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Abstract

We develop new techniques to incorporate the recently proposed “short code” (a low-degree version
of the long code) into the construction and analysis of PCPs in the classical “Label Cover + Fourier
Analysis” framework. As a result, we obtain more size-efficient PCPs that yield improved hardness
results for approximating CSPs and certain coloring-type problems.

In particular, we show a hardness for a variant of hypergraphcoloring (with hyperedges of size6),
with a gap between2 and exp(2Ω(

√

log logN)) number of colors whereN is the number of vertices.
This is the first hardness result to go beyond theO(logN) barrier for a coloring-type problem. Our
hardness bound is a doubly exponential improvement over thepreviously knownO(log logN)-coloring
hardness for2-colorable hypergraphs, and an exponential improvement over the(logN)Ω(1)-coloring
hardness forO(1)-colorable hypergraphs. Stated in terms of “covering complexity,” we show that for
6-ary Boolean CSPs, it is hard to decide if a given instance is perfectly satisfiable or if it requires more
than2Ω(

√

log logN) assignments for covering all of the constraints.

While our methods do not yield a result for conventional hypergraph coloring due to some technical
reasons, we also prove hardness of(logN)Ω(1)-coloring2-colorable6-uniform hypergraphs (this result
relies just on the long code).

A key algebraic result driving our analysis concerns a very low-soundness error testing method for
Reed-Muller codes. We prove that if a functionβ : Fm

2 → F2 is 2Ω(d) far in absolute distance from
polynomials of degreem − d, then the probability thatdeg(βg) 6 m − 3d/4 for a random degreed/4
polynomialg is doubly exponentiallysmall ind.
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1 Introduction

Hardness of approximating constraint satisfaction problems is an area thathas seen a great deal of progress in
recent years. Following the pioneering works [3, 9], the standard framework for proving inapproximability
has been via a combination of Label Cover (or special cases such as Unique Games [14]) and the long code.
For proving constant gap inapproximability, the relative inefficiency of thelong code is negligible. However,
it becomes a serious bottleneck for non-constant parameter settings, mostobviously, for proving hardness of
approximate coloring. For this set of problems, there is an exponential or doubly exponential gap between
the best known approximation algorithms (which requirenΩ(1) colors forn-vertex (hyper)graphs) and the
best known hardness results (which at best only rule out efficiento(logn)-coloring)

A very intriguing object called the “short code” was introduced and studied in [2]. This is a puncturing
of the long code to locations indexed by low-degree polynomials, and to betterreflect this, in this work we
refer to the short code as thelow-degree long code. This code was introduced in [2] as a “derandomization”
of the long code, where it was used it to establish exponentially stronger integrality gaps for Unique Games,
construct small set expanders whose Laplacians have many small eigenvalues, and obtain a more efficient
version of the KKMO alphabet reduction [15] for Unique Games. The short code was used in conjunc-
tion with a pseudorandom generator for Lipschitz functions of polynomials toshow an integrality gap of
exp( Omega(

√
log logn)) for the Goemans-Linial semidefinite program for Uniform Sparsest Cut [11].

In this work we develop new techniques to use the low-degree long code in reductions from Label Cover
and obtain the following (quasi-)NP-hardness results. Our main results are

• A hardness for avariantof approximate hypergraph coloring, with a gap between2 andexp(2Ω(
√
log logN))

number of colors (whereN is the number of vertices). This is thefirst inapproximability result to go
beyond the logarithmic barrier for a coloring-type problem.

• A hardness for gap(1, 1516 + ε)-4SAT for ε = exp(−2Ω(
√
log logN)). This improves upon H̊astad’s

result [9] whereε = 1/(logN)c for some constantc > 0.

• A hardness for approximate hypergraph coloring, with a gap between2 and(logN)Ω(1) colors.

Adapting a long-code test into the low-degree long code setting turns out to be non-trivial, and there seems
to be no general recipe (as of yet) for doing so. For instance, while it is straightforward to import H̊astad’s
classic gap(1− ε, 1/2 + δ)-3LIN result to the low-degree long code setting (we discuss this in Appendix A
as a “warm-up”), the above results require a more carefully tailor-made construction. For certain PCPs in
Håstad’s work, such as 3SAT and4-set splitting, we do not yet know how to adapt them to work with the low-
degree long code. We comment that invariance-principle based analysis [17] is very powerful for analyzing
dictatorship tests, and was used by [2] for analyzing their constructions.Nevertheless, for obtaining strong
parameters we find that working directly with the Fourier expressions gives us a better handle on the kind
of noise analysis that is needed.

For proving these results, we develop a “folding” mechanism for the low-degree long code that works
with available label cover constraints. The folding ensures that non-zero low-weightFourier coefficients
are supported only on assignments satisfying the associated constraints, which enables decoding a valid
assignment from any such Fourier coefficient. One of the important components of any long-code test is the
noise, which becomes especially subtle when aiming for perfect completeness. The degree restriction in the
low-degree long code makes it harder to control the correlations betweenvarious functions via appropriately
chosen noise. Finally, to analyze some of the noise expressions in our tests, and especially to be able to get
stronger parameters, we prove some new results on local testing Reed Muller codes, which we discuss next.
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1.1 Local testing of Reed Muller codes overF2

One of the key insights in [2] was a connection between the analysis of the low-degree long code and Reed-
Muller testing. Let us denote byP (m, r) the functionsFm

2 → F2 that have degree6 r. For functionsβ, g :

F
m
2 → F2, denoteχβ(g) = (−1)

∑
x∈F

m
2

β(x)g(x)
. Specifically, given aβ that is far fromP (m,m − d − 1)

polynomials, they noted that one can bound the expectation|Eµ[χβ(µ)]| for a randomlow-weightµ by
appealing to a powerful result of [4] about testing Reed-Muller codes.This is formally stated in Proposition
14. Using such a noiseµ enables attenuating the contribution of large weight Fourier coefficients; however,
it causes the test to have imperfect completeness. To obtain our low-degree long code based constructions
with perfect completeness, we prove a new result concerning testing Reed-Muller codes, stated below.

Theorem 1. Let d be a multiple of4. Let β : Fm
2 → F2 be 2d/2-far from P (m,m − d − 1). Then for

uniformly random polynomialsg ∈ P (m, d/4) andh ∈ P (m, 3d/4), we have

E
g

[ ∣∣E
h
[χβ(gh)]

∣∣
]
6 2−4·2d/4 .

The key quantitative aspect of the above result is thedoubly exponentialdecay ind. To obtain such a
bound, we observe that the set of “bad” choices ofg, for whichβg has degreem− 3d/4− 1 (i.e., one lower
than what one expects), is asubspaceof P (m, d/4). We then lower bound the co-dimension of this subspace
by 2Ω(d). We do this via a recursive approach to pass totwo similar problems in dimension(m − 1), by
making use of the main technical ingredient in [4] which argues the abundance of hyperplanesA such that
β|A is 2d/2−2-far from polynomials of degreem− d− 1 on one less variable.

We note that a “robust” version of the above theorem, which argues thatβg will also likely be far from
P (m,m−3d/4−1), would be nice to have (as an interesting algebraic statement in itself). One can deduce
such a claim from the above-mentioned result of [4] which proves such arobust version forg ∈ P (m, 1),
but this will only give an upper bound of2−O(d) on the desired probability.

1.2 Inapproximability Results

To describe our results let us first briefly recall the notion of covering CSPs from [6]. Aq-aryϕ-CSP is given
by aq-uniform hypergraph where each hyperedge is associated with a constraintϕ. Thecovering number
of a CSP is the minimal number of assignments to the vertices so that each hyperedge is covered by at least
one assignment, see also Definition 1. If one views a hypergraph coloringinstance as a not-all-equal CSP,
then the covering number is exactly log of the coloring number. This was the motivation of [8] and later [6]
for studying the notion of covering.

In light of the lack of progress on hardness of approximate coloring forboth graphs and hypergraphs,
[6] suggested studying the hardness of gap covering problem, in the hope of approaching a potentially
optimal gap-covering hardness result of1 vs.Ω(logN), which corresponds to a hardness gap ofO(1) vs. a
polynomial number of colors. Given the current state of the art, they mentioned that even obtaining a gap of
O(1) vs.ω(log logN) would be interesting.

Theorem 2. Assume thatNP does not admitn2
O(

√
log logn)

time algorithms (note that this runtime isno(logn)).
Given a6-ary CSP of sizeN , no polynomial-time algorithm can decide if it is perfectly satisfiable, or if its
covering number is at least2Ω(

√
log logN).
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Prior to this work the best known gap-covering hardness wasO(1) vs. O(log logN) (implicit in [12])
and1 vs. O(log log logN) (implicit in [8]). Both these results in [8, 12] in fact applied to coloring (4-
uniform) hypergraphs. It remains to be seen if a result similar to Theorem 2can be obtained for hypergraph
coloring. This would be a major quantitative jump, breaking the barrier ofO(logN) colors.

We remark that the result above is obtained for a6-ary constraint that is the disjunction of three inequality
constraints. Since inequality makes sense over any alphabet size, one can think of this problem directly as
a coloring-type problem, instead of a covering problem. This is always possible when the constraints are
so-called “equality constrained languages” [5], and we give an alternative formulation of this theorem as a
coloring problem in Theorem 23.

Along the way to proving Theorem 2, we establish the following inapproximabilityresult for 4SAT with
perfect completeness. We present this result first to illustrate our techniques in the basic setting of 4SAT,
before applying them to a covering 6-CSP to deduce Theorem 2.

