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Abstract

Non-malleable coding, introduced by Dziembowski, Pietrzak and Wichs (ICS 2010), aims for pro-
tecting the integrity of information against tampering attacks in situations where error-detection is impos-
sible. Intuitively, information encoded by a non-malleable code either decodes to the original message
or, in presence of any tampering, to an unrelated message. Non-malleable coding is possible against any
class of adversaries of bounded size. In particular, Dziembowski et al. show that such codes exist and
may achieve positive rates for any class of tampering functions of size at most 22

αn

, for any constant
α ∈ [0, 1). However, this result is existential and has thus attracted a great deal of subsequent research
on explicit constructions of non-malleable codes against natural classes of adversaries.

In this work, we consider constructions of coding schemes against two well-studied classes of tam-
pering functions; namely, bit-wise tampering functions (where the adversary tampers each bit of the
encoding independently) and the much more general class of split-state adversaries (where two indepen-
dent adversaries arbitrarily tamper each half of the encoded sequence). We obtain the following results
for these models.

1. For bit-tampering adversaries, we obtain explicit and efficiently encodable and decodable non-
malleable codes of length n achieving rate 1 − o(1) and error (also known as “exact security”)
exp(−Ω̃(n1/7)). Alternatively, it is possible to improve the error to exp(−Ω̃(n)) at the cost of
making the construction Monte Carlo with success probability 1− exp(−Ω(n)) (while still allow-
ing a compact description of the code). Previously, the best known construction of bit-tampering
coding schemes was due to Dziembowski et al. (ICS 2010), which is a Monte Carlo construction
achieving rate close to .1887.

2. We initiate the study of seedless non-malleable extractors as a natural variation of the notion of
non-malleable extractors introduced by Dodis and Wichs (STOC 2009). We show that construction
of non-malleable codes for the split-state model reduces to construction of non-malleable two-
source extractors. We prove a general result on existence of seedless non-malleable extractors,
which implies that codes obtained from our reduction can achieve rates arbitrarily close to 1/5 and
exponentially small error. In a separate recent work, the authors show that the optimal rate in this
model is 1/2. Currently, the best known explicit construction of split-state coding schemes is due
to Aggarwal, Dodis and Lovett (ECCC TR13-081) which only achieves vanishing (polynomially
small) rate.
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1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [12] as a relaxation of the clas-
sical notions of error-detection and error-correction. Informally, a code is non-malleable if the decoding a
corrupted codeword either recovers the original message, or a completely unrelated message. Non-malleable
coding is a natural concept that addresses the basic question of storing messages securely on devices that
may be subject to tampering, and they provide an elegant solution to the problem of protecting the integrity
of data and the functionalities implemented on them against “tampering attacks” [12]. This is part of a
general recent trend in theoretical cryptography to design cryptographic schemes that guarantee security
even if implemented on devices that may be subject to physical tampering. The notion of non-malleable
coding is inspired by the influential theme of non-malleable encryption in cryptography which guarantees
the intractability of tampering the ciphertext of a message into the ciphertext encoding a related message.

The definition of non-malleable codes captures the requirement that if some adversary (with full knowl-
edge of the code) tampers the codeword Enc(s) encoding a message s, corrupting it to f(Enc(s)), he cannot
control the relationship between s and the message the corrupted codeword f(Enc(s)) encodes. For this
definition to be feasible, we have to restrict the allowed tampering functions f (otherwise, the tampering
function can decode the codeword to compute the original message s, flip the last bit of s to obtain a related
message s̃, and then re-encode s̃), and in most interesting cases also allow the encoding to be randomized.
Formally, a (binary) non-malleable code against a family of tampering functions F each mapping {0, 1}n to
{0, 1}n, consists of a randomized encoding function Enc : {0, 1}k → {0, 1}n and a deterministic decoding
function Dec : {0, 1}n → {0, 1}k ∪ {⊥} (where ⊥ denotes error-detection) which satisfy Dec(Enc(s)) = s
always, and the following non-malleability property with error ε: For every message s ∈ {0, 1}k and every
function f ∈ F , the distribution of Dec(f(Enc(s)) is ε-close to a distribution Df that depends only on f
and is independent of s (ignoring the issue that f may have too many fixed points).

If some code enables error-detection against some family F , for example if F is the family of functions
that flips between 1 and t bits and the code has minimum distance more than t, then the code is also non-
malleable (by taking Df to be supported entirely on ⊥ for all f ). Error-detection is also possible against
the family of “additive errors,” namely Fadd = {f∆ | ∆ ∈ {0, 1}n} where f∆(x) := x + ∆ (the addition
being bit-wise XOR). Cramer et al. [8] constructed “Algebraic Manipulation Detection” (AMD) codes of
rate approaching 1 such that offset by an arbitrary ∆ 6= 0 will be detected with high probability, thus giving
a construction of non-malleable codes against Fadd.

The notion of non-malleable coding becomes more interesting for families against which error-detection
is not possible. A simple example of such a class consists of all constant functions fc(x) := c for
c ∈ {0, 1}n. Since the adversary can map all inputs to a valid codeword c∗, one cannot in general de-
tect tampering in this situation. However, non-malleability is trivial to achieve in this case as the output
distribution of a constant function is trivially independent of the message (so the rate 1 code with identity
encoding function is itself non-malleable).

The original work [12] showed that non-malleable codes of positive rate exist against every not-too-large
family F of tampering functions, specifically with |F| 6 22αn for some constant α < 1. In a companion
paper [5], we proved that in fact one can achieve a rate approaching 1− α against such families, and this is
best possible in that there are families of size ≈ 22αn for which non-malleable coding is not possible with
rate exceeding 1−α. (The latter is true both for random families as well as natural families such as functions
that only tamper the first αn bits of the codeword.)
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1.1 Our results

This work is focused on two natural families of tampering functions that have been studied in the literature.

1.1.1 Bit-tampering functions

The first class consists of bit-tampering functions f in which the different bits of the codewords are tampered
independently (i.e., each bit is either flipped, set to 0/1, or left unchanged, independent of other bits);
formally f(x) = (f1(x1), f2(x2), . . . , fn(xn)), where f1, . . . , fn : {0, 1} → {0, 1}. As this family is
“small” (of size 4n), by the above general results, it admits non-malleable codes with positive rate, in fact
rate approaching 1 by our recent result [5].

Dziembowski et al. [12] gave a Monte Carlo construction of a non-malleable code against this family;
i.e., they gave an efficient randomized algorithm to produce the code along with efficient encoding and de-
coding functions such that w.h.p the encoder/decoder pair ensures non-malleability against all bit-tampering
functions. The rate of their construction is, however, close to .1887 and thus falls short of the “capacity”
(best possible rate) for this family of tampering functions, which we now know equals 1.

Our main result in this work is the following:

Theorem 1.1. For all integers n > 1, there is an explicit (deterministic) construction, with efficient en-
coding/decoding procedures, of a non-malleable code against bit-tampering functions that achieves rate
1− o(1) and error at most exp(−nΩ(1)).

If we seek error that is exp(−Ω̃(n)), we can guarantee that with an efficient Monte Carlo construction
of the code that succeeds with probability 1− exp(−Ω(n)).

The basic idea in the above construction (described in detail in Section 4.1) is to use a concatenation
scheme with an outer code of rate close to 1 that has large relative distance and large dual relative distance,
and as (constant-sized) inner codes the non-malleable codes guaranteed by the existential result (which
may be deterministically found by brute-force if desired). This is inspired by the classical constructions of
concatenated codes [13, 16]. The outer code provides resilience against tampering functions that globally
fix too many bits or alter too few. For other tampering functions, in order to prevent the tampering function
from locally freezing many entire inner blocks (to possibly wrong inner codewords), the symbols of the
concatenated codeword are permuted by a pseudorandom permutation.

The seed for the permutation is itself included as the initial portion of the final codeword, after encoding
by a non-malleable code (of possibly low rate). This protects the seed and ensures that any tampering of
the seed portion results in the decoded permutation being essentially independent of the actual permutation,
which then results in many inner blocks being error-detected (decoded to ⊥) with noticeable probability
each. The final decoder outputs ⊥ if any inner block is decoded to ⊥, an event which happens with es-
sentially exponentially small probability in n with a careful choice of the parameters. The above scheme
uses non-malleable codes in two places to construct the final non-malleable code, but there is no circularity
because the codes for the inner blocks are of constant size, and the code protecting the seed can have very
low rate (even sub-constant) as the seed can be made much smaller than the message length.

The structure of our construction bears some high level similarity to the optimal rate code construction
for correcting a bounded number of additive errors in [15]. The exact details though are quite different; in
particular, the crux in the analysis of [15] was ensuring that the decoder can recover the seed correctly, and
towards this end the seed’s encoding was distributed at random locations of the final codeword. Recovering
the seed is both impossible and not needed in our context here.
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1.1.2 Split-state adversaries

Bit-tampering functions act on different bits independently. A much more general class of tampering
functions considered in the literature [12, 11, 1] is the so-called split-state model. Here the function
f : {0, 1}n → {0, 1}n must act on each half of the codeword independently (assuming n is even), but can
act arbitrarily within each half. Formally, f(x) = (f1(x1), f2(x2)) for some functions f1, f2 : {0, 1}n/2 →
{0, 1}n/2 where x1, x2 consist of the first n/2 and last n/2 bits of x. This represents a fairly general and
useful class of adversaries which are relevant for example when the codeword is stored on two physically
separate devices, and while each device may be tampered arbitrarily, the attacker of each device does not
have access to contents stored on the other device.

The capacity of non-malleable coding in the split-state model equals 1/2, as established in our recent
work [5]. A natural question therefore is to construct efficient non-malleable codes of rate approaching 1/2
in the split-state model (the results in [12] and [5] are existential, and the codes do not admit polynomial size
representation or polynomial time encoding/decoding). This remains a challenging open question, and in
fact constructing a code of positive rate itself seems rather difficult. A code that encodes one-bit messages is
already non-trivial, and such a code was constructed in [11] by making a connection to two-source extractors
with sufficiently strong parameters and then instantiating the extractor with a construction based on the inner
product function over a finite field. We stress that this connection to two-source extractor only applies to
encoding one-bit messages, and does not appear to generalize to longer messages.

Recently, Aggarwal, Dodis, and Lovett [1] solved the central open problem left in [11] — they construct
a non-malleable code in the split-state model that works for arbitrary message length, by bringing to bear
elegant techniques from additive combinatorics on the problem. The rate of their code is polynomially small:
k-bit messages are encoded into codewords with n ≈ k7 bits.

In the second part of this paper (Section 5), we study the problem of non-malleable coding in the split-
state model. We do not offer any explicit constructions, and the polynomially small rate achieved in [1]
remains the best known. Our contribution here is more conceptual. We define the notion of non-malleable
two-source extractors, generalizing the influential concept of non-malleable extractors introduced by Dodis
and Wichs [10]. A non-malleable extractor is a regular seeded extractor Ext whose output Ext(X,S)
on a weak-random source X and uniform random seed S remains uniform even if one knows the value
Ext(X, f(S)) for a related seed f(S) where f is a tampering function with no fixed points. In a two-source
non-malleable extractor we allow both sources to be weak and independently tampered, and we further ex-
tend the definition to allow the functions to have fixed points in view of our application to non-malleable
codes. We prove, however, that for construction of two-source non-malleable extractors, it suffices to only
consider tampering functions that have no fixed points, at cost of a minor loss in the parameters.

We show that given a two-source non-malleable extractor NMExt with exponentially small error in the
output length, one can build a non-malleable code in the split-state model by setting the extractor function
NMExt to be the decoding function (the encoding of s then picks a pre-image in NMExt−1(s)).

This identifies a possibly natural avenue to construct improved non-malleable codes against split-state
adversaries by constructing non-malleable two-source extractors, which seems like an interesting goal in
itself. Towards confirming that this approach has the potential to lead to good non-malleable codes, we
prove a fairly general existence theorem for seedless non-malleable extractors, by essentially observing that
the ideas from the proof of existence of seeded non-malleable extractors in [10] can be applied in a much
more general setting. Instantiating this result with split-state tampering functions, we show the existence of
non-malleable two-source extractors with parameters that are strong enough to imply non-malleable codes
of rate arbitrarily close to 1/5 in the split-state model.
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Explicit construction of (ordinary) two-source extractors and closely-related objects is a well-studied
problem in the literature and an abundance of explicit constructions for this problem is known1 (see, e.g.,
[2, 3, 6, 17, 20, 21]). The problem becomes increasingly challenging, however, (and remains open to date)
when the entropy rate of the two sources may be noticeably below 1/2. Fortunately, we show that for
construction of constant-rate non-malleable codes in the split-state model, it suffices to have two-source
non-malleable extractors for source entropy rate .99 and with some output length Ω(n) (against tampering
functions with no fixed points). Thus the infamous “1/2 entropy rate barrier” on two-source extractors does
not concern our particular application.

Furthermore, we note that for seeded non-malleable extractors (which is a relatively recent notion) there
are already a few exciting explicit constructions [9, 14, 19]2. The closest construction to our application is
[9] which is in fact a two-source non-malleable extractor when the adversary may tamper with either of the
two sources (but not simultaneously both). Moreover, the coding scheme defined by this extractor (which is
the character-sum extractor of Chor and Goldreich [6]) naturally allows for an efficient encoder and decoder.
Nevertheless, it appears challenging to extend known constructions of seeded non-malleable extractors to
the case when both inputs can be tampered. We leave explicit constructions of non-malleable two-source
extractors, even with sub-optimal parameters, as an interesting open problem for future work.

