
PCPs via the low-degree long code and
hardness for constrained hypergraph coloring∗

Irit Dinur† Venkatesan Guruswami‡

Abstract

We develop new techniques to incorporate the recently proposed “short code” (a low-degree version
of the long code) into the construction and analysis of PCPs in the classical “LABEL-COVER + Fourier
Analysis” framework. As a result, we obtain more size-efficient PCPs that yield improved hardness
results for approximating CSPs and certain coloring-type problems.

In particular, we show a hardness for a variant of hypergraph coloring (with hyperedges of size 6),
with a gap between 2 and exp(2Ω(

√
log log N)) number of colors where N is the number of vertices.

This is the first hardness result to go beyond the O(logN) barrier for a coloring-type problem. Our
hardness bound is a doubly exponential improvement over the previously known O(log logN)-coloring
hardness for 2-colorable hypergraphs, and an exponential improvement over the (logN)Ω(1)-coloring
hardness for O(1)-colorable hypergraphs. Stated in terms of “covering complexity,” we show that for
6-ary Boolean CSPs, it is hard to decide if a given instance is perfectly satisfiable or if it requires more
than 2Ω(

√
log log N) assignments for covering all of the constraints.

While our methods do not yield a result for conventional hypergraph coloring due to some technical
reasons, we also prove hardness of (logN)Ω(1)-coloring 2-colorable 8-uniform hypergraphs (this result
relies just on the long code).

A key algebraic result driving our analysis concerns a very low-soundness error testing method for
Reed-Muller codes. We prove that if a function β : Fm

2 → F2 is 2Ω(d) far in absolute distance from
polynomials of degree m − d, then the probability that deg(βg) 6 m − 3d/4 for a random degree d/4
polynomial g is doubly exponentially small in d.

∗An extended abstract of this work was presented at the 54th Annual Symposium on Foundations of Computer Science (FOCS),
October 2013 [8].
†Department of Applied Math and Computer Science, The Weizmann Institute of Science, Rehovot, Israel. Email:

〈irit.dinur@weizmann.ac.il〉. Research supported by US-Israel BSF grant number 2008293 and ERC grant number
239985.
‡Computer Science Department, Carnegie Mellon University, Pittsburgh, USA. Email: 〈guruswami@cmu.edu〉. Research

supported in part by US-Israel BSF grant number 2008293 and the US National Science Foundation under Grant No. CCF-1115525.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 122 (2013)

Contents

1 Introduction 3
1.1 Local testing of Reed Muller codes over F2 . 4
1.2 Inapproximability Results . 4
1.3 Organization . 6

2 Preliminaries 6
2.1 LABEL-COVER and its hardness . 6
2.2 CSPs, Covering CSPs, and coloring problems . 7
2.3 The low-degree long code . 8
2.4 Folding properties of low-degree long code . 9
2.5 Reduction from LABEL-COVER using the low-degree long code 11
2.6 Local testing of Reed-Muller codes . 11

3 A new low-error tester for Reed-Muller codes 12

4 PCP checking 4SAT using the low-degree long code 15
4.1 Completeness . 16
4.2 Soundness . 17

5 6-query covering PCP using low-degree long code 19

6 Concluding remarks 22

7 Acknowledgement 22

A 3LIN PCP using low-degree long code 24

B Hardness of hypergraph coloring, based on the long code 26

1 Introduction

Hardness of approximating constraint satisfaction problems is an area that has seen a great deal of progress in
recent years. Following the pioneering works [3, 13], the standard framework for proving inapproximability
has been via a combination of LABEL-COVER (or special cases such as Unique Games [18]) and the long
code. For proving constant gap inapproximability, the relative inefficiency of the long code is insignificant.
However, it becomes a serious bottleneck for non-constant parameter settings, most obviously, for proving
hardness of approximate coloring. For this set of problems, there is an exponential or doubly exponential gap
between the best known approximation algorithms (which require nΩ(1) colors for n-vertex (hyper)graphs)
and the best known hardness results (which at best only rule out efficient o(log n)-coloring)

A very intriguing object called the “short code” was introduced and studied in [2]. This is a puncturing
of the long code to locations indexed by low-degree polynomials, and to better reflect this, in this work we
refer to the short code as the low-degree long code. This code was introduced in [2] as a “derandomization”
of the long code, where it was used it to establish exponentially stronger integrality gaps for Unique Games,
construct small set expanders whose Laplacians have many small eigenvalues, and obtain a more efficient
version of the KKMO alphabet reduction [19] for Unique Games. The short code was used in conjunc-
tion with a pseudorandom generator for Lipschitz functions of polynomials to show an integrality gap of
exp(Ω(

√
log logn)) for the Goemans-Linial semidefinite program for Uniform Sparsest Cut [15].

In this work we develop new techniques to use the low-degree long code in reductions from LABEL-
COVER and obtain the following (quasi-)NP-hardness results. Our main results are

• A hardness for a variant of approximate hypergraph coloring, with a gap between 2 and exp(2Ω(
√

log logN))
number of colors (where N is the number of vertices). This is the first inapproximability result to go
beyond the logarithmic barrier for a coloring-type problem.

• A hardness for gap(1, 15
16 + ε)-4SAT for ε = exp(−2Ω(

√
log logN)). This improves upon Håstad’s

result [13] where ε = 1/(logN)c for some constant c > 0.

• A hardness for approximate hypergraph coloring, with a gap between 2 and (logN)Ω(1) colors.