Theorem 3. Assume thatNP does not admitnO(logn) time algorithms. Given an instance of 4SAT of size
N , there is no polynomial time algorithm to distinguish between the following two cases:

• The instance is satisfiable.

• Every assignment satisfies at most a fraction15
16 + 2−2Ω(

√
log logN)

of the clauses.

We remark a similar result but without the perfect completeness would have been significantly easier
to prove. We show in Appendix A a proof for the quasi-NP-hardness of3LIN with similar sub-constant
parameters that is a direct adaptation of Håstad’s 3LIN proof. A direct adaptation of the perfect completeness
tests seems less forthcoming due to the limitation on the noise imposed by working with the short code. It is
worth mentioning that even for long code based constructions, perfect completeness tends to be significantly
more difficult to ensure, often requiring additional technical elements, such as smoothness of Label Cover
projections [13], and/or picking functions whose bias itself is sampled fromcarefully chosen distributions
as in [9, Sections 6,7], [10].

Fortunately, for 4SAT one can establish hardness avoiding the more complicated technical elements [9,
Thm. 6.2] (this would yield an inapproximability factor1516 + 1

(logN)c for some small absolute constant
c > 0). Even so, adapting this to the low-degree long code setting involves some careful design choices, as
multiplying two functions, which seems like an essential component when perfect completeness is desired,
increases the degree. This necessitates restricting certain functions in thetest to be of smaller degree. In
order to ensure that this does not bias the query pattern to a small portion ofthe low-degree long code, we
query the smaller degree functions in aseparatelow-degree long code of smaller degree. This “multipartite”
structural restriction is what precludes us from extending our result for covering 6-CSP (Theorem 2) to a
result about hypergraph coloring. (Clearly, if the variables of everyconstraint straddles two or more parts,
then the associated hypergraph is trivially2-colorable.)

Finally, we also include a result on the hardness of hypergraph coloring. This result does not rely on
the low-degree long code and is just based on techniques in Håstad’s 1997 paper [9]. However, as the result
statement is not explicit in the literature, we include it here along with a proof in Appendix B. (Also, this
test paved the way for the version with the low-degree long code stated in Theorem 2.)

Theorem 4. Assume thatNP does not admitnO(log logn) time algorithms. There is an absolute constant
c > 0 such that the following holds. Given a6-uniform hypergraph onN vertices, there is no polynomial
time algorithm to distinguish between the following two cases:
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• The hypergraph can be colored with2 colors so that every hyperedge is bichromatic.

• The hypergraph does not have an independent set withN/(logN)c vertices, and in particular any
coloring of the vertices with(logN)c colors will have a monochromatic hyperedge.

We note that(logN)Ω(1) colors is currently the strongest quantitative bound on hardness for hypergraph
coloring. Khot obtained a similar result using the “split code” for coloring7-colorable4-uniform hyper-
graphs [12]. The above statement is incomparable as it applies to2-colorable hypergraphs, albeit of larger
uniformity. For 3-uniform hypergraphs, hardness ofO( 3

√
log logN)-coloring 2-colorable hypergraphs is

shown in [7], and quasi-NP-hardness of(log logN)1/9-coloring for the3-colorable case is shown in [13]. A
recent result [16] shows that foralmost2-colorable4-uniform hypergraphs, where the hypergraph becomes
2-colorable upon removal of anε fraction of vertices (and all incident hyperedges), it is quasi-NP-hard to
find an independent set of sizeN/2(logN)1−γ

, for arbitrary constantsε, γ > 0.

1.3 Organization

We begin in Section 2 with background information on label cover and CSPs,the low-degree long code and
its connection to Reed-Muller testing, and describe our folding mechanism for the low-degree long code.
Our new algebraic result on testing Reed-Muller codes (Theorem 1) is proved in Section 3. In Section 4,
we prove Theorem 3 on the hardness of approximating satisfiable instances of 4SAT. We prove the result
for covering 6-CSP (Theorem 2) in Section 5. We present the extensionof Håstad’s 3LIN result to the
low-degree long code setting in Appendix A. Finally, Theorem 4 on hardness of hypergraph coloring, which
does not rely on the low-degree long code, is proved in Appendix B.

2 Preliminaries

2.1 Label Cover and its hardness

A label cover instance is given by a bipartite graphG = (U, V,E), two alphabetsΣU andΣV and a
projection constraintπuv : ΣU → ΣV per edgeuv ∈ E. The goal is to assign labels to the vertices in a way
that maximizes the number of satisfied constraints.

We next state a theorem about the NP-hardness of label cover, wherethe label cover has a concrete
structure that is convenient for use with the low-degree long code.

Theorem 5 (Hardness of Label Cover). Let ℓ ∈ N be a parameter. There is a polynomial-time reduction
from a 3SAT instance of sizen to a label cover instance of sizenO(ℓ) that is specified by

• A constraint graphG = (U, V,E), ΣU = F
3ℓ
2 andΣV = F

ℓ
2.

• Everyu ∈ U carriesℓ functionsf (u)1 , . . . , f
(u)
ℓ : F3

2 → F2.

• Every edgeuv ∈ E carries a projection mapping defined by a subsetπuv ⊂ [3ℓ], |πuv| = ℓ, that
contains exactly one element in each triple of indices(3i + 1, 3i + 2, 3i + 3), for i = 0, . . . , ℓ − 1.
The constraint on an edge is said to be satisfied bya ∈ (F3

2)
ℓ andb ∈ F

ℓ
2 if

f
(u)
1 (a1) = . . . = f

(u)
ℓ (aℓ) = 0 and πuv(a) = b .
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The label cover instance has the following completeness and soundness conditions:

• If the 3SAT instance is satisfiable, then there is an assignment for the label cover instance satisfying
every constraint.

• If the 3SAT instance is unsatisfiable, then every assignment for the label cover instance satisfies at
most2−Ω(ℓ) fraction of the constraints.

This theorem is obtained from standard techniques: start with an NP-hardinstance of gap-3SAT, and
then performℓ-parallel repetition [1]. The functionsf (u)1 , . . . , f

(u)
ℓ associated with anℓ-tupleu of clauses

check that the clauses are satisfied.

2.2 CSPs, Covering CSPs, and coloring problems

Let X = {x1, ..., xn} be a set ofn boolean variables andϕ : {0, 1}q → {0, 1} be a predicate. Aϕ-
constraintoverX is an equation of the formϕ (xi1 , . . . , xit) = 1, for somei1, . . . , it ∈ [n], where[n]
denotes{1, 2, . . . , n}. A ϕ-CSP instanceC is a set ofϕ-constraints overX.

It is standard to denote by 4SAT the CSP where each constraint is definedby a disjunction of four
variables or their negations, and by 3LIN the CSP where each constraintis defined by a linear equation over
three variables modulo 2.

LetA1, . . . , Ak ∈ {0, 1}n be a set of assignments forX. We say thatA1, . . . , Ak coverthe instanceC
if for every constraint inC, there existsi ∈ [k] such thatAi satisfies the constraint. Thecovering number
of C, denotedν(C), is smallest numberk of assignments forX such that each constraint is satisfied by at
least one of the assignments. We denote by cover-ϕ the problem of finding the covering number of a given
CSP. The gap problem is defined as follows

Definition 1 (gap-cover-ϕ). Let c < s ∈ N, and letϕ be a predicate. Given aϕ-CSP instanceC, decide
between

• Yes case: ν (C) ≤ c. I.e., there exists a set of at mostc assignments that coversC.

• No case: ν (C) ≥ s. I.e., no set of at mosts assignments coversC.

2.3 The low-degree long code

Notation. We denote the field with two elements byF2. For a positive integerm, we denote byFm theF2-
vector space of functionsFm

2 → F2. We can equipFm with the Hamming metric by defining forg, h ∈ Fm,
their distance∆(g, h) to be the number ofx ∈ F

m
2 such thatg(x) 6= h(x). For a subsetA ⊆ F

m
2 , we denote

by g|A be the functiong restricted toA. The distance betweeng|A andh|A, ∆(g|A, h|A), is the number of
x ∈ A such thatg(x) 6= h(x).

For g ∈ Fm andH ⊆ Fm, we define∆(g,H) = minh∈H∆(g, h). We sayg is ∆-far from a subset
H ⊆ Fm is ∆(g,H) > ∆; otherwise we sayg is ∆-close toH.

Every functionf ∈ Fm can be uniquely expressed as a multilinear polynomial overF2 of degree at most
m. We will be interested in those functions which have much lower degree.

Definition 2 (Reed-Muller code). We denote byP (m, d) the space of all functionsf : F
m
2 → F2 that

have degree at mostd. The evaluations of the polynomials inP (m, d) at all points inFm
2 gives the binary

m-variate Reed-Muller code of degreed, usually denoted asRM(m, d).
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Note thatP (m, d) is a subspace ofFm. It is well-known and easy to see that the dual subspace of
P (m, d), denotedP (m, d)⊥, is the subspaceP (m,m− d− 1) of Fm consisting of polynomials of degree
less thanm− d.

We will now define the low-degree long code first introduced in [2], where it is called the “short code.”

Definition 3. Letm > d be positive integers, and leta ∈ F
m
2 . For integersm, d, the (m-variate degree-d)

low-degree long code ofa, denotedSCm,d(a), is a function fromP (m, d) to F2 defined by

SCm,d(a)(g) = (−1)g(a) for g ∈ P (m, d) .

