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PCPs via low-degree long code and
hardness for constrained hypergraph colaring
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Abstract

We develop new techniques to incorporate the recently meghtshort code” (a low-degree version
of the long code) into the construction and analysis of P@R$é classical “Label Cover + Fourier
Analysis” framework. As a result, we obtain more size-effiti PCPs that yield improved hardness
results for approximating CSPs and certain coloring-typbdlems.

In particular, we show a hardness for a variant of hypergagoring (with hyperedges of sizg,
with a gap betweer? and exp(2(vV1eeles N)) number of colors wheréV is the number of vertices.
This is the first hardness result to go beyond thgog N) barrier for a coloring-type problem. Our
hardness bound is a doubly exponential improvement ovesréhagously knownO (log log N')-coloring
hardness foe-colorable hypergraphs, and an exponential improvemeet the (log N)*()-coloring
hardness fo(1)-colorable hypergraphs. Stated in terms of “covering ceaxip),” we show that for
6-ary Boolean CSPs, it is hard to decide if a given instanceifeptly satisfiable or if it requires more
than2%(vIeglog N) assignments for covering all of the constraints.

While our methods do not yield a result for conventional hgpaph coloring due to some technical
reasons, we also prove hardnesglog N)*(Y)-coloring 2-colorable6-uniform hypergraphs (this result
relies just on the long code).

A key algebraic result driving our analysis concerns a vew-soundness error testing method for
Reed-Muller codes. We prove that if a function: F* — I is 22(d) far in absolute distance from
polynomials of degree: — d, then the probability thadeg(3g) < m — 3d/4 for a random degreé/4
polynomialg is doubly exponentiallgmall ind.
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1 Introduction

Hardness of approximating constraint satisfaction problems is an ardmthst¢en a great deal of progress in
recent years. Following the pioneering works([B, 9], the standarddwark for proving inapproximability
has been via a combination of Label Cover (or special cases suchi@seldamed [14]) and the long code.
For proving constant gap inapproximability, the relative inefficiency ofdhg code is negligible. However,
it becomes a serious bottleneck for non-constant parameter settingsbwiastsly, for proving hardness of
approximate coloring. For this set of problems, there is an exponentialudnlylexponential gap between
the best known approximation algorithms (which requifé?) colors forn-vertex (hyper)graphs) and the
best known hardness results (which at best only rule out effioi@og n)-coloring)

A very intriguing object called the “short code” was introduced and stlotig2]. This is a puncturing
of the long code to locations indexed by low-degree polynomials, and to betffect this, in this work we
refer to the short code as tlev-degree long codeThis code was introduced inl[2] as a “derandomization
of the long code, where it was used it to establish exponentially stronggraititg gaps for Uniqgue Games,
construct small set expanders whose Laplacians have many smallaigesnand obtain a more efficient
version of the KKMO alphabet reduction [15] for Unique Games. Thetstmde was used in conjunc-
tion with a pseudorandom generator for Lipschitz functions of polynomiaghtov an integrality gap of
exp( Omega(y/loglogn)) for the Goemans-Linial semidefinite program for Uniform Sparsest[Cilt |

In this work we develop new techniques to use the low-degree long coddutions from Label Cover
and obtain the following (quasi-)NP-hardness results. Our main resalts ar

e Ahardness for aariantof approximate hypergraph coloring, with a gap betwandexp(2£X(vioglog N))
number of colors (wheré/ is the number of vertices). This is tfiest inapproximability result to go
beyond the logarithmic barrier for a coloring-type problem.

e A hardness for gap, 12 + )-4SAT fore = exp(—2(VIeelosN)) - This improves upon Bistad’s

result [9] where= = 1/(log N )¢ for some constant > 0.
e A hardness for approximate hypergraph coloring, with a gap bet&ead (log N)*(!) colors.

Adapting a long-code test into the low-degree long code setting turns oatriorbtrivial, and there seems
to be no general recipe (as of yet) for doing so. For instance, whiletitaightforward to import Estad’s
classic gapl — ¢, 1/2 4 6)-3LIN result to the low-degree long code setting (we discuss this in App&id
as a “warm-up”), the above results require a more carefully tailor-madstreation. For certain PCPs in
Hastad’s work, such as 3SAT asset splitting, we do not yet know how to adapt them to work with the low-
degree long code. We comment that invariance-principle based andlykis {rery powerful for analyzing
dictatorship tests, and was used by [2] for analyzing their constructideertheless, for obtaining strong
parameters we find that working directly with the Fourier expressions gisea better handle on the kind
of noise analysis that is needed.

For proving these results, we develop a “folding” mechanism for the legrek long code that works
with available label cover constraints. The folding ensures that nantaerweightFourier coefficients
are supported only on assignments satisfying the associated constrdiis,amables decoding a valid
assignment from any such Fourier coefficient. One of the important coemp® of any long-code test is the
noise, which becomes especially subtle when aiming for perfect complsteftesdegree restriction in the
low-degree long code makes it harder to control the correlations betwaeienis functions via appropriately
chosen noise. Finally, to analyze some of the noise expressions in oyatestspecially to be able to get
stronger parameters, we prove some new results on local testing Reed dddiss, which we discuss next.
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1.1 Local testing of Reed Muller codes oveF,

One of the key insights in 2] was a connection between the analysis of thédgvee long code and Reed-
Muller testing. Let us denote b (m, r) the functiondFy* — F that have degre€ r. For functionss, g :
F3* — Ty, denotexs(g) = (—1)2”@’2“ P@9@) gpecifically, given & that is far fromP(m, m — d — 1)
polynomials, they noted that one can bound the expectatipy s(x)]| for a randomlow-weight by
appealing to a powerful result ofl[4] about testing Reed-Muller codlbss is formally stated in Proposition
[I4. Using such a noise enables attenuating the contribution of large weight Fourier coefficieotgever,

it causes the test to have imperfect completeness. To obtain our lowedegrecode based constructions
with perfect completeness, we prove a new result concerning testirdyReker codes, stated below.

Theorem 1. Let d be a multiple of4. LetS : Fy* — Fy be 2%/2-far from P(m,m — d — 1). Then for
uniformly random polynomialg € P(m,d/4) andh € P(m,3d/4), we have

E| [Ebs(om)]]] <27+

The key quantitative aspect of the above result isdibebly exponentiadlecay ind. To obtain such a
bound, we observe that the set of “bad” choices,dbr which 3¢ has degreen — 3d/4 — 1 (i.e., one lower
than what one expects), isabspacef P(m, d/4). We then lower bound the co-dimension of this subspace
by 294, We do this via a recursive approach to passato similar problems in dimensiofin — 1), by
making use of the main technical ingredientlih [4] which argues the abardzrhyperplanesl such that
Biais 24/2=2_far from polynomials of degree: — d — 1 on one less variable.

We note that a “robust” version of the above theorem, which arguegthaill also likely befar from
P(m,m—3d/4—1), would be nice to have (as an interesting algebraic statement in itself). @Quedace
such a claim from the above-mentioned result of [4] which proves suobuwst version foy € P(m, 1),
but this will only give an upper bound af ©(9) on the desired probability.

1.2 Inapproximability Results

To describe our results let us first briefly recall the notion of coveri8g€from([6]. Ag-ary o-CSP is given
by a¢-uniform hypergraph where each hyperedge is associated with &a@obg. The covering number
of a CSP is the minimal number of assignments to the vertices so that eachdggereovered by at least
one assignment, see also Definitidn 1. If one views a hypergraph colastance as a not-all-equal CSP,
then the covering number is exactly log of the coloring number. This was theatioti of [8] and later([B]
for studying the notion of covering.

In light of the lack of progress on hardness of approximate coloringpdthn graphs and hypergraphs,
[6] suggested studying the hardness of gap covering problem, in thee dfogpproaching a potentially
optimal gap-covering hardness resultlofs. Q2(log V'), which corresponds to a hardness gap¢f) vs. a
polynomial number of colors. Given the current state of the art, they meditivat even obtaining a gap of
O(1) vs. w(loglog N) would be interesting.

Theorem 2. Assume tha P does not admit2°"¥'**"**™ time algorithms (note that this runtimesig(° ).