Adapting a long-code test into the low-degree long code setting turns out to be non-trivial, and there seems
to be no general recipe (as of yet) for doing so. For instance, while it is straightforward to import Håstad’s
classic gap(1− ε, 1/2 + δ)-3LIN result to the low-degree long code setting (we discuss this in Appendix A
as a “warm-up”), the above results require a more carefully tailor-made construction. For certain PCPs in
Håstad’s work, such as 3SAT and 4-set splitting, we do not yet know how to adapt them to work with the low-
degree long code. We comment that invariance-principle based analysis [23] is very powerful for analyzing
dictatorship tests, and was used by [2] for analyzing their constructions. Nevertheless, for obtaining strong
parameters we find that working directly with the Fourier expressions gives us a better handle on the kind
of noise analysis that is needed.

For proving these results, we develop a “folding” mechanism for the low-degree long code that works
with available LABEL-COVER constraints. The folding ensures that non-zero low-weight Fourier coefficients
are supported only on assignments satisfying the associated constraints, which enables decoding a valid
assignment from any such Fourier coefficient. One of the important components of any long-code test is the
noise, which becomes especially subtle when aiming for perfect completeness. The degree restriction in the
low-degree long code makes it harder to control the correlations between various functions via appropriately
chosen noise. Finally, to analyze some of the noise expressions in our tests, and especially to be able to get
stronger parameters, we prove some new results on local testing Reed Muller codes, which we discuss next.

3

1.1 Local testing of Reed Muller codes over F2

One of the key insights in [2] was a connection between the analysis of the low-degree long code and Reed-
Muller testing. Let us denote by P (m, r) the functions Fm2 → F2 that have degree 6 r. For functions β, g :

Fm2 → F2, denote χβ(g) = (−1)
∑
x∈Fm2

β(x)g(x)
. Specifically, given a β that is far from P (m,m − d − 1)

polynomials, they noted that one can bound the expectation |Eµ[χβ(µ)]| for a random low-weight µ by
appealing to a powerful result of [5] about testing Reed-Muller codes. This is formally stated in Proposition
16. Using such a noise µ enables attenuating the contribution of large weight Fourier coefficients; however,
it causes the test to have imperfect completeness. To obtain our low-degree long code based constructions
with perfect completeness, we prove a new result concerning testing Reed-Muller codes, stated below.

Theorem 1. Let d be a multiple of 4. Let β : Fm2 → F2 be 2d/2-far from P (m,m − d − 1). Then for
uniformly random polynomials g ∈ P (m, d/4) and h ∈ P (m, 3d/4), we have

E
g

[∣∣E
h

[χβ(gh)]
∣∣] 6 2−4·2d/4 .

The key quantitative aspect of the above result is the doubly exponential decay in d. To obtain such a
bound, we observe that the set of “bad” choices of g, for which βg has degree m − 3d/4 − 1 (i.e., one
lower than what one expects), is a subspace of P (m, d/4). We then lower bound the co-dimension of this
subspace by 2Ω(d). We do this via a recursive approach to pass to two similar problems in one less variable
dimension (m − 1), by making use of the main technical ingredient in [5] which argues the abundance of
hyperplanes A such that β|A is 2d/2−2-far from polynomials of degree m− d− 1 in one less variable.

We note that a “robust” version of the above theorem, which argues that βg is also likely far from
P (m,m−3d/4−1), would be nice to have (as an interesting algebraic statement in itself). One can deduce
such a claim from the above-mentioned result of [5] which proves such a robust version for g ∈ P (m, 1),
but this only yields an upper bound of 2−O(d) on the desired probability.

1.2 Inapproximability Results

To describe our results let us first briefly recall the notion of covering CSPs from [9]. A q-ary ϕ-CSP is
given by a q-uniform hypergraph where each hyperedge is associated with a constraint ϕ. The covering
number of a CSP is the minimal number of assignments to the vertices so that each hyperedge is covered by
at least one assignment, see also Definition 1. If one views a hypergraph coloring instance as a not-all-equal
CSP, then the covering number is exactly the ceiling of the base-2 logarithm of the chromatic number. This
was the motivation of [12] and later [9] for studying the notion of covering numbers of CSPs.

In light of the lack of progress on hardness of approximate coloring for both graphs and hypergraphs,
[9] suggested studying the hardness of gap covering problem, in the hope of approaching a potentially
optimal gap-covering hardness result of 1 vs. Ω(logN), which corresponds to a hardness gap of O(1) vs. a
polynomial number of colors. Given the current state of the art, they mentioned that even obtaining a gap of
O(1) vs. ω(log logN) would be interesting.

Theorem 2. Given a 6-ary CSP of size N , no polynomial-time algorithm can decide if it is perfectly satis-
fiable, or if its covering number is at least 2Ω(

√
log logN), unless NP ⊆ DTIME(n2O(

√
log logn)

) (note that
this is contained in DTIME(no(logn))).

4

Prior to this work the best known gap-covering hardness was O(1) vs. O(log logN) (implicit in [16])
and 1 vs. O(log log logN) (implicit in [12]). Both these results in [12, 16] in fact applied to coloring (4-
uniform) hypergraphs. It remains to be seen if a result similar to Theorem 2 can be obtained for hypergraph
coloring. This would be a major quantitative jump, breaking the barrier of O(logN) colors.

We remark that the result above is obtained for a 6-ary constraint that is the disjunction of three inequality
constraints. Since inequality makes sense over any alphabet size, one can think of this problem directly as
a coloring-type problem, instead of a covering problem. This is always possible when the constraints are
so-called “equality constrained languages” [6], and we give an alternative formulation of this theorem as a
coloring problem in Theorem 28.

Along the way to proving Theorem 2, we establish the following inapproximability result for 4SAT with
perfect completeness. We present this result first to illustrate our techniques in the basic setting of 4SAT,
before applying them to a covering 6-CSP to deduce Theorem 2.