Whenm, d are clear from context, we will refer to the low-degree long code asSC(a).

For β : Fm
2 → F2, theweightof β, denotedwt(β), is the number ofx ∈ F

m
2 such thatβ(x) = 1. In

other words,wt(β) = ∆(β,0) is the distance ofβ from the zero polynomial.

Definition 4 (Character set). For positive integersm > d, we define byΛ(m, d) the set of functionsβ :
F
m
2 → F2 which are the minimum weight functions (ties broken arbitrarily) in the cosets of P (m,m−d−1)

in Fm.1

By definition, for eachβ ∈ Λ(m, d), the closest polynomial (in Hamming distance) of degree at most
m − d − 1 to β is the zero polynomial. The functions inΛ(m, d) correspond to the “Voronoi cell” of the
zero polynomial for the set of pointsP (m,m− d− 1), under the metric∆(·, ·).
For functionsβ, g : Fm

2 → F2, we define the “character mapping”χβ(g) by

χβ(g) = (−1)
∑

x∈F
m
2

β(x)g(x)
.

The following are easy consequences ofP (m, d)⊥ being equal toP (m,m− d− 1).

Fact 6. For β : Fm
2 → F2, we have

E
g
[χβ(g)] =

{
1 if β ∈ P (m,m− d− 1)
0 otherwise

where the expectation is taken over a randomg ∈ P (m, d).

Fact 7. For β1, β2 ∈ Λ(m, d), we have

E
g
[χβ1(g)χβ2(g)] =

{
1 if β1 = β2
0 otherwise

where the expectation is taken over a randomg ∈ P (m, d).

By well-known facts from the character theory of finite abelian groups, we have:

Fact 8. Every functionA : P (m, d) → R admits the “Fourier” expansion

A(g) =
∑

β∈Λ(m,d)

Â(β)χβ(g) ,

where the Fourier coefficients are given by the inversion formulaÂ(β)) = Eg

[
A(g)χβ(g)

]
, with the expec-

tation taken over a uniformly randomg ∈ P (m, d).

1SinceP (m, d)⊥ = P (m,m− d− 1), one has|Λ(m, d)| = |Fm|/|P (m,m− d− 1)| = |P (m, d)| = 2
∑d

j=0 (
m
j ).
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Finally, we consider two functions over different-dimension domains,A : P (m, d) → {−1, 1} andB :
P (ℓ, d) → {−1, 1} wherem > ℓ. Suppose we have a projectionπ : Fm

2 → F
ℓ
2 defined byπ(x1, . . . , xm) =

(xi1 , . . . , xiℓ) for some indices1 6 i1 < · · · < iℓ 6 m. The projectionπ allows us to lift a polynomialf ∈
P (ℓ, d) to the larger domain without changing its degree, definingf ◦π ∈ P (m, d) by f ◦π(x) = f(π(x)).
Now, forβ : Fℓ

2 → F2,

χβ(f ◦ π) = (−1)
∑

x∈F
m
2
(f◦π)(x)·β(x)

= (−1)
∑

y∈F
ℓ
2
f(y)·∑x∈π−1(y) β(x)

= (−1)
∑

y∈F
ℓ
2
f(y)·π2(β)(y)

= χπ2(β)(f) (1)

where we defineπ2(β) : Fℓ
2 → F2 by π2(β)(y) =

∑
x∈π−1(y) β(x) mod 2.

Fact 9. Letβ ∈ Λ(m, d) and letα ∈ Λ(ℓ, d). Then

E
f∈P (ℓ,d)

[
χβ(f ◦ π)χα(f)

]
=

{
1 if α = π2(β)
0 otherwise.

2.4 Folding properties of low-degree long code

Folding over constraints. Let p1, . . . , pk ∈ P (m, 3) be given. Let

I = 〈p1, . . . , pk〉 =
{

k∑

i=1

piqi

∣∣∣∣∣ qi ∈ P (m, d− 3)

}
,

clearly a linear space. We defineP (m, d)/I to be the collection of cosets ofI in P (m, d), and we denote
by p+ I the coset ofp ∈ P (m, d).

Definition 5 (Folding). A functionA : P (m, d) → R is folded overI = 〈p1, . . . , pk〉 if

∀p, p′ ∈ P (m, d), p− p′ ∈ I ⇒ A(p) = A(p′).

A is folded over{−1, 1} if A(g) = −A(1 + g) for all g ∈ P (m, d).

Fact 10. Leta ∈ F
m
2 . If A = SC(a) andpi(a) = 0 for all i ∈ [k], thenA is folded over〈p1, . . . , pk〉 and

over{−1, 1}.

We next show that a function folded overI cannot have weight on small Fourier coefficients that are
non-zero onI.

Claim 11. Letβ : Fm
2 → F2 havewt(β) < 2d−3, and suppose there is an elementx ∈ F

m
2 with β(x) = 1

for which there is somepi such thatpi(x) 6= 0. Then ifA is folded overI then

Â(β) = E
g
[χβ(g)A(g)] = 0 .

Proof. Let X = {x ∈ F
m
2 | β(x) = 1 and∃i, pi(x) 6= 0}. Choose somea ∈ X and leti be such that

pi(a) = 1. Let p = qpi ∈ I whereq is a polynomial that vanishes on all points ofX excepta. q has degree
at mostd − 3 as long as|X| 6 wt(β) < 2d−3. Pair each functiong ∈ P (m, d) with g + p. By folding,
A(g) = A(g + p), butχβ(g + p) = χβ(g)χβ(p) = −χβ(g), soÂ(β) = 0.

9



Folding over “true”. Let us denote byP ′(m, d) the set obtained by choosing exactly one function out of
each pairg, 1 + g ∈ P (m, d). Similarly, denote byP ′(m, d)/I the set obtained by choosing exactly one
coset out of each pairg + I, 1 + g + I ∈ P (m, d)/I.

Given a functionA′ : P ′(m, d) → {−1, 1} it can be naturally extended toA : P (m, d) → {−1, 1}
by settingA(1 + g) = −A′(g). A functionA : P (m, d) → {−1, 1} is said to be folded over{−1, 1} if
A(g) = −A(1 + g) for all g. If A is folded over{−1, 1} then for anyβ with evenwt(β), Â(β) = 0. In
particular,Â(0) = 0.

Fact 12. Given a functionÃ : P ′(m, d)/I → R, there is a unique functionA : P (m, d) → R that is folded
over{−1, 1} and folded overI and for allg ∈ P (m, d), Ã(g + I) = A(g).

2.5 Reduction from Label Cover using the low-degree long code

All of our inapproximability results will follow the same general framework [3,9] combining label cover
with the long code adapted to the low-degree variant in the following way. Start from a label cover instance
G as in Theorem 5. For eachv ∈ V place a block of variables corresponding toP (ℓ, d). For eachu ∈ U ,

let I(u) = 〈f (u)1 , . . . , f
(u)
ℓ 〉 wheref (u)1 , . . . , f

(u)
ℓ are the degree-3 functions that are associated withu. For

eachu place a block of variables corresponding toP (3ℓ, d)/I(u).

Note that an assignment to these variables is equivalent to a collection of functions

∀u, v, A(v) : P (ℓ, d) → {−1, 1} and B(u) : P (3ℓ, d) → {−1, 1}

such that for eachu ∈ U ,B(u) is folded overI(u). Sometimes we will also need the tables to be folded over
{−1, 1}, in which case the block of variables (from which we extendA(v) to all ofP (ℓ, d)) will be restricted
to P ′(ℓ, d), and similarlyB(u) will be extended fromP ′(3ℓ, d)/I(u).

Our reductions, as usual, are described by a PCP verifier that randomlyqueries the functionsA(v) and
B(u). If ϕ is the acceptance predicate of the PCP verifier, then together with the querypattern this describes a
ϕ-CSP. To analyze the reduction, one writes Fourier expressions that describe the probability of acceptance.
The following lemma is an adaptation to the low-degree long code of Håstad’s technique for converting
certain Fourier expressions into a label cover strategy. One subtle pointbelow is that we needwt(β) to be
bounded to ensure that every element in the support ofβ is a valid assignment tou, i.e., one that satisfies
f
(u)
1 , . . . , f

(u)
ℓ .

Lemma 13. If K 6 2d−3 and

E
uv

[ ∑

β:wt(β)<K
π2(β) 6=0

Â(v)(π2(β))
2B̂(u)(β)2

]
> δ, (2)

then there is an assignment for the label cover satisfying at leastδ/K of the constraints.

Proof. Define a randomized assignment as follows. For eachu ∈ U choose a randomβ ∈ Λ(3ℓ, d) with

probability proportional toB̂(u)(β)2 and then assignu with a random elementb ∈ β−1(1). Similarly, for
eachv ∈ V , choose a randomα ∈ Λ(ℓ, d) with probability proportional toÂ(α)2 and then assignu with a
random elementa ∈ α−1(1). Since

∑
β B̂(β)2 6 1, the probability of picking a certainβ is at leastB̂(β)2,

and similarly forα.
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The left hand side of (2) lower bounds the probability thatu was assigned throughβ, andv was assigned
throughα = π2(β). If that happened, then for each choice ofa ∈ α−1(1) there is at least one matching
b ∈ β−1(1), which is chosen with probability at least1/K. It remains to observe the key fact thatb is a
valid assignment foru because of Claim 11 and the fact thatwt(β) < K 6 2d−3.