Given a6-ary CSP of sizeV, no polynomial-time algorithm can decide if it is perfectly satisfiable, or if its
covering number is at leagfX(vioglog N)



Prior to this work the best known gap-covering hardness@@s vs. O(loglog N) (implicit in [12])
and1 vs. O(logloglog N) (implicit in [8]). Both these results ir [8, 12] in fact applied to coloring (
uniform) hypergraphs. It remains to be seen if a result similar to Thelorean Be obtained for hypergraph
coloring. This would be a major quantitative jump, breaking the barrié}(@g N') colors.

We remark that the result above is obtained féraxy constraint that is the disjunction of three inequality
constraints. Since inequality makes sense over any alphabet size,rotiengaof this problem directly as
a coloring-type problem, instead of a covering problem. This is alwaysilesnvhen the constraints are
so-called “equality constrained languages” [5], and we give an atteen@rmulation of this theorem as a
coloring problem in Theorem 23.

Along the way to proving Theorel 2, we establish the following inapproximalbéiylt for 4SAT with
perfect completeness. We present this result first to illustrate our tem®ig the basic setting of 4SAT,
before applying them to a covering 6-CSP to deduce Theblem 2.

Theorem 3. Assume thaNP does not admit®(°2™) time algorithms. Given an instance of 4SAT of size
N, there is no polynomial time algorithm to distinguish between the following twescase

e The instance is satisfiable.

V1oglog N)

e Every assignment satisfies at most a fract%éwr -2 of the clauses.

We remark a similar result but without the perfect completeness would rerme significantly easier
to prove. We show in Appendix]A a proof for the quasi-NP-hardnes3Ldfl with similar sub-constant
parameters that is a direct adaptation ébkad’s 3LIN proof. A direct adaptation of the perfect completeness
tests seems less forthcoming due to the limitation on the noise imposed by workingenstincitt code. It is
worth mentioning that even for long code based constructions, pedetyileteness tends to be significantly
more difficult to ensure, often requiring additional technical elements$ aasmoothness of Label Cover
projections[[18], and/or picking functions whose bias itself is sampled frarafully chosen distributions
as in [9, Sections 6,7],[10].

Fortunately, for 4SAT one can establish hardness avoiding the more categli@chnical elements| [9,
Thm. 6.2] (this would yield an inapproximability factdg + m for some small absolute constant
¢ > 0). Even so, adapting this to the low-degree long code setting involves saefalaesign choices, as
multiplying two functions, which seems like an essential component whengbedmpleteness is desired,
increases the degree. This necessitates restricting certain functionstésthe be of smaller degree. In
order to ensure that this does not bias the query pattern to a small portioa lofv-degree long code, we
guery the smaller degree functions iseparatdow-degree long code of smaller degree. This “multipartite”
structural restriction is what precludes us from extending our resultdeering 6-CSP (Theore 2) to a
result about hypergraph coloring. (Clearly, if the variables of ecerystraint straddles two or more parts,
then the associated hypergraph is trivigiigolorable.)

Finally, we also include a result on the hardness of hypergraph colofihig result does not rely on
the low-degree long code and is just based on techniqueastad’s 1997 paper][9]. However, as the result
statement is not explicit in the literature, we include it here along with a proopipeAdiXB. (Also, this
test paved the way for the version with the low-degree long code stateccor&i 2.)

Theorem 4. Assume thaNP does not admin©(°glg™) time algorithms. There is an absolute constant
¢ > 0 such that the following holds. Given6auniform hypergraph onV vertices, there is no polynomial
time algorithm to distinguish between the following two cases:



e The hypergraph can be colored wittolors so that every hyperedge is bichromatic.

e The hypergraph does not have an independent set Mjtfiog V)¢ vertices, and in particular any
coloring of the vertices witilog V)¢ colors will have a monochromatic hyperedge.

We note thatlog N)Q(l) colors is currently the strongest quantitative bound on hardness ferdngmph
coloring. Khot obtained a similar result using the “split code” for coloriagolorable4-uniform hyper-
graphsl[12]. The above statement is incomparable as it appliesatorable hypergraphs, albeit of larger
uniformity. For 3-uniform hypergraphs, hardness @f /log log N )-coloring 2-colorable hypergraphs is
shown in [7], and quasi-NP-hardness(lfg log N')/?-coloring for the3-colorable case is shown in[13]. A
recent result [16] shows that fatmost2-colorable4-uniform hypergraphs, where the hypergraph becomes
2-colorable upon removal of anfraction of vertices (and all incident hyperedges), it is quasi-NR-tar
find an independent set of si2é/2(°s )"~ for arbitrary constants, v > 0.

1.3 Organization

We begin in Sectiohl2 with background information on label cover and GB®#&w-degree long code and
its connection to Reed-Muller testing, and describe our folding mechanisthddow-degree long code.
Our new algebraic result on testing Reed-Muller codes (Thebitem 1piegrin Sectiof]3. In Sectidd 4,
we prove Theorerm3 on the hardness of approximating satisfiable instahd&AT. We prove the result
for covering 6-CSP (Theorefd 2) in Sectibh 5. We present the extensibiastad’s 3LIN result to the
low-degree long code setting in Appenfik A. Finally, Theofém 4 on hasloghypergraph coloring, which
does not rely on the low-degree long code, is proved in Appdndix B.

2 Preliminaries

2.1 Label Cover and its hardness

A label cover instance is given by a bipartite graph= (U, V, E), two alphabetsZ;; and ¥y and a
projection constraint,,,, : Xy — Xy per edgewv € E. The goal is to assign labels to the vertices in a way
that maximizes the number of satisfied constraints.

We next state a theorem about the NP-hardness of label cover, Wieelabel cover has a concrete
structure that is convenient for use with the low-degree long code.

Theorem 5 (Hardness of Label Coverl et/ € N be a parameter. There is a polynomial-time reduction
from a 3SAT instance of sizeto a label cover instance of sizé’(¥) that is specified by

e A constraint graphG = (U, V, E), Xy = F3¢ and Xy = FS.
e Everyu € U carries/ functionsfl("), el fg(“) :F3 — Fa.

e Every edgewv € FE carries a projection mapping defined by a subsgt C [3/], |mu| = ¢, that
contains exactly one element in each triple of indi¢®&s+ 1,3i + 2,3i + 3), fori = 0,...,¢ — 1.
The constraint on an edge is said to be satisfied lay(F3)* andb € F if

f1(u)(a1) =...= fgu)(ag) =0 and Tuv(a) =b .



The label cover instance has the following completeness and soundmeksons:

e If the 3SAT instance is satisfiable, then there is an assignment for the @kl iostance satisfying
every constraint.

e If the 3SAT instance is unsatisfiable, then every assignment for the s instance satisfies at
most2~ %) fraction of the constraints.

This theorem is obtained from standard techniques: start with an NPiisteshce of gap-3SAT, and

then perform/-parallel repetition[[lL]. The functionﬁf“), cey fe(“) associated with af+tuple » of clauses
check that the clauses are satisfied.

2.2 CSPs, Covering CSPs, and coloring problems

Let X = {z1,...,x,} be a set ofn boolean variables angd : {0,1}¢ — {0,1} be a predicate. Ao-
constraintover X is an equation of the fornp (z;,,...,z;,) = 1, for someiy,...,i; € [n], where[n]
denote{1,2,...,n}. A p-CSP instancé&’ is a set ofp-constraints oveX .

It is standard to denote by 4SAT the CSP where each constraint is défnadlisjunction of four
variables or their negations, and by 3LIN the CSP where each conssrdigfined by a linear equation over
three variables modulo 2.

Let Aj,..., A € {0,1}" be a set of assignments far. We say thatd,, ..., A, coverthe instance”
if for every constraint inC', there exists € [k] such thatd; satisfies the constraint. Th@vering number
of C, denoted/(C'), is smallest numbek of assignments foX such that each constraint is satisfied by at
least one of the assignments. We denote by cevigre problem of finding the covering number of a given
CSP. The gap problem is defined as follows

Definition 1 (gap-covery). Letc < s € N, and lety be a predicate. Given a-CSP instanc&”’, decide
between

e Yescase v (C) < c. l.e., there exists a set of at mestssignments that covefs.

e Nocase v (C) > s. l.e., no set of at mostassignments covers.

