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We draw two incomplete, biased maps of challenges in computational complexity lower
bounds. Our aim is to put these challenges in perspective, and to present some connections
which do not seem widely known.

We do not survey existing lower bounds, go through the history, or repeat standard
definitions. All of this can be found e.g. in the recent book [Juk12], or in the books and
surveys [SY10, Lok09, Vio09b, She08, AB09, KN97, Bei93, Raz91, BS90, H̊as87].

Each node in the maps represents the challenge of proving that there exists an explicit
boolean function that cannot be computed with the resources labeling that node. We take
explicit to mean NP, thus excluding most or all of the lower bounds that rely on diagonal-
ization. An arrow from node A to B means that resources A can simulate resources B, and
so solving A implies solving B.
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1 Circuits with various gates, correlation, and commu-

nication

(1.1) 1/q correlation
degree-log q

sign polynomial
=

q size
Maj-Maj-Andlog q

(1.2) 1/q correlation
degree-log q

polynomial mod 2
=

q size
Maj-Parity-Andlog q

(1.3) 1/q correlation
degree-log q
polynomial

(1.4) q size
Sym-Andlog q

= [Yao90, BT94]
q size Sym-ACC

(1.5)
log q communication

log q players
number-on-forehead

(1.6) q size ACC

(1.7) q size
Maj-Maj-Maj

(1.8) q size Thr-Thr

[HG91]

obvious

obvious

obvious

[HMP+93, Prop. 2.1]

[HMP+93]

[GHR92]

Each occurrence of q stands for a quasipolynomial function 2logc n for a possibly different
constant c. For example, Challenge (1.5) asks to exhibit an explicit function f such that for
every constants c and c′ it holds that for sufficiently large n the function f on inputs of length
n cannot be computed by a number-on-forehead protocol among logc n players exchanging
logc′ n bits.

The picture changes if q stands for a polynomial function nc. In this case the three equali-
ties in (1.1), (1.2), and (1.4) do not hold anymore. Intuitively this is because a polynomial in
n variables of degree log n may have nΩ(log n) terms. In fact, Razborov and Wigderson show
in [RW93] nΩ(log n) lower bounds for Maj-Sym-And circuits, thus resolving one side in each of
these equalities. Other than that, every challenge is open even for q = nc. The arrows that
are known to hold in this case are the “obvious” arrows (1.4)–(1.6) and (1.2)–(1.3), and the
arrow (1.7)–(1.8), labeled [GHR92]. Finally, there are new arrows from (2.6) to (1.7) and to
(1.4). For the technique yielding these new arrows see e.g. [Vio09a, Lecture 8].

1



Both Maj and Thr stand for gates that compute a threshold function, i.e. a function
that given input bits (x1, . . . , xs) outputs 1 iff

∑

i ci · xi ≥ t, for fixed integers ci and t. A
circuit has size s if it has at most s gates and the weights ci in every majority gate satisfies
|ci| ≤ s. We do not allow multiple edges. Sym stands for a gate computing a symmetric
function. Andlog q is an And gate of fan-in log q. Every other gate has unbounded fan-in. We
use standard notation for composing gates. For example Maj-Maj-Andlog q refers to a circuit
with output gate Maj taking as input Maj gates taking as input And gates with fan-in log q
taking as input the input bits.

For simplicity all polynomials have integer coefficients. By “ǫ correlation degree-d poly-
nomials” (1.3) we refer to the set of functions g : {0, 1}n → {0, 1} such that there exists some
distribution D on the inputs, and some polynomial p of type X such that |Prx D[p(x) =
g(x)] − Prx D[p(x) 6= g(x)]| ≥ ǫ. For (1.2) and (1.1) we take the output of the polynomial
modulo 2 or, respectively, the sign of the output.

We now elaborate further on some of the challenges:
(1.2) See the survey [Vio09b, Chapter 1]. The equality is obtained as follows. The

simulation of polynomials by circuits is proved via boosting [Fre95, Section 2.2] or min-
max/linear-programming duality [GHR92, Section 5]. The other direction follows from the
“discriminator lemma” of [HMP+93].

(1.1) The equality is obtained by reasoning as for (1.2). Since we are not restricting the
magnitude of the polynomial’s coefficients this would yield circuits where the middle gate
is Thr, not Maj. However [GHR92, Theorem 26] shows that Maj-Thr = Maj-Maj up to a
polynomial change in size.

(1.3) For more on this see [RV].
(1.8) For a special case see [HP10].
(1.5) For a special case for which the arrow continues to hold see [BGKL03].