2.6 Local testing of Reed-Muller codes

From Fact 7 we have, forβ ∈ Λ(m, d),

E
g
[χβ(g)] =

{
1 if β = 0
0 if β ∈ Λ(m, d) \ {0} .

when the expectation is taken over a randomg ∈ P (m, d). Thus, orthogonality (overF2) with a random
degreed polynomialg ∈ P (m, d) serves as a perfect test for whetherβ ∈ Λ(m, d) is the zero polynomial or
not (or equivalently, ifβ ∈ Fm belongs toP (m,m−d−1) or not). The next result, which follows from [4],
shows that whenβ ∈ Λ(m, d) has large weight (or equivalently, ifβ ∈ Fm is far fromP (m,m − d − 1)),
the above expectation is bounded away from1 even wheng is chosenpseudorandomly, corresponding
to the minimum weight codewords ofRM(m, d) (i.e., products ofd linearly independent affine forms).
Specifically, letL(m, d) ⊆ P (m, d) be the subset of degreed polynomials which are the product of exactly
d linearly independent affine forms. Then we have the following claim which we will use in our warm-up
3LIN PCP (but not for any other PCP construction).

Proposition 14. There exists an absolute constantρ0 < 1 such that for allβ ∈ Λ(m, d),

E
µ∈L(m,d)

[
χβ(µ)

]
6 ρ = max

{
1− wt(β)

2d
, ρ0

}
. (3)

Moreover, if we chooseµ1, . . . , µt independently at random fromL(m, d) then

E
µ1,...,µt∈L(m,d)

[
χβ(µ1 + · · ·+ µt)

]
6 ρt , (4)

Proof. Consider the test for membership ofβ in P (m,m − d − 1) that proceeds by picking a random
µ ∈ L(m, d) and checking that

∑
x∈Fm

2
β(x)µ(x) = 0. ThenEµ∈L(m,d)[χβ(µ)] = 1 − 2Rej(β) where

Rej(β) is probability that the test rejectsβ. Theorem 1 in [4], applied form variables and degreem−d− 1,
implies thatRej(β) > min{wt(β)

2d+1 , ǫ1} for some absolute constantǫ1 > 0. The bound (3) follows by setting
ρ0 = 1− 2ǫ1. The bound (4) follows by noting thatE[χβ(µ1 + · · ·+ µt)] = E[χβ(µ1)] · · ·E[χβ(µt)].

3 A new low-error tester for Reed-Muller codes

In this section, our goal is to prove the following result, which will be used in the analysis of our low-degree
long code based PCPs to show that the “high frequency” terms in the Fourier expansion make a negligible
contribution.

Theorem 15.Letd be a multiple of4. Letβ ∈ Fm be2d/2-far fromP (m,m−d−1), and letg ∈ P (m, d/4)
andh ∈ P (m, 3d/4) be uniformly random polynomials from their respective domains. Then

E
g

[ ∣∣E
h
[χβ(gh)]

∣∣
]
] 6 2−4·2d/4 . (5)
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Fix aβ ∈ Fm. Appealing to Fact 6 we know

E
h∈P (m,3d/4)

[χβ(gh)] = E
h∈P (m,3d/4)

[χβ·g(h)] =

{
1 if βg ∈ P (m,m− 3d/4− 1)
0 otherwise

(6)

Therefore, the expectation in (5) equals

E
g

[ ∣∣E
h
[χβ(gh)]

∣∣
]
= Prg∈P (m,d/4)[βg ∈ P (m,m− 3d/4− 1)] . (7)

The following simple observation shows that estimating the above probability is really a linear-algebraic
problem of bounding the dimension of a certain subspace. This is the subspace of polynomialsg for which
the degree ofβg is strictly smaller than the product of the degrees.

Observation 16. Fix anyβ : Fm
2 → F2. For an integerk 6 d, the set

B
(m)
d,k (β)

def
= {g ∈ P (m, k) | βg ∈ P (m,m− d− 1 + k)} (8)

is a subspace ofP (m, k).

Combining the above with Equation (7), we see that the expectation in (5) is given by

E
g

[ ∣∣E
h
[χβ(gh)]

∣∣
]
= 2

dim(B
(m)
d,d/4

(β))−dim(P (m,d/4))
.

Theorem 15 now follows from the following result.

Theorem 17.For all positive integersm, d, k satisfyingm > d and4|d, the following holds. Ifβ : Fm
2 → F2

has distance more than2d/2 from P (m,m − d − 1), then the subspaceB(m)
d,d/4(β) defined in(8) has co-

dimension (as a subspace ofP (m, d/4)) at least2d/4−2.

The rest of the section will be devoted to proving Theorem 17. For positive integersd, k, let us define
the functionΦd,k : N → N as follows. Ifd < k, thenΦd,k is identically0. Otherwise, ford > k,

Φd,k(D) = min
m>d

β∈Fm; ∆(β,P (m,m−d−1))>D

{
dim(P (m, k))− dim(B

(m)
d,k (β))

}
, (9)

whereB(m)
d,k (β) is as defined in (8).

We note that Theorem 17 will follow if we prove that

Φd,d/4(2
d/2) > 2d/4−2 . (10)

We begin with the following claim which gives us the base case showing a lowerbound when the distance
D = 1.

Claim 18. For d > k, Φd,k(1) > 1.

12



Proof. The claim can be restated as follows: Ifβ /∈ P (m,m − d − 1), thenB(m)
d,k (β) is a proper subspace

of P (m, k), or in other words there existsν ∈ P (m, k) such thatβν /∈ P (m,m − d − 1 + k). We now
prove this fact. As the dual space ofP (m,m − d − 1) in Fm is P (m, d), whenβ /∈ P (m,m − d − 1),
there must existξ ∈ P (m, d) such that

∑
x∈Fm

2
β(x)ξ(x) = 1, or equivalentlyβξ /∈ P (m,m− 1). We may

assume thatξ is a monomialξ = xi1xi2 · · ·xil with l 6 d as such monomials form a basis ofP (m, d). If
l 6 k, thenξ itself serves as the witnessν such thatβν /∈ P (m,m − d − 1 + k). Otherwise, we can take
ν = xi1xi2 · · ·xik andβν can’t have degree at mostm − d − 1 + k as that would implyβξ has degree at
mostm− d− 1 + l 6 m− 1, a contradiction.

The following lemma will be used in the recursive step when proving Theorem17. It is based on a similar
statement proved in [4].

Lemma 19. Let m > d be integers, and let40 < D < 2d. If β : Fm
2 → F2, which we think of as a

polynomial in variablesx1, x2, . . . , xm, isD-far fromP (m,m− d− 1), then there exists a nonzero linear
form L = L(x1, . . . , xm) ∈ P (m, 1) such thatβ|L=0 and β|L=1 are bothD/4-far from polynomials of
degreem− d− 1.

Proof. Lemma 10 in [4], applied withf = β and degreem − d − 1, implies that if there areK > 2m−d

affine formsA1, . . . , AK ∈ P (m, 1) such thatβ|Ai=0 is D′-close to a degreem − d − 1 polynomial for
D′ < 2d−2, then

∆(β, P (m,m− d− 1)) 6 3D′ + 9 · 2m/K (11)

(after we adjust for the fact that we use unnormalized distance rather than fractional Hamming distance). If
for every nonzero linear formL, at least one ofβ|L=0 orβ|L=1 isD/4-close to a degreem−d−1 polynomial,
applying (11) withD′ = D/4 andK = 2m − 1 we get∆(β, P (m,m− d− 1)) 6 3D/4 + 10 < D. This
contradicts the hypothesis thatβ isD-far fromP (m,m− d− 1).

Proof. (of Theorem 17) Our goal is to establish the lower bound (10) onΦd,d/4(D) for D = 2d/2. By
Claim 18, we may assumed > 12. Let β ∈ Fm be a polynomial inx1, x2, . . . , xm that isD-far from
P (m,m− d− 1). We need to prove

dim(B
(m)
d,d/4(β)) 6 P (m, d/4)− 2d/4−2 .

By Lemma 19, we may assume, after applying a linear transformation on the coordinates, thatβxm=0

andβxm=1 are bothD/4-far from P (m − 1,m − d − 1). Let us write the polynomialβ in the form
β = xma(x1, . . . , xm−1) + b(x1, . . . , xm−1). In other words,βxm=0 = b andβxm=1 = a + b wherea, b
are polynomials inx1, . . . , xm−1. We know

∆(b, P (m− 1,m− d− 1)) > D/4 and ∆(a+ b, P (m− 1,m− d− 1)) > D/4 . (12)

Definer = m − d − 1. We need to understand whenν ∈ P (m, k) is such thatβν ∈ P (m, r + k). Let us
write the polynomialν ∈ P (m, k) asν = xmp + q wherep ∈ P (m − 1, k − 1) andq ∈ P (m − 1, k) are
polynomials inx1, . . . , xm−1 of degree at mostk − 1 andk respectively. We have the following claim.

Claim 20. If ν ∈ B
(m)
d,k (β), thenq ∈ B

(m−1)
d−1,k (b), i.e.,

qb ∈ P (m− 1, r + k), and p(a+ b) ∈ qa+ P (m− 1, r + k − 1) .

13



Proof. (of Claim) Indeed,βν = qb + xm((a + b)p + qa). The terms inqb, which is a polynomial in
x1, . . . , xm−1, cannot be canceled by any terms inxm((a + b)p + qb). So if βν has degree at mostr + k,
qb must also have degree at mostr+ k. Also, if βν has degree at mostr+ k, the polynomialp(a+ b) + qa
must have degree at mostr + k − 1, which is the same thing asp(a+ b) ∈ qa+ P (m− 1, r + k − 1).