2 Preliminaries

2.1 Notation

We use Un for the uniform distribution on {0, 1}n and Un for the random variable sampled from Un and
independently of any existing randomness. For a random variable X , we denote by D(X) the probability
distribution that X is sampled from. Generally, we will use calligraphic symbols (such as X ) for probability
distributions and the corresponding capital letters (such as X) for related random variables. We use X ∼ X
to denote that the random variable X is drawn from the distribution X . Two distributions X and Y being
ε-close in statistical distance is denoted by X ≈ε Y . We will use (X ,Y) for the product distribution with
the two coordinates independently sampled from X and Y . All unsubscripted logarithms are taken to the
base 2. Support of a discrete random variable X is denoted by supp(X). A distribution is said to be flat if it
is uniform on its support. We use Õ(·) and Ω̃(·) to denote asymptotic estimates that hide poly-logarithmic
factors in the involved parameter.

2.2 Definitions

In this section, we review the formal definition of non-malleable codes as introduced in [12]. First, we recall
the notion of coding schemes.

Definition 2.1 (Coding schemes). A pair of functions Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n →
{0, 1}k ∪ {⊥} where k 6 n is said to be a coding scheme with block length n and message length k if
the following conditions hold.

1. The encoder Enc is a randomized function; i.e., at each call it receives a uniformly random sequence
of coin flips that the output may depend on. This random input is usually omitted from the notation

1Several of these constructions are structured enough to easily allow for efficient sampling of a uniform pre-image from
Ext−1(s).

2[19] also establishes a connection between seeded non-malleable extractors and ordinary two-source extractors.
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and taken to be implicit. Thus for any s ∈ {0, 1}k, Enc(s) is a random variable over {0, 1}n. The
decoder Dec is; however, deterministic.

2. For every s ∈ {0, 1}k, we have Dec(Enc(s)) = s with probability 1.

The rate of the coding scheme is the ratio k/n. A coding scheme is said to have relative distance δ (or
minimum distance δn), for some δ ∈ [0, 1), if for every s ∈ {0, 1}k the following holds. Let X := Enc(s).
Then, for any ∆ ∈ {0, 1}n of Hamming weight at most δn, Dec(X + ∆) =⊥ with probability 1.

Before defining non-malleable coding schemes, we find it convenient to define the following notation.

Definition 2.2. For a finite set Γ, the function copy : (Γ ∪ {same})× Γ→ Γ is defined as follows:

copy(x, y) :=

{
x x 6= same,

y x = same.

The notion of non-malleable coding schemes from [12] can now be rephrased as follows.

Definition 2.3 (Non-malleability). A coding scheme (Enc,Dec) with message length k and block length n
is said to be non-malleable with error ε (also called exact security) with respect to a family F of tampering
functions acting on {0, 1}n (i.e., each f ∈ F maps {0, 1}n to {0, 1}n) if for every f ∈ F there is a
distribution Df over {0, 1}k ∪ {⊥, same} such that the following holds. Let s ∈ {0, 1}k and define the
random variable S := Dec(f(Enc(s))). Let S′ be independently sampled from Df . Then, D(S) ≈ε
D(copy(S′, s)).

Dziembowski et al. [12] also consider the following stronger variation of non-malleable codes, and show
that strong non-malleable codes imply regular non-malleable codes as in Definition 2.3.

Definition 2.4 (Strong non-malleability). A pair of functions as in Definition 2.3 is said to be a strong non-
malleable coding scheme with error ε with respect to a family F of tampering functions acting on {0, 1}n
if the conditions (1) and (2) of Definition 2.3 is satisfied, and additionally, the following holds. For any
message s ∈ {0, 1}k, let Es := Enc(s), consider the random variable

Ds :=

{
same if f(Es) = Es,
Dec(f(Es)) otherwise,

and let Df,s := D(Ds). It must be the case that for every pair of distinct messages s1, s2 ∈ {0, 1}k,
Df,s1 ≈ε Df,s2 .

Remark 2.5 (Efficiency of sampling Df ). The original definition of non-malleable codes in [12] also re-
quires the distribution Df to be efficiently samplable given oracle access to the tampering function f . It
should be noted; however, that for any non-malleable coding scheme equipped with an efficient encoder and
decoder, the following is a valid and efficiently samplable choice for the distribution Df (possibly incurring
a constant factor increase in the error parameter):

1. Let S ∼ Uk, and X := Enc(S).

2. If Dec(X) = S, output same. Otherwise, output Dec(X).
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Definition 2.6 (Sub-cube). A sub-cube over {0, 1}n is a set S ⊆ {0, 1}n such that for some T = {t1, . . . , t`} ⊆
[n] and w = (w1, . . . , w`) ∈ {0, 1}`,

S = {(x1, . . . , xn) ∈ {0, 1}n : xt1 = w1, . . . , xt` = w`};

the ` coordinates in T are said to be frozen and the remaining n− ` are said to be random.

Throughout the paper, we use the following notions of limited independence.

Definition 2.7 (Limited independence of bit strings). A distribution D over {0, 1}n is said to be `-wise
δ-dependent for an integer ` > 0 and parameter δ ∈ [0, 1) if the marginal distribution of D restricted to any
subset T ⊆ [n] of the coordinate positions where |T | 6 ` is δ-close to U|T |. When δ = 0, the distribution is
`-wise independent.

Definition 2.8 (Limited independence of permutations). The distribution of a random permutation Π: [n]→
[n] is said to be `-wise δ-dependent for an integer ` > 0 and parameter δ ∈ [0, 1) if for every T ⊆ [n] such
that |T | 6 `, the marginal distribution of the sequence (Π(t) : t ∈ T ) is δ-close to that of (Π̄(t) : t ∈ T ),
where Π̄ : [n]→ [n] is a uniformly random permutation.

We will use the following notion of Linear Error-Correcting Secret Sharing Schemes (LECSS) as for-
malized by Dziembowski et al. [12] for their construction of non-malleable coding schemes against bit-
tampering adversaries.

Definition 2.9 (LECSS). [12] A coding scheme (Enc,Dec) of block length n and message length k is a
(d, t)-Linear Error-Correcting Secret Sharing Scheme (LECSS), for integer parameters d, t ∈ [n] if

1. The minimum distance of the coding scheme is at least d,

2. For every message s ∈ {0, 1}k, the distribution of Enc(s) ∈ {0, 1}n is t-wise independent (as in
Definition 2.7).

3. For every w,w′ ∈ {0, 1}n such that Dec(w) 6=⊥ and3 Dec(w′) 6=⊥, we have Dec(w + w′) =
Dec(w) + Dec(w′), where we use bit-wise addition over F2.

3 Existence of optimal bit-tampering coding schemes

In this section, we recall the probabilistic construction of non-malleable codes introduced in [5]. This
construction, depicted as Construction 1, is defined with respect to an integer parameter t > 0 and a distance
parameter δ ∈ [0, 1).

The following, proved in [5], shows non-malleability of the construction.

Theorem 3.1 ([5]). Let F : {0, 1}n → {0, 1}n be any family of tampering functions. For any ε, η > 0, with
probability at least 1 − η, the coding scheme (Enc,Dec) of Construction 1 is a strong non-malleable code
with respect to F and with error ε and relative distance δ, provided that both of the following conditions are
satisfied.

3 Although we use LECSS codes in our explicit construction, contrary to [12] we do not directly use the linearity of the code
for our proof.
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• Given: Integer parameters 0 < k 6 n and integer t > 0 such that t2k 6 2n, and a distance parameter
δ > 0.

• Output: A pair of functions Enc : {0, 1}k × {0, 1}n and Dec : {0, 1}n → {0, 1}k, where Enc may
also use a uniformly random seed which is hidden from that notation, but Dec is deterministic.

• Construction:

1. Let N := {0, 1}n.

2. For each s ∈ {0, 1}k, in an arbitrary order,

– Let E(s) := ∅.
– For i ∈ {1, . . . , t}:

(a) Pick a uniformly random vector w ∈ N .
(b) Add w to E(s).
(c) Let Γ(w) be the Hamming ball of radius δn centered at w. Remove Γ(w) fromN (note

that when δ = 0, we have Γ(w) = {w}).
3. Given s ∈ {0, 1}k, Enc(s) outputs an element of E(s) uniformly at random.

4. Given w ∈ {0, 1}n, Dec(s) outputs the unique s such that w ∈ E(s), or ⊥ if no such s exists.

Construction 1: Probabilistic construction of non-malleable codes in [5].

1. t > t0, for some

t0 = O

(
1

ε6

(
log
|F|2n

η

))
. (1)

2. k 6 k0, for some
k0 > n(1− h(δ))− log t− 3 log(1/ε)−O(1), (2)

where h(·) denotes the binary entropy function.

Remark 3.2. The proof of Theorem 3.1 explicitly defines the choice of Df of Definition 2.3 to be the
distribution of the following random variable:

D :=


same if f(Un) = Un,

Dec(f(Un)) if f(Un) 6= Un and f(Un) ∈ H,
⊥ otherwise,

(3)

where H ⊆ {0, 1}n is the set

H := {x ∈ {0, 1}n : Pr[f(Un) = x] > 1/r}, (4)

for an appropriately chosen r = Θ(ε2t).

We now instantiate the above result to the specific case of bit-tampering adversaries, and derive addi-
tional properties of the coding scheme of Construction 1 that we will later use in our explicit construction.
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Lemma 3.3. (Cube Property) Consider the coding scheme (Enc,Dec) of Construction 1 with parameters
t and δ, and assume that t2k−n(1−h(δ)) 6 1/8, where h(·) is the binary entropy function. Then, there is a
δ0 = O(log n/n) such that if δ > δ0, the following holds with probability at least 1 − exp(−n) over the
randomness of the code construction. For any sub-cube S ⊆ {0, 1}n of size at least 2, and US ∈ {0, 1}n
taken uniformly at random from S,

Pr
US

[Dec(US =⊥)] > 1/2.

Proof. Let S ⊆ {0, 1}n be any sub-cube, and let γ := tK/2n, where K := 2k. The assumption implies
that γV 6 1/8, where V 6 2nh(δ) is the volume of a Hamming ball of radius δn. Let E1, . . . , EtK be the
codewords chosen by the code construction in the order they are picked.

If |S| > 2tK, the claim obviously holds (since the total number of codewords in supp(Enc(Uk)) is tK,
thus we can assume otherwise.

Arbitrarily order the elements of S as s1, . . . , s|S|, and for each i ∈ [|S|], let the indicator random
variable Xi be so that Xi = 1 iff Dec(si) 6=⊥. Define X0 = 0. Our goal is to upper bound

E[Xi|X0, . . . , Xi−1]

for each i ∈ [|S|]. Instead of conditioning on X1, . . . , Xi−1, we condition on a more restricted event and
show that regardless of the more restricted conditioning, the expectation of Xi can still be upper bounded as
desired. Namely, we condition on the knowledge of not only Dec(sj) for all j < i but also the smallest j′ ∈
[tK] such that Dec(Ej′) = sj , if such a j′ exists. Obviously the knowledge of this information determines
the values of X1, . . . , Xi−1, and thus Proposition B.1 applies. Under the more restricted conditioning, some
of the codewords in E1, . . . , EtK (maybe all) will be revealed. Obviously, the revealed codewords have no
chance of being decoded to si. By a union bound, the chance that any of the up to tK remaining codewords
is assigned to si by the decoder is thus at most

tK

2n − |S|V
6

tK

2n(1− 2γV )
6 (4/3)tK/2n = (4/3)γ 6 1/6.

Since the above holds for any realization of the information that we condition on, we conclude that

E[Xi|X0, . . . , Xi−1] 6 1/6.

Let X := X1 + · · · + X|S|, which determines the number of vectors in S that are hit by the code. We can
apply Proposition B.6 to deduce that

Pr[X > |S|/2] 6 exp(−|S|/18).

Therefore, if |S| > S0 for some S0 = O(n), the upper bound can be made less than exp(−n)3−n. In this
case, a union bound on all possible sub-cubes satisfying the size lower bound ensures that the desired cube
property holds for all such sub-cubes with probability at least 1− exp(−n).

The proof is now reduced to sub-cubes with at most δ0n = O(log n) random bits, where we choose
δ0 := (logS0)/n. In this case, since the relative distance of the coding scheme of Construction 1 is always
at least δ > δ0, we deduce that

|{x ∈ S : Dec(x) 6=⊥}| 6 1 6 |S|/2,
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where the first inequality is due to the minimum distance of the code and the second is due to the assumption
that |S| > 2. Thus, whenever 2 6 |S| 6 S0, we always have the property that

Pr
US

[Dec(US =⊥)] > 1/2.

Lemma 3.4. (Bounded Independence) Let ` ∈ [n], ε > 0 and suppose the parameters are as in Construc-
tion 1. Let γ := t2k−n(1−h(δ)), where h(·) denotes the binary entropy function. There is a choice of

t0 = O
(2` + n

ε2

)
such that, provided that t > t0, with probability 1− exp(−n) over the randomness of the code construction
the coding scheme (Enc,Dec) satisfies the following: For any s ∈ {0, 1}k, the random vector Enc(s) is
`-wise ε′-dependent, where

ε′ := max
{
ε,

2γ

1− γ

}
.

Proof. Consider any message s ∈ {0, 1}k and suppose the t codewords in supp(Enc(s)) are denoted by
E1, . . . , Et in the order they are picked by the construction.