2.3 The low-degree long code

Notation. We denote the field with two elements By. For a positive integem, we denote byF,, thelF,-
vector space of functioris]” — Fy. We can equipF,, with the Hamming metric by defining far, h € F,,,
their distance\ (g, h) to be the number of € FJ* such thay(z) # h(z). For a subsel C F', we denote
by g4 be the functiory restricted toA. The distance between, andh 4, A(gj4, hya), is the number of
x € A such thay(x) # h(x).

Forg € F,, andH C F,,, we defineA(g, H) = minpey A(g, h). We sayg is A-far from a subset
H C FnisA(g,H) > A; otherwise we say is A-close to.

Every functionf € F,,, can be uniquely expressed as a multilinear polynomial Byef degree at most
m. We will be interested in those functions which have much lower degree.

Definition 2 (Reed-Muller code) We denote by’(m, d) the space of all functiong : F;* — Fy that
have degree at most The evaluations of the polynomials #(m, d) at all points inF5* gives the binary
m-variate Reed-Muller code of degrdeusually denoted aBRM(m, d).
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Note thatP(m,d) is a subspace af,,. It is well-known and easy to see that the dual subspace of
P(m,d), denotedP(m, d)*, is the subspac&(m,m — d — 1) of F,, consisting of polynomials of degree
less thanm — d.

We will now define the low-degree long code first introduced In [2], wtieis called the “short code.”

Definition 3. Letm > d be positive integers, and late F5*. For integersm, d, the (n-variate degreed)
low-degree long code af, denotedsC,, 4(a), is a function fromP(m, d) to I, defined by

SCi,a(a)(9) = (1)@ forg € P(m,d).
Whenm, d are clear from context, we will refer to the low-degree long cod8@@:).

For 5 : F3* — [Fy, theweightof 3, denotedwt(3), is the number ok € F3* such that3(x) = 1. In
other wordswt(3) = A(f,0) is the distance of from the zero polynomial.

Definition 4 (Character set)For positive integersn > d, we define by\(m, d) the set of functiong :
F3? —>E|IF2 which are the minimum weight functions (ties broken arbitrarily) in the code®gm, m —d—1)
in Fo,

By definition, for eachs € A(m,d), the closest polynomial (in Hamming distance) of degree at most
m — d — 1to (3 is the zero polynomial. The functions i(m, d) correspond to the “Voronoi cell” of the
zero polynomial for the set of poin#3(m, m — d — 1), under the metric\(-, -).

For functionsg, ¢ : F5* — F9, we define the “character mapping(g) by

X,B(g) _ (_1)er]Fgl B(x)g(x) )

The following are easy consequencesRgin, d)* being equal taP(m, m —d — 1).

Fact 6. For 5 : F* — Fo, we have

Elxs(9)] =

g 0 otherwise

{ 1 ifpe Plmym—d—1)
where the expectation is taken over a randgrm P(m, d).

Fact 7. For /51, 52 € A(m,d), we have
{ 1 if B =5

Elxs, (9)xs,(9)] = 0 otherwise

g
where the expectation is taken over a randgr P(m, d).
By well-known facts from the character theory of finite abelian grougshave:

Fact 8. Every function4 : P(m,d) — R admits the “Fourier” expansion

Alg) = . APB)xslg),

BEA(m,d)

where the Fourier coefficients are given by the inversion formi(la)) = Eq[A(9)x5(g)], with the expec-
tation taken over a uniformly randome P(m, d).

1SinceP(m, d)* = P(m,m — d — 1), one hasA(m, d)| = |Fm|/|P(m,m — d — 1)| = | P(m, d)| = 2%i=0 (5),
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Finally, we consider two functions over different-dimension domaihs,P(m,d) — {—1,1} andB :
P(¢,d) — {—1,1} wherem > (. Suppose we have a projection F}* — F defined byr(z1, ..., z,) =
(i, ..., z;,) for some indiced < i; < --- < iy < m. The projectionr allows us to lift a polynomialf
P(¢,d) to the larger domain without changing its degree, defirfingr € P(m,d) by fon(z) = f(n(x)).
Now, for 3 : F — Ty,

o(fom) = (~n)FeepUem@He)  (qyiyer [0 2mermon PO
2 yert J () m2(8)(y)
= (—1) e T e () 1)

where we definerz () : Fy — Fo by m2(8)(y) = Y- ,ep-1(, B(x) mod 2.
Fact 9. Let € A(m,d) and leta € A(¢,d). Then

1 if a=ma(p)
0 otherwise.

E [xs(fom)xa(f)] = {

fepP(t,d)

2.4 Folding properties of low-degree long code

Folding over constraints. Letpy,...,pr € P(m,3) be given. Let

k

I={p1,....,p) = {Zpi%’

=1

qiEP(m,d—B)},

clearly a linear space. We defidgm, d)/I to be the collection of cosets éfin P(m,d), and we denote
by p + I the coset op € P(m,d).

Definition 5 (Folding). A functionA : P(m,d) — R is folded overl = (p1,...,px) if
Vp,p' € P(m,d), p-p el = Alp) =AQp).
Ais folded ove{ —1,1} if A(g) = —A(1+ g) forall g € P(m,d).

Fact 10. Leta € FJ'. If A = SC(a) andp;(a) = 0 for all i € [k], thenA is folded over(pi,...,px) and
over{—1,1}.

We next show that a function folded ovércannot have weight on small Fourier coefficients that are
non-zero ornl.

Claim 11. Let3 : FJ* — Fy havewt(8) < 2973, and suppose there is an element F3* with (z) = 1
for which there is somg; such that;(z) # 0. Then ifA is folded over then

o~

A(B) = IgE[xxs(g)A(g)} =0.
Proof. Let X = {x € F}"| fB(x) = 1 and3i,p;(z) # 0}. Choose some € X and leti be such that
pi(a) = 1. Letp = ¢gp; € I whereq is a polynomial that vanishes on all pointsX¥fexcepta. ¢ has degree
at mostd — 3 as long ag.X| < wt(8) < 2¢73. Pair each functioy € P(m,d) with g + p. By folding,
A(g) = Alg +p), butxs(g + p) = x5(9)xs(p) = —xs(9), SOA(B) = 0. O



Folding over “true”.  Let us denote by’ (m, d) the set obtained by choosing exactly one function out of
each pairg, 1 + g € P(m,d). Similarly, denote byP’(m, d)/I the set obtained by choosing exactly one
coset out of each pair+ 1,1+ g+ 1 € P(m,d)/I.

Given a functiond’ : P'(m,d) — {—1,1} it can be naturally extended t4 : P(m,d) — {-1,1}
by settingA(1 + g) = —A’(g). A function A : P(m,d) — {—1,1} is said to be folded ovef—1, 1} if
A(g) = —A(1 + g) for all g. If Ais folded over{—1,1} then for any3 with evenwt(3), A(8) = 0. In
particular,A(0) = 0.
Fact 12. Given a functiodd : P'(m,d)/I — R, there is a unique functiod : P(m, d) — R that is folded

over{—1, 1} and folded over and for allg € P(m,d), A(g+ I) = A(g).

2.5 Reduction from Label Cover using the low-degree long code

All of our inapproximability results will follow the same general framewdrk/B.combining label cover
with the long code adapted to the low-degree variant in the following wayt f&éan a label cover instance
G as in Theorer]5. For eache V place a block of variables correspondingR®¢/, d). For eachu € U,
let 100 = (f™) fg(“)> wheref\") .., fe(”) are the degre8-functions that are associated with For
eachu place a block of variables corresponding@3¢, d) /1.

Note that an assignment to these variables is equivalent to a collectionctibius
Vu,v, AW Pld) —{-1,1} and BW:P(3(d) - {-1,1}

such that for each € U, B is folded over/(). Sometimes we will also need the tables to be folded over
{~1,1}, in which case the block of variables (from which we extetit) to all of P(¢, d)) will be restricted
to P'(¢, d), and similarlyB™ will be extended fromP’ (3¢, d) /I,

Our reductions, as usual, are described by a PCP verifier that randomries the functiong ) and
B _If ¢ is the acceptance predicate of the PCP verifier, then together with thepaisn this describes a
»-CSP. To analyze the reduction, one writes Fourier expressions g@ilukethe probability of acceptance.
The following lemma is an adaptation to the low-degree long codedsftadi’'s technique for converting
certain Fourier expressions into a label cover strategy. One subtleh@aw is that we needt(53) to be
bounded to ensure that every element in the suppaftiefa valid assignment to, i.e., one that satisfies

£,
Lemma 13. If K < 293 and

—

Bl S ADmEPE0E?] @
uv B:wt(B)< K
mo(B)#0

then there is an assignment for the label cover satisfying at tedstof the constraints.

