
Challenges in computational lower bounds

Emanuele Viola∗

August 29, 2013

We draw two incomplete, biased maps of challenges in computational complexity lower
bounds. Our aim is to put these challenges in perspective, and to present some connections
which do not seem widely known.

We do not survey existing lower bounds, go through the history, or repeat standard
definitions. All of this can be found e.g. in the recent book [Juk12], or in the books and
surveys [SY10, Lok09, Vio09b, She08, AB09, KN97, Bei93, Raz91, BS90, H̊as87].

Each node in the maps represents the challenge of proving that there exists an explicit
boolean function that cannot be computed with the resources labeling that node. We take
explicit to mean NP, thus excluding most or all of the lower bounds that rely on diagonal-
ization. An arrow from node A to B means that resources A can simulate resources B, and
so solving A implies solving B.

∗Supported by NSF grant CCF-0845003. Email: viola@ccs.neu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 119 (2013)

1 Circuits with various gates, correlation, and commu-

nication

(1.1) 1/q correlation
degree-log q

sign polynomial
=

q size
Maj-Maj-Andlog q

(1.2) 1/q correlation
degree-log q

polynomial mod 2
=

q size
Maj-Parity-Andlog q

(1.3) 1/q correlation
degree-log q
polynomial

(1.4) q size
Sym-Andlog q

= [Yao90, BT94]
q size Sym-ACC

(1.5)
log q communication

log q players
number-on-forehead

(1.6) q size ACC

(1.7) q size
Maj-Maj-Maj

(1.8) q size Thr-Thr

[HG91]

obvious

obvious

obvious

[HMP+93, Prop. 2.1]

[HMP+93]

[GHR92]

Each occurrence of q stands for a quasipolynomial function 2logc n for a possibly different
constant c. For example, Challenge (1.5) asks to exhibit an explicit function f such that for
every constants c and c′ it holds that for sufficiently large n the function f on inputs of length
n cannot be computed by a number-on-forehead protocol among logc n players exchanging
logc′ n bits.

The picture changes if q stands for a polynomial function nc. In this case the three equali-
ties in (1.1), (1.2), and (1.4) do not hold anymore. Intuitively this is because a polynomial in
n variables of degree log n may have nΩ(log n) terms. In fact, Razborov and Wigderson show
in [RW93] nΩ(log n) lower bounds for Maj-Sym-And circuits, thus resolving one side in each of
these equalities. Other than that, every challenge is open even for q = nc. The arrows that
are known to hold in this case are the “obvious” arrows (1.4)–(1.6) and (1.2)–(1.3), and the
arrow (1.7)–(1.8), labeled [GHR92]. Finally, there are new arrows from (2.6) to (1.7) and to
(1.4). For the technique yielding these new arrows see e.g. [Vio09a, Lecture 8].

1

Both Maj and Thr stand for gates that compute a threshold function, i.e. a function
that given input bits (x1, . . . , xs) outputs 1 iff

∑

i ci · xi ≥ t, for fixed integers ci and t. A
circuit has size s if it has at most s gates and the weights ci in every majority gate satisfies
|ci| ≤ s. We do not allow multiple edges. Sym stands for a gate computing a symmetric
function. Andlog q is an And gate of fan-in log q. Every other gate has unbounded fan-in. We
use standard notation for composing gates. For example Maj-Maj-Andlog q refers to a circuit
with output gate Maj taking as input Maj gates taking as input And gates with fan-in log q
taking as input the input bits.

For simplicity all polynomials have integer coefficients. By “ǫ correlation degree-d poly-
nomials” (1.3) we refer to the set of functions g : {0, 1}n → {0, 1} such that there exists some
distribution D on the inputs, and some polynomial p of type X such that |Prx D[p(x) =
g(x)] − Prx D[p(x) 6= g(x)]| ≥ ǫ. For (1.2) and (1.1) we take the output of the polynomial
modulo 2 or, respectively, the sign of the output.

We now elaborate further on some of the challenges:
(1.2) See the survey [Vio09b, Chapter 1]. The equality is obtained as follows. The

simulation of polynomials by circuits is proved via boosting [Fre95, Section 2.2] or min-
max/linear-programming duality [GHR92, Section 5]. The other direction follows from the
“discriminator lemma” of [HMP+93].