Theorem 3. Given an instance of 4SAT of size N , then, assuming that NP 6⊆ DTIME(nO(logn)), there is
no polynomial time algorithm to distinguish between the following two cases:

• The instance is satisfiable.

• Every assignment satisfies at most a fraction 15
16 + 2−2Ω(

√
log logN)

of the clauses.

We remark a similar result but without the perfect completeness would have been significantly easier
to prove. We show in Appendix A a proof for the quasi-NP-hardness of 3LIN with similar sub-constant
parameters that is a direct adaptation of Håstad’s 3LIN proof. A direct adaptation of the perfect completeness
tests seems less forthcoming due to the limitation on the noise imposed by working with the short code. It is
worth mentioning that even for long code based constructions, perfect completeness tends to be significantly
more difficult to ensure, often requiring additional technical elements, such as smoothness of LABEL-COVER

projections [17], and/or picking functions whose bias itself is sampled from carefully chosen distributions
as in [13, Sections 6,7], [14].

Fortunately, for 4SAT one can establish hardness avoiding the more complicated technical elements [13,
Thm. 6.2] (this would yield an inapproximability factor 15

16 + 1
(logN)c for some small absolute constant

c > 0). Even so, adapting this to the low-degree long code setting involves some careful design choices, as
multiplying two functions, which seems like an essential component when perfect completeness is desired,
increases the degree. This necessitates restricting certain functions in the test to be of smaller degree. In
order to ensure that this does not bias the query pattern to a small portion of the low-degree long code, we
query the smaller degree functions in a separate low-degree long code of smaller degree. This “multipartite”
structural restriction is what precludes us from extending our result for covering 6-CSP (Theorem 2) to a
result about hypergraph coloring. (Clearly, if the variables of every constraint straddles two or more parts,
then the associated hypergraph is trivially 2-colorable.)

Finally, we also include a result on the hardness of hypergraph coloring. This result does not rely on the
low-degree long code and is just based on techniques in Håstad’s 1997 paper [13]. However, as the result
statement is not explicit in the literature, we include it here along with a proof in Appendix B. (Also, this
test indirectly paved the way for the result with the low-degree long code stated in Theorem 2.)

Theorem 4. There is an absolute constant c > 0 such that the following holds. Given a 8-uniform hyper-
graph on N vertices, then, unless NP ⊆ DTIME(nO(log logn)), there is no polynomial time algorithm to
distinguish between the following two cases:

5

• The hypergraph can be colored with 2 colors so that every hyperedge is bichromatic.

• The hypergraph does not have an independent set with N/(logN)c vertices, and in particular any
coloring of the vertices with (logN)c colors leads to a monochromatic hyperedge.

Khot obtained a similar result using the “split code” for coloring 7-colorable 4-uniform hypergraphs [16].
The above statement is incomparable as it applies to 2-colorable hypergraphs, albeit of larger uniformity. For
3-uniform hypergraphs, hardness of O(3

√
log logN)-coloring 2-colorable hypergraphs is shown in [10], and

quasi-NP-hardness of (log logN)1/9-coloring for the 3-colorable case is shown in [17]. A recent result [21]
shows that for almost 2-colorable 4-uniform hypergraphs, where the hypergraph becomes 2-colorable upon
removal of an ε fraction of vertices (and all incident hyperedges), it is quasi-NP-hard to find an independent
set of size N/2(logN)1−γ

, for arbitrary constants ε, γ > 0.

We note that (logN)Ω(1) colors (achieved by Theorem 4 above) was the strongest quantitative bound
on hardness for hypergraph coloring at the time of publication of conference version of this paper [8] (that
version incorrectly claimed hardness for 6-uniform case, which has been weakened to 8-uniform case here).
Following our work there was fairly rapid progress on hypergraph coloring, as briefly described below.

Subsequent work on hypergraph coloring. Using the low-degree long code, hardness of hypergraph
coloring with exp(2

√
log logN) colors was shown in [11] for the case of 2-colorable 8-uniform hypergraphs

(and also 4-colorable 4-uniform hypergraphs). Around the same time, Saket [24] proved the hardness of
(logN)Ω(1) coloring 2-colorable 4-uniform hypergraphs using the original long code, thus improving our
Theorem 4. Khot and Saket [20], using a new outer verifier based in part on our Theorem 1 on Reed-Muller
testing, and the degree-2 long code at the inner level, have recently proved the hardness of 2(logN)Ω(1)

-
coloring 2-colorable 12-uniform hypergraphs.

1.3 Organization

We begin in Section 2 with background information on LABEL-COVER and CSPs, the low-degree long code
and its connection to Reed-Muller testing, and describe our folding mechanism for the low-degree long
code. Our new algebraic result on testing Reed-Muller codes (Theorem 1) is proved in Section 3. In Section
4, we prove Theorem 3 on the hardness of approximating satisfiable instances of 4SAT. We prove the result
for covering 6-CSP (Theorem 2) in Section 5. We present the extension of Håstad’s 3LIN result to the
low-degree long code setting in Appendix A. Finally, Theorem 4 on hardness of hypergraph coloring, which
does not rely on the low-degree long code, is proved in Appendix B.

2 Preliminaries

2.1 LABEL-COVER and its hardness

A LABEL-COVER instance is given by a bipartite graph G = (U, V,E), two alphabets ΣU and ΣV and a
projection constraint πuv : ΣU → ΣV per edge uv ∈ E. The goal is to assign labels to the vertices in a way
that maximizes the number of satisfied constraints.