Proof. Define a randomized assignment as follows. For eaehU choose a random € A(3¢,d) with

probability proportional taB(+)(3)? and then assign with a random elemerit € 3~1(1). Similarly, for
eachv € V, choose a random € A(¢, d) with probability proportional thl\(oz)Q and then assign with a
random element € o~ !(1). Since) B(8)? < 1, the probability of picking a certaifi is at leastB(3)2,
and similarly fora.
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The left hand side of{2) lower bounds the probability thatas assigned through andv was assigned
througha = m5(B). If that happened, then for each choiceaof o~!(1) there is at least one matching
b € B1(1), which is chosen with probability at least K. It remains to observe the key fact thais a
valid assignment for, because of Claifi 11 and the fact thai( 5) < K < 2973, O

2.6 Local testing of Reed-Muller codes

From FacE¥ we have, fo¢ € A(m, d),

IgE[Xﬁ(g)] =

1 if8=0
{0 if 8¢ A(m,d)\ {0}

when the expectation is taken over a randgra P(m,d). Thus, orthogonality (oveFy) with a random
degreel polynomialg € P(m, d) serves as a perfect test for whetllee A(m, d) is the zero polynomial or
not (or equivalently, ifs € F,,, belongs taP(m, m —d— 1) or not). The next result, which follows frormi[4],
shows that wher € A(m,d) has large weight (or equivalently, if € F,, is far from P(m,m — d — 1)),
the above expectation is bounded away frobreven wheng is chosenpseudorandomlycorresponding
to the minimum weight codewords &M (m,d) (i.e., products ofd linearly independent affine forms).
Specifically, letL(m, d) C P(m,d) be the subset of degrégolynomials which are the product of exactly
d linearly independent affine forms. Then we have the following claim whietwifl use in our warm-up
3LIN PCP (but not for any other PCP construction).

Proposition 14. There exists an absolute constapt< 1 such that for allg € A(m, d),

wt(5) }
E <p= 1——=, : 3
el [xg(u)} P maX{ 5d PO (3)
Moreover, if we choosgy, . . ., u; independently at random froda(m, d) then
E [w(m +oe Nt)} <o, (4)

H17~wﬂt€liﬂ%d)

Proof. Consider the test for membership @fin P(m,m — d — 1) that proceeds by picking a random
w € L(m,d) and checking thaExngn B(x)u(x) = 0. ThenE,crmalxs(n)] = 1 — 2Rej(5) where
Rej(B) is probability that the test rejects Theorem 1 in[[4], applied fom variables and degree — d — 1,
implies thatRej(5) > min{%, €1} for some absolute constant > 0. The bound[(B) follows by setting
po = 1 — 2¢1. The bound[{¥) follows by noting tha&@[xs(p1 + - - + )] = Elxg(11)] - - - Elxg(pe)]. O

3 A new low-error tester for Reed-Muller codes

In this section, our goal is to prove the following result, which will be usedérathalysis of our low-degree
long code based PCPs to show that the “high frequency” terms in the Fenpansion make a negligible
contribution.

Theorem 15. Letd be a multiple oft. Lets € F,,, be24/2-far from P(m, m—d—1), and letg € P(m,d/4)
andh € P(m,3d/4) be uniformly random polynomials from their respective domains. Then

2d/4

E| |EDs(on)]|]] < 27* ©)
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Fix a3 € F,,,. Appealing to Fadtl6 we know

1 if Bg € P(m,m —3d/4—1)
hEP(m,3d/4)[Xﬁ (gh)] heP(m,3d/4) g (R)] { 0 otherwise (6)

Therefore, the expectation inl (5) equals
B[ [B0s (9] = Prycpmarnlfo € Pm,m —3d/4—1)]. (7)

The following simple observation shows that estimating the above probabilitglly e linear-algebraic
problem of bounding the dimension of a certain subspace. This is theagsppolynomialg for which
the degree ofig is strictly smaller than the product of the degrees.

Observation 16. Fix any 5 : F5* — Fo. For an integerk < d, the set

def

BYY(8) € {g € P(m.,k) | Bg € P(m,m —d—1+k)} @)

)

is a subspace aP(m, k).

Combining the above with Equatiofl (7), we see that the expectatibh in (5)es biv
i (m) —dim(P(m
IQE[ !Ig[Xﬁ(gh)] ﬂ _ 9dim(By g, (8)—dim(P(m.d/4))

Theoreni 16 now follows from the following result.

Theorem 17. For all positive integersn, d, k satisfyingn > d and4|d, the following holds. Iff : F§* — Fy
has distance more tha2f’/? from P(m, m — d — 1), then the subspacB(ﬁ}él(ﬁ) defined in(8) has co-
dimension (as a subspace Bfm, d/4)) at least2%/4-2,

The rest of the section will be devoted to proving Theokein 17. For pesittegersi, k, let us define
the function®, , : N — N as follows. Ifd < k, then®,;, is identically0. Otherwise, fold > &,

D44(D) = min { dim(P(m, k) - dim(BJ}(8) } (©)
BEFm; A(B,P(mym—d—1))>D

whereB(}(3) is as defined ir({8).
We note that Theorefm L7 will follow if we prove that

d/2 d/4—2
d = .
P 7d/4(2 ) =2 (10)

We begin with the following claim which gives us the base case showing a loevard when the distance
D =1.

Claim 18. Ford >k, (I)d,k:(l) > 1.

12



Proof. The claim can be restated as follows8lf¢ P(m,m —d — 1), thenBC(lf',;‘) (B) is a proper subspace
of P(m, k), or in other words there exists € P(m, k) such thatsv ¢ P(m,m —d — 1 + k). We now
prove this fact. As the dual space B{m,m —d — 1) in F,, is P(m,d), wheng ¢ P(m,m —d — 1),
there must exist € P(m, d) such thalzxew B(x)¢(z) = 1, or equivalently3¢ ¢ P(m,m — 1). We may
assume thag is a monomiak = z;,z;, - - - x;, with [ < d as such monomials form a basisBtm, d). If
I < k, then( itself serves as the witnesssuch thatsv ¢ P(m,m —d — 1 + k). Otherwise, we can take
v = x; %, - - - x;, andpfr can’t have degree at most — d — 1 + k as that would implys¢ has degree at
mostm —d — 1+ < m — 1, a contradiction. O

The following lemma will be used in the recursive step when proving ThefiZnit is based on a similar
statement proved in [4].

Lemma 19. Letm > d be integers, and let0 < D < 24 If 3 : F* — Iy, which we think of as a
polynomial in variablesy, xo, . . ., 2, IS D-far from P(m, m — d — 1), then there exists a nonzero linear
form L = L(zy,...,2m) € P(m,1) such that3;,_, and 3;,—, are both D/4-far from polynomials of
degreem — d — 1.

Proof. Lemma 10 in[[4], applied wittf = 3 and degreen — d — 1, implies that if there ardd > 2m—¢
affineforms Ay, ..., Ax € P(m,1) such thatg| 4, is D’-close to a degreer — d — 1 polynomial for
D’ < 29-2 then

AB,P(m,m—d—1))<3D' +9-2"/K (11)

(after we adjust for the fact that we use unnormalized distance rathefri@ional Hamming distance). If
for every nonzero linear form, atleast one of,— or §.,—; is D /4-close to a degree.—d—1 polynomial,
applying [11) withD’ = D/4 and K = 2™ — 1 we getA(3, P(m,m —d — 1)) < 3D/4 + 10 < D. This
contradicts the hypothesis thais D-far from P(m, m — d — 1). O

Proof. (of Theoren1lr) Our goal is to establish the lower bound (10¥gn (D) for D = 24/2 By
Claim[1I8, we may assume > 12. Let 3 € F,, be a polynomial inzq, o, ..., x,, that is D-far from
P(m,m —d —1). We need to prove

dim(BJ")(8)) < P(m, d/4) — 24472

By Lemma 19, we may assume, after applying a linear transformation on théirnaies, thats,, —o
and 3, —1 are bothD/4-far from P(m — 1,m — d — 1). Let us write the polynomial in the form
B = zma(zy,...,tm-1) + b(z1,...,2m-1). In other wordsg,,,—o = b andp,,,—1 = a + b wherea, b
are polynomials iy, ..., z;,_1. We know

Ab,P(m—1,m—-d—-1))>D/4 and A(a+b,Pm—1,m—-d—1))>D/4. (12)
Definer = m — d — 1. We need to understand whene P(m, k) is such thafv € P(m,r + k). Let us

write the polynomiab € P(m, k) asv = z,,,p + ¢ wherep € P(m — 1,k — 1) andq € P(m — 1,k) are
polynomials inx4, ..., x,,_1 of degree at most — 1 andk respectively. We have the following claim.