Let T ⊆ [n] be any set of size at most `. Let E′1, . . . , E
′
t ∈ {0, 1}|T | be the restriction of E1, . . . , Et

to the coordinate positions picked by T . Observe that the distribution of Enc(s) restricted to the coordinate
positions in T is exactly the empirical distribution of the vectors E′1, . . . , E

′
t, and the support size of this

distribution is bounded by 2`.
Let K := 2k, N := 2n, and V 6 2nh(δ) be the volume of a Hamming ball of radius δn. By the code

construction, for i ∈ [t], conditioned on the knowledge of E1, . . . , Ei−1, the distribution of Ei is uniform
on {0, 1}n \ (Γ(E1) ∪ . . . ∪ Γ(Ei−1)) which is a set of size at least N(1 − tKV ) > N(1 − γ). By
Proposition B.2, it follows that the conditional distribution of each Ei remains (γ/(1 − γ))-close to Un.
Since the E′i are simply restrictions of the Ei to some subset of the coordinates, the same holds for the E′i;
i.e., the distribution of E′i conditioned on the knowledge of E′1, . . . , E

′
i−1 is (γ/(1− γ))-close to U|T |.

Observe that ε′ − γ/(1 − γ) > ε′/2. By applying Lemma B.8 to the sample outcomes E′1, . . . , E
′
t, we

can see that with probability at least exp(−3n) over the code construction, the empirical distribution of the
E′i is ε′-close to uniform provided that t > t0 for some

t0 = O
(2` + n

ε′2

)
= O

(2` + n

ε2

)
.

Now, we can take a union bound on all choices of the message s and the set T and obtain the desired
conclusion.

We now put together the above results to conclude our main existential result about the codes that
we will use at the “inner” level to encode blocks in our construction of non-malleable codes against bit
tampering functions. Among the properties guaranteed below, we in fact do not need the precise non-
malleability property (item 2 in the statement of Lemma 3.5 below) in our eventual proof, although we use
non-malleability to prove the last property (item 5) which is needed in the proof.

Lemma 3.5. Let α > 0 be any parameter. Then, there is an n0 = O(log2(1/α)/α) such that for any
n > n0, Construction 1 can be set up so that with probability 1 − 3 exp(−n) over the randomness of the
construction, the resulting coding scheme (Enc,Dec) satisfies the following properties:
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1. (Rate) Rate of the code is at least 1− α.

2. (Non-malleability) The code is non-malleable against bit-tampering adversaries with error exp(−Ω(αn)).

3. (Cube property) The code satisfies the cube property of Lemma 3.3.

4. (Bounded independence) For any message s ∈ {0, 1}k, the distribution of Enc(s) is exp(−Ω(αn))-
close to an Ω(αn)-wise independent distribution with uniform entries.

5. (Error detection) Let f : {0, 1}n → {0, 1}n be any bit-tampering adversary that is neither the identity
function nor a constant function. Then, for every message s ∈ {0, 1}k,

Pr[Dec(f(Enc(s))) =⊥] > 1/3,

where the probability is taken over the randomness of the encoder.

Proof. Consider the family F of bit-tampering functions, and observe that |F| = 4n. First, we apply
Theorem 3.1 with error parameter ε := 2−αn/27, distance parameter δ := h−1(α/3), and success parameter
η := exp(−n). Let N := 2n and observe that log(N |F|/η) = O(n). We choose t = Θ(n/ε6) so as to
ensure that the coding scheme (Enc,Dec) is non-malleable for bit-tampering adversaries with error at most
ε, relative distance at least δ, and message length

k > n(1− h(δ))− 9 log(1/ε)− log n−O(1) > (1− 2α/3)n− log n−O(1),

which can be made at least n(1−α) if n > n1 for some n1 = O(log(1/α)/α). This ensures that properties
1 and 2 are satisfied.

In order to ensure the cube property (property 3), we can apply Lemma 3.3. Let K := 2k and note that
our choices of the parameters imply tK/N1−h(δ) = O(ε3) � 1/8. Furthermore, consider the parameter
δ0 = O((log n)/n) of Lemma 3.3 and observe that α/3 = h(δ) = O(δ log(1/δ)). We thus see that as
long as n > n2 for some n2 = O(log2(1/α)/α), we may ensure that δn > δ0n. By choosing n0 :=
max{n1, n2}, we see that the requirements of Lemma 3.3 is satisfied, implying that with probability at least
1− exp(−n), the cube property is satisfied.

As for the bounded independence property (Property 4), consider the parameter γ of Lemma 3.4 and
recall that we have shown γ = O(ε3). Thus by Lemma 3.4, with probability at least 1 − exp(−n), every
encoding Enc(s) is `-wise

√
ε-dependent for some

` > log t− 2 log(1/
√
ε)− log n−O(1) > 5 log(1/ε)−O(1) = Ω(αn). (5)

Finally, we show that property 5 is implied by properties 2, 3, and 4 that we have so far shown to simul-
taneously hold with probability at least 1 − 3 exp(−n). In order to do so, we first recall that Theorem 3.1
explicitly defines the choice of Df in Definition 2.3 according to (3). Let H ⊆ {0, 1}n be the set of heavy
elements as in (4) and r = Θ(ε2t) be the corresponding threshold parameter in the same equation. Let
f : {0, 1}n → {0, 1}n be any non-identity bit-tampering function and let `′ ∈ [n] be the number of bits that
are either flipped or left unchanged by f . We consider two cases.

Case 1: `′ > log r. In this case, for every x ∈ {0, 1}n, we have

Pr[f(Un) = x] 6 2−`
′
6 r,

12



and thus H = ∅. Also observe that, for U ∼ Un,

Pr[f(U) = U ] 6 1/2,

the maximum being achieved when f freezes only one bit and leaves the remaining bits unchanged
(in fact, if f flips any of the bits, the above probability becomes zero).

We conclude that in this case, the entire probability mass of Df is supported on {same,⊥} and the
mass assigned to same is at most 1/2. Thus, by definition of non-malleability, for every message
s ∈ {0, 1}k,

Pr[Dec(f(Enc(s))) =⊥] > 1/2− ε > 1/3.

Case 2: `′ < log r. Since r = Θ(ε2t), by plugging in the value of t we see that r = O(n/ε4), and thus we
know that `′ < log n+ 4 log(1/ε) +O(1).

Consider any s ∈ {0, 1}k, and recall that, by the bounded independence property, we already know
that Enc(s) is `-wise

√
ε-dependent. Furthermore, by (5),

` > 5 log(1/ε)−O(1) > `′,

where the second inequality follows by the assumed lower bound n > n0 on n. We thus can use the
`-wise independence property of Enc(s) and deduce that the distribution of f(Enc(s)) is (

√
ε)-close

to the uniform distribution on a sub-cube S ⊆ {0, 1}n of size at least 2. Combined with the cube
property (property 3), we see that

Pr[Dec(f(Enc(s))) =⊥] > 1/2−
√
ε > 1/3.

Finally, by applying a union bound on all the failure probabilities, we conclude that with probability
at least 1− 3 exp(−n), the code resulting from Construction 1 satisfies all the desired properties.

4 Explicit construction of optimal bit-tampering coding schemes

In this section, we describe an explicit construction of codes achieving rate close to 1 that are non-malleable
against bit-tampering adversaries. Throughout this section, we use N to denote the block length of the final
code.

4.1 The construction

At a high level, we combine the following tools in our construction: 1) an inner code C0 (with encoder
Enc0) of constant length satisfying the properties of Lemma 3.5; 2) an existing non-malleable code con-
struction C1 (with encoder Enc1) against bit-tampering achieving a possibly low (even sub-constant) rate;
3) a linear error-correcting secret sharing scheme (LECSS) C2 (with encoder Enc2); 4) an explicit function
Perm that, given a uniformly random seed, outputs a pseudorandom permutation (as in Definition 2.8) on a
domain of size close to N . Figure 1 depicts how various components are put together to form the final code
construction.
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Π ∈ Sn

CC1 ∈ {0, 1}B C2 ∈ {0, 1}B · · · Cnb ∈ {0, 1}B

C ′ ∈ {0, 1}n = {0, 1}n2B/b

Z ′ ∈ {0, 1}γ1n=n1

S′1 ∈ {0, 1}b S′2 ∈ {0, 1}b · · · S′nb ∈ {0, 1}
b

Enc0
Enc0 · · · Enc0

Enc2 : {0, 1}k → {0, 1}n2

Message: s ∈ {0, 1}k = {0, 1}k2

((δ2n2, t2 = γ′2n2)-LECSS, rate = 1− γ2)

(rate = b/B
= 1− γ0)

Z ∼ Uγ1rn=k1

Perm

Enc1

(rate = r,

`-wise
δ-dependent

error = ε1)

Figure 1: Schematic description of the encoder Enc from our explicit construction.

At the outer layer, LECSS is used to pre-code the message. The resulting string is then divided into
blocks, where each block is subsequently encoded by the inner encoder Enc0. For a “typical” adversary
that flips or freezes a prescribed fraction of the bits, we expect many of the inner blocks to be sufficiently
tampered so that many of the inner blocks detect an error when the corresponding inner decoder is called.
However, this ideal situation cannot necessarily be achieved if the fraction of global errors is too small,
or if too many bits are frozen by the adversary (in particular, the adversary may freeze all but few of the
blocks to valid inner codewords). In this case, we rely on distance and bounded independence properties of
LECSS to ensure that the outer decoder, given the tampered information, either detects an error or produces
a distribution that is independent of the source message.

A problem with the above approach is that the adversary knows the location of various blocks, and may
carefully design a tampering scheme that, for example, freezes a large fraction of the blocks to valid inner
codewords and leaves the rest of the blocks intact. To handle adversarial strategies of this type, we permute
the final codeword using the pseudorandom permutation generated by Perm, and include the seed in the
final codeword. Doing this has the effect of randomizing the action of the adversary, but on the other hand
creates the problem of protecting the seed against tampering. In order to solve this problem, we use the
sub-optimal code C1 to encode the seed and prove in the analysis that non-malleability of the code C1 can be
used to make the above intuitions work.

4.1.1 The building blocks

In the construction, we use the following building blocks, with some of the parameters to be determined
later in the analysis.
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1. An inner coding scheme C0 = (Enc0,Dec0) with rate 1 − γ0 (for an arbitrarily small parameter
γ0 > 0), some block length B, and message length b = (1 − γ0)B. We assume that C0 is an
instantiation of Construction 1 and satisfies the properties promised by Lemma 3.5.

2. A coding scheme C1 = (Enc1,Dec1) with rate r > 0 (where r can in general be sub-constant), block
length n1 := γ1n (where n is defined later), and message length k1 := γ1rn, that is non-malleable
against bit-tampering adversaries with error ε1. Without loss of generality, assume that Dec1 never
outputs ⊥ (otherwise, identify ⊥ with an arbitrary fixed message; e.g., 0k). The non-malleable code
C1 need not be strong.

3. A linear error-correcting secret sharing (LECSS) scheme C2 = (Enc2,Dec2) (as in Definition 2.9)
with message length k2 := k, rate 1− γ2 (for an arbitrarily small parameter γ2 > 0) and block length
n2. We assume that C2 is a (δ2n2, t2 := γ′2n2)-linear error-correcting secret sharing scheme (where
δ2 > 0 and γ′2 > 0 are constants defined by the choice of γ2). Since b is a constant, without loss of
generality assume that b divides n2, and let nb := n2/b and n := n2B/b.

4. A polynomial-time computable mapping Perm : k1 → Sn, where Sn denotes the set of permutations
on [n]. We assume that Perm(Uk1) is an `-wise δ-dependent permutation (as in Definition 2.8, for
parameters ` and δ. In fact, it is possible to achieve δ 6 exp(−`) and ` = dγ1rn/ log ne for some
constant γ > 0. Namely, we may use the following result due to Kaplan, Naor and Reingold [18]:

Theorem 4.1. [18] For every integers n, k1 > 0, there is a function Perm : {0, 1}k1 → Sn com-
putable in worst-case polynomial-time (in k1 and n) such that Perm(Uk1) is an `-wise δ-dependent
permutation, where ` = dk1/ log ne and δ 6 exp(−`).

4.1.2 The encoder

Let s ∈ {0, 1}k be the message that we wish to encode. The encoder generates the encoded message Enc(s)
according to the following procedure.

1. Let Z ∼ Uk1 and sample a random permutation Π: [n] → [n] by letting Π := Perm(Z). Let
Z ′ := Enc1(Z) ∈ {0, 1}γ1n.

2. Let S′ = Enc2(s) ∈ {0, 1}n2 be the encoding of s using the LECSS code C2.

3. Partition S′ into blocks S′1, . . . , S
′
nb

, each of length b, and encode each block independently using C0

so as to obtain a string C = (C1, . . . , Cnb) ∈ {0, 1}n.

4. Let C ′ := Π(C) be the string C after its n coordinates are permuted by Π.

5. Output Enc(s) := (Z ′, C ′) ∈ {0, 1}N , where N := (1 + γ1)n, as the encoding of s.

A schematic description of the encoder summarizing the involved parameters is depicted in Figure 1.
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4.1.3 The decoder

We define the decoder Dec(Z̄ ′, C̄ ′) as follows:

1. Compute Z̄ := Dec1(Z̄ ′).

2. Compute the permutation Π̄ : [n]→ [n] defined by Π̄ := Perm(Z̄).

3. Let C̄ ∈ {0, 1}n be the permuted version of C̄ ′ according to Π̄−1.

4. Partition C̄ into n1/b blocks C̄1, . . . , C̄nb of size B each (consistent to the way that the encoder does
the partitioning of C̄).