By the above claim, the choice ofν in the subspaceB(m)
d,k (β) amounts to picking an arbitraryq in the

subspaceB(m−1)
d−1,k (b) of P (m− 1, k), and thenp from a coset of the subspace

B
(m−1)
d−1,k−1(a+ b) = {ν̃ ∈ P (m− 1, k − 1) | (a+ b)ν̃ ∈ P (m− 1, r + k − 1)}

of P (m− 1, k − 1). Therefore,

dim(B
(m)
d,k (β)) 6 dim(B

(m−1)
d−1,k (b)) + dim(B

(m−1)
d−1,k−1(a+ b)) . (13)

Combining (9), (12), (13), and the equality

dim(P (m, k)) = dim(P (m− 1, k)) + dim(P (m− 1, k − 1)) ,

we can conclude the following for alld > k andD < 2d:

Φd,k(D) > Φd−1,k(D/4) + Φd−1,k−1(D/4) . (14)

WhenD = 2d/2 = 4d/4 andk = d/4, recursively applying the above for a depth ofd/4 − 2 (to reduceD
geometrically from4d/4 to 16), and using Claim 18, we can lower boundΦd,d/4(2

d/2) > 2d/4−2, giving us
(10), as desired.

4 PCP checking 4SAT using the low-degree long code

In this section, our goal is to give a low-degree long code based PCP thathas perfect completeness. The
smallest number of queries for which we are able to do so is4 queries. The predicate tested by the PCP will
be 4SAT (actually we can test a slightly stronger arity4 predicatex ∨ y ∨ (z 6= w)). As a result we will
prove Theorem 3 on the inapproximability of 4SAT stated in the introduction. Our construction is inspired
by Håstad’s tight inapproximability result for satisfiable instances of 4SAT [9, Theorem 6.2]. The analysis
here is more subtle due to the restriction of using the low-degree long code. Our main motivation here is to
illustrate these techniques in the simple setting of 4SAT, before applying them to show hardness for covering
CSP later on.

As explained in Section 2.5, we will describe the PCP verifier as a randomizedtest that checks if a Label
Cover instance is satisfiable, or highly unsatisfiable, in the sense of Theorem 5. The verifier will have access
to tablesA(v) andB(u) of purported low-degree long codes of the labels of the nodesu ∈ U andv ∈ V of
the Label Cover instance.

However, there will be some key differences here. First, the table for the“smaller” side will be a low-
degree long code for smaller degree (3d/4 as opposed tod). Second, there will betwo tables for the nodes on
the “larger” side, with one being a low-degree long code of smaller degree. This structure seems technically
necessary as we need to restrict the degree of some of the functions to besmaller thand, and in this case the
analysis necessitates making them from a separate low-degree long code so that they will be well-distributed

14



amongst the coordinates of that low-degree long code. Let us proceedwith the formal description of the PCP
construction.

LetG = (U, V,E) be a Label Cover instance with parameterℓ as promised in Theorem 5. The integer
d will be a degree parameter that we will choose later.

For eachv ∈ V we add a block of variables corresponding toP ′(ℓ, d) (recall thatP ′(ℓ, d) contains
for eachg ∈ P (ℓ, d) exactly one ofg and1 + g). For eachu ∈ U , we addtwo blocks of variables, one
corresponding toP ′(3ℓ, d/4) and another corresponding toP ′(3ℓ, d)/I(u) (whereI(u) denotes the ideal
corresponding to nodeu described in Section 2.5).

Let us denotem = 3ℓ. An assignment for the variables is described by a collection of functionsA(v) :
P ′(ℓ, d) → {−1, 1} for eachv ∈ V , and functionsC(u) : P ′(m, d/4) → {−1, 1},B(u) : P ′(m, d)/I(u) →
{−1, 1}. We can extend the functions in the natural way to assume we have access tofunctionsA(v) :
P (ℓ, d) → {−1, 1}, C(u) : P (m, d/4) → {−1, 1} that are folded over{−1, 1}, and a functionB(u) :
P (m, d) → {−1, 1} that is folded over{−1, 1} andI(u).

We now describe our PCP, which we call4SAT-PCP

1. Choose a random edge(u, v) in the label cover instance, and letπuv : Fm
2 → F

ℓ
2 be the associated

projection.

For notational simplicity, we denoteπ = πuv,A = A(v),B = B(u) andC = C(u).

2. Sample functionsf ∈ P (ℓ, 3d/4), g ∈ P (m, d/4), g̃ ∈ P (m, d) andh ∈ P (m, 3d/4), where each
function is chosen independently at random from its respective domain.

3. Denoteg′ = g̃ + gh+ (1 + g)(1 + f ◦ π) and note thatg′ ∈ P (m, d).

Accept iff at least one ofA(f), C(g),B(g̃), andB(g′) equals−1.

4.1 Completeness

We first establish the perfect completeness of the test which will also explainthe logic behind the test.

Lemma 21. If G is satisfiable, then there are tablesA(v), B(u), andC(u) for which the test4SAT-PCP
accepts with probability1. In particular, there are tables so that the four bits read by the verifier arenever
all equal to1.

Proof. Given a perfectly satisfying assignment forG, let us assign eachA(v) to beSCℓ,3d/4(a), the degree-
3d/4 low-degree long code ofa, wherea ∈ F

ℓ
2 is the label forv. Similarly, defineB(u) = SCm,d(b) and

C(u) = SCm,d/4(b) whereb is the label foru. For the choice of edge(u, v), the condition checked by the
test amounts to

f(a) = 1 ∨ g(b) = 1 ∨ g̃(b) = 1 ∨ g′(b) = 1 . (15)

To prove (15) holds, let us assumef(a) = g(b) = 0 and then argue that in this caseg̃(b) 6= g′(b) (which in
particular means one eitherg̃(b) or g′(b) equals1). Indeed

g̃(b) + g′(b) = g(b)h(b) + (1 + g(b))(1 + f(a)) = 1

whenf(a) = g(b) = 0. Note that we have shown the more stringent conditionA(f) = −1 orC(g) = −1
orB(g̃) 6= B(g′) always holds in the completeness case.
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4.2 Soundness

We now turn to the soundness analysis. We will prove that if the original label cover instanceG is highly
unsatisfiable, then the test will not accept any proof with probability noticeably larger than15/16 (which is
the probability with which completely random tables are accepted). The formaltheorem follows.

Theorem 22. If every assignment forG satisfies at most a fraction2−Ω(ℓ) of the edges, andd = 4⌈log2 ℓ⌉,
then the test4SAT-PCP accepts with probability at most1516 + 2−Ω(ℓ).

Proof. The probability that the test4SAT-PCP accepts equals

1− E
u,v,f,g,h,g̃

[(
1 +A(f)

2

)(
1 + C(g)

2

)(
1 +B(g̃)

2

)(
1 +B(g′)

2

)]

where we use the shorthandg to denote1 + g, g′ = g̃ + gh + g f ◦ π, and as in the testA denotesA(v),
B = B(u) andC = C(u).

Let us now fix a choice of edge(u, v) ∈ E and focus on the inner expectation over justf, g, h, g̃.
Expanding out the product, by the mutual independence of triples(f, g, g̃) and(f, g, g′), and the fact that
A,B,C are all folded over{−1, 1}, the all product terms which don’t include bothB(g̃) andB(g′) equal0.
The distribution of(g, g̃, g′) is identical to that of(g, g̃, g′), as can be seen by replacingf, h by the identically
distributedf, h. This together withB(g′) = −B(g′) implies thatEf,g,h,g̃

[
C(g)B(g̃)B(g′)

]
= 0. The distri-

bution of(f, g̃, g′) can also be seen to be identical to that of(f, g̃, g′), which impliesEf,g,h,g̃

[
A(f)B(g̃)B(g′)

]
=

0. After these simplifications, conditioned on picking(u, v) ∈ E, the probabilityp(u,v) that the test accepts
is given by

p(u,v) =
15

16
− E

f,g,h,g̃

[
A(f)C(g)B(g̃)B(g̃ + gh+ g f ◦ π)

]

︸ ︷︷ ︸
Θ(u,v)

. (16)

Writing the Fourier expansions ofB as given by Fact 8, we can expand the inner expectation as

Θ(u,v) =
∑

β1,β2

B̂(β1)B̂(β2) E
f,g,h

[
A(f)C(g)χγ(g)χβ2(gh+ g f ◦ π)

]
E
g̃

[
χβ1(g̃)χβ2(g̃)

]
(17)

summed overα ∈ Λ(ℓ, 3d/4), andβ1, β2 ∈ Λ(m, d). The expectation over̃g is 0 unlessβ1 = β2 by Fact 7,
in which case it equals1.