We next state a theorem about the NP-hardness of LABEL-COVER, where the LABEL-COVER has a
concrete structure that is convenient for use with the low-degree long code.

6

Theorem 5 (Hardness of LABEL-COVER). Let ` ∈ N be a parameter. There is a polynomial-time reduction
from a 3SAT instance of size n to a LABEL-COVER instance of size nO(`) that is specified by

• A constraint graph G = (U, V,E), ΣU = F3`
2 and ΣV = F`2.

• Every u ∈ U carries ` functions f (u)
1 , . . . , f

(u)
` : F3

2 → F2.

• Every edge uv ∈ E carries a projection mapping defined by a subset πuv ⊂ [3`], |πuv| = `, that
contains exactly one element in each triple of indices (3i + 1, 3i + 2, 3i + 3), for i = 0, . . . , ` − 1.
The constraint on an edge is said to be satisfied by a ∈ (F3

2)` and b ∈ F`2 if

f
(u)
1 (a1) = . . . = f

(u)
` (a`) = 0 and πuv(a) = b .

The LABEL-COVER instance has the following completeness and soundness conditions:

• If the 3SAT instance is satisfiable, then there is an assignment for the LABEL-COVER instance satis-
fying every constraint.

• If the 3SAT instance is unsatisfiable, then every assignment for the LABEL-COVER instance satisfies
at most a 2−Ω(`) fraction of the constraints.

This theorem is obtained from standard techniques: start with an NP-hard instance of gap-3SAT, and
then perform `-parallel repetition [1]. The functions f (u)

1 , . . . , f
(u)
` associated with an `-tuple u of clauses

check that the clauses are satisfied.

2.2 CSPs, Covering CSPs, and coloring problems

Let X = {x1, ..., xn} be a set of n boolean variables and ϕ : {0, 1}q → {0, 1} be a predicate. A ϕ-
constraint over X is an equation of the form ϕ (xi1 , . . . , xit) = 1, for some i1, . . . , it ∈ [n], where [n]
denotes {1, 2, . . . , n}. A ϕ-CSP instance C is a set of ϕ-constraints over X .

It is standard to denote by 4SAT the CSP where each constraint is defined by a disjunction of four
variables or their negations, and by 3LIN the CSP where each constraint is defined by a linear equation over
three variables modulo 2.

Let A1, . . . , Ak ∈ {0, 1}n be a set of assignments for X . We say that A1, . . . , Ak cover the instance C
if for every constraint in C, there exists i ∈ [k] such that Ai satisfies the constraint. The covering number
of C, denoted ν(C), is smallest number k of assignments for X such that each constraint is satisfied by at
least one of the assignments. We denote by cover-ϕ the problem of finding the covering number of a given
CSP. The gap problem is defined as follows

Definition 1 (gap-cover-ϕ). Let c < s ∈ N, and let ϕ be a predicate. Given a ϕ-CSP instance C, decide
between

• Yes case: ν (C) ≤ c. I.e., there exists a set of at most c assignments that covers C.

• No case: ν (C) ≥ s. I.e., no set of at most s assignments covers C.

7

2.3 The low-degree long code

Notation. We denote the field with two elements by F2. For a positive integer m, we denote by Fm the F2-
vector space of functions Fm2 → F2. We can equip Fm with the Hamming metric by defining for g, h ∈ Fm,
their distance ∆(g, h) to be the number of x ∈ Fm2 such that g(x) 6= h(x). For a subset A ⊆ Fm2 , we denote
by g|A be the function g restricted to A. The distance between g|A and h|A, ∆(g|A, h|A), is the number of
x ∈ A such that g(x) 6= h(x).

For g ∈ Fm and H ⊆ Fm, we define ∆(g,H) = minh∈H∆(g, h). We say g is ∆-far from a subset
H ⊆ Fm is ∆(g,H) > ∆; otherwise we say g is ∆-close toH.

Every function f ∈ Fm can be uniquely expressed as a multilinear polynomial over F2 of degree at most
m. We are interested in those functions which have much lower degree.

Definition 2 (Reed-Muller code). We denote by P (m, d) the space of all functions f : Fm2 → F2 that
have degree at most d. The evaluations of the polynomials in P (m, d) at all points in Fm2 gives the binary
m-variate Reed-Muller code of degree d, usually denoted as RM(m, d).

Note that P (m, d) is a subspace of Fm. It is well-known and easy to see that the dual subspace of
P (m, d), denoted P (m, d)⊥, is the subspace P (m,m− d− 1) of Fm consisting of polynomials of degree
less than m− d.

We now define the low-degree long code first introduced in [2], where it is called the “short code.”

Definition 3. Let m > d be positive integers, and let a ∈ Fm2 . For integers m, d, the (m-variate degree-d)
low-degree long code of a, denoted SCm,d(a), is a function from P (m, d) to F2 defined by

SCm,d(a)(g) = (−1)g(a) for g ∈ P (m, d) .

When m, d are clear from context, we will refer to the low-degree long code as SC(a).

For β : Fm2 → F2, its support, denoted supp(β), is the set {x ∈ Fm2 | β(x) = 1}. The weight of β,
denoted wt(β), equals |supp(β)|. Note that wt(β) = ∆(β,0) is the distance of β from the zero polynomial.

Definition 4 (Character set). For positive integers m > d, we define by Λ(m, d) the set of functions β :
Fm2 → F2 which are the minimum weight functions (ties broken arbitrarily) in the cosets of P (m,m−d−1)
in Fm.1

By definition, for each β ∈ Λ(m, d), the closest polynomial (in Hamming distance) of degree at most
m − d − 1 to β is the zero polynomial. The functions in Λ(m, d) correspond to the “Voronoi cell” of the
zero polynomial for the set of points P (m,m− d− 1), under the metric ∆(·, ·).
For functions β, g : Fm2 → F2, we define the “character mapping” χβ(g) by

χβ(g) = (−1)
∑

x∈Fm2
β(x)g(x)

.

