χ(i) ∪ {vi} = χ(i + 1).
Furthermore we assume χ(0) = ∅.

Call a condition (κ, λ) good for i if for every v ∈ χ(i)

(a) if Fv is a clause from 〈ϕ〉n, then dom(κ) contains all elements mentioned by Fv;
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(b) otherwise there is a term tv of Fv such that dom(κ) contains all elements mentioned by tv
and tv � ρ(κ, λ) = 1.

Recall the constants rϕ, wϕ from the previous proof.

Claim 5. Let i ≤ `. If there is a condition good for i, then there is one of rank at most

(w + 1) · k · wϕ · rϕ.

Proof of Claim 5. Let (κ, λ) be good for i. For v ∈ χ(i) let Bv ⊆ [n] be the set of elements men-
tioned by Fv if Fv ∈ 〈ϕ〉n, and otherwise the set of elements mentioned by tv (chosen according
(b) above). In the first case |Bv| ≤ wϕ · rϕ and in the second |Bv| ≤ k · rϕ. Set B :=

⋃
v∈χ(i)Bv

and note |B| ≤ (w + 1) · k · rϕ · wϕ. Define κ′ := κ � B and λ′ := λ � (im(κ′) ∪ ∂im(κ′)). Then
(κ′, λ′) is good for i and has rank at most |B|. a

Observe that if (κ, λ) is good for i, then Fv � ρ(κ, λ) = 1 for all v ∈ χ(i) (in case (a) this
follows from Claim 1). In particular, there is a condition good for 0 (namely (∅, λ0) from the
previous proof) but there is no condition good for i∗ where i∗ ≤ ` is the node where the sink of D
is introduced. Hence there exists i∗ < i∗ such that there exists a condition (κ∗, λ∗) good for i∗ and
such that there does not exist a condition good for i∗ + 1 ≤ `. In particular, (κ∗, λ∗) is not good
for i∗ + 1. It follows that χ(i∗ + 1) = χ(i∗) ∪ {vi∗} and vi∗ is introduced at i∗ + 1.

By Claim 5 we can assume that (κ∗, λ∗) has rank at most d∗ := (w + 1) · k · wϕ · rϕ.

Claim 6. vi∗ is a source of D.

Proof of Claim 6. Otherwise, because (T, χ) is ordered, the predecessors u,w of vi∗ in D are
present in χ(i∗ + 1) = χ(i∗) ∪ {vi∗}, so u,w ∈ χ(vi∗). Since (κ∗, λ∗) is good for i∗ we have
Fu � ρ(κ∗, λ∗) = Fw � ρ(κ∗, λ∗) = 1. By strong soundness Fvi∗ � ρ(κ∗, λ∗) = 1, so (b) is satisfied
for vi∗ . Hence, (κ∗, λ∗) is good for i∗ + 1, a contradiction. a

By Claim 6 Fvi∗ is a clause from 〈ϕ〉n. Let B∗ denote the set of elements mentioned by Fvi∗ .
Any condition (κ, λ) extending (κ∗, λ∗) with B∗ ⊆ dom(κ) would satisfy Fvi∗ � ρ(κ∗, λ∗) = 1
by Claim 1 and would thus be good for i∗ + 1. That such a condition does not exist, implies by
Claim 2 that n < 3|τ | · (d∗ + |B∗|)r. Noting |B∗| ≤ wϕ · rϕ, the corollary follows.

Remark 6.4. It is well-known that Input Resolution is not refutation-complete (cf. [14]). Indeed,
if ϕ is as above, then for sufficiently large n there is no Input Resolution refutation of 〈ϕ〉n. This
follows from the above corollary and Theorem 4.1.

The above corollary generalizes bounds on space (recall Theorem 5.1) known for particular
infinity axioms (cf. Introduction). Concerning the more peculiar notion of space from Section 5.2
we find it worthwhile to explicitly note the following rather direct corollary.