Simplifying (17) using this, we get

Θ(u,v) =
∑

β

B̂(β)2 E
g

[
C(g) E

h

[
χβ(gh)

]
E
f

[
A(f)χβ(g f ◦ π)

]]
(18)

For terms withwt(β) > 2d/2, we have the absolute value of the expectation overg in (18) is at most

E
g

[
|C(g)|

∣∣E
h
[χβ(gh)]

∣∣ ∣∣E
f
[A(f)χα(f)χβ(g f ◦ π)]

∣∣
]
6 E

g
[
∣∣E
h
[χβ(gh)]

∣∣] 6 2−2d/4

using Theorem 15. Since
∑

β B̂(β)2 6 1, we can conclude

Θ(u,v) >

( ∑

β:wt(β)<2d/2

B̂(β)2 E
g

[
C(g) E

h

[
χβ(gh)

]
E
f

[
A(f)χβ(g f ◦ π)

]])
− 2−2d/4 . (19)
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Whenwt(β) < 2d/2, we havewt(βg) < 2d/2 as well. This means the closest polynomial of degree
m − 3d/4 − 1 to βg is 0, and soβg ∈ Λ(m, 3d/4). Writing the Fourier expansion ofA asA(f) =∑

α∈Λ(ℓ,3d/4) Â(α)χα(f), we can simplify

E
f

[
A(f)χβ(g f ◦ π)

]
=

∑

α

Â(α)E
f

[
χα(1 + f)χβg(f ◦ π)

]
= Â(π2(βg))(−1)wt(π2(βg)) (20)

using Fact 9.

Likewiseχβ(gh) = χβg(h), and soEh

[
χβ(gh)

]
= 1 if βg = 0, and0 otherwise. Putting together this

fact and (20), the expectation overg in (19) equals

E
g

[
C(g)(−1)wt(π2(βg))Â(π2(βg)) 1[βg = 0]

]
= E

g

[
C(g)(−1)wt(π2(β))Â(π2(β)) 1[βg = 0]

]
> −|Â(π2(β))|

where we use1(E) for the indicator of an eventE. Plugging this into (19), we get

Θ(u,v) > −
( ∑

β:wt(β)<2d/2

|Â(π2(β))| B̂(β)2
)
− 2−2d/4 (21)

SinceB is folded over{−1, 1}, B̂(β) = 0 whenwt(β) is even. Combining (21) and (16), the probability
that the test accepts is

E
(u,v)∈E

[
p(u,v)

]
6

15

16
+ 2−2d/4 + E

(u,v)

[ ∑

β:wt(β)<2d/2

wt(β) odd

|Â(π2(β))| B̂(β)2
]

6
15

16
+ 2−2d/4 +

√√√√√ E
(u,v)

[ ∑

β:wt(β)<2d/2

wt(β) odd

Â(π2(β))2B̂(β)2
]

(22)

where in the second step we used Cauchy-Schwarz and
∑

β B̂(β)2 6 1. Aswt(π2(β)) andwt(β) have the
same parity, whenwt(β) is odd,π2(β) 6= 0. Appealing to Lemma 13, the quantity inside the√ in (22),

divided by2d, gives a lower bound on the optimum fraction of edges that can be satisfiedin the Label Cover
instanceG. As the latter is at most2−Ω(ℓ), we conclude that

E
(u,v)∈E

[
p(u,v)

]
6

15

16
+ 2−2d/4 + 2d−Ω(ℓ) .

Therefore ford = 4⌈log2 ℓ⌉, the test accepts with probability at most15
16 + 2−Ω(ℓ).

Pickingℓ = 2⌊
√
log log n⌋/4 andd = ⌊

√
log log n⌋, the size of the 4SAT instance produced will be at most

polynomial inN 6 n3ℓ2(3ℓ)
d
6 n2

O(
√
log logn)

, and the reduction will run inNO(1) time. As a function of
N , we haveℓ > 2Ω(

√
log logN). Combining the completeness Lemma 21 and the soundness Theorem 22, we

can conclude Theorem 3 showing a1 vs. 15
16 + 2−2Ω(

√
log logN)

gap for 4SAT. In comparison, H̊astad’s result
using the long code [9] can establish an inapproximability gap of1 vs. 15

16 + 1/(logN)c for some small
absolute constantc > 0.
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5 6-query covering PCP using low-degree long code

In this section, we prove Theorem 2, showing it is hard to decide if a giveninstance of aϕ-CSP has covering
number1 or at leastk = 2O(

√
log log n), where the predicateϕ is defined by

ϕ(a, b, c, d, e, f) = (a 6= b) ∨ (c 6= d) ∨ (e 6= f) .

Before moving to the proof, let us mention that since this predicate involves monotone Boolean oper-
ations over inequality constraints on the variables, it makes sense to assign variables with any number of
colors (rather than Boolean values only). Given aϕ-CSP instance over variablesX, such that the variables
occur without negations, we say it isc-colorable if there is a coloring of the variablesψ : X → {1, 2, . . . , c}
such that every constraint is satisfied. It is easy to generalize the connection in [8] to this case, showing that
the logarithm of this version of the chromatic number is equal to its covering number. Thus, an equivalent
statement of Theorem 2 is the following.

Theorem 23. Assume thatNP does not admitn2
O(

√
log logn)

time algorithms (note that this runtime is
no(logn)). Given aϕ-CSP instance withN vertices, there is no polynomial time algorithm to distinguish
between the following two cases:

• The instance can be colored withc = 2 colors.

• The instance cannot be colored even with22
Ω(

√
log logN)

colors.

For 4SAT, there are trivially two assignments such that each constraint is satisfied by one of them, so
its covering number is always at most2. So4SAT-PCP from the previous section cannot give the desired
coloring hardness. However, we will show that a small change to the test gives us the desired PCP with a
total of6 queries. Specifically, we will replace the conditionA(f) = −1 with the checkA(f1) 6= A(f1+f),
and the conditionC(g) = −1 with the checkC(g1) 6= C(g1 + g).

As in Section 4 we begin with a label cover instanceG = (U, V,E), and place low-degree long code
tables for the vertices ofG. Namely, for eachv ∈ V , a tableA(v) : P (ℓ, 3d/4) → {−1, 1}, and for
eachu ∈ U , two tablesC(u) : P (m, d/4) → {−1, 1} andB(u) : P (m, d)/I(u) → {−1, 1} (where
m = 3ℓ). We will not assume that any of these tables are folded over{−1, 1}, and this implies that the
generated CSP instance will have no negations. Once again, we will extendB(u) to all of P (m, d) by
definingB(h) = B(h+ I(u)), and assume thatB(u) : P (m, d) → {−1, 1} is folded overI(u).

We now describe our PCP, which we call6-NE-PCP

1. Choose a random edge(u, v) in the label cover instance, and letπuv : Fm
2 → F

ℓ
2 be the associated

projection.

For notational simplicity, we denoteπ = πuv,A = A(v),B = B(u) andC = C(u).

2. Sample functionsf, f1 ∈ P (ℓ, 3d/4), g, g1 ∈ P (m, d/4), g̃ ∈ P (m, d) andh ∈ P (m, 3d/4),
where each function is chosen independently at random from its respective domain. Denoteg′ =
g̃ + gh+ (1 + g)(1 + f ◦ π) and note thatg′ ∈ P (m, d).

3. Accept iff
(A(f1) 6= A(f1 + f)) ∨ (C(g1) 6= C(g1 + g)) ∨ (B(g̃) 6= B(g′)) . (23)
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Perfect Completeness.By an argument identical to Lemma 21, we can show that when there is a labeling
satisfying every edge ofG, there are tables that6-NE-PCP accepts with probability1.

Soundness analysis.As in Section 4, it can be proved that when the Label Cover instanceG is highly
unsatisfiable, no choice of tables will make the6-NE-PCP test accept with probability more than7/8
(again random tables will be accepted with this probability, so this bound is tight). Given our interest in
covering soundness we will show that even a large number of proofs cannot cover every test made by the
verifier. The formal statement follows.

Theorem 24. If every assignment of labels to the Label Cover instanceG satisfies at most a fraction2−Ω(ℓ)

of the edges, andd = 4⌈log ℓ⌉, then there existsk = Ω(ℓ) such that for every set ofk tables there is some
check(23) that is violated by all of them.

Proof. Suppose there arek proofs such that every check (23) accepts at least one of them. Letρ = 1/2k.
Then, viewing thesek proofs as a2k-coloring, we can choose a subset consisting of a fractionρ of the
locations of each of theA(v)-tables, and similarly for theB(u) andC(u)-tables, such that no check (23)
has all6 queries amongst the chosen locations. (To see this simply take the most popular color class in
each of the tables.) To express this analytically, letF (v) : P (ℓ, 3d/4) → {0, 1} be the indicator function
of this subset restricted toA(v), and similarly define indicator functionsG(u) : P (m, d/4) → {0, 1} and
H(u) : P (m, d) → {0, 1} corresponding to the tablesC(u) andB(u) respectively. Further,H(u) can be
assumed to be folded overI(u). By construction, we have for everyu, v

E
f
[F (v)(f)] = E

g
[G(u)(g)] = E

h
[H(u)(h)] = ρ . (24)

and

δ
def
= E

u,v

[
E

[
F (v)(f1)F

(v)(f1 + f)G(u)(g1)G
(u)(g1 + g)H(u)(g̃)H(u)(g̃ + gh+ g f ◦ πuv)

]]
= 0 , (25)

where the inner expectation is over the choice of all the functionsf, f1, g, g1, g̃, h. Our goal is to prove that
(24) and (25) implyρ 6 2−Ω(ℓ). We will analyze the inner expectation in (25) for a fixed(u, v), call it
Γ(u,v). We will use the shorthand

F = F (v), G = G(u), H = H(u), and π = πuv .

Let us define the “self-corrected” versionsF̃ andG̃ of the tablesF andG as

F̃ (f) = E
f1
[F (f1)F (f1 + f)] and G̃(g) = E

g1
[G(g1)G(g1 + g)]

respectively. Note that the tables̃F andG̃ take values in the interval[0, 1].