The following are easy consequences of P (m, d)⊥ being equal to P (m,m− d− 1).

Fact 6. Suppose β1, β2 : Fm2 → F2 satisfy β1 + β2 ∈ P (m,m − d − 1). Then for all g ∈ P (m, d),
χβ1(g) = χβ2(g).

1Since P (m, d)⊥ = P (m,m− d− 1), one has |Λ(m, d)| = |Fm|/|P (m,m− d− 1)| = |P (m, d)| = 2
∑d

j=0 (mj).

8

Fact 7. For β : Fm2 → F2, we have

E
g
[χβ(g)] =

{
1 if β ∈ P (m,m− d− 1)
0 otherwise

where the expectation is taken over a random g ∈ P (m, d).

Fact 8. For β1, β2 ∈ Λ(m, d), we have

E
g
[χβ1(g)χβ2(g)] =

{
1 if β1 = β2

0 otherwise

where the expectation is taken over a random g ∈ P (m, d).

By well-known facts from the character theory of finite abelian groups, we have:

Fact 9. Every function A : P (m, d)→ R admits the “Fourier” expansion

A(g) =
∑

β∈Λ(m,d)

Â(β)χβ(g) ,

where the Fourier coefficients are given by the inversion formula

Â(β) = E
g

[
A(g)χβ(g)

]
,

with the expectation taken over a uniformly random g ∈ P (m, d).

Finally, we consider two functions over different-dimension domains, A : P (m, d)→ {−1, 1} and B :
P (`, d)→ {−1, 1} where m > `. Suppose we have a projection π : Fm2 → F`2 defined by π(x1, . . . , xm) =
(xi1 , . . . , xi`) for some indices 1 6 i1 < · · · < i` 6 m. The projection π allows us to lift a polynomial f ∈
P (`, d) to the larger domain without changing its degree, defining f ◦π ∈ P (m, d) by f ◦π(x) = f(π(x)).
Now, for β : F`2 → F2,

χβ(f ◦ π) = (−1)
∑
x∈Fm2

(f◦π)(x)·β(x)
= (−1)

∑
y∈F`2

f(y)·
∑
x∈π−1(y) β(x)

= (−1)
∑
y∈F`2

f(y)·π2(β)(y)
= χπ2(β)(f) (1)

where we define π2(β) : F`2 → F2 by π2(β)(y) =
∑

x∈π−1(y) β(x) mod 2.

Fact 10. Let β ∈ Λ(m, d) and let α ∈ Λ(`, d). Then

E
f∈P (`,d)

[
χβ(f ◦ π)χα(f)

]
=

{
1 if α = π2(β)
0 otherwise .

2.4 Folding properties of low-degree long code

Folding over constraints. Let p1, . . . , pk ∈ P (m, 3) be given. Let

I = 〈p1, . . . , pk〉 =

{
k∑
i=1

piqi

∣∣∣∣∣ qi ∈ P (m, d− 3)

}
,

clearly a linear space. We define P (m, d)/I to be the collection of cosets of I in P (m, d), and we denote
by p+ I the coset of p ∈ P (m, d).

9

Definition 5 (Folding). A function A : P (m, d)→ R is folded over I = 〈p1, . . . , pk〉 if

∀p, p′ ∈ P (m, d), p− p′ ∈ I ⇒ A(p) = A(p′).

A is folded over {−1, 1} if A(g) = −A(1 + g) for all g ∈ P (m, d).

Fact 11. Let a ∈ Fm2 . If A = SC(a) and pi(a) = 0 for all i ∈ [k], then A is folded over 〈p1, . . . , pk〉 and
over {−1, 1}.

We next show that a function folded over I cannot have weight on small Fourier coefficients that are
non-zero on I .

Claim 12. Let β : Fm2 → F2 have wt(β) < 2d−3, and suppose there is an element x ∈ Fm2 with β(x) = 1
for which there is some pi such that pi(x) 6= 0. Then if A : P (m, d)→ R is folded over I then

Â(β) = E
g
[χβ(g)A(g)] = 0 .

Proof. Let X = {x ∈ Fm2 | β(x) = 1 and ∃i, pi(x) 6= 0}. Choose some a ∈ X and let i be such that
pi(a) = 1. Let p = qpi ∈ I where q is a polynomial that vanishes on all points of X except a. As
|X| < 2d−3, we can pick such a q that has degree at most d− 3. This is because the dual space of P (m, r)
in Fm is P (m,m − r − 1), and any nonzero polynomial in P (m,m − r − 1) is nonzero on at least 2r+1

points (these are standard coding-theoretic facts about the distance property of binary Reed-Muller codes).
Therefore, there are no linear dependencies amongst the evaluations of a degree r polynomial at fewer than
2r+1 values. Taking r = d−3, we can interpolate a degree d−3 polynomial q to take on any desired values
at a set of less than 2d−3 distinct points in Fm2 .

Now pair each function g ∈ P (m, d) with g + p. By folding, A(g) = A(g + p), but χβ(g + p) =

χβ(g)χβ(p) = −χβ(g), so Â(β) = 0.

Folding over “true”. Let us denote by P ′(m, d) the set obtained by choosing exactly one function out of
each pair g, 1 + g ∈ P (m, d). Similarly, denote by P ′(m, d)/I the set obtained by choosing exactly one
coset out of each pair g + I, 1 + g + I ∈ P (m, d)/I .