5. Call the inner code decoder on each block, namely, for each i ∈ [nb] compute S̄′i := Dec0(C̄i). If
S̄′i =⊥ for any i, output ⊥ and return.

6. Let S̄′ = (S̄′1, . . . , S̄′nb) ∈ {0, 1}n2 . Compute S̄ := Dec2(S̄′), where S̄ =⊥ if S̄′ is not a codeword
of C2. Output S̄.

Remark 4.2. As in the classical variation of concatenated codes of Forney [13] due to Justesen [16], the
encoder described above can enumerate a family of inner codes instead of one fixed code in order to eliminate
the exhaustive search for a good inner code C0. In particular, one can consider all possible realizations of
Construction 1 for the chosen parameters and use each obtained inner code to encode one of the nb inner
blocks. If the fraction of good inner codes (i.e., those satisfying the properties listed in Lemma 3.5) is small
enough (e.g., 1/nΩ(1)), our analysis still applies. It is possible to ensure that the size of the inner code family
is not larger than nb by appropriately choosing the parameter η in Theorem 3.1 (e.g., η > 1/

√
n).

4.2 Analysis

In this section, we prove that Construction 2 is indeed a coding scheme that is non-malleable against bit-
tampering adversaries with rate arbitrarily close to 1. More precisely, we prove the following theorem.

Theorem 4.3. For every γ0 > 0, there is a γ′0 = γ
O(1)
0 and N0 = O(1/γ

O(1)
0 ) such that for every integer

N > N0, the following holds4. The pair (Enc,Dec) defined in Sections 4.1.2 and 4.1.3 can be set up to be
a strong non-malleable coding scheme against bit-tampering adversaries, achieving block length N , rate at
least 1− γ0 and error

ε 6 ε1 + 3 exp
(
− Ω

( γ′0rN
log3N

))
,

where r and ε1 are respectively the rate and the error of the assumed non-malleable coding scheme C1.

Proof of Theorem 4.3

It is clear that, given (Z ′, C ′), the decoder can unambiguously reconstruct the message s; that is, Dec(Enc(s)) =
s with probability 1. Thus, it remains to demonstrate non-malleability of Enc(s) against bit-tampering ad-
versaries.

Fix any such adversary f : {0, 1}N → {0, 1}N . The adversary f defines the following partition of [N ]:
4 We can extend the construction to arbitrary block lengths N by standard padding techniques and observing that the set of

block lengths for which construction of Figure 1 is defined is dense enough to allow padding without affecting the rate.

16



• Fr ⊆ [N ]; the set of positions frozen to either zero or one by f .

• Fl ⊆ [N ] \ Fr; the set of positions flipped by f .

• Id = [N ] \ (Fr ∪ Fl); the set of positions left unchanged by f .

Since f is not the identity function (otherwise, there is nothing to prove), we know that Fr ∪ Fl 6= ∅.
We use the notation used in the description of the encoder Enc and decoder Dec for various random vari-

ables involved in the encoding and decoding of the message s. In particular, let (Z̄ ′, C̄ ′) = f(Z ′, C ′) denote
the perturbation of Enc(s) by the adversary, and let Π̄ := Perm(Dec1(Z̄ ′)) be the induced perturbation of Π
as viewed by the decoder Dec. In general Π and Π̄ are correlated random variables, but independent of the
remaining randomness used by the encoder.

We first distinguish three cases and subsequently show that, in light of Lemma B.4, the analysis of
these cases suffices to guarantee non-malleability in general. The first case considers the situation where the
adversary freezes too many bits of the encoding. The remaining two cases can thus assume that a sizeable
fraction of the bits are not frozen to fixed values.

Case 1: Too many bits are frozen by the adversary.

First, assume that f freezes at least n − t2/b of the n bits of C ′. In this case, show that the distribution of
Dec(f(Z ′, C ′)) is always independent of the message s and thus the non-malleability condition of Defini-
tion 2.4 is satisfied for the chosen f . In order to achieve this goal, we rely on bounded independence property
of the LECSS code C2. We remark that a similar technique has been used in [12] for their construction of
non-malleable codes (and for the case where the adversary freezes too many bits).

Observe that the joint distribution of (Π, Π̄) is independent of the message s. Thus it suffices to show
that conditioned on any realization Π = π and Π̄ = π̄, for any fixed permutations π and π̄, the conditional
distribution of Dec(f(Z ′, C ′)) is independent of the message s.

We wish to understand how, with respect to the particular permutations defined by π and π̄, the adversary
acts on the bits of the inner code blocks C = (C1, . . . , Cnb).

Consider the set T ⊆ [nb] of the blocks of C = (C1, . . . , Cnb) (as defined in the algorithm for Enc) that
are not completely frozen by f (after permuting the action of f with respect to the fixed choice of π). We
know that |T | 6 t2/b.

Let S′T be the string S′ = (S′1, . . . , S
′
nb

) (as defined in the algorithm for Enc) restricted to the blocks
defined by T ; that is, S′T := (S′i)i∈T . Observe that the length of S′T is at most b|T | 6 t2. From the t2-wise
independence property of the LECSS code C2, and the fact that the randomness of Enc2 is independent of
(Π, Π̄), we know that S′T is a uniform string, and in particular, independent of the original message s. Let
CT be the restriction of C to the blocks defined by T ; that is, CT := (Ci)i∈T . Since CT is generated from
ST (by applying the encoder Enc0 on each block, whose randomness is independent of (Π, Π̄)), we know
that the distribution of CT is independent of the original message s as well.

Now, observe that Dec(f(Z ′, C ′)) is only a function of T , CT , the tampering function f and the fixed
choices of π and π̄ (since the bits of C that are not picked by T are frozen to values determined by the
tampering function f ), which are all independent of the message s. Thus in this case, Dec(f(Z ′, C ′)) is
independent of s as well. This suffices to prove non-malleability of the code in this case. However, in order
to guarantee strong non-malleability, we need the following further claim.
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Claim 4.4. Suppose t2 6 n2/2. Then, regardless of the choice of the message s, Pr[f(Z ′, C ′) = (Z ′, C ′)] =
exp(−Ω(γ0n)) =: ε′1.

Proof. We upper bound the probability that the adversary leaves C ′ unchanged. Consider the action of f
on C = (C1, . . . , Cnb) (which is a permutation of how f acts on each bit according to the realization of Π).
Recall that all but at most t2/b of the bits of C (and hence, all but at most t2/b of the nb blocks of C) are
frozen to 0 or 1 by f . Let I ⊆ [nb] denote the set of blocks of C that are completely frozen by f . We can
see that |I| > nb/2 by the assumption that t2 6 n2/2 = nbb/2.

In the sequel, we fix the realization of S′ to any fixed string. Regardless of this conditioning, the blocks
of C picked by I are independent, and each block is Ω(γ0B)-wise, exp(−Ω(γ0B))-dependent by property 4
of Lemma 3.5. It follows that for each block i ∈ I , the probability that Ci coincides with the frozen value
of the ith block as defined by f is bounded by exp(−Ω(γ0B)). Since the blocks of C picked by I are
independent, we can amplify this probability and conclude that the probability that f leaves (Ci)i∈I (and
consequently, (Z ′, C ′)) unchanged is at most

exp(−Ω(γ0B|I|)) = exp(−Ω(γ0Bnb/2)) = exp(−Ω(γ0n)) .

Consider the distribution Df,s in Definition 2.4. From Claim 4.4, it follows that the probability mass
assigned to same for this distribution is at most ε′1 = exp(−Ω(γ0n)) for every s, which implies

Df,s ≈ε′1 D(Dec(f(Enc(s)))),

since the right hand side distribution is simply obtained from Df,s by moving the probability mass assigned
to same to s. Since we have shown that the distribution of Dec(f(Enc(s))) is the same for every message s,
it follows that for every s, s′ ∈ {0, 1}k,

Df,s ≈2ε′1
Df,s′ ,

which proves strong non-malleability in this case.

Case 2: The adversary does not alter Π.

In this case, we assume that Π = Π̄, both distributed according to Perm(Uk1) and independently of the
remaining randomness used by the encoder. This situation in particular occurs if the adversary leaves the
part of the encoding corresponding to Z ′ completely unchanged. Our goal is to upper bound the probability
that Dec does not output ⊥ under the above assumptions. We furthermore assume that Case 1 does not
occur; i.e., more than t2/b = γ′2n2/b bits of C ′ are not frozen by the adversary.

To analyze this case, we rely on bounded independence of the permutation Π. The effect of the random-
ness of Π is to prevent the adversary from gaining any advantage of the fact that the inner code independently
acts on the individual blocks.

Let Id′ ⊆ Id be the positions of C ′ that are left unchanged by f . We know that |Id′ ∪ Fl| > t2/b.
Moreover, the adversary freezes the bits of C corresponding to the positions in Π−1(Fr) and either flips or
leaves the rest of the bits of C unchanged.

If |Id′| > n−δ2nb, all but less than δ2nb of the inner code blocks are decoded to the correct values by the
decoder. Thus, the decoder correctly reconstructs all but less than b(n − |Id′|) 6 δ2n2 bits of S′. Now, the
distance property of the LECSS code C2 ensures that the remaining errors in S′ are detected by the decoder,
and thus, in this case the decoder always outputs ⊥; a value that is independent of the original message s.
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Thus in the sequel we can assume that |Fr ∪ Fl| > δ2n2/b. Moreover, we fix randomness of the LECSS C2

so that S′ becomes a fixed string. Recall that C1, . . . , Cnb are independent random variables, since every
call of the inner encoder Enc0 uses fresh randomness.

Since Π = Π̄, the decoder is able to correctly identify positions of all the inner code blocks determined
by C. In other words, we have

C̄ = f ′(C),

where f ′ denotes the adversary obtained from f by permuting its action on the bits as defined by Π−1; that
is,

f ′(x) := Π−1(f(Π(x))).

Let i ∈ [nb]. We consider the dependence between Ci and its tampering C̄i, conditioned on the knowl-
edge of Π on the first i − 1 blocks of C. Let C(j) denote the jth bit of C, so that the ith block of C
becomes (C(1 + (i− 1)B), . . . , C(iB)). For the moment, assume that δ = 0; that is, Π is exactly a `-wise
independent permutation.

Suppose iB 6 `, meaning that the restriction of Π on the ith block (i.e., (Π(1 + (i− 1)B), . . . ,Π(iB))
conditioned on any fixing of (Π(1), . . . ,Π((i − 1)B)) exhibits the same distribution as that of a uniformly
random permutation.

We define events E1 and E2 as follows. E1 is the event that Π(1+(i−1)B) /∈ Id′, and E2 is the event that
Π(2 + (i− 1)B) /∈ Fr. That is, E1 occurs when the adversary does not leave the first bit of the ith block of
C intact, and E2 occurs when the adversary does not freeze the second bit of the ith block. We are interested
in lower bounding the probability that both E1 and E2 occur, conditioned on any particular realization of
(Π(1), . . . ,Π((i− 1)B)).

Suppose the parameters are set up so that

` 6
1

2
min{δ2n2/b, γ

′
2n2/b}. (6)

Under this assumption, even conditioned on any fixing of (Π(1), . . . ,Π((i− 1)B)), we can ensure that

Pr[E1] > δ2n2/(2bn),

and
Pr[E2|E1] > γ′2n2/(2bn),

which together imply

Pr[E1 ∧ E2] > δ2γ
′
2

( n2

2bn

)2
=: γ′′2 . (7)

We let γ′′2 to be the right hand side of the above inequality.
In general, when the random permutation is `-wise δ-dependent for δ > 0, the above lower bound can

only be affected by δ. Thus, under the assumption that

δ 6 γ′′2/2, (8)

we may still ensure that
Pr[E1 ∧ E2] > γ′′2/2. (9)
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Let Xi ∈ {0, 1} indicate the event that Dec0(C̄i) =⊥. We can write

Pr[Xi = 1] > Pr[Xi = 1|E1 ∧ E2] Pr[E1 ∧ E2] > (γ′′2/2) Pr[Xi = 1|E1 ∧ E2],

where the last inequality follows from (9). However, by property 5 of Lemma 3.5 that is attained by the
inner code C0, we also know that

Pr[Xi = 1|E1 ∧ E2] > 1/3,

and therefore it follows that
Pr[Xi = 1] > γ′′2/6. (10)

Observe that by the argument above, (10) holds even conditioned on the realization of the permutation Π
on the first i − 1 blocks of C. By recalling that we have fixed the randomness of Enc2, and that each inner
block is independently encoded by Enc0, we can deduce that, letting X0 := 0,

Pr[Xi = 1|X0, . . . , Xi−1] > γ′′2/6. (11)

Using the above result for all i ∈ {1, . . . , b`/Bc}, we conclude that

Pr[Dec(Z̄ ′, C̄ ′) 6=⊥] 6 Pr[X1 = X2 = · · · = Xb`/Bc = 0] (12)

6
(

1− γ′′2/6
)b`/Bc

, (13)

where (12) holds since the left hand side event is a subset of the right hand side event, and (13) follows from
(11) and the chain rule.

Case 3: The decoder estimates an independent permutation.