As in the proof of Theorem 22, using Fourier expansion, the expectationΓ(u,v) can be written as the sum

∑

β

Ĥ(β)2 E
g

[
G̃(g) E

h

[
χβ(gh)

]
E
f

[
F̃ (f)χβ(gf ◦ π)

]]

︸ ︷︷ ︸
Υg

(26)

overβ ∈ Λ(m, d). Note that theβ = γ = 0 term equals

Ĥ(0)2 E
g
[G̃(g)] E

f
[F̃ (f)] =

(
E
h
[H(h)]

)2 (
E
g
[G(g)]

)2 (
E
f
[F (f)]

)2
= ρ6 using (24). (27)
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Our goal is to prove that the rest of the terms (forβ 6= 0) in (26) have a very small contribution. To this
end, we proceed similarly to the proof of Theorem 22. First, the terms in (26)with wt(β) > 2d/2 contribute
at most2−2d/4 in absolute value. For terms withwt(β) < 2d/2, note that

E
h
[χβ(gh)] = E

h
[χβg(h)] = 0

unlessβg = 0. This follows from Fact 6 becausewt(βg) < 2d/2 and soβg cannot be a nonzero polynomial
of degreeP (m,m− 3d/4− 1). ExpandingF̃ (f) =

∑
α F̂ (α)

2χα(f), we can simplify the expected value
Υg in (26) as

Υg = E
g

[
G̃(g) 1[βg = 0] E

f

[∑

α

F̂ (α)2χα(f)χβg(f ◦ π)
]]

= E
g

[
G̃(g) 1[βg = 0] (−1)wt(π2(β))F̂ (π2(β))

2
]

(using Fact 9)

>

{
0 whenwt(β) is even
−F̂ (π2(β))2 whenwt(β) is odd

(28)

where in the last step we use the fact thatwt(β) andwt(π2(β)) have the same parity.

Combining (26), (27), and (28), we can lower boundδ from (25) as

δ > ρ6 − 2−2d/4 −
∑

β:wt(β)<2d/2

wt(β) odd

F̂ (π2(β))
2Ĥ(β)2 .

Appealing to Lemma 13, the sum in the above expression is at most2d−Ω(ℓ) when the Label Cover instanceG
is at most2−Ω(ℓ)-satisfiable. Recallingδ = 0 andρ = 1/2k, we concludek > Ω(ℓ) whend = Θ(log ℓ).

Picking parameters as in Section 4.2 we get a proof of Theorem 2 (alternatively stated as Theorem 23 at
the beginning of this section).

6 Concluding remarks

Our work raises several open questions, some of which we mention below:

• Can one remove the multipartite structural bottleneck of our low-degree long code based PCP con-
structions and prove improved hardness results for hypergraph coloring?

• Can one prove a gap-covering result of1 vs. exp(Ω(
√
log logN)) (or at leastO(1) vs.ω(log logN))

with fewer than6 queries?

• Can one derandomize the long code further and move closer toNΩ(1) (or at least2(logN)Ω(1)
) hardness

for hypergraph coloring or related problems?
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A 3LIN PCP using low-degree long code

In this section we will use the low-degree long code code to prove the following theorem.

Theorem 25. Given a system of linear equations overF2 with 3 variables per equation, of sizeN , it is
quasi-NP-hard to distinguish between the following cases:

• There is an assignment satisfying at least1− 1/2Ω(
√
log logN) fraction of the equations.

• Every assignment satisfies at most1/2 + 1/22
Ω(

√
log logN)

fraction of the equations.

More than proving the theorem, our goal is to illustrate how to replace the long code by the low-degree
long code code in the simplest of Håstad’s PCP constructions.

We first describe a reduction from an instance of Label Cover to a system of linear equations overF2

with three variables per equation.

The Reduction. LetG = (U, V,E) be a Label Cover instance with parameterℓ as promised in Theorem 5.
The integerd will be a degree parameter that we will choose later.

For eachv ∈ V we add a block of variables corresponding toP ′(ℓ, d) (recall thatP ′(ℓ, d) contains
for eachg ∈ P (ℓ, d) exactly one ofg and 1 + g). For eachu ∈ U let I(u) be the ideal spanned by

f
(u)
1 , . . . , f

(u)
ℓ viewed as functions overm = 3ℓ bits such thatf (u)i only looks at the three relevant bits

numbered3i+ 1, 3i+ 2, 3i+ 3. For eachu we add a block of variables corresponding toP ′(m, d)/I(u).

An assignment for the variables is given by a collection of functionsA(v) : P (ℓ, d) → {−1, 1} perv,
andB(u) : P (m, d) → {−1, 1} peru and, such thatB(u) is folded overI(u) and over{−1, 1}, andA(v) is
folded over{−1, 1} (see Fact 12).

The equations are conveniently described by a randomized test. Recall that L(m, d) ⊆ P (m, d) denotes
the set of products ofd linearly independent affine forms.

1. Choose a random edge(u, v) in the label cover instance, and letπuv : F 3ℓ
2 → F

ℓ
2 be the associated

projection,

2. Choose a randomg ∈ P (ℓ, d), and a randomh ∈ P (m, d).

3. Chooset independently random functionsξ1, . . . , ξt ∈ L(m, d), and letξ = ξ1 + · · ·+ ξt.

4. Accept iffA(v)(g)B(u)(h)B(u)(h+ ξ + g ◦ πuv) = 1.

To analyze this reduction we follow H̊astad’s analysis of 3LIN using long codes [9], just replacing the
analysis of the effect of the noise function in the soundness proof with Proposition 14.
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Completeness. Given a perfectly satisfying assignment for the initial label cover, let us assign eachB(u) =
SC(b) whereb is the label foru, andA(v) = SC(a) wherea is the label forv. In that case we get, since
g ◦ πuv(b) = g(a),

A(v)(g)B(u)(h)B(u)(h+ ξ + g ◦ πuv) = (−1)g(a)+h(b)+h(b)+ξ(b)+g◦πuv(b) = (−1)ξ(b)

which equals1 with probability at least1− wt(ξ)
2m > 1− t2−d = 1− 2−d/4.

Soundness. We next show that an assignment to the 3LIN system that satisfies(1+ ε)/2 of the equations,
can be decoded into an assignment for the initial label cover instance that satisfies roughlypoly(ε/2d)
fraction of the constraints. So assume a 3LIN assignment with

ε 6 E
u,v,g,h,ξ

[A(g)B(h)B(h+ tξ + g ◦ πuv)]. (29)

(where we omit the dependence ofA,B onu, v from the notation). Plugging in the Fourier expansion ofA
andB, for eachv, u the expectation overg, h, ξ can be written as

∑

α,β,γ

Â(α)B̂(β)B̂(γ) E
g,h,ξ

[χα(g)χβ(h)χγ(hξg ◦ πuv)],

summed over allα ∈ Λ(ℓ, d), andβ, γ ∈ Λ(m, d). The expectation is zero unlessα = β andγ = π2(α)
(see Fact 9). So (29) becomes

ε 6
∑

β

B̂(β)2Â(π2(β))E
ξ
[χβ(ξ)] 6

∑

β

B̂(β)2Â(π2(β))ρ(β)
t. (30)

where the last inequality follows from Proposition 14 withρ(β) = max

{
1− wt(β)

2d
, ρ0

}
.

If wt(β) > 2d/2 for large enoughd, thenρ(β) 6 1 − 1/2d/2 andρ(β)t 6 exp(−2d/4) for t = 23d/4.
Using Cauchy-Schwarz and Parseval inequality

∑
β B̂(β)2 6 1, we can bound the sum of all terms for

whichwt(β) > 2d/2 by exp(−2d/8) so we are left with

ε− exp(2−d/8) 6
∑

wt(β)62d/2

B̂(β)2Â(π2(β)) 6

√ ∑

wt(β)62d/2

B̂(β)2Â(π2(β))2 , (31)

where the last step we again used Cauchy-Schwarz and Parseval. AsB is folded over{−1, 1}, the terms with
wt(β) even in (31) are0. Therefore we can restrict the summation towt(β) (and therefore alsowt(π2(β)))
odd, which in particular meansπ2(β) 6= 0. Appealing to Lemma 13, we can find a labeling satisfying
(ε− exp(−2d/8))/2d/2 fraction of the Label Cover constraints.

Therefore we conclude that in the soundness case, every assignmentto the 3LIN instance satisfies at
most 12 + 2d−Ω(ℓ) + exp(−2d/8) fraction of the constraints.

Parameters. Finally we pick parameters suitably to deduce Theorem 25. Let us pickℓ = 2⌊
√
log log n⌋/8

andd = ⌊
√
log log n⌋. The size of 3LIN instance produced will be at most polynomial inN 6 n3ℓ2(3ℓ)

d
6

n2
O(

√
log logn)

, and the reduction will run inNO(1) time. As a function ofN , we haveℓ > 2Ω(
√
log logN). As

the completeness is1−2−Ω(d) and the soundness is1/2+2−Ω(ℓ)+2−2Ω(d)
, the bounds claimed in Theorem

25 follow.
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B 6-set splitting PCP using long code

The result of Section 5 showed a covering CSP of arity6 for which it is hard to tell if the instance is
satisfiable or has covering number exceedingexp(Ω(

√
log logN)). The constraints of the CSP were

for the form (x1 6= x2) ∨ (y1 6= y2) ∨ (z1 6= z2). In this section, our goal is show a similar super-
constant hardness for the covering CSP “monotone Not-all-Equal-6-SAT” whose constraints check that the
6 variables in their scope are not all equal. The motivation is that this directly corresponds to showing
hardness results for coloring2-colorable6-hypergraphs. Note that the test made by the construction6-NE-
PCP has a “tripartite” structure with the queries of each check coming from all three parts. This means that
the corresponding hypergraph is always trivially2-colorable.