Given a function A′ : P ′(m, d) → {−1, 1} it can be naturally extended to A : P (m, d) → {−1, 1}
by setting A(1 + g) = −A′(g). A function A : P (m, d) → {−1, 1} is said to be folded over {−1, 1} if
A(g) = −A(1 + g) for all g. The following are useful easy facts about folded functions.

Fact 13. Given a function Ã : P ′(m, d)/I → R, there is a unique function A : P (m, d)→ R that is folded
over {−1, 1} and folded over I and for all g ∈ P (m, d), Ã(g + I) = A(g).

Fact 14. If A is folded over {−1, 1} then for any β ∈ Λ(m, d) with even wt(β), Â(β) = 0. In particular,
Â(0) = 0.

When there is a tie in the choice of representative β ∈ Λ(m, d) (as per Definition 4), all minimum
weight functions in the coset have the same weight, and hence the parity of the weight does not depend on
the choice of representative.

10

2.5 Reduction from LABEL-COVER using the low-degree long code

All of our inapproximability results follow the same general framework [3, 13], and combine LABEL-COVER

with the long code adapted to the low-degree variant in the following way. Start from a LABEL-COVER

instance G as in Theorem 5. For each v ∈ V place a block of variables corresponding to P (`, d). For each
u ∈ U , let I(u) = 〈f (u)

1 , . . . , f
(u)
` 〉 where f (u)

1 , . . . , f
(u)
` are the degree-3 functions that are associated with

u. For each u place a block of variables corresponding to P (3`, d)/I(u).
Note that an assignment to these variables is equivalent to a collection of functions

∀u, v, A(v) : P (`, d)→ {−1, 1} and B(u) : P (3`, d)→ {−1, 1}

such that for each u ∈ U , B(u) is folded over I(u). Sometimes we also require the tables to be folded over
{−1, 1}, in which case the block of variables (from which we extend A(v) to all of P (`, d)) are restricted to
P ′(`, d), and similarly B(u) is extended to P (3`, d) from P ′(3`, d)/I(u).

Our reductions, as usual, are described by a PCP verifier that randomly queries the functions A(v) and
B(u). If ϕ is the acceptance predicate of the PCP verifier, then together with the query pattern this describes a
ϕ-CSP. To analyze the reduction, one writes Fourier expressions that describe the probability of acceptance.
The following lemma is an adaptation to the low-degree long code of Håstad’s technique for converting
certain Fourier expressions into a LABEL-COVER strategy. One subtle point below is that we need wt(β) to
be bounded to ensure that every element in the support of β is a valid assignment to u, i.e., one that satisfies
f

(u)
1 , . . . , f

(u)
` .

Lemma 15. If K 6 2d−3 and

E
uv

[∑
β:wt(β)<K
π2(β)6=0

Â(v)(π2(β))2B̂(u)(β)2

]
> δ, (2)

then there is an assignment for the LABEL-COVER satisfying at least δ/K of the constraints.

Proof. Define a randomized assignment as follows. For each u ∈ U choose a random β ∈ Λ(3`, d) with
probability proportional to B̂(u)(β)2 and then assign u with a random element b ∈ β−1(1). Similarly, for
each v ∈ V , choose a random α ∈ Λ(`, d) with probability proportional to Â(α)2 and then assign u with a
random element a ∈ α−1(1). Since

∑
β B̂(β)2 6 1, the probability of picking a certain β is at least B̂(β)2,

and similarly for α.
The left hand side of (2) lower bounds the probability that u was assigned through β, and v was assigned

through α = π2(β). If that happened, then for each choice of a ∈ α−1(1) there is at least one matching
b ∈ β−1(1), which is chosen with probability at least 1/K. It remains to observe the key fact that b is a
valid assignment for u because of Claim 12 and the fact that wt(β) < K 6 2d−3.

2.6 Local testing of Reed-Muller codes

From Fact 8 we have, for β ∈ Λ(m, d),

E
g
[χβ(g)] =

{
1 if β = 0
0 if β ∈ Λ(m, d) \ {0} .

11

when the expectation is taken over a random g ∈ P (m, d). Thus, orthogonality (over F2) with a random
degree d polynomial g ∈ P (m, d) serves as a perfect test for whether β ∈ Λ(m, d) is the zero polynomial or
not (or equivalently, if β ∈ Fm belongs to P (m,m−d−1) or not). The next result, which follows from [5],
shows that when β ∈ Λ(m, d) has large weight (or equivalently, if β ∈ Fm is far from P (m,m − d − 1)),
the above expectation is bounded away from 1 even when g is chosen pseudorandomly, corresponding
to the minimum weight codewords of RM(m, d) (i.e., products of d linearly independent affine forms).
Specifically, let L(m, d) ⊆ P (m, d) be the subset of degree d polynomials which are the product of exactly
d linearly independent affine forms. Then we have the following claim which we will use in our warm-up
3LIN PCP (but not for any other PCP construction).

Proposition 16. There exists an absolute constant ρ0 < 1 such that for all β ∈ Λ(m, d),

E
µ∈L(m,d)

[
χβ(µ)

]
6 ρ = max

{
1− wt(β)

2d
, ρ0

}
. (3)

Moreover, if we choose µ1, . . . , µt independently at random from L(m, d) then

E
µ1,...,µt∈L(m,d)

[
χβ(µ1 + · · ·+ µt)

]
6 ρt , (4)

Proof. Consider the test for membership of β in P (m,m − d − 1) that proceeds by picking a random
µ ∈ L(m, d) and checking that

∑
x∈Fm2

β(x)µ(x) = 0. Then Eµ∈L(m,d)[χβ(µ)] = 1 − 2Rej(β) where
Rej(β) is probability that the test rejects β. Theorem 1 in [5], applied for m variables and degree m−d− 1,
implies that Rej(β) > min{wt(β)

2d+1 , ε1} for some absolute constant ε1 > 0. The bound (3) follows by setting
ρ0 = 1− 2ε1. The bound (4) follows by noting that E[χβ(µ1 + · · ·+ µt)] = E[χβ(µ1)] · · ·E[χβ(µt)].