Claim 20. If v € BY}(5), theng € B[ ) (b), i.e.,

gb€e Pm—1,r+k), and pla+bd)€ga+Pm—1,r+k—1).
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Proof. (of Claim) Indeed,fv = ¢b + x,,,((a + b)p + ga). The terms ingb, which is a polynomial in
r1,...,ZTm—1, CANNOt be canceled by any termsrif((a + b)p + ¢b). So if fv has degree at most+ F,
gb must also have degree at most k. Also, if fv has degree at most+ k, the polynomiap(a + b) + ga
must have degree at most- k£ — 1, which is the same thing aga + b) € ga + P(m — 1,r + k—1). O

By the above claim, the choice ofin the subspacBC([Z) (8) amounts to picking an arbitraryin the

subspacéBflT;,?(b) of P(m — 1, k), and therp from a coset of the subspace

BY" W (a+b)={pePm—1,k-1)|(a+bpePm—1r+k-1)}
of P(m — 1,k — 1). Therefore,
dim(BJ}(8)) < dim(BY" ) (8)) + dim(BY" 1)) (a +1)) - (13)
Combining [9),[(1R),[(113), and the equality
dim(P(m, k)) = dim(P(m — 1,k)) + dim(P(m — 1,k — 1)),
we can conclude the following for all > k£ andD < 2d:
P4k(D) 2 Pa-1,,(D/4) + Pa-14-1(D/4) . (14)

WhenD = 242 = 4%/* andk = d/4, recursively applying the above for a depthdgft — 2 (to reduceD
geometrically fromi?/* to 16), and using Clairi 18, we can lower bouttq ;/4(2%2) > 24/4=2, giving us
(@I0), as desired. O

4 PCP checking 4SAT using the low-degree long code

In this section, our goal is to give a low-degree long code based PCRakaierfect completeness. The
smallest number of queries for which we are able to do dajiseries. The predicate tested by the PCP will
be 4SAT (actually we can test a slightly stronger aditgredicater VV y V (z # w)). As a result we will
prove Theorerl3 on the inapproximability of 4SAT stated in the introductiom.cOmstruction is inspired
by Hastad's tight inapproximability result for satisfiable instances of 4SAT f@cfem 6.2]. The analysis
here is more subtle due to the restriction of using the low-degree long catlen@n motivation here is to
illustrate these techniques in the simple setting of 4SAT, before applying thérawdsrdness for covering
CSP later on.

As explained in Sectidn 2.5, we will describe the PCP verifier as a randoneigetthat checks if a Label
Cover instance is satisfiable, or highly unsatisfiable, in the sense of@mEbrThe verifier will have access
to tablesA(") and B of purported low-degree long codes of the labels of the naded/ andv € V of
the Label Cover instance.

However, there will be some key differences here. First, the table fdisthaller” side will be a low-
degree long code for smaller degr8é (4 as opposed td). Second, there will bevotables for the nodes on
the “larger” side, with one being a low-degree long code of smaller degies structure seems technically
necessary as we need to restrict the degree of some of the functionsrnalber thani, and in this case the
analysis necessitates making them from a separate low-degree longpdbdethey will be well-distributed
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amongst the coordinates of that low-degree long code. Let us pradteithe formal description of the PCP
construction.

LetG = (U,V, E) be a Label Cover instance with parameters promised in Theoref 5. The integer
d will be a degree parameter that we will choose later.

For eachv € V we add a block of variables correspondingR{, d) (recall thatP’(¢,d) contains
for eachg € P(¢,d) exactly one ofg and1 + ¢). For eachu € U, we addtwo blocks of variables, one
corresponding taP’(3¢,d/4) and another corresponding (3¢, d)/I) (where ™) denotes the ideal
corresponding to node described in Sectidn 2.5).

Let us denoten = 3¢. An assignment for the variables is described by a collection of functiéhs:
P'(¢,d) — {—1,1} for eachv € V, and functions>® : P'(m,d/4) — {—1,1}, B® : P'(m,d)/I™ —
{—1,1}. We can extend the functions in the natural way to assume we have acdesstions A" :
P(t,d) — {-1,1}, C™ : P(m,d/4) — {—1,1} that are folded ovef—1,1}, and a functionB(®) :
P(m,d) — {—1,1} that is folded ovef —1,1} andI(*.

We now describe our PCP, which we c48AT-PCP

1. Choose a random edge, v) in the label cover instance, and tef, : F5* — F4 be the associated
projection.

For notational simplicity, we denote = 7,,, A = A®), B = B andC = C),

2. Sample functiong € P(¢,3d/4), g € P(m,d/4), g € P(m,d) andh € P(m,3d/4), where each
function is chosen independently at random from its respective domain.

3. Denotey’ = g+ gh+ (1 + g)(1+ f om) and note thay’ € P(m,d).
Accept iff at least one ofi(f), C(g), B(g), andB(¢') equals—1.

4.1 Completeness
We first establish the perfect completeness of the test which will also expkalngic behind the test.

Lemma 21. If G is satisfiable, then there are tables?), B(), and C*) for which the test#SAT-PCP
accepts with probabilityt. In particular, there are tables so that the four bits read by the verifierreeer
all equal to1.

Proof. Given a perfectly satisfying assignment {6y let us assign eacA(*) to beSCy34/4(a), the degree-
3d/4 low-degree long code af, wherea € T} is the label forv. Similarly, defineB() = SC,, 4(b) and
cw = SCyn,a/4(b) whereb is the label foru. For the choice of edgeu, v), the condition checked by the
test amounts to

flay=1Vv gb)=1V gb)=1V g(b)=1. (15)

To prove [I5) holds, let us assunfien) = ¢g(b) = 0 and then argue that in this cag@) # ¢'(b) (which in
particular means one eithg(b) or ¢'(b) equalsl). Indeed

g(0) +g'(b) = g(b)h(b) + (1 + g(b))(1 + f(a)) =1
when f(a) = ¢g(b) = 0. Note that we have shown the more stringent conditidyi) = —1 or C(g) = —1

or B(g) # B(¢') always holds in the completeness case. O
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4.2 Soundness

We now turn to the soundness analysis. We will prove that if the original tdver instance? is highly
unsatisfiable, then the test will not accept any proof with probability ndtigdarger thanl5/16 (which is
the probability with which completely random tables are accepted). The fah@atem follows.

Theorem 22. If every assignment faf satisfies at most a fractiozi*(“) of the edges, and = 4[log, /],
then the tes#SAT-PCP accepts with probability at mogg + 2.

Proof. The probability that the tegkSAT-PCP accepts equals

- B [(1 +;4(f)> (1 +20(9)> <1+f(§/)> <1+§(g’)>}

where we use the shorthagdo denotel + g, ¢ = §+ gh + g f o7, and as in the test denotesA(®),
B = BW andC = cW,

Let us now fix a choice of edge:,v) € E and focus on the inner expectation over jysy, i, g.
Expanding out the product, by the mutual independence of trigleg ¢) and(f, g, ¢'), and the fact that
A, B, C are all folded ovef —1, 1}, the all product terms which don'tinclude bal{g) and B(¢') equalo.
The distribution of g, g, ¢’) is identical to that of g, §, ¢’), as can be seen by replacifigh by the identically
distributedf, h. This together withB(g’) = —B(g') implies thati , 5 5[C(9)B(3)B(g')] = 0. The distri-
bution of(f, 3, ¢’) can also be seen to be identical to thatafg, ¢'), which impliesE . 5 [A(f)B(3)B(g')] =
0. After these simplifications, conditioned on pickifig v) € E, the probabilityp, . that the test accepts
is given by

15 - B
P = 15—, E_|AUNCOB@BG+gh+gTom) . (16)

O (u,v)
Writing the Fourier expansions @ as given by Fadfl8, we can expand the inner expectation as

O = Y- BBOBB) E [AUNCON0)xa(oh+7Tom)] Exs 0xs@)] (7
B1,B2 =

summed ovewr € A(¢,3d/4), andpy, 52 € A(m,d). The expectation overis 0 unlesss; = (2 by FaclY,
in which case it equals.