Corollary 6.5. Let ϕ be a first-order τ -sentence of the form (1) that has an infinite model. Let r be
the maximal arity of some function symbol in τ and assume r ≥ 1. Then there exists a real cϕ > 0
such that for all naturals n, k, w, ` ≥ 1 the following holds. If there exists an `-winning strategy
for Teacher in Πk

w(〈ϕ〉n), then
k · w · ` > cϕ · n1/r.
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Proof. Let ϕ and r accord the assumptions. Choose cϕ according Corollary 6.3, let n, k, w, ` ≥ 1
be given and assume there exists an `-winning strategy for Teacher in Πk

w(〈ϕ〉n). We claim that
k · w · ` > cϕ · n1/r. But by Corollary 5.6 there exists a space ` · w R(k)-refutation of 〈ϕ〉n. By
Theorem 5.1 (1) there exists a R(k)-refutation of 〈ϕ〉n of ordered pathwidth < ` · w. Then our
claim follows from Corollary 6.3.

7 Infinity Axioms
An infinity axiom is a first-order sentence ϕ of the form (1) that does not have finite models but
does have an infinite model. Note that in this case all propositional translations 〈ϕ〉n, n ≥ 1, are
contradictory. Strong lower bounds on the length of refutations of these principles are known for
the treelike systems [16, 22, 9]. One also knows, however, some few short DAG-like refutations:

Example 7.1. The least number principle is formulated using a unary function symbol f and a
binary relation symbol <:

lnp := ∀xyz(¬x < x ∧ (¬x < y ∨ ¬y < z ∨ x < z) ∧ fx < x).

This sentence states that < is a strict linear order and f maps every element to a smaller one.
Stålmarck [25] gave polynomial length Resolution refutations of 〈lnp〉n.

Example 7.2. The very weak pigeonhole principle states that n2 pigeons cannot fly injectively
into n holes. This principle can be formulated as a first-order infinity axiom using a binary function
symbol f :

wphp := ∀xx′yy′z
(
(¬fxx′ = z ∨ ¬fyy′ = z ∨ x = y) ∧ (¬fxx′ = z ∨ ¬fyy′ = z ∨ x′ = y′)

)
.

Razborov [21] showed that DAG-like Resolution refutations of 〈wphp〉n need length
2Ω(n/(logn)2). Maciel, Pitassi and Woods [17] showed that there exist quasipolynomial length
R(log)-refutations of 〈wphp〉n.

It is not understood what kind (say in some model-theoretic sense) of infinity axioms do have
short DAG-like refutations in Resolution or in R(k) for small k. We note that short DAG-like
refutations of translations of infinity axioms need to be far from being treelike in that they require
unbounded ordered treewidth. This is the first statement in the corollary below. The second can be
seen as a generalization of known lower bounds for treelike R(log) [16].

Corollary 7.3. Let ϕ be as in Theorem 6.1.

1. Every R(log)-refutation of 〈ϕ〉n of length at most 2n
o(1)

has ordered treewidth at least nΩ(1).

2. Every R(log)-refutation of 〈ϕ〉n of ordered treewidth at most no(1) has length at least 2n
Ω(1)

.

Specifically for the above two examples we can say the following.

Corollary 7.4.

1. Polynomial length R(100)-refutations of 〈lnp〉n have ordered treewidth at least Ω(n/ log n).

2. Quasipolynomial lengthR(log)-refutations of 〈wphp〉n have ordered treewidth at least Ω(n0.4).
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8 Conclusion
In this paper we have revisited proof complexity using the graph invariants ordered treewidth and
ordered pathwidth. Whereas the first corresponds to ordinary proof space, the latter gives rise to a
notion of interactive proof space, which can be described in terms of a student-teacher game. These
graph invariants provide the means for length-space lower bounds for R(k)-refutations that apply
to a large class of formulas having a natural meaning (infinity axioms). It relaxes the refutation
space measure (i.e., ordered pathwidth) to ordered treewidth and applies to R(log).
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