3 A new low-error tester for Reed-Muller codes

In this section, our goal is to prove the following result, which will be used in the analysis of our low-degree
long code based PCPs to show that the “high frequency” terms in the Fourier expansion make a negligible
contribution.

Theorem 17. Let d be a multiple of 4. Let β ∈ Fm be 2d/2-far from P (m,m−d−1), and let g ∈ P (m, d/4)
and h ∈ P (m, 3d/4) be uniformly random polynomials from their respective domains. Then

E
g

[∣∣E
h

[χβ(gh)]
∣∣]] 6 2−4·2d/4 . (5)

Remark 18. Our proof yields a similar statement when the degrees of g, h are picked to be θd and (1−θ)d for
θ ∈ (0, 1/2]: We will be able to effectively test that β is 4θd-far from P (m,m−d−1), and the upper bound
in (5) will be exp(−Ω(2θd)). The specific choice of θ = 1/4 is made with an eye towards our applications
to the PCPs in Sections 4 and 5. We did not attempt to optimize the constants in the above statement, and
expect that by a more careful argument the base 4 in the 4θd-farness assumption can be replaced with any
absolute constant bigger than 2, with a corresponding degradation in the constant multiplying 2θd in the
exponent of the upper bound (5).

12

Lte us now turn to the proof of Theorem 17. Fix a β ∈ Fm. Appealing to Fact 7 we know

E
h∈P (m,3d/4)

[χβ(gh)] = E
h∈P (m,3d/4)

[χβ·g(h)] =

{
1 if βg ∈ P (m,m− 3d/4− 1)
0 otherwise

(6)

Therefore, the expectation in (5) equals

E
g

[∣∣E
h

[χβ(gh)]
∣∣] = Prg∈P (m,d/4)[βg ∈ P (m,m− 3d/4− 1)] . (7)

The following simple observation shows that estimating the above probability is really a linear-algebraic
problem of bounding the dimension of a certain subspace. This is the subspace of polynomials g for which
the degree of βg is strictly smaller than the sum of the degrees.

Observation 19. Fix any β : Fm2 → F2. For an integer k 6 d, the set

B
(m)
d,k (β)

def
= {g ∈ P (m, k) | βg ∈ P (m,m− d− 1 + k)} (8)

is a subspace of P (m, k).

Combining the above with Equation (7), we see that the expectation in (5) is given by

E
g

[∣∣E
h

[χβ(gh)]
∣∣] = 2

dim(B
(m)
d,d/4

(β))−dim(P (m,d/4))
.

Theorem 17 now follows from the following result.

Theorem 20. For all positive integersm, d, k satisfyingm > d and 4|d, the following holds. If β : Fm2 → F2

has distance more than 2d/2 from P (m,m − d − 1), then the subspace B(m)
d,d/4(β) defined in (8) has co-

dimension (as a subspace of P (m, d/4)) at least 2d/4−2.

The rest of the section is devoted to proving Theorem 20. For positive integers d, k, let us define the
function Φd,k : N→ N as follows. If d < k, then Φd,k is identically 0. Otherwise, for d > k,

Φd,k(D) = min
m>d

β∈Fm; ∆(β,P (m,m−d−1))>D

{
dim(P (m, k))− dim(B

(m)
d,k (β))

}
, (9)

where B(m)
d,k (β) is as defined in (8).

We note that Theorem 20 follows if we prove that

Φd,d/4(2d/2) > 2d/4−2 . (10)

We begin with the following claim which gives us the base case showing a lower bound when the distance
D > 1.

Claim 21. For d > k, and D > 1, Φd,k(D) > 1.

13

Proof. The claim can be restated as follows: If β /∈ P (m,m − d − 1), then B(m)
d,k (β) is a proper subspace

of P (m, k), or in other words there exists ν ∈ P (m, k) such that βν /∈ P (m,m − d − 1 + k). We now
prove this fact. As the dual space of P (m,m − d − 1) in Fm is P (m, d), when β /∈ P (m,m − d − 1),
there must exist ξ ∈ P (m, d) such that

∑
x∈Fm2

β(x)ξ(x) = 1, or equivalently βξ /∈ P (m,m− 1). We may
assume that ξ is a monomial ξ = xi1xi2 · · ·xil with l 6 d as such monomials form a basis of P (m, d). If
l 6 k, then ξ itself serves as the witness ν such that βν /∈ P (m,m − d − 1 + k). Otherwise, we can take
ν = xi1xi2 · · ·xik and βν can’t have degree at most m − d − 1 + k as that would imply βξ has degree at
most m− d− 1 + l 6 m− 1, a contradiction.

The following lemma will be used in the recursive step when proving Theorem 20. It is based on a similar
statement proved in [5].

Lemma 22. Let m > d be integers, and let 40 < D < 2d. If β : Fm2 → F2, which we think of as a
polynomial in variables x1, x2, . . . , xm, is D-far from P (m,m− d− 1), then there exists a nonzero linear
form L = L(x1, . . . , xm) ∈ P (m, 1) such that β|L=0 and β|L=1 are both D/4-far from polynomials of
degree m− d− 1.