Simplifying (17) using this, we get

O = 2 BISY'E[Co) Elxa(oh)] E[A(H)xa(g Tom]| (18)
B

For terms withwt(3) > 24/2 we have the absolute value of the expectation guiar(I8) is at most

JE[IC(Q)I !Ig[m(gh)]! \IJ@[A(f)xa(f)X[a(?f o 7T)]I} < Ig[! Ig[m(gh)]!] <272

using Theorerf 15. Since’ B(8)? < 1, we can conclude

e<u,v)>( > BBE|C(9) Elxs(oh) @[A(f)w(yM)]})—z?“. (19)

B:wt(B)<24/2
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Whenwt(58) < 2%2, we havewt(37) < 2%? as well. This means the closest polynomial of degree
m — 3d/4 —11to g is 0, and sofg € A(m,3d/4). Writing the Fourier expansion oft as A(f) =
2 aensd/a) Ala)xa(f), we can simplify

E[AW)xs(@ Fom)] Z Ala L+ f)xgg(f o m)] = A(ma(Bg))(—1)* ™) (20)

using FackD.
Likewise xg(gh) = x4(h), and soE;, [xs(gh)] = 1if Bg = 0, and0 otherwise. Putting together this
fact and[(2D), the expectation owemn (@I9) equals

E|C(g)(—1)"9) A(r3(87)) 1[8g = 0)| = E|C(g)(~1)" ) A(ny(8)) 1[8g = 0| > ~| A(ma(8)

g g
where we usd (E) for the indicator of an evenf. Plugging this into[(19), we get

Ofun) = —( S JA(m(B))] BW) — 972" (21)

B:wt(B)<2d4/2

SinceB is folded over{—1, 1}, E(ﬁ) = 0 whenwt(j3) is even. Combinind(21) an@([L6), the probability
that the test accepts is

B ol <3527 B LS 1Ame)] BOY|

(uv)eE (w0) Bawt(B)<24/2
wt(3) odd
15 od/4 A B
< ’ ’
e | E S Am(B) B(ﬁ)] (22)

ﬁ:wt(ﬁ)<2d/2
wt(3) odd

where in the second step we used Cauchy—Schwarﬁgn@(6)2 < 1. Aswt(me(B)) andwt(S3) have the
same parity, whemwt(3) is odd,m2(8) # 0. Appealing to Lemm&13, the quantity inside thein 22),
divided by2¢, gives a lower bound on the optimum fraction of edges that can be satisfieelLabel Cover
instance. As the latter is at mo—*(Y), we conclude that

15 /1 | o5d—Q(0)
o 1272 g .
(M)GE[ wn)] < g
Therefore ford = 4[log, /], the test accepts with probability at mdst+ 2. O

Picking¢ = 2LVioglogn]/4 andd = | \/loglog 1], the size of the 4SAT instance produced will be at most
polynomial inN < n32B07 < p2°VEE a4 the reduction will run itV time. As a function of
N, we have > 2@(Vioglog V), Comblnlng the completeness Lemma 21 and the soundness THedrem 22, we
can conclude Theorefn 3 showing as. 12 + 9—20Viesloe ™) yan for 4SAT. In comparison, &stad’s result
using the long codé [9] can establish an inapproximability gap . % + 1/(log N)¢ for some small
absolute constart> 0.
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5 6-query covering PCP using low-degree long code

In this section, we prove Theordmh 2, showing it is hard to decide if a ghstance of @-CSP has covering
numberl or at least: = 20(Vleglogn) \where the predicate is defined by

pla,b,c,d,e, f) =(aF#b)V(cF#d)V(e#f).

Before moving to the proof, let us mention that since this predicate involvestome Boolean oper-
ations over inequality constraints on the variables, it makes sense to aasignlas with any number of
colors (rather than Boolean values only). Givep-&SP instance over variablés, such that the variables
occur without negations, we say itdscolorable if there is a coloring of the variables X — {1,2,...,¢}
such that every constraint is satisfied. It is easy to generalize theat@man [8] to this case, showing that
the logarithm of this version of the chromatic number is equal to its covering eurilbus, an equivalent
statement of Theoref 2 is the following.

Theorem 23. Assume thalNP does not admit2°"***™ time algorithms (note that this runtime is

nologn)) - Given ap-CSP instance withV vertices, there is no polynomial time algorithm to distinguish
between the following two cases:

e The instance can be colored with= 2 colors.

VI1oglog N)

e The instance cannot be colored even vaith' colors.

For 4SAT, there are trivially two assignments such that each constraiatis§ied by one of them, so
its covering number is always at ma@st SOo4SAT-PCP from the previous section cannot give the desired
coloring hardness. However, we will show that a small change to theitest gs the desired PCP with a
total of 6 queries. Specifically, we will replace the conditidf) = —1 with the checkA(f;) # A(f1+f),
and the conditior”(¢g) = —1 with the checkC'(g1) # C(g1 + g).

As in Sectior % we begin with a label cover instari¢e= (U, V, E), and place low-degree long code
tables for the vertices ofr. Namely, for eachv € V, a tableA®™) : P(¢,3d/4) — {—1,1}, and for
eachu € U, two tablesC™) : P(m,d/4) — {—1,1} and B™ : P(m,d)/I™ — {-1,1} (where
m = 3¢). We will notassume that any of these tables are folded ¢ver, 1}, and this implies that the
generated CSP instance will have no negations. Once again, we will eRéndo all of P(m,d) by
definingB(h) = B(h + I™), and assume tha@&™ : P(m,d) — {—1,1} is folded overl (*).

We now describe our PCP, which we c@NE-PCP

1. Choose a random edge, v) in the label cover instance, and tef, : F;* — F% be the associated
projection.

For notational simplicity, we denote= m,,, A = A®, B = B® andC' = ¢,

2. Sample functiond, fi € P(¢,3d/4), g,1 € P(m,d/4), g € P(m,d) andh € P(m,3d/4),
where each function is chosen independently at random from its téspeomain. Denotg/ =
g+ gh+ (14 g)(1+ fom)andnote thay € P(m,d).

3. Accept iff
(A(f1) # Alfr+ ) V (Clgr) # Clar +9)) Vv (B(9) # B(g) - (23)
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Perfect CompletenessBy an argument identical to Lemrial21, we can show that when there is a labeling
satisfying every edge dF, there are tables th&tNE-PCP accepts with probability.

Soundness analysisAs in Sectior 4, it can be proved that when the Label Cover instéhcehighly
unsatisfiable, no choice of tables will make &&NE-PCP test accept with probability more thary'8
(again random tables will be accepted with this probability, so this bound is.tighten our interest in
covering soundness we will show that even a large number of proofsotaover every test made by the
verifier. The formal statement follows.

Theorem 24. If every assignment of labels to the Label Cover instaficatisfies at most a fractiogr 2(9)
of the edges, and = 4[log /], then there exists = (¢) such that for every set df tables there is some
check(23) that is violated by all of them.

Proof. Suppose there areproofs such that every chedk{23) accepts at least one of thenn +et /2F.
Then, viewing thesé proofs as &*-coloring, we can choose a subset consisting of a fragtiof the
locations of each of thel(*)-tables, and similarly for thé3(*) and C'(*)-tables, such that no chedk]23)
has all6 queries amongst the chosen locations. (To see this simply take the mostrpogataclass in
each of the tables.) To express this analytically, A&t : P(¢,3d/4) — {0,1} be the indicator function
of this subset restricted td(*), and similarly define indicator functior&™ : P(m,d/4) — {0,1} and
H®™ : P(m,d) — {0,1} corresponding to the tables(®) and B() respectively. FurtherI(*) can be
assumed to be folded ovéf). By construction, we have for every v

I}@[F(”)(f)] = IE[G(“) (9)] = IE[H(“)(h)] =p- (24)

and
6% B [B[FO(F)FO (i + NG (91)G " (g1 +9)H @) H (5 + gh+7 Foma)]| =0, (25)

where the inner expectation is over the choice of all the functjorfs, g, g1, g, h. Our goal is to prove that
@3) and [Z5) implyp < 272, We will analyze the inner expectation i {25) for a fixad v), call it
L' (uv)- We will use the shorthand

F=FY G=GW, H=HY, andr = my .