In this case, we consider the event where Π̄ attains a particular value π̄. Suppose it so happens that under this
conditioning, the distribution of Π remains unaffected; that is, Π̄ = π and Π ∼ Perm(Uk1). This situation
may occur if the adversary completely freezes the part of the encoding corresponding to Z ′ to a fixed valid
codeword of C1. Recall that the random variable Π is determined by the random string Z and that it is
independent of the remaining randomness used by the encoder Enc. Similar to the previous case, our goal is
to upper bound the probability that Dec does not output ⊥. Furthermore, we can again assume that Case 1
does not occur; i.e., more than t2/b bits of C ′ are not frozen by the adversary. For the analysis of this case,
we can fix the randomness of Enc2 and thus assume that S′ is fixed to a particular value.

As before, our goal is to determine how each block Ci of the inner code is related to its perturbation C̄i
induced by the adversary. Recall that

C̄ = π̄−1(f(Π(C))).

Since f is fixed to an arbitrary choice only with restrictions on the number of frozen bits, without loss of
generality we can assume that π̄ is the identity permutation (if not, permute the action of f accordingly),
and therefore, C̄ ′ = C̄ (since C̄ ′ = π̄(C̄)), and

C̄ = f(Π(C)).

For any τ ∈ [nb], let fτ : {0, 1}B → {0, 1}B denote the restriction of the adversary to the positions included
in the τ th block of C̄.
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Assuming that ` 6 t2 (which is implied by (6)), let T ⊆ [n] be any set of size b`/Bc 6 bt2/Bc 6 t2/b
of the coordinate positions of C ′ that are either left unchanged or flipped by f . Let T ′ ⊆ [nb] (where
|T ′| 6 |T |) be the set of blocks of C̄ that contain the positions picked by T . With slight abuse of notation,
for any τ ∈ T ′, denote by Π−1(τ) ⊆ [n] the set of indices of the positions belonging to the block τ after
applying the permutation Π−1 to each one of them. In other words, C̄τ (the τ th block of C̄) is determined
by taking the restriction of C to the bits in Π−1(τ) (in their respective order), and applying fτ on those bits
(recall that for τ ∈ T ′ we are guaranteed that fτ does not freeze all the bits).

In the sequel, our goal is to show that with high probability, Dec(Z̄, C̄ ′) =⊥. In order to do so, we first
assume that δ = 0; i.e., that Π is exactly an `-wise independent permutation. Suppose T ′ = {τ1, . . . , τ|T ′|},
and consider any i ∈ |T ′|.

We wish to lower bound the probability that Dec0(C̄τi) =⊥, conditioned on the knowledge of Π on the
first i − 1 blocks in T ′. Subject to the conditioning, the values of Π becomes known on up to (i − 1)B 6
(|T ′| − 1)B 6 ` − B points. Since Π is `-wise independent, Π on the B bits belonging to the ith block
remains B-wise independent. Now, assuming

` 6 n/2, (14)

we know that even subject to the knowledge of Π on any ` positions of C, the probability that a uniformly
random element within the remaining positions falls in a particular block ofC is at mostB/(n−`) 6 2B/n.

Now, for j ∈ {2, . . . , B}, consider the jth position of the block τi in T ′. By the above argument, the
probability that Π−1 maps this element to a block of C chosen by any of the previous j − 1 elements is at
most 2B/n. By a union bound on the choices of j, with probability at least

1− 2B2/n,

the elements of the block τi all land in distinct blocks of C by the permutation Π−1. Now we observe
that if δ > 0, the above probability is only affected by at most δ. Moreover, if the above distinctness
property occurs, the values of C at the positions in Π−1(τ) become independent random bits; since Enc
uses fresh randomness upon each call of Enc0 for encoding different blocks of the inner code (recall that the
randomness of the first layer using Enc2 is fixed).

Recall that by the bounded independence property of C0 (i.e., property 4 of Lemma 3.5), each individual
bit of C is exp(−Ω(γ0B))-close to uniform. Therefore, using Proposition B.5, with probability at least
1− 2B2/n− δ (in particular, at least 7/8 when

n > 32B2 (15)

and assuming δ 6 1/16) we can ensure that the distribution of C restricted to positions picked by Π−1(τ)
is O(B exp(−Ω(γ0B)))-close to uniform, or in particular (1/4)-close to uniform when B is larger than a
suitable constant. If this happens, we can conclude that distribution of the block τi of C̄ is (1/4)-close to a
sub-cube with at least one random bit (since we have assumed that τ ∈ T ′ and thus f does not fix all the bit
of the τ th block). Now, the cube property of C0 (i.e., property 3 of Lemma 3.5) implies that

Pr
Enc0

[Dec0(C̄τi) 6=⊥ |Π(τ1), . . . ,Π(τi−1)] 6 1/2 + 1/4 = 3/4,

where the extra term 1/4 accounts for the statistical distance of C̄τi from being a perfect sub-cube.
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Finally, using the above probability bound, and running i over all the blocks in T ′, and recalling the
assumption that C̄ = C̄ ′, we deduce that

Pr[Dec(Z̄ ′, C̄ ′) 6=⊥] 6 (7/8)|T
′| 6 exp(−Ω(`/B2)), (16)

where the last inequality follows from the fact that |T ′| > b`/bc/B.

The general case.

Recall that Case 1 eliminates the situation in which the adversary freezes too many of the bits. For the
remaining cases, Cases 2 and 3 consider the special situations where the two permutations Π and Π̄ used by
the encoder and the decoder either completely match or are completely independent. However, in general
we may not reach any of the two cases. Fortunately, the fact that the code C1 encoding the permutation Π
is non-malleable ensure that we always end up with a combination of the Case 2 and 3. In other words,
in order to analyze any event depending on the joint distribution of (Π, Π̄), it suffices to consider the two
special cases where Π is always the same as Π̄, or when Π and Π̄ are fully independent.

We have formalized the above intuition in Lemma B.4. As in Cases 2 and 3, let us assume that the
randomness of the code C2 is fixed so that S′ attains a fixed value. Moreover, let the bit-string R denote
the random coin flips used by all invocations of the inner encoder Enc0 by Enc. Consider the event that
the final decoder, given (Z̄ ′, C̄ ′), outputs ⊥. The indicator for this event can be written as a function g that
maps (Π, Π̄, R) to {0, 1}. The exact choice of g will depend on the fixed information; namely the particular
realization of S′ and the choice of the adversary f . From Case 2, we know that

Pr[g(Π,Π, R) 6= 1] 6
(

1− γ′′2/6
)b`/Bc

,

and from Case 3, we know that for every π̄ ∈ Sn,

Pr[g(Π, π̄, R) 6= 1] 6 exp(−Ω(`/B2)).

Since Π̄ depends on Π via a non-malleable code C1, we can ensure that for some independent random
variable Π0 ∈ Sn ∪ {same},

D(Π, Π̄) ≈ε D(Π, copy(Π0,Π)).

Therefore, we can apply Lemma B.4 to conclude that

Pr[Dec(Z̄ ′, C̄ ′) 6=⊥] = Pr[g(Π, Π̄, R) 6= 1] 6
(

1− γ′′2/6
)b`/Bc

+ exp(−Ω(`/B2)) + ε1 =: ε′2, (17)

where we recall that ε1 is the error of non-malleable code C1.
Therefore, for the general case (except when the adversary freezes too many bits, which is taken care

of by Case 1), non-malleability is ensured by letting the distribution Df be fully supported on the fixed
outcome ⊥. This, in fact, proves strong non-malleability as well. In order to see this, observe we have
shown that, for every s,

D(Dec(f(Enc(s)))) ≈ε′2 D(⊥) (18)

which implies that each Df,s as defined in Definition 2.4 is (2ε′2)-close to D(⊥). This is because the
distribution D(Dec(f(Enc(s)))) may be obtained from Df,s by moving the probability mass assigned to
same by Df,s to s, and (18) implies that this probability cannot be more than ε′2. Therefore, for every
s, s′ ∈ {0, 1}k,

Df,s ≈4ε′2
Df,s′ ,

hence proving strong non-malleability in this case.

22



Setting up the parameters

The final encoder Enc maps k bits into ( k

1− γ2
· 1

1− γ0

)
(1 + γ1)

bits. Thus the rate r of the final code is

r =
(1− γ0)(1− γ2)

1 + γ1
.

We set up γ1, γ2 ∈ [γ0/2, γ0] so as to ensure that

r > 1−O(γ0).

Thus, the rate of the final code can be made arbitrarily close to 1 if γ0 is chosen to be a sufficiently small
constant.

Before proceeding with the choice of other parameters, we recap the constraints that we have assumed
on the parameters; namely, (19), (20), 14, (8) (where we recall that γ′′2 = δ2γ

′
2( n2

2bn)2), and the assumption
of Claim 4.4 which are again listed below to assist the reader.

n > 32B2, (19)

` 6
1

2
min{δ2n2/b, γ

′
2n2/b}, (20)

` 6 n/2, (21)

δ 6 γ′′2/2, (22)

t2 6 n2/2. (23)

For the particular choice of γ0, there is a constant

B = O((log2 γ0)/γ0) (24)

for which Lemma 3.5 holds.
Note that the choice of B only depends on the constant γ0. If desired, a brute-force search5 can thus

find an explicit choice for the inner code C0 in time only depending on γ0. Moreover, (19) can be satisfied
as long as N > N0 for some N0 = poly(1/γ0).

Now, for the assumed value for the constant γ2 ≈ γ0, one can use Corollary A.2 and set up C2 to be an
(Ω(γ0n2/ log n2),Ω(γ0n2/ log n2))-linear error-correcting secret sharing code (note that this satisfies the
assumption (23)). Thus, we may assume that δ2 = γ′2 = Ω(γ0/ logN) (since, trivially, n2 6 N ).

Finally, using Theorem 4.1 we can set up Perm so that ` = Ω(γ1rn/ log n) = Ω(γ0rn/ log n) and
δ 6 1/n`. We can lower the value of ` if necessary (since an `-wise δ-dependent permutation is also
an `′-wise δ-dependent permutation for any `′ 6 `) so as to ensure that ` = Ω(γ0rn/(B log n)) and the

5Alternatively, it is possible to sample a random choice for C0 and then verify that it satisfies properties of Lemma 3.5, thereby
obtaining a Las Vegas construction which is more efficient (in terms of the dependence on the constant γ0) than a brute-force search.
The construction would be even more efficient in Monte Carlo form; i.e., if one avoids verification of the candidate C0.
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assumptions (20) and (21) are satisfied (recall that n2/b = nb = n/B and r 6 1). Observe that our choices
of the parameters implies that the quantity γ′′2 defined in (7) satisfies γ′′2 = Ω(γ2

0/(B logN)2). We see that
the choice of δ is small enough to satisfy the assumption (22).

By our choice of the parameters, the upper bound on the failure probability in (13) is(
1− γ′′2/6

)b`/Bc
= exp

(
− Ω

( γ3
0rN

B3 log3N

))
, (25)

which can be seen by recalling the lower bound on γ′′2 and the fact that N = n(1 + γ1) ∈ [n, 2n].
On the other hand, the upper bound on the failure probability in (16) can be written as

exp(−Ω(`/B2)) = exp
(
− Ω

( γ0rN

B3 logN

))
, (26)

which is dominated by the estimate in (25).
We also recall that the bound ε′1 obtained in Claim 4.4 for the error of the coding scheme when the

adversary freezes too many bits is exp(−Ω(γ0n)), which is again dominated by the estimate in (25).
Now we can substitute the upper bound (24) on B to conclude that (25) is at most

exp
(
− Ω

( γ6
0rN

log6(1/γ0) log3N

))
= exp

(
− Ω

( γ′0rN
log3N

))
,

where
γ′0 := (γ0/ log(1/γ0))6.

We conclude that the error of the final coding scheme (Enc,Dec) which is upper bounded by ε′1 + ε′2,
where ε′1 and ε′2 are from Claim 4.4 and (17), respectively, is at most

ε1 + 3 exp
(
− Ω

( γ′0rN
log3N

))
.

4.3 Instantiations

We present two possible choices for the non-malleable code C1 based on existing constructions. The first
construction, due to Dziembowski et al. [12], is a Monte Carlo result that is summarized below.

Theorem 4.5. [12, Theorem 4.2] For every integer n > 0, there is an efficient coding scheme C1 of block
length n, rate at least .18, that is non-malleable against bit-tampering adversaries achieving error ε =
exp(−Ω(n)). Moreover, there is an efficient randomized algorithm that, given n, outputs a description of
such a code with probability at least 1− exp(−Ω(n)).

More recently, Aggarwal et al. [1] construct an explicit coding scheme which is non-malleable against
the much more general class of split-state adversaries. However, this construction achieves inferior guaran-
tees than the one above in terms of the rate and error. Below we rephrase this result restricted to bit-tampering
adversaries.
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Theorem 4.6. [1, implied by Theorem 5] For every integer k > 0 and ε > 0, there is an efficient and
explicit6 coding scheme C1 of message length k that is non-malleable against bit-tampering adversaries
achieving error at most ε. Moreover, the block length n of the coding scheme satisfies

n = Õ((k + log(1/ε))7).

By choosing ε := exp(−k), we see that we can have ε = exp(−Ω̃(n1/7)) while the rate r of the code
satisfies

r = Ω̃(n−6/7).

By instantiating Theorem 4.3 with the Monte Carlo construction of Theorem 4.5, we arrive at the fol-
lowing corollary.

Corollary 4.7. For every integer n > 0 and every positive parameter γ0 = Ω(1/(log n)O(1)), there is an
efficient coding scheme (Enc,Dec) of block length n and rate at least 1− γ0 such that the following hold.