(1.1) The equality is obtained by reasoning as for (1.2). Since we are not restricting the
magnitude of the polynomial’s coefficients this would yield circuits where the middle gate
is Thr, not Maj. However [GHR92, Theorem 26] shows that Maj-Thr = Maj-Maj up to a
polynomial change in size.

(1.3) For more on this see [RV].
(1.8) For a special case see [HP10].
(1.5) For a special case for which the arrow continues to hold see [BGKL03].

Arrow (1.7)–(1.1), labeled [HMP+93], follows from the techniques in [HMP+93, Lemma
2.4] which give that any Maj-Sym circuit can be turned into a Maj-Maj circuit with a
polynomial increase.

2

2 Circuits and branching programs

(2.1)
⋂

ǫ=Ω(1)

depth-O(1)
size 2nǫ

circuit

(2.2) depth-3
size 2O(n/ log log n)

circuit

(2.3) depth-3

size 2
√

n logO(1) n

circuit

(2.4)
⋂

k=k(n) depth-3
input fan-in k

size 2(logO(1) n)max{n/k,
√

n}

circuit

(2.5)
poly(n)-size

program

(2.6)
poly(n)-length

width-O(1)
program
= [Bar89]

O(log n)-depth
circuit (NC1)

(2.7) n logO(1) n-length
width-poly(n) program

(2.8) O(n)-size
O(log n)-depth

circuit

guess-recurse

guess-recurseobvious

obvious

obvious

[Val77]

obvious obvious

“Program” stands for “branching program.” Specifically we consider layered branching
programs of width w (i.e., space log w) and length t. The size is w · t. Each node is labeled
with an input variable. The challenges remain open for the model of oblivious branching
programs where the label on each node depends only on the layer. Recall that Nechiporuk’s
argument [Nec66] gives bounds of the form ≥ n2/ logO(1) n on the size. This bound gives t =
n2/ logO(1) n for constant width w = O(1); it gives nothing for polynomial width w = nO(1).
For polynomial or even sub-exponential width the state-of-the-art is due to Beame, Saks,
Sun, and Vee [BSSV03]. For sub-exponential width they obtain t ≥ Ω(n

√

log n/ log log n).
All circuits are over the basis And, Or, and Not, with negations at the input level only.

For circuits of depth O(1) the fan-in of Or and And gates is unbounded; for circuits of depth

3

Ω(log n) the fan-in of these gates is 2. The size of a circuit is its number of edges. Recall

that for every constant d the state-of-the-art lower bounds are of the form ≥ 2cn1/(d−1)
for a

constant c, see e.g. [H̊as87]. Challenge (2.1) asks to exhibit an ǫ > 0 such that for every d a
lower bound 2nǫ

holds. Note for d = 3 the state-of-the-art gives 2c
√

n. Challenge (2.3) asks
to improve this. For a recent approach, see [GW13]. Further parameterized by the input
fan-in k of the circuit, the available lower bounds for d = 3 are no better than 2c max (n/k),

√
n

for a constant c. Challenge (2.4) asks to break this tradeoff.

The arrows (2.1)–(2.5) and (2.4)–(2.7), labeled “guess-recurse,” are obtained via a tech-
nique attributed to Nepomnjaščĭı [Nep70]. The arrow (2.1)–(2.5) continues to hold if (2.5)
is replaced with the functions that for every ǫ > 0 are computable by non-deterministic
branching programs of length poly(n) and width 2nǫ

, a class containing NL.
We give the details for the (2.4)–(2.7) arrow.

Claim 2.9. Let f : {0, 1}n → {0, 1} be computable by a branching program with width
w and time t. Then f is computable by a depth-3 circuit with ≤ 2

√
t log w · t wires. More

generally, for any parameter b one can have a depth-3 circuit with

2b log w+t/b+log t

wires, output fan-in wb, and input fan-in t/b.

The (2.4)–(2.7) arrow corresponds to the setting t = n · logO(1) and w = poly(n). It
is obtained as follows. If k ≥ √

n (infinitely often) the arrow follows immediately. If k <√
n set b := t/k and note that the lemma gives a circuit with input fan-in k and size

≤ 2(logO(1) n)n/k+k+O(log n) ≤ 2(logO(1) n)n/k.

Proof. On an input x, guess b middle points on the branching program’s computation path,
at fixed times t/b, 2t/b, . . . , t. Since the times are fixed, this is a choice out of wb. Then
verify the computation of each of the corresponding b intervals is correct.