To get a result for hypergraph coloring, we need a test that makes all itsqueries on a single side. In this
section, we describe and analyze such a test. However, this test needs access to the long code of the labels,
and we have not been able to design a similar test using only the low-degree long code. As a result, we will
only show hardness of distinguishing satisfiable instances from those with covering numberΩ(log logN).
In coloring terms, we show that(logN)c-coloring a2-colorable6-hypergraph is hard for some absolute
constantc > 0. The previous best result for2-colorable hypergraphs showed hardness of coloring with
O(log logN) colors [8] (but it worked for4-hypergraphs).

We reiterate that there is no use of the low-degree long code in this section. The ingredients needed in this
section were available circa 1997 after Håstad’s work [9], and are similar to those of his result on 4SAT. One
simple but useful trick we make use of is to work with the0-1 indicator vector of the candidate independent
set in the soundness analysis (instead of working withk proofs to establish large covering number). This
approach was used in [13] to show a super-constant hardness for coloring3-colorable3-hypergraphs.

LetG = (U, V,E) be a Label Cover instance with parameterℓ as promised in Theorem 5. Letm = 3ℓ.
Our test will uselong code tablesonly on the “larger”U side. Specifically, for eachu ∈ U we will have a
tableD(u) : Fm/I

u whereI(u) is the ideal spanned by the constraints that must be satisfied by the label to
u. We won’t assume these tables are folded over{−1, 1} (this is important so we get a NAE-6SAT instance
without negations). Once again, we will extendD(u) to all of Fm by definingB(u)(h) = D(u)(h + I(u)),
and assume thatB(u) : Fm → {−1, 1} is folded overI(u).

We now describe our PCP which we call6-SS-PCP:

1. Pick a randomv ∈ V , and independently sample (with replacement) two random neighborsu, u′ ∈ U
of v.

For notational simplicity, denoteB = D(u) andC = D(u′). Also let π = πuv : Fm
2 → F

ℓ
2 be the

associated projection from the label ofu to that ofv, and similarly letπ′ = πu′v be the projection
from the label ofu′ to that ofv.

2. Samplef ∈ Fℓ, g1, g2, h1, h2 ∈ Fm uniformly and independently at random.

3. Sampleg3 ∈ Fm as follows: Fory ∈ F
m
2 , if g1(y) 6= g2(y) then setg3(y) randomly, else set

g3(y) = 1 + f(π(y)) + g2(y).

4. Sampleh3 ∈ Fm as follows: Fory ∈ F
m
2 , if h1(y) 6= h2(y) then seth3(y) randomly, else set

h3(y) = f(π′(y)) + h2(y).

5. Check that not all{B(gi), C(hi)}3i=1 are equal.

Perfect completeness.Given a perfectly satisfying assignment for the initial label cover, let us assign each
D(u) to be the long code of the label foru. If a, a′ are the labels assigned to the nodesu, u′ chosen by
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6-SS-PCP andb the label tov, the above check made by6-SS-PCP amounts to checking that not all
of {gi(a), hi(a′)}3i=1 are equal. To prove this, supposeg1(a) = g2(a). By the definition ofg3, this means
g3(a) = 1+f(b)+g2(a). If f(b) = 0, we would haveg3(a) 6= g2(a). Similarly, assumingh1(a′) = h2(a

′),
we would haveh3(a′) 6= h2(a

′) whenf(b) = 1. Thus either not all ofg1(a), g2(a), g3(a) are equal or not
all of h1(a′), h2(a′), h3(a′) are equal. Note that we would have perfect completeness even if we make the
stronger checkNAE(B(g1), B(g2), B(g3)) ∨NAE(C(h1), C(h2), C(h3)).

Covering soundness.For the soundness, we will be prove that for someρ = 2−Ω(ℓ), every subset ofρ
fraction of the vertices in the hypergraph must contain a hyperedge (i.e., one of the6 query patterns made
by 6-SS-PCP). LetA be0-1 characteristic function of a subsetS of fractionρ of vertices, and letA(u) be
the restriction ofA to the long code table associated withu ∈ U . EachA(u) will be folded overI(u), and
we haveEu Eg[A

(u)(g)] = ρ for g chosen uniformly at random fromFm.

The probability that all 6 queries fall insideS, which is the fraction of hyperedges insideS, is given by

δ
def
= E

v,u,u′

[
E

f,gi,hi

[B(g1)B(g2)B(g3)C(h1)C(h2)C(h3)]
]

(32)

where we denoteB = A(u) andC = A(u′) for notational simplicity. Let us expand the inner expectation
over the functionsf, gi, hi for a fixedv, u, u′ using Fourier analysis as

E
f,g1,g2

[
B(g1)C(h1)

(∑

β1,β2

B̂(β1)B̂(β2) E
g2,g3

[
χβ1(g2)χβ2(g3)

]) (∑

γ1,γ2

Ĉ(γ1)Ĉ(γ2) E
h2,h3

[
χγ1(h2)χγ2(h3)

])]

whereβi, γi ∈ Fm. Now, for any fixing ofg1, the values ofg2(y) for differenty are uniform and independent
of each other, and the same is true for the values ofg3(y). SoEg2,g3

[
χβ1(g2)χβ2(g3)

]
= 0 unlessβ1 = β2.

A similar claim holds forh2, h3. Therefore, we can simplify the above expression to

∑

β,γ

B̂(β)2Ĉ(γ)2 E
f,g1,g2

[
B(g1)C(h1) E

g2,g3

[
χβ(g2)χβ(g3)

]
E

h2,h3

[
χγ(h2)χγ(h3)

]]
. (33)

Now, for any fixing ofg1, if g2(y) 6= g1(y) for somey, then the valueg3(y) is independent ofg2(y).
This implies that, conditioned on the choice ofg1, g2, Eg3

[
χβ(g2)χβ(g3)

]
= 0 unlessg1(y) = g2(y) for

everyy ∈ β. As this event occurs with probability2−wt(β), we have

E
g2,g3

[
χβ(g2)χβ(g3)

]
= 2−wt(β)χβ(1 + f ◦ π) = 2−wt(β)(−1)wt(β)χπ2(β)(f) (34)

whereπ2(β) : Fℓ
2 → F2 is defined as before to beπ2(β)(x) =

∑
y∈π−1(x) β(x). Arguing similarly, we get

E
h2,h3

[
χγ(h2)χγ(h3)

]
= 2−wt(γ)χπ′

2(γ)
(f) . (35)

Combining (34) and (35) and the fact thatEf [χα(f)χα′(f)] = 0 whenα 6= α′ and1 otherwise, we can
simplify (33) and obtain

δ = E
v,u,u′

[ ∑

β,γ

π2(β)=π′
2(γ)

B̂(β)2Ĉ(γ)2 E
g1,h1

[B(g1)C(h1)] (−1)wt(β)2−wt(β)2−wt(γ)

]
. (36)
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As B̂(0) = Eg[B(g)] andĈ(0) = Eh[C(h)], the term withβ = γ = 0 above equals
(
Eg[B(g)]

)3(
Eg[C(h)]

)3
.

Taking expectation overv, u, u′, and using the regularity of the instance, the terms withβ = γ = 0 con-

tribute at least
(
Eu,g[A

(u)(g)]
)6

= ρ6 to (36). Our goal is to prove that the other terms have a very small

contribution.

The terms withwt(β) even in (36) are positive and so can be ignored in any lower bound onδ. When
wt(β) is odd,wt(π2(β)) is also odd, and in particularπ2(β) 6= 0. Using these facts in (36), and noting that
0 6 Eg1,h1 [B(g1)C(h1)] 6 1, we get the lower bound:

δ > ρ6 − E
v,u,u′

[ ∑

β,γ

π2(β)=π′
2(γ) 6=0

B̂(β)2Ĉ(γ)2 2−wt(β)2−wt(γ)

]

> ρ6 − 2ℓ − E
v,u,u′

[ ∑

β,γ;wt(β),wt(γ)<ℓ

π2(β)=π′
2(γ) 6=0

B̂(β)2Ĉ(γ)2
]
. (37)

An argument similar to Lemma 13 shows that the expectation in (37) is at most2−Ω(ℓ). Therefore,δ > 0
whenρ > 1/2k for somek = Θ(ℓ). In other words, the hypergraph consisting of the query patterns of
6-SS-PCP does not have an independent set of density2−Ω(ℓ).

Parameter choices.Pickingℓ = ⌊log logn⌋/4, the size of the instance produced will beN = nO(ℓ)22
3ℓ
6

nO(log logn). When the Label Cover instance is satisfiable, the hypergraph will be2-colorable, and in the
soundness case, the hypergraph will contain no independent set of sizeN/(log n)Ω(1). Therefore we can
conclude the following result.

Theorem 26. Assume thatNP does not admitnO(log logn) time algorithms. There is an absolute constant
c > 0 such that the following holds. Given a6-uniform hypergraph onN vertices, there is no polynomial
time algorithm to distinguish between the following two cases:

• The hypergraph can be colored with2 colors so that every hyperedge is bichromatic.

• The hypergraph does not have an independent set withN/(logN)c vertices, and in particular any
coloring of the vertices with(logN)c colors will have a monochromatic hyperedge.
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