1. The coding scheme is strongly non-malleable against bit-tampering adversaries, achieving error at
most exp(−Ω̃(n)),

2. There is an efficient randomized algorithm that, given n, outputs a description of such a code with
probability at least 1− exp(−Ω(n)).

If, instead, we instantiate Theorem 4.3 with the construction of Theorem 4.6, we obtain the following
strong non-malleable extractor (even though the construction of [1] is not strong).

Corollary 4.8. For every integer n > 0 and every positive parameter γ0 = Ω(1/(log n)O(1)), there is
an explicit and efficient coding scheme (Enc,Dec) of block length n and rate at least 1 − γ0 such that
the coding scheme is strongly non-malleable against bit-tampering adversaries and achieves error at most
exp(−Ω̃(n1/7)).

5 Construction of non-malleable codes using non-malleable extractors

In this section, we introduce the notion of seedless non-malleable extractors that extends the existing defi-
nition of seeded non-malleable extractors (as defined in [10]) to sources that exhibit structures of interest.
This is similar to how classical seedless extractors are defined as an extension of seeded extractors to sources
with different kinds of structure7.

5.1 Seedless non-malleable extractors

Before defining seedless non-malleable extractors, it is convenient to introduce a related notion of non-
malleable functions that is defined with respect to a function and a distribution over its inputs. As it turns
out, non-malleable “extractor” functions with respect to the uniform distribution and limited families of
adversaries are of particular interest for construction of non-malleable codes.

6To be precise, explicitness is guaranteed assuming that a large prime p = exp(Ω̃(k + log(1/ε))) is available.
7For a background on standard seeded and seedless extractors, see [4, Chapter 2].
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Definition 5.1. A function g : Σ → Γ is said to be non-malleable with error ε with respect to a distribution
X over Σ and a tampering function f : Σ→ Σ if there is a distribution D over Σ ∪ {same} such that for an
independent Y ∼ D,

D(g(X), g(f(X))) ≈ε D(g(X), copy(Y, g(X))).

Using the above notation, we can now define seedless non-malleable extractors as follows.

Definition 5.2. A function NMExt : {0, 1}n → {0, 1}m is a (seedless) non-malleable extractor with respect
to a class X of sources over {0, 1}n and a class F of tampering functions acting on {0, 1}n if, for every
distribution X ∈ X, and for every tampering function f ∈ F , f : {0, 1}n → {0, 1}n, the following hold for
an error parameter ε > 0.

1. NMExt is an extractor for the distribution X ; that is, NMExt(X ) ≈ε Um.

2. NMExt is a non-malleable function with error ε for the distribution X and with respect to the tamper-
ing function f .

Of particular interest is the notion of two-source seedless extractors. This is a special case of Defini-
tion 5.2 where X is the family of two-sources (i.e., each X is a product distribution (X1,X2), where X1

and X2 are arbitrary distributions defined over the first and second half of the input, each having a sufficient
amount of entropy. Moreover, the family of tampering functions consists of functions that arbitrary but
independently tamper each half of the input. Formally, we distinguish this special case of Definition 5.2 as
follows.

Definition 5.3. A function NMExt : {0, 1}n×{0, 1}n → {0, 1}m is a two-source non-malleable (k1, k2, ε)-
extractor if, for every product distribution (X ,Y) over {0, 1}n × {0, 1}n where X and Y have min-entropy
at least k1 and k2, respectively, and for any arbitrary functions f1 : {0, 1}n → {0, 1}n and f2 : {0, 1}n →
{0, 1}n, the following hold.

1. NMExt is a two-source extractor for (X ,Y); that is, NMExt(X ,Y) ≈ε Um.

2. NMExt is a non-malleable function with error ε for the distribution (X ,Y) and with respect to the
tampering function (X,Y ) 7→ (f1(X), f2(Y )).

In general, a tampering function may have fixed points and act as the identity function on a particular set
of inputs. Definitions of non-malleable codes, functions, and extractors all handle the technicalities involved
with such fixed points by introducing a special symbol same. Nevertheless, it is more convenient to deal
with adversaries that are promised to have no fixed points. For this restricted model, the definition of two-
source non-malleable extractors can be modified as follows. We call extractors satisfying the less stringent
requirement relaxed two-source non-malleable extractors. Formally, the relaxed definition is as follows.

Definition 5.4. A function NMExt : {0, 1}n × {0, 1}n → {0, 1}m is a relaxed two-source non-malleable
(k1, k2, ε)-extractor if, for every product distribution (X ,Y) over {0, 1}n × {0, 1}n where X and Y have
min-entropy at least k1 and k2, respectively, the following holds. Let f1 : {0, 1}n×{0, 1}n and f2 : {0, 1}n×
{0, 1}n be functions such that for every x ∈ {0, 1}n, f1(x) 6= x and f2(x) 6= x. Then, for (X,Y ) ∼ (X ,Y),

1. NMExt is a two-source extractor for (X ,Y); that is, NMExt(X ,Y) ≈ε Um.
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2. NMExt is a non-malleable function with error ε for the distribution of (X,Y ) and with respect to all
of the tampering functions

(X,Y ) 7→ (f1(X), Y ), (X,Y ) 7→ (X, f2(Y )), (X,Y ) 7→ (f1(X), f2(Y )).

Remark 5.5. In order to satisfy the requirements of Definition 5.4, it suffices (but not necessary) to ensure
that

(NMExt(X ,Y),NMExt(f1(X ),Y)) ≈ε (Um,NMExt(f1(X ),Y)),

(NMExt(X ,Y),NMExt(X , f2(Y))) ≈ε (Um,NMExt(X , f2(Y))),

(NMExt(X ,Y),NMExt(f1(X ), f2(Y))) ≈ε (Um,NMExt(f1(X ), f2(Y))).

The proof of Theorem 5.10 shows that these stronger requirements can be satisfied with high probability by
random functions.

It immediately follows from the definitions that a two-source non-malleable extractor (according to
Definition 5.3) is a relaxed non-malleable two-source extractor (according to Definition 5.4) and with the
same parameters. However, non-malleable extractors are in general meaningful for arbitrary tampering
functions that may potentially have fixed points. Interestingly, below we show that the two notions are
equivalent up to a slight loss in the parameters.

Lemma 5.6. Let NMExt be a relaxed two-source non-malleable (k1− log(1/ε), k2− log(1/ε), ε)-extractor.
Then, NMExt is a two-source non-malleable (k1, k2, 4ε)-extractor.

Proof. Since the two-source extraction requirement of Definition 5.4 implies the extraction requirement of
Definition 5.3, it suffices to prove the non-malleability condition of Definition 5.3.

Let f1 : {0, 1}n → {0, 1}n and f2 : {0, 1}n → {0, 1}n be a pair of tampering functions, (X ,Y) be a
product (without loss of generality, component-wise flat) distribution with min-entropy at least (k1, k2), and
(X,Y ) ∼ (X ,Y). Define the parameters

ε1 := Pr[f1(X) = X],

ε2 := Pr[f2(Y ) = Y ].

Moreover, define the distributions X0,X1 to be the distribution of X conditioned on the events f1(X) = X
and f1(X) 6= X , respectively. Let Y0,Y1 be similar conditional distributions for the random variable Y and
the events f2(Y ) = Y and f2(Y ) 6= Y . Let X0, X1, Y0, Y1 be random variables drawn independently and in
order from X0,X1,Y0,Y1. Observe that (X ,Y) is now a convex combination of four product distributions:

(X ,Y) = α00(X0,Y0) + α01(X0,Y1) + α10(X1,Y0) + α11(X1,Y1)

where

α00 := ε1ε2,

α01 := ε1(1− ε2),

α10 := (1− ε1)ε2,

α11 := (1− ε1)(1− ε2).
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We now need to verify Definition 5.3 for the tampering function

(X,Y ) 7→ (f1(X), f2(Y )).

Let us consider the distribution

E01 := NMExt(f1(X0), f2(Y1)) = NMExt(X0, f2(Y1)).

Suppose α01 > ε, which implies ε1 > ε and 1 − ε2 > ε. Thus, X0 and Y1 have min-entropy at least
k1− log(1/ε) and k2− log(1/ε), respectively. In particular, since f2(Y1) has no fixed points, by Definitions
5.4 and 5.1, there is an distribution D01 over {0, 1}m ∪ {same} (where m is the output length of NMExt)
such that for an independent random variable E01 ∼ D01,

D(NMExt(X0, Y1),NMExt(f1(X0), f2(Y1))) ≈ε D(Um, copy(E01, Um)).

For α01 < ε, the above distributions may be 1-far; however, we can still write the following for general
α01 ∈ [0, 1]:

α01D(NMExt(X0, Y1),NMExt(f1(X0), f2(Y1))) ≈ε α01D(Um, copy(E01, Um)), (27)

where in the above notation, we interpret distributions as vectors of probabilities that can be multiplied by a
scalar (i.e., α01) and use half the `1 distance of vectors as the measure of proximity. Similar results hold for

E10 := NMExt(f1(X1), f2(Y0)) = NMExt(f1(X1),Y0)

and
E11 := NMExt(f1(X1), f2(Y1)),

so that for distributions D10 and D01 over {0, 1}m ∪ {same} and independent random variables E10 ∼ D10

and E11 ∼ D11,

α10D(NMExt(X1, Y0),NMExt(f1(X1), f2(Y0))) ≈ε α10D(Um, copy(E10, Um)), (28)

and
α11D(NMExt(X1, Y1),NMExt(f1(X1), f2(Y1))) ≈ε α11D(Um, copy(E11, Um)). (29)

We can also write, using the fact that NMExt is an ordinary extractor,

α00D(NMExt(X0, Y0),NMExt(f1(X0), f2(Y0))) ≈ε α00D(Um, Um). (30)

Denote by D′01 the distribution D01 conditioned on the complement of the event {same}. Thus, D′01 is
a distribution over {0, 1}m. Similarly, define D′10 and D′11 from D10 and D11 by conditioning on the event
{0, 1}m \ {same}. Observe that

D(Um, copy(E01, Um)) = p01D(Um, Um) + (1− p01)(Um,D′01), (31)

where p01 = Pr[E01 = same]. Similarly, one can write

D(Um, copy(E10, Um)) = p10D(Um, Um) + (1− p10)(Um,D′10) (32)

and
D(Um, copy(E11, Um)) = p11D(Um, Um) + (1− p11)(Um,D′11). (33)
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Now, we can add up (27), (28), (29), and (30), using the triangle inequality, and expand each right hand
side according to (31), (28), and (29) to deduce that

D(NMExt(X,Y ),NMExt(f1(X), f2(Y ))) ≈4ε pD(Um, Um) + (1− p)(Um,D′) (34)

for some distribution D′ which is a convex combination

D′ = 1

1− p
(α01(1− p01)D′01 + α10(1− p10)D′10 + α11(1− p11)D′11)

and coefficient p = α00 + α01p01 + α10p10 + α11p11. Let D be a distribution given by

D := (1− p)D′ + pD(same),

and observe that the right hand side of (34) is equal to D(Um, copy(E,Um)), where E ∼ D is an indepen-
dent random variable. Thus, we conclude that

D(NMExt(X,Y ),NMExt(f1(X), f2(Y ))) ≈4ε D(Um, copy(E,Um)),

which implies the non-malleability requirement of Definition 5.3.

5.2 From non-malleable extractors to non-malleable codes

In this section, we show a reduction from non-malleable extractors to non-malleable codes. For concrete-
ness, we focus on tampering functions in the split-state model. That is, when the input is divided into two
blocks of equal size, and the adversary may choose arbitrary functions that independently tamper each block.
It is straightforward to extend the reduction to different families of tampering functions, for example:

1. When the adversary divides the input into b > 2 known parts, not necessarily of the same length,
and applies an independent tampering function on each block. In this case, a similar reduction from
non-malleable codes to multiple-source non-malleable extractors may be obtained.

2. When the adversary behaves as in the split-state model, but the choice of the two parts is not known
in advance. That is, when the code must be simultaneously non-malleable for every splitting of the
input into two equal-sized parts. In this case, the needed extractor is a non-malleable variation of the
mixed-sources extractors studied by Raz and Yehudayoff [22].

We note that Theorem 5.7 below (and similar theorems that can be obtained for the other examples
above) only require non-malleable extraction from the uniform distribution. However, the reduction from
arbitrary tampering functions to ones without fixed points (e.g., Lemma 5.6) reduces the entropy requirement
of the source while imposing a structure on the source distribution which is related to the family of tampering
functions being considered.

Theorem 5.7. Let NMExt : {0, 1}n×{0, 1}n → {0, 1}k be a two-source non-malleable (n, n, ε)-extractor.
Define a coding scheme (Enc,Dec) with message length k and block length 2n as follows. The decoder Dec
is defined by Dec(x) := NMExt(x).

The encoder, given a message s, outputs a uniformly random string in NMExt−1(s). Then, the pair
(Enc,Dec) is a non-malleable code with error ε′ := ε(2k + 1) for the family of split-state adversaries.
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Proof. By construction, for every s ∈ {0, 1}k, Dec(Enc(s)) = s with probability 1. It remains to verify
non-malleability.

Take a uniformly random message S ∼ Uk, and let Y := Enc(S) be its encoding. First, we claim that
Y is close to be uniformly distributed on {0, 1}2n.

Claim 5.8. The distribution of Enc(S) is ε-close to uniform.