Each interval involves paths of length ≤ t/b. The computation can be written as a
decision tree of the same depth. In turn, this is a CNF with ≤ 2t/bt/b wires.

Collapsing adjacent layers of And gates we obtain a circuit with size

≤ wb · b· ≤ 2t/bt/b = 2b log w+t/b+log t

wires.
Setting b :=

√

t/ log w yields size

2
√

t log w+log t.

Moreover, by construction this circuit has output fan-in wb and input fan-in t/b.

For an exposition of the arrow (2.2)–(2.8), labeled [Val77], see e.g. [Vio09b, Chapter 3].

4

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity. Cambridge University
Press, 2009. A modern approach.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. of Computer and System Sciences, 38(1):150–
164, 1989.

[Bei93] Richard Beigel. The polynomial method in circuit complexity. In 8th Structure in
Complexity Theory Conference, pages 82–95. IEEE, 1993.

[BGKL03] László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Communi-
cation complexity of simultaneous messages. SIAM J. Comput., 33(1):137–166, 2003.

[BS90] Ravi B. Boppana and Michael Sipser. The complexity of finite functions. In Handbook
of theoretical computer science, Vol. A, pages 757–804. Elsevier, Amsterdam, 1990.

[BSSV03] Paul Beame, Michael Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower
bounds for randomized computation of decision problems. J. of the ACM, 50(2):154–
195, 2003.

[BT94] Richard Beigel and Jun Tarui. On ACC. Computational Complexity, 4(4):350–366,
1994.

[Fre95] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Com-
putation, 121(2):256–285, 1995.

[GHR92] Mikael Goldmann, Johan H̊astad, and Alexander A. Razborov. Majority gates vs.
general weighted threshold gates. Computational Complexity, 2:277–300, 1992.

[GW13] Oded Goldreich and Avi Wigderson. On the size of depth-three boolean circuits for com-
puting multilinear functions. Electronic Coll. on Computational Complexity (ECCC),
20:43, 2013.

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits. MIT Press, 1987.
[HG91] Johan H̊astad and Mikael Goldmann. On the power of small-depth threshold circuits.

Comput. Complexity, 1(2):113–129, 1991.
[HMP+93] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán.

Threshold circuits of bounded depth. J. of Computer and System Sciences, 46(2):129–
154, 1993.

[HP10] Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Exact threshold circuits. In
IEEE Conf. on Computational Complexity (CCC), pages 270–279, 2010.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012.
[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University

Press, 1997.
[Lok09] Satyanarayana V. Lokam. Complexity lower bounds using linear algebra. Foundations

and Trends in Theoretical Computer Science, 4(1-2):1–155, 2009.
[Nec66] E. I. Nechiporuk. A boolean function. Soviet Mathematics-Doklady, 169(4):765–766,

1966.
[Nep70] Valery A. Nepomnjaščĭı. Rudimentary predicates and Turing calculations. Soviet

Mathematics-Doklady, 11(6):1462–1465, 1970.
[Raz91] Alexander A. Razborov. Lower bounds for deterministic and nondeterministic branching

programs. In Fundamentals of Computation Theory (FCT), pages 47–60, 1991.
[RV] Alexander Razborov and Emanuele Viola. Real advantage. ACM Trans. Computation

5

Theory.
[RW93] Alexander Razborov and Avi Wigderson. n

Ω(log n) lower bounds on the size of depth-
3 threshold circuits with AND gates at the bottom. Information Processing Letters,
45(6):303–307, 1993.

[She08] Alexander A. Sherstov. Communication lower bounds using dual polynomials. Bulletin
of the EATCS, 95:59–93, 2008.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–
388, 2010.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In 6th Symposium
on Mathematical Foundations of Computer Science, volume 53 of Lecture Notes in
Computer Science, pages 162–176. Springer, 1977.

[Vio09a] Emanuele Viola. Gems of theoretical computer science. Lecture
notes of the class taught at Northeastern University. Available at
http://www.ccs.neu.edu/home/viola/classes/gems-08/index.html, 2009.

[Vio09b] Emanuele Viola. On the power of small-depth computation. Foundations and Trends
in Theoretical Computer Science, 5(1):1–72, 2009.

[Yao90] Andrew Chi-Chih Yao. On ACC and threshold circuits. In IEEE Symp. on Foundations
of Computer Science (FOCS), pages 619–627, 1990.

6

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