Let us define the “self-corrected” versiosandG of the tablesF’ andG as

F(f)=EF(f)F(hi+f)] and  G(g9) =E[G(9:1)C(g1 +9)]

fi g1

respectively. Note that the tablésand( take values in the intervdl, 1].
As in the proof of Theoref 22, using Fourier expansion, the expectijoy can be written as the sum

> HBE[G() Elxs(om)] E[F(xs(@T o] (26)
B

Ty

over3 € A(m,d). Note that the3 = v = 0 term equals

(0 iG() BIF()] = (EH0) (56@)) (BPU) =4 usng). (@)

g g
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Our goal is to prove that the rest of the terms (fo 0) in (26) have a very small contribution. To this
end, we proceed similarly to the proof of Theoriemh 22. First, the terniSin@B)wt(3) > 2¢/2 contribute
at most2—2"* in absolute value. For terms witht(3) < 2%/2, note that

]E[Xﬁ(gh)] = ]%[Xﬁg(h)] =0

unlessBg = 0. This follows from Fadib becauset(3g) <A2"l/2 and sa3g cannot be a nonzero polynomial
of degreeP(m,m — 3d/4 — 1). ExpandingF'(f) = 3", F(a)?xa(f), we can simplify the expected value
T, in ([28) as

Y, = B|Glo) 1 =0) B[ Pl (ats o]
Glg) 1[8g = 0] (—1)" (D F(my(8))?]  (using FacED)
0 whenwt(g3) is even

—F(m(B))> whenwt(g) is odd (28)

WV
—— e E

where in the last step we use the fact that5) andwt(m2(3)) have the same parity.
Combining [(26),[(2]7), and (28), we can lower bounidlom (28) as

_od/4 ~ ~
620" —27%" — Y F(m(B)’H(B)*.
B:Wt(5)<2d/2
wt(/3) odd

Appealing to LemmB&13, the sum in the above expression is at2fio$t) when the Label Cover instancg
is at mosk~(*)-satisfiable. Recalling = 0 andp = 1/2*, we conclude: > Q(¢) whend = ©(log¢). O

Picking parameters as in Sectlonl4.2 we get a proof of Thelfem 2 (alt&iyatiated as TheoremI23 at
the beginning of this section).

6 Concluding remarks

Our work raises several open questions, some of which we mention below:

e Can one remove the multipartite structural bottleneck of our low-degree o lbased PCP con-
structions and prove improved hardness results for hypergraphragstor

e Can one prove a gap-covering resultlofs. exp(Q2(1/loglog N)) (or at leasO(1) vs. w(loglog N))
with fewer than6 queries?

e Can one derandomize the long code further and move clogértd (or at leasg(los M)

for hypergraph coloring or related problems?

) hardness
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A 3LIN PCP using low-degree long code

In this section we will use the low-degree long code code to prove the folipthigorem.

Theorem 25. Given a system of linear equations ov&r with 3 variables per equation, of siz¥, it is
guasi-NP-hard to distinguish between the following cases:

e There is an assignment satisfying at least 1/22(VIeglog N) fraction of the equations.

229(\/ loglog N

e Every assignment satisfies at moge + 1/ " fraction of the equations.

More than proving the theorem, our goal is to illustrate how to replace the loag lzy the low-degree
long code code in the simplest ofistad’s PCP constructions.

We first describe a reduction from an instance of Label Cover to amaystdinear equations ovefry
with three variables per equation.

The Reduction. LetG = (U, V, E) be a Label Cover instance with parametas promised in Theorein 5.
The integer will be a degree parameter that we will choose later.

For eachv € V we add a block of variables correspondingR{¢, d) (recall thatP’(¢,d) contains
for eachg € P(¢,d) exactly one ofg and1 + g). For eachu € U let I be the ideal spanned by

fl(“), e f,z(“) viewed as functions overn = 3/ bits such thatfi(“) only looks at the three relevant bits
numberedi + 1,3i + 2, 3i + 3. For eachu we add a block of variables correspondinggm, d) /1.

An assignment for the variables is given by a collection of functidf8 : P(¢,d) — {—1,1} perwv,
andB™ : P(m,d) — {—1,1} peru and, such thaB is folded over/™) and over{—1,1}, andA®) is
folded over{—1, 1} (see Fadi12).

The equations are conveniently described by a randomized test. Retdl(thal) C P(m,d) denotes
the set of products af linearly independent affine forms.

1. Choose a random edge, v) in the label cover instance, and tef, : 3¢ — FY be the associated
projection,

2. Choose arandome P(¢,d), and a randomh € P(m,d).
3. Choose independently random functiods, ..., & € L(m,d), and let¢ =& + - + &.
4. Acceptiff A (g) B (h) B (h 4 €+ gomy,) = 1.

To analyze this reduction we followas$tad’s analysis of 3LIN using long codés [9], just replacing the
analysis of the effect of the noise function in the soundness proof withdBitior 14.
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Completeness. Given a perfectly satisfying assignment for the initial label cover, lesaga eactB(*) =
SC(b) whereb is the label foru, and A®) = SC(a) wherea is the label forv. In that case we get, since

g o Tuw(b) = g(a),
AW (B (R)B™ (h 4 € + g o my) = (—1)9@FhEFREI+EG)Fgomun (b) — (_1)E(D)

which equalsl with probability at least — ( )>1—¢2-d =1 279/,

Soundness. We next show that an assignment to the 3LIN system that satisfies)/2 of the equations,
can be decoded into an assignment for the initial label cover instanceatlisttes roughlypoly(e/2¢)
fraction of the constraints. So assume a 3LIN assignment with
e< E [A(g)B(h)B(h+1t§+gomuw)]. (29)
u7’U7g7h7£
(where we omit the dependence4f B onu, v from the notation). Plugging in the Fourier expansiomof
and B, for eachv, u the expectation ovey, h, £ can be written as

> A@BEBO) E Ialoxa(h)x (kg o )l
By Pl

summed over allk € A(¢,d), andg,v € A(m,d). The expectation is zero unless= § andy = m2(«)
(see Fadil9). Sd (29) becomes

ZB B)2 A(ma(B 1? ZB B)2 A(m2(8))p(B)". (30)

where the last inequality follows from Proposition 14 wittt) = max{l — 2(d ),p }

If wt(8) > 2%/ for large enoughi, thenp(B) < 1 — 1/2%/% andp(8)" < exp(—2%4) for t = 25/4,
Using Cauchy-Schwarz and Parseval inequaE)g B(B)? < 1, we can bound the sum of all terms for
whichwt(8) > 2%/2 by exp(—2%/%) so we are left with

e—exp(2¥%) < Y B(B)*A(ma(B) Y B(B)*A(ma(B))?, (31)

wi(8)<24/2 wt(B)<2d/2

where the last step we again used Cauchy-Schwarz and Parsevals Agdded ove{ —1, 1}, the terms with
wt(3) even in[31) ar®. Therefore we can restrict the summatiomtd3) (and therefore alsat(m2(3)))
odd, which in particular means,(3) # 0. Appealing to Lemm&3, we can find a labeling satisfying
(e — exp(—27/8)) /29/2 fraction of the Label Cover constraints.

Therefore we conclude that in the soundness case, every assigtantkat3LIN instance satisfies at
mostl + 2970 1 exp(—27/%) fraction of the constraints.

Parameters. Finally we pick parameters suitably to deduce Thedrem 25. Let us(piekevicglogn]/8
andd = | /loglogn|. The size of 3LIN instance produced will be at most polynomiaVir< n36260" <
n2°VE8 ™ and the reduction will run ilvO() time. As a function ofV, we havel > 22(VioglogN) Ag
the completeness is— 2~ and the soundnessig2 + 2~ + 22" the bounds claimed in Theorem
follow.
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B 6-set splitting PCP using long code

The result of Sectiofil5 showed a covering CSP of aitipr which it is hard to tell if the instance is
satisfiable or has covering number exceeding(2(v/loglog N)).  The constraints of the CSP were
for the form (z1 # x2) V (11 # y2) V (21 # z2). In this section, our goal is show a similar super-
constant hardness for the covering CSP “monotone Not-all-EqualB-BAose constraints check that the
6 variables in their scope are not all equal. The motivation is that this directhesimonds to showing
hardness results for colorirggcolorable6-hypergraphs. Note that the test made by the construbtiNE-
PCP has a “tripartite” structure with the queries of each check coming from aeétparts. This means that
the corresponding hypergraph is always trividgolorable.