Proof. Let Y ′ ∼ U2n, and S′ := Dec(Y ′) = NMExt(Y ′). Observe that, since NMExt is an ordinary
extractor for the uniform distribution,

D(S′) ≈ε D(S) = Uk. (35)

On the other hand, since Enc(s) samples a uniformly random element of NMExt−1(s), it follows that
D(Enc(S′)) = D(Y ′) = U2n. Since S and S′ correspond to statistically close distributions (by (35)), this
implies that

D(Enc(S)) ≈ε D(Enc(S′)) = U2n.

In light of the above claim, in the sequel without loss of generality we can assume that Y is exactly
uniformly distributed at the cost of an ε increase in the final error parameter.

Let Y = (Y1, Y2) where Y1, Y2 ∈ {0, 1}n. The assumption that NMExt is a non-malleable extractor
according to Definition 5.3 implies that it is a non-malleable function with respect to the distribution of Y
and tampering function f : {0, 1}2n → {0, 1}2n

f(Y ) := (f1(Y1), f2(Y2)),

for any choice of the functions f1 and f2. Let Df be the distribution D defined in Definition 5.1 that assures
non-malleability of the extractor NMExt, and observe that its choice only depends on the functions f1 and
f2 and not the particular value of S. We claim that this is the right choice of Df required by Definition 2.3.

Let S′′ ∼ Df be sampled independently from Df . Since, by Definition 5.3, NMExt is a non-malleable
function with respect to the distribution of Y , Definition 5.1 implies that

D(NMExt(Y ),NMExt(f(Y ))) ≈ε D(NMExt(Y ), copy(S′′,NMExt(Y ))),

which, after appropriate substitutions, simplifies to

D(S,Dec(f(Enc(S)))) ≈ε D(S, copy(S′′, S)). (36)

Let s ∈ {0, 1}k be any fixed message. We can now condition the above equation on the event S = s,
and deduce, using Proposition B.3, that

D(s,Dec(f(Enc(s)))) ≈ε2k D(s, copy(S′′, s)),

or more simply, that
D(Dec(f(Enc(s)))) ≈ε2k D(copy(S′′, s)),

which is the condition required to satisfy Definition 2.3. It follows that (Enc,Dec) is a non-malleable coding
scheme with the required parameters.

We can now derive the following corollary, using the tools that we have developed so far.
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Corollary 5.9. Let NMExt : {0, 1}n×{0, 1}n → {0, 1}m be a relaxed two-source non-malleable (k1, k2, ε)-
extractor, where m = Ω(n), n − k1 = Ω(n), n − k2 = Ω(n), and ε = exp(−Ω(m)). Then, there is a
k = Ω(n) such that the following holds. Define a coding scheme (Enc,Dec) with message length k and
block length 2n (thus rate Ω(1)) as follows. The decoder Dec, given x ∈ {0, 1}2n, outputs the first k bits
of NMExt(x). The encoder, given a message x, outputs a uniformly random string in Dec−1(x). Then, the
pair (Enc,Dec) is a non-malleable code with error exp(−Ω(n)) for the family of split-state adversaries.

Proof. Take k = 1
2 min{m,n− k1, n− k2, log(1/ε)}, which implies that k = Ω(n) by the assumptions on

parameters. Furthermore, we let ε′ := 2−2k > ε.
Let NMExt′ : {0, 1}n×{0, 1}n → {0, 1}k to be defined from NMExt by truncating the output to the first

k bits. Observe that as in ordinary extractors, truncating the output of a non-malleable extractor does not
affect any of the parameters other than the output length. In particular, NMExt′ is also a relaxed two-source
non-malleable (k1, k2, ε)-extractor with output length Ω(n).

In fact, our setup implies that NMExt′ is a relaxed two-source non-malleable (n − log(1/ε′), n −
log(1/ε′), ε′)-extractor with output length Ω(n). By Lemma 5.6, we see that NMExt′ is a two-source
non-malleable (n, n, 4ε′)-extractor. We can now apply Theorem 5.7 to conclude that (Enc,Dec) is a non-
malleable code with error 4ε′(2k + 1) = Ω(2−k) = exp(−Ω(n)) for split-state adversaries.

5.3 Existence bounds on non-malleable extractors

So far we have introduced different notions of seedless non-malleable extractors without focusing on their
existence. In this section, we show that the same technique used by [10] applies in a much more general
setting and can in fact show that non-malleable extractors exist with respect to every family of randomness
sources and every family of tampering adversaries, both of bounded size. The main technical tool needed
for proving this general claim is the following theorem.

Theorem 5.10. Let X be a distribution over {0, 1}n having min-entropy at least k, and consider arbitrary
functions f : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}d. Let NMExt : {0, 1}n → {0, 1}m be a uniformly
random function. Then, for any ε > 0, with probability at least 1 − 8 exp(22m+d − ε32k−6) the following
hold.

1. The function NMExt extracts the randomness of X even conditioned on the knowledge of g(X); i.e.,

D(g(X),NMExt(X)) ≈ε D(g(X),Um). (37)

2. Let X ∼ X and U ∼ Um. Define the following random variable over {0, 1}m ∪ {same}:

Y :=

{
same if f(X) = X

NMExt(f(X)) if f(X) 6= X.
(38)

Then,
D(g(X),NMExt(X),NMExt(f(X))) ≈ε D(g(X), U, copy(Y, U)). (39)

3. NMExt is a non-malleable function with respect to the distribution X and tampering function f .
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Proof. The proof borrows ideas from the existence proof of seeded non-malleable extractors in [10]. The
only difference is that we observe the same argument holds in a much more general setting.

First, we observe that it suffices to prove (39), since (37) follows from (39). Also, the result on non-
malleability of the function NMExt follows from (39); in particular, one can use the explicit choice (38) of
the random variable Y in Definition 5.1. Thus, it suffices to prove (39).

Let X ∼ X , S := supp(X), and N := 2n, K := 2k, M := 2m, D := 2d. We will use the short-hands

NMExtg,f (x) := (g(x),NMExt(x),NMExt(f(x))).

and
NMExtg,f (x, y) := (g(x), y,NMExt(f(x))).

Let β = Pr[f(X) 6= X], and let us first assume that β > ε/2. Let X ′ be the distribution of X
conditioned on the event f(X) 6= X , and X ′ ∼ X ′. The min-entropy of X ′ is

H∞(X ′) > H∞(X )− log(1/β) > k − log(2/ε).

Instead of working with the tampering function f , for technical reasons it is more convenient to consider a
related function f ′ that does not have any fixed points. Namely, let f ′ : {0, 1}n → {0, 1}n be any function
such that {

f ′(x) = f(x) if f(x) 6= x,

f ′(x) 6= f(x) if f(x) = x.

By construction, Pr[f ′(X) = X] = 0.
Consider any distinguisher h : {0, 1}d × {0, 1}2m → {0, 1}. Let

P := Pr
X′

[h(NMExtg,f ′(X
′)) = 1]

and
P̄ := Pr

X′
[h(NMExtg,f ′(X

′, Um)) = 1].

Here, the probability is taken only over the random variable X ′ and with respect to the particular realization
of the function NMExt. That is, P and P̄ are random variables depending on the randomness of the random
function NMExt.

For x ∈ {0, 1}n, we define
Px := h(NMExtg,f ′(x)),

and
P̄x := |{y ∈ {0, 1}m : h(NMExtg,f ′(x, y)) = 1}|/M.

Again, Px and P̄x are random variables depending only on the randomness of the function NMExt. Since
for any x, NMExt(x) and NMExt(f ′(x)) are uniformly distributed and independent (due to the assumption
that f ′(x) 6= x), it follows that Px and P̄x have the same distribution as h(g(x),U2m) and thus

E[Px − P̄x] = 0.

As in [10], we represent f ′ as a directed graph G = (V,E) with V := {0, 1}n and (x, y) ∈ E iff
f ′(x) = y. By construction, G has no self loops and the out-degree of each vertex is one. As shown in [10,
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Lemma 39], V can be partitioned as V = V1 ∪ V2 such that |V1| = |V2| and moreover, restrictions of G to
the vertices in V1 and V2 (respectively denoted by G1 and G2) are both acyclic graphs.

For x ∈ {0, 1}n, define q(x) := Pr[X ′ = x]. It is clear that

P =
∑
x∈V

q(x)Px,

and,
P̄ =

∑
x∈V

q(x)P̄x,

and consequently,

P − P̄ =
∑
x∈V

q(x)(Px − P̄x) =
∑
x∈V1

q(x)(Px − P̄x) +
∑
x∈V2

q(x)(Px − P̄x).

Let x1, . . . , xN/2 be the sequence of vertices of G1 in reverse topological order. This means that for
every i ∈ [N/2− 1],

f ′(xi) /∈ {xi+1, . . . , xN/2}. (40)

In general, the random variables (Px − P̄x) are not necessarily independent for different values of x.
However, (40) allows us to assert conditional independence of these variables in the following form.

(∀i ∈ [N/2− 1]) : E[Pxi+1 − P̄xi+1 |P1, . . . , Pi, P̄1, . . . , P̄i] = 0. (41)

Therefore, the sequence ( j∑
i=1

q(xi)(Pxi − P̄xi)
)
j∈[N/2]

forms a Martingale, and by Azuma’s inequality, we have the concentration bound

Pr
[∣∣ ∑
x∈V1

q(x)(Px − P̄x)
∣∣ > ε/4

]
6 2 exp

(
− ε2/

(
32
∑
x∈V1

q2(x)
))
.

The assumption on the min-entropy of X ′, on the other hand, implies that∑
x∈V1

q2(x) 6 2−k+log(2/ε)
∑
x∈V1

q(x) 6 2/(εK).

A similar result can be proved for V2; and using the above bounds combined with triangle inequality we can
conclude that

Pr[|P − P̄ | > ε/2] 6 4 exp(−ε3K/64) =: η.

That is, with probability at least 1− η over the randomness of NMExt,∣∣∣Pr
X′

[h(NMExtg,f ′(X
′)) = 1]− Pr

X′
[h(NMExtg,f ′(X

′, Um)) = 1]
∣∣∣ 6 ε/2.

Since f and f ′ are designed to act identically on the support of X ′, in the above result we can replace f ′ by
f . Moreover, by taking a union bound on all possible choices of the distinguisher, we can ensure that with
probability at least 1− η2M

2D, the realization of NMExt is so that

D(g(X ′),NMExt(X ′),NMExt(f(X ′))) ≈ε/2 D(g(X ′), Um,NMExt(f(X ′))).
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We conclude that, regardless of the value of β, we can write

βD(g(X ′),NMExt(X ′),NMExt(f(X ′))) ≈ε/2 βD(g(X ′), Um,NMExt(f(X ′))), (42)

where in the above notation, probability distributions are seen as vectors of probabilities that can be multi-
plied by a scalar β, and the distance measure is half the `1 distance between vectors (note that (42) trivially
holds for the case β < ε/2).

Now we consider the distribution of X conditioned on the event f(X) = X , that we denote by X ′′.
Again, we first assume that 1− β > ε/2, in which case we get

H∞(X ′′) > k − log(2/ε).

If so, a similar argument as above (in fact, one that does not require the use of partitioning of G and using
Maringale bounds since the involved random variables are already independent) shows that with probability
at least 1− η2M

2D over the choice of NMExt, for U ∼ Um we have

D(g(X ′′),NMExt(X ′′),NMExt(f(X ′′))) ≈ε/2 D(g(X ′′), U, U).

For general β, we can thus write

(1− β)D(g(X ′′),NMExt(X ′′),NMExt(f(X ′′))) ≈ε/2 (1− β)D(g(X ′′), U, U). (43)

Now, we may add up (43) and (43) and use the triangle inequality to deduce that, with probability at least
1− 2η2M

2D over the choice of NMExt,

D(g(X),NMExt(X),NMExt(f(X))) ≈ε βD(g(X ′), U,NMExt(f(X ′)))+(1−β)D(g(X ′′), U, U). (44)

The result (39) now follows after observing that the convex combination on the right hand side of (44) is the
same as D(g(X), U, copy(Y,U)).

As mentioned before, the above theorem is powerful enough to show existence of any desired form of
non-malleable extractors, as long as the class of sources and the family of tampering functions (which are
even allowed to have fixed points) are of bounded size. In particular, it is possible to use the theorem to
recover the result in [10] on the existence of strong seeded non-malleable extractors by considering both the
seed and input of the extractor as an n-bit string, and letting “the side information function” g(X) be one
that simply outputs the seed part of the input. The family of tampering functions, on the other hand, would
be all functions that act on the portion of the n-bit string corresponding to the extractor’s seed.

For our particular application, we apply Theorem 5.10 to show existence of two-source non-malleable
extractors. In fact, it is possible to prove existence of strong two-source extractors in the sense that we may
allow any of the two sources revealed to the distinguisher, and still guarantee extraction and non-malleability
properties. However, such strong extractors are not needed for our particular application.

Theorem 5.11. Let NMExt : {0, 1}n×{0, 1}n → {0, 1}m be a uniformly random function. For any γ, ε > 0
and parameters k1, k2 6 n, with probability at least 1−γ the function NMExt is a two-source non-malleable
(k1, k2, ε)-extractor provided that

2m 6 k1 + k2 − 3 log(1/ε)− log log(1/γ),

min{k1, k2} > log n+ log log(1/γ) +O(1).

34



Proof. First we note that, similar to ordinary extractors, Definition 5.3 remains unaffected if one only con-
siders random sources where each component is a flat distribution.