Arrow (1.7)–(1.1), labeled [HMP+93], follows from the techniques in [HMP+93, Lemma
2.4] which give that any Maj-Sym circuit can be turned into a Maj-Maj circuit with a
polynomial increase.
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2 Circuits and branching programs

(2.1)
⋂

ǫ=Ω(1)

depth-O(1)
size 2nǫ

circuit

(2.2) depth-3
size 2O(n/ log log n)

circuit

(2.3) depth-3

size 2
√

n logO(1) n

circuit

(2.4)
⋂

k=k(n) depth-3
input fan-in k

size 2(logO(1) n)max{n/k,
√

n}

circuit

(2.5)
poly(n)-size

program

(2.6)
poly(n)-length

width-O(1)
program
= [Bar89]

O(log n)-depth
circuit (NC1)

(2.7) n logO(1) n-length
width-poly(n) program

(2.8) O(n)-size
O(log n)-depth

circuit

guess-recurse

guess-recurseobvious

obvious

obvious

[Val77]

obvious obvious

“Program” stands for “branching program.” Specifically we consider layered branching
programs of width w (i.e., space log w) and length t. The size is w · t. Each node is labeled
with an input variable. The challenges remain open for the model of oblivious branching
programs where the label on each node depends only on the layer. Recall that Nechiporuk’s
argument [Nec66] gives bounds of the form ≥ n2/ logO(1) n on the size. This bound gives t =
n2/ logO(1) n for constant width w = O(1); it gives nothing for polynomial width w = nO(1).
For polynomial or even sub-exponential width the state-of-the-art is due to Beame, Saks,
Sun, and Vee [BSSV03]. For sub-exponential width they obtain t ≥ Ω(n

√

log n/ log log n).
All circuits are over the basis And, Or, and Not, with negations at the input level only.

For circuits of depth O(1) the fan-in of Or and And gates is unbounded; for circuits of depth
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Ω(log n) the fan-in of these gates is 2. The size of a circuit is its number of edges. Recall

that for every constant d the state-of-the-art lower bounds are of the form ≥ 2cn1/(d−1)
for a

constant c, see e.g. [H̊as87]. Challenge (2.1) asks to exhibit an ǫ > 0 such that for every d a
lower bound 2nǫ

holds. Note for d = 3 the state-of-the-art gives 2c
√

n. Challenge (2.3) asks
to improve this. For a recent approach, see [GW13]. Further parameterized by the input
fan-in k of the circuit, the available lower bounds for d = 3 are no better than 2c max (n/k),

√
n

for a constant c. Challenge (2.4) asks to break this tradeoff.

The arrows (2.1)–(2.5) and (2.4)–(2.7), labeled “guess-recurse,” are obtained via a tech-
nique attributed to Nepomnjaščĭı [Nep70]. The arrow (2.1)–(2.5) continues to hold if (2.5)
is replaced with the functions that for every ǫ > 0 are computable by non-deterministic
branching programs of length poly(n) and width 2nǫ

, a class containing NL.
We give the details for the (2.4)–(2.7) arrow.

Claim 2.9. Let f : {0, 1}n → {0, 1} be computable by a branching program with width
w and time t. Then f is computable by a depth-3 circuit with ≤ 2

√
t log w · t wires. More

generally, for any parameter b one can have a depth-3 circuit with

2b log w+t/b+log t

wires, output fan-in wb, and input fan-in t/b.

The (2.4)–(2.7) arrow corresponds to the setting t = n · logO(1) and w = poly(n). It
is obtained as follows. If k ≥ √

n (infinitely often) the arrow follows immediately. If k <√
n set b := t/k and note that the lemma gives a circuit with input fan-in k and size

≤ 2(logO(1) n)n/k+k+O(log n) ≤ 2(logO(1) n)n/k.

Proof. On an input x, guess b middle points on the branching program’s computation path,
at fixed times t/b, 2t/b, . . . , t. Since the times are fixed, this is a choice out of wb. Then
verify the computation of each of the corresponding b intervals is correct.

Each interval involves paths of length ≤ t/b. The computation can be written as a
decision tree of the same depth. In turn, this is a CNF with ≤ 2t/bt/b wires.

Collapsing adjacent layers of And gates we obtain a circuit with size

≤ wb · b· ≤ 2t/bt/b = 2b log w+t/b+log t

wires.
Setting b :=

√

t/ log w yields size

2
√

t log w+log t.

Moreover, by construction this circuit has output fan-in wb and input fan-in t/b.

For an exposition of the arrow (2.2)–(2.8), labeled [Val77], see e.g. [Vio09b, Chapter 3].
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