To get a result for hypergraph coloring, we need a test that makes @gliétges on a single side. In this
section, we describe and analyze such a test. However, this test meeds t the long code of the labels,
and we have not been able to design a similar test using only the low-deggeedde. As a result, we will
only show hardness of distinguishing satisfiable instances from those oviéhicg numbef2(log log V).

In coloring terms, we show thdtog V)“-coloring a2-colorable6-hypergraph is hard for some absolute
constantc > 0. The previous best result f@-colorable hypergraphs showed hardness of coloring with
O(loglog N) colors [8] (but it worked fori-hypergraphs).

We reiterate that there is no use of the low-degree long code in this sectieingredients needed in this
section were available circa 1997 afteistad’'s work[[9], and are similar to those of his result on 4SAT. One
simple but useful trick we make use of is to work with thé indicator vector of the candidate independent
set in the soundness analysis (instead of working wigitoofs to establish large covering number). This
approach was used in [13] to show a super-constant hardnessidang 3-colorable3-hypergraphs.

LetG = (U,V, E) be a Label Cover instance with parametes promised in Theorel 5. Let = 3/.
Our test will usdong code tablesnly on the “larger”U side. Specifically, for each € U we will have a
table D) : F,,/I* whereI (™ is the ideal spanned by the constraints that must be satisfied by the label to
u. We won'’t assume these tables are folded dvet, 1} (this is important so we get a NAE-6SAT instance
without negations). Once again, we will extePd® to all of F,,, by definingB™ (h) = D (h 4 1(W),
and assume tha™ : 7,, — {—1,1} is folded overl ("),

We now describe our PCP which we cai5S-PCP:

1. Pick arandom € V, and independently sample (with replacement) two random neighbats U
of v.

For notational simplicity, denot® = D®) andC' = D). Also letw = m,, : FJ* — F} be the
associated projection from the label oto that ofv, and similarly letr’ = =/, be the projection
from the label ofu’ to that ofv.

2. Samplef € Fy, g1, g2, h1, ha € F,, uniformly and independently at random.

3. Samplegs € F,, as follows: Fory € F3', if g1(y) # g2(y) then setgs(y) randomly, else set
93(y) =1+ f(7(y)) + g2(y)-

4. Samplehs € F,, as follows: Fory € F3', if hi(y) # ha(y) then seths(y) randomly, else set
ha(y) = f('(y)) + ha(y).

5. Check that not a{ B(g;), C(h;)};_, are equal.

Perfect completenessGiven a perfectly satisfying assignment for the initial label cover, letssgya each
D™ to be the long code of the label far If a,a’ are the labels assigned to the nodes’ chosen by
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6-SS-PCP andb the label tov, the above check made BtSS-PCP amounts to checking that not all

of {g:(a), hi(a’)}?_, are equal. To prove this, suppogga) = g2(a). By the definition ofgs, this means
gz(a) =14 f(b)+g2(a). If f(b) =0, we would haveys(a) # g2(a). Similarly, assuming (a) = ha(a’),

we would haveis(a’) # ho(a’) when f(b) = 1. Thus either not all 0fj;(a), g2(a), g3(a) are equal or not

all of hq(a’), ha(a’), h3(a’) are equal. Note that we would have perfect completeness even if we neake th
stronger checNAE(B(g1), B(g2), B(g3)) V NAE(C(h1),C(h2),C(h3)).

Covering soundness.For the soundness, we will be prove that for some: 2-() every subset op
fraction of the vertices in the hypergraph must contain a hyperedge (e ofadhe6 query patterns made
by 6-SS-PCP). Let A be0-1 characteristic function of a subsgtof fraction p of vertices, and led(*) be
the restriction ofA to the long code table associated withe U. EachA™) will be folded over/ ™), and
we haveE, E,[A™(g)] = p for g chosen uniformly at random frod; ,.

The probability that all 6 queries fall insidg which is the fraction of hyperedges insideis given by

def

0= [B(91)B(g92)B(g3)C (h1)C(h2)C(h3)] (32)

o [ E
U7u7u, f’gi’hl

where we denot® = A® andC = A®) for notational simplicity. Let us expand the inner expectation
over the functiony, g;, h; for a fixedv, u, v’ using Fourier analysis as

B [BCn) (X BEBE) E D)) (X Goncn

f,91,92 51 B o

. E X (h2)xq, (h3)] )]

ha,

wheres;, v; € F,,. Now, for any fixing ofg;, the values o, (y) for differenty are uniform and independent
of each other, and the same is true for the values 0f). SOEy, 4, [xs (92)X,(g3)] = 0 unlesss; = f,.
A similar claim holds forhs, hs. Therefore, we can simplify the above expression to

>_BACH)? E [B<gl>c<h1>g;l;:gg[mgam(gg)] E [Xv(h2)Xv(h3)]]- (33)

f,91,92 2,h3

Now, for any fixing ofg, if g2(y) # g1(y) for somey, then the valugy;(y) is independent of2(y).
This implies that, conditioned on the choicef g, Eg, [x5(92)x5(g3)] = 0 unlessg;(y) = g2(y) for
everyy € . As this event occurs with probability (%), we have

E [xsloa)xs(ga)] = 27" (14 fom) = 27O (1) "y () (34)

wherers(B) : F5 — Ty is defined as before to be(8)(z) = >_yen—1(z) B(@). Arguing similarly, we get

E [xy(h2)xy(h3)] = 27" D xr ) (£) - (35)

ha,hs

Combining [3#) and(35) and the fact th@f|x.(f)x« (f)] = 0 whena # o and1 otherwise, we can
simplify (33) and obtain

0= E [ Y. BB?C(H)’ E [Blg)C(h)] (—1)* P2l (36)

Y 91,0
2 (B)=mly(v)

25



~ . 3 3
As B(0) = E4[B(g)] andC(0) = Ex[C(h)], the term with3 = v = 0 above equaléEg[B(g)}) (Eg [C(h)]) .
Taking expectation over, u, »’, and using the regularity of the instance, the terms wits v = 0 con-

6
tribute at Ieas(Ew[A(") (g)]) = p% to (38). Our goal is to prove that the other terms have a very small
contribution.

The terms withwt(3) even in [36) are positive and so can be ignored in any lower bourd @hen
wt(3) is odd,wt(m2(3)) is also odd, and in particular, () # 0. Using these facts ifi_(86), and noting that
0 < Eg, 1, [B(91)C(h1)] < 1, we get the lower bound:

5 > - E [ Y. BE?CH) 2‘"“(5)2‘”“(”]

v,u,u/
By
o (8)=75(7)#0

> oo w5 Bercey|. @)
VUL g e (8) wi(v) <t
mo (B)=mh (7)#0

An argument similar to LemnalL3 shows that the expectatiofih (37) is at2ng&?. Therefored > 0
whenp > 1/2F for somek = ©(¢). In other words, the hypergraph consisting of the query patterns of
6-SS-PCP does not have an independent set of dersify("),

Parameter choicesPicking? = |loglogn|/4, the size of the instance produced will he= n0022* <
nOUoglogn) \When the Label Cover instance is satisfiable, the hypergraph willdmorable, and in the
soundness case, the hypergraph will contain no independent seed¥ 5log n)Q(U. Therefore we can
conclude the following result.

Theorem 26. Assume thaNP does not admit©(°s1°g7) time algorithms. There is an absolute constant
¢ > 0 such that the following holds. Given6auniform hypergraph onV vertices, there is no polynomial
time algorithm to distinguish between the following two cases:

e The hypergraph can be colored witttolors so that every hyperedge is bichromatic.

e The hypergraph does not have an independent set Mittiog V)¢ vertices, and in particular any
coloring of the vertices witlilog V)¢ colors will have a monochromatic hyperedge.
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