Let K1 := 2k1 , K2 := 2k2 , N := 2n, M := 2m. Without loss of generality, assume that K1 and K2

are integers. Let X be the class of distributions X = (X1,X2) over {0, 1}n × {0, 1}n such that X1 and X2

are flat sources with min-entropy at least k1 and k2, respectively. Note that the min-entropy of X is at least
k1 + k2. Without loss of generality, we assume that k1 6 k2. The number of such sources can be bounded
as

|X| 6
(
N

K1

)(
N

K2

)
6 NK1+K2 6 N2K2 .

The family F of tampering functions can be written as F = F1 × F2, where F1 and F2 contain functions
that act on the first and second n bits, respectively. For the family F1, it suffices to only consider functions
that act arbitrarily on some set ofK1 points in {0, 1}n, but are equal to the identity function on the remaining
inputs. This is because a tampering function f1 ∈ F1 will be applied to some distribution X1 which is only
supported on a particular set of K1 points in {0, 1}n, and thus the extractor’s behavior on X1 is not affected
by how f1 is defined outside the support of X1. From this observation, we can bound the size of F as

|F| 6
(
N

K1

)
NK1 ·

(
N

K2

)
NK2 6 N2(K1+K2) 6 N4K2 .

Now, we can apply Theorem 5.10 on the input domain {0, 1}n×{0, 1}n. The choice of the function g is not
important for our result, since we do not require two-source extractors that are strong with respect to either
of the two sources. We can thus set g(x) = 0 for all x ∈ {0, 1}2n. By taking a union bound on all choices
of X ∈ X and (f1, f2) ∈ F , we deduce that the probability that NMExt fails to satisfy Definition 5.3 for
some choice of the two sources in X and tampering function in F is at most

8 exp(2M2 − ε3K1K2/16)|X| · |F| 6 8N4K2 exp(2M2 − ε3K1K2/64).

This probability can be made less than γ provided that

2m 6 k1 + k2 − 3 log(1/ε)− log log(1/γ),

k1 > log n+ log log(1/γ) +O(1),

as desired.

We are finally ready to prove that there are non-malleable two-source extractors defining coding schemes
secure in the split-state model and achieving constant rates; in particular, arbitrarily close to 1/5.

Corollary 5.12. For every α > 0, there is a choice of NMExt in Theorem 5.7 that makes (Enc,Dec) a non-
malleable coding scheme against split-state adversaries achieving rate 1/5− α and error exp(−Ω(αn)).

Proof. First, for some α′, we use Theorem 5.11 to show that if NMExt : {0, 1}n × {0, 1}n → {0, 1}k is
randomly chosen, with probability at least .99 it is a two-source non-malleable (n, n, 2−k(1+α′))-extractor,
provided that

k 6 n− (3/2) log(1/ε)−O(1) = n− (3/2)k(1 + α′)−O(1),

which can be satisfied for some k > (2/5)n − Ω(α′n). Now, we can choose α′ = Ω(α) so as to ensure
that k > 2n(1− α) (thus, keeping the rate above 1− α) while having ε 6 2−k exp(−Ω(αn)). We can now
apply Theorem 5.7 to attain the desired result.
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A Construction of LECSS codes

In this section, we recall a well-known construction of LECSS codes based on linear error-correcting codes
[12, 7]. Construction 2 defines the reduction.

The main tool that we use is the following lemma, which appears (in a slightly different form) in [12]
(which in turn is based on [7]). We include a proof for completeness.

Lemma A.1. The pair (Enc,Dec) of Construction 2 is a (δN/ log q, τN/ log q)-linear error-correcting
coding scheme.

Proof. First, observe that the linearity condition of Definition 2.9 follows from the fact that Enc is an
injective linear function of (s1, . . . , sk) as defined in Construction 2. Furthermore, the distance prop-
erty of the coding scheme follows from the fact that Enc encodes an error-correcting of distance at least
δn = δN/(log q).

In order to see the bounded independence property of Definition 2.9, consider a fixed message s ∈
{0, 1}K , which in turn fixes the vector (sk0+1, . . . , sk) in Construction 2. Let G0 denote the sub-matrix of
G defined by the first k0 rows. Consider the vector S′ ∈ Fnq given by

S′ := (s1, . . . , sk) ·G = (s1, . . . , sk0) ·G0 + a,

where a ∈ Fnq is an affine shift uniquely determined by s. Recall that the assumption on the dual distance
of the code spanned by the rows of G0 implies that every τn columns of G0 are linearly independent.
Since (s1, . . . , sk0) is a uniformly random vector, this implies that the restriction of S′ to any set of τn =
τN/(log q) coordinates is uniformly random (as a vector in Fτnq ). Since Enc(s) is the bit-representation of
S′, it follows that the random vector Enc(s) is (τN/(log q))-wise independent.
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• Given: A k × n matrix G over Fq, where q is a power of two and n > k such that

1. Rows of G span a code with relative distance at least δ > 0,

2. For some k0 ∈ [k], the first k0 rows of G span a code with dual relative distance at least τ > 0.

• Output: A coding scheme (Enc,Dec) of block length N := n log q and message length K :=
(k − k0) log q.

• Construction of the encoder Enc(s), given a message s ∈ {0, 1}K:

1. Pick a uniformly random vector (s1, . . . , sk0) ∈ Fk0q .

2. Interpret s as a vector over Fq; namely, (sk0+1, . . . , sk) ∈ Fq.
3. Output (s1, . . . , sk) ·G ∈ Fnq in binary form (i.e., as a vector in {0, 1}N ).

• Construction of the decoder Dec(w), given an input w ∈ {0, 1}N :

1. Interpret w as a vector (w1, . . . , wn) ∈ Fnq .

2. If there is a vector (s1, . . . , sk) ∈ Fkq such that (s1, . . . , sk) · G = (w1, . . . , wn), output
(sk0+1, . . . , sk) ∈ Fk−k0q in binary form (i.e., as a vector in {0, 1}K). Otherwise, output ⊥.

Construction 2: Explicit construction of LECSS codes from linear codes.

Instantiation using Reed-Solomon codes

A simple way to instantiate Construction 2 is using Reed-Solomon codes. For a target rate parameter
r := 1− α, we set up the parameters as follows. For simplicity, assume that n is a power of two.

1. The field size is q := n. Therefore, N = n log n.

2. Set k := dn(1− α/2)e and k0 := bαn/2c. Therefore, K := (k − k0) log q > n(1− α) log n, which
ensures that the rate of the coding scheme is at least 1− α.

3. SinceG generates a Reed-Solomon code, which is an MDS code, we have δ = 1−k/n > α/2−1/n =
Ω(α).

4. We note that the matrixG is a k×nVandermonde matrix whose first k0 rows also form a Vandermonde
matrix spanning a Reed-Solomon code. The dual distance of the code formed by the span of the first
k0 rows of G is thus equal to τ = k0/n > α/2− 1/n = Ω(α).

In particular, Lemma A.1 applied to the above set up of the parameters implies that the resulting coding
scheme is an (Ω(αN/ log n),Ω(αN/ log n))-linear error-correcting secret sharing code.

When n is not a power of two, it is still possible to pick the least q > n which is a power of two and
obtain similar results. In general, we have the following corollary of Lemma A.1.

Corollary A.2. For every integer n > 1 and α ∈ (0, 1), there is an explicit construction of a binary coding
scheme (Enc,Dec) of block length n and message length k > n(1−α) which is an (Ω(αn/ log n),Ω(αn/ log n))-
linear error-correcting secret sharing code.
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B Useful tools

In some occasions in the paper, we deal with a chain of correlated random variables 0 = X0, X1, . . . , Xn

where we wish to understand an event depending on Xi conditioned on the knowledge of the previous
variables. That is, we wish to understand

E[f(Xi)|X0, . . . , Xi−1].

The following proposition shows that in order to understand the above quantity, it suffices to have an estimate
with respect to a more restricted event than the knowledge of X0, . . . , Xi−1. Formally, we can state the
following, where X stands for Xi in the above example and Y stands for (X0, . . . , Xi−1).

Proposition B.1. Let X and Y be possibly correlated random variables and let Z be a random variable
such that the knowledge of Z determines Y ; that is, Y = f(Z) for some function f . Suppose that for
every possible outcome of the random variable Z, namely, for every z ∈ supp(Z), and for some real-valued
function g, we have

E[g(X)|Z = z] ∈ I. (45)

for a particular interval I . Then, for every y ∈ supp(Y ),

E[g(X)|Y = y] ∈ I.

Proof. Let T = {z ∈ supp(Z) : f(z) = y}, and let p(z) := Pr[Z = z|Y = y]. Then,

E[g(X)|Y = y] =
∑
z∈T

p(z)E[g(X)|Z = z].

Since by (45), each E[g(X)|Z = z] lies in I and
∑

z∈T p(z) = 1, we deduce that

E[g(X)|Y = y] ∈ I.

Proposition B.2. Let the random variable X ∈ {0, 1}n be uniform on a set of size at least (1− ε)2n. Then,
D(X) is (ε/(1− ε))-close to Un.

Proposition B.3. Let D and D′ be distributions over the same finite space Ω, and suppose they are ε-close
to each other. Let E ⊆ Ω be any event such that D(E) = p. Then, the conditional distributions D|E and
D′|E are (ε/p)-close.

Lemma B.4. Let g : Ω×Ω×Σ→ {0, 1} be a function for finite domains Ω and Σ, and suppose (X,X ′) ∈
Ω2 are jointly distributed random variables, and the random variable R ∈ Σ is sampled independently of
(X,X ′). Suppose there is an independent random variable X0 ∈ Ω ∪ {same} such that

D(X,X ′) ≈ε1 D(X, copy(X0, X)). (46)

Moreover, suppose
Pr[g(X,X,R) = 1] 6 ε2, (47)

and, for all x′ ∈ Ω,
Pr[g(X,x′, R) = 1] 6 ε3. (48)

Then,
Pr[g(X,X ′, R) = 1] 6 ε1 + ε2 + ε3.
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Proof. Let X ′′ := copy(X0, X). Using (46) we know that

D(X,X ′, R) ≈ε1 D(X,X ′′, R),

and thus the claim follows if we prove that

Pr[g(X,X ′′, R) = 1]leε2 + ε3.

We can decompose the probability into two disjoint events and write

Pr[g(X,X ′′, R) = 1] = Pr[g(X,X ′′, R) = 1 ∧X0 = same] + Pr[g(X,X ′′, R) = 1 ∧X0 6= same].

First, since X and X0 are independent, we see that

Pr[g(X,X ′′, R) = 1 ∧X0 = same] 6 Pr[g(X,X,R)] 6 ε2,

where the second inequality follows from (47). Furthermore, when X0 6= same, we have X ′′ = X0 and
thus

Pr[g(X,X ′′, R) = 1 ∧X0 6= same] = Pr[g(X,X0, R) = 1 ∧X0 6= same] 6 Pr[g(X,X0, R) = 1].

But since X and X0 are independent, the latter probability is bounded by ε3 for every realization of X0 by
(48). The result follows by combining the obtained inequalities.

Proposition B.5. LetD be the distribution of n independent bits, where each bit is ε-close to uniform. Then,
D is O(nε)-close to Un.

Proof. Let x ∈ {0, 1}n be any fixed string. Then

D(x) 6 (1/2 + ε)n = 2−n(1 + 2ε)n 6 2−n(1 +O(εn)).

Similarly, one can show that D(x) > 2−n(1 − O(εn)). Now, the claim follows from the definition of
statistical distance and using the above bounds for each x.

We will use the following tail bound on summation of possibly dependent random variables, which is a
direct consequence of Azuma’s inequality.

Proposition B.6. Let 0 = X0, X1, . . . , Xn be possibly correlated indicator random variables such that for
every i ∈ [n] and for some γ > 0,

E[Xi|X0, . . . , Xi−1] 6 γ.

Then, for every c > 1,

Pr[

n∑
i=1

Xi > cnγ] 6 exp(−nγ2(c− 1)2/2),

or equivalently, for every δ > γ,

Pr[

n∑
i=1

Xi > nδ] 6 exp(−n(δ − γ)2/2).

Proof. See [5] for a proof.
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In a similar fashion (using Azuma’s inequality for sub-martingales rather than super-martingales in the
proof), we may obtain a tail bound when we have a lower bound on conditional expectations.

Proposition B.7. Let 0 = X0, X1, . . . , Xn be possibly correlated random variables in [0, 1] such that for
every i ∈ [n] and for some γ > 0,

E[Xi|X0, . . . , Xi−1] > γ.

Then, for every δ < γ,

Pr[

n∑
i=1

Xi 6 nδ] 6 exp(−n(δ − γ)2/2).

The lemma below shows that it is possible to sharply approximate a distribution D with finite support
by sampling possibly correlated random variables X1, . . . , Xn where the distribution of each Xi is close to
D conditioned on the previous outcomes, and computing the empirical distribution of the drawn samples.

Lemma B.8. [5] Let D be a distribution over a finite set Σ such that |supp(D)| 6 r. For any η, ε, γ > 0
such that γ < ε, there is a choice of

n0 = O((r + 2 + log(1/η))/(ε− γ)2)

such that for every n > n0 the following holds. Suppose 0 = X0, X1, . . . , Xn ∈ Σ are possibly correlated
random variables such that for all i ∈ [n] and all values 0 = x0, x1 . . . , xn ∈ supp(D),

D(Xi|X0 = x0, . . . , Xi−1 = xi−1) ≈γ D.

Then, with probability at least 1− η, the empirical distribution of the outcomes X1, . . . , Xn is ε-close to D.

41

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