Proof. Lemma 10 in [5], applied with f = β and degree m − d − 1, implies that if there are K > 2m−d

affine forms A1, . . . , AK ∈ P (m, 1) such that β|Ai=0 is D′-close to a degree m − d − 1 polynomial for
D′ < 2d−2, then

∆(β, P (m,m− d− 1)) 6 3D′ + 9 · 2m/K (11)

(after we adjust for the fact that we use unnormalized distance rather than fractional Hamming distance). If
for every nonzero linear formL, at least one of β|L=0 or β|L=1 isD/4-close to a degreem−d−1 polynomial,
applying (11) with D′ = D/4 and K = 2m − 1 we get ∆(β, P (m,m− d− 1)) 6 3D/4 + 10 < D. This
contradicts the hypothesis that β is D-far from P (m,m− d− 1).

Proof. (of Theorem 20) Our goal is to establish the lower bound (10) on Φd,d/4(D) for D = 2d/2. Recall
that we are assuming 4|d, and Claim 21 implies (10) when d 6 8, so we may assume d > 12. Let β ∈ Fm
be a polynomial in x1, x2, . . . , xm that is D-far from P (m,m− d− 1). We need to prove

dim(B
(m)
d,d/4(β)) 6 P (m, d/4)− 2d/4−2 .

By Lemma 22, we may assume, after applying a linear transformation on the coordinates, that βxm=0

and βxm=1 are both D/4-far from P (m − 1,m − d − 1). Let us write the polynomial β in the form
β = xma(x1, . . . , xm−1) + b(x1, . . . , xm−1). In other words, βxm=0 = b and βxm=1 = a + b where a, b
are polynomials in x1, . . . , xm−1. We know

∆(b, P (m− 1,m− d− 1)) > D/4 and ∆(a+ b, P (m− 1,m− d− 1)) > D/4 . (12)

Define r = m − d − 1. We need to understand when ν ∈ P (m, k) is such that βν ∈ P (m, r + k). Let us
write the polynomial ν ∈ P (m, k) as ν = xmp + q where p ∈ P (m − 1, k − 1) and q ∈ P (m − 1, k) are
polynomials in x1, . . . , xm−1 of degree at most k − 1 and k respectively. We have the following claim.

Claim 23. If ν ∈ B(m)
d,k (β), then q ∈ B(m−1)

d−1,k (b), i.e.,

qb ∈ P (m− 1, r + k), and p(a+ b) ∈ qa+ P (m− 1, r + k − 1) .

14

Proof. (of Claim) Indeed, βν = qb + xm((a + b)p + qa). The terms in qb, which is a polynomial in
x1, . . . , xm−1, cannot be canceled by any terms in xm((a + b)p + qb). So if βν has degree at most r + k,
qb must also have degree at most r+ k. Also, if βν has degree at most r+ k, the polynomial p(a+ b) + qa
must have degree at most r + k − 1, which is the same thing as p(a+ b) ∈ qa+ P (m− 1, r + k − 1).

By the above claim, the choice of ν in the subspace B(m)
d,k (β) amounts to picking an arbitrary q in the

subspace B(m−1)
d−1,k (b) of P (m− 1, k), and then p from a coset of the subspace

B
(m−1)
d−1,k−1(a+ b) = {ν̃ ∈ P (m− 1, k − 1) | (a+ b)ν̃ ∈ P (m− 1, r + k − 1)}

of P (m− 1, k − 1). Therefore,

dim(B
(m)
d,k (β)) 6 dim(B

(m−1)
d−1,k (b)) + dim(B

(m−1)
d−1,k−1(a+ b)) . (13)

Combining (9), (12), (13), and the equality

dim(P (m, k)) = dim(P (m− 1, k)) + dim(P (m− 1, k − 1)) ,

we can conclude the following for all d > k and D < 2d:

Φd,k(D) > Φd−1,k(D/4) + Φd−1,k−1(D/4) . (14)

When D = 2d/2 = 4d/4 and k = d/4, recursively applying the above for a depth of d/4 − 2 (to reduce D
geometrically from 4d/4 to 16), and using Claim 21, we can lower bound Φd,d/4(2d/2) > 2d/4−2, giving us
(10), as desired.

4 PCP checking 4SAT using the low-degree long code

In this section, our goal is to give a low-degree long code based PCP that has perfect completeness. The
smallest number of queries for which we are able to do so is 4 queries. The predicate tested by the PCP is
4SAT (actually we can test a slightly stronger arity 4 predicate x ∨ y ∨ (z 6= w)). As a result we establish
Theorem 3 on the inapproximability of 4SAT stated in the introduction. Our construction is inspired by
Håstad’s tight inapproximability result for satisfiable instances of 4SAT [13, Theorem 6.2]. The analysis
here is more subtle due to the restriction of using the low-degree long code. Our main motivation here is to
illustrate these techniques in the simple setting of 4SAT, before applying them to show hardness for covering
CSP later on.

As explained in Section 2.5, we describe the PCP verifier as a randomized test that checks if a LABEL-
COVER instance is satisfiable, or highly unsatisfiable, in the sense of Theorem 5. The verifier has access to
tables A(v) and B(u) of purported low-degree long codes of the labels of the nodes u ∈ U and v ∈ V of the
LABEL-COVER instance.

However, there are some key differences in the setting here. First, the table for the “smaller” side is
a low-degree long code for smaller degree (3d/4 as opposed to d). Second, there are two tables for the
nodes on the “larger” side, with one being a low-degree long code of smaller degree. This structure seems
technically necessary as we need to restrict the degree of some of the functions to be smaller than d, and in
this case the analysis necessitates making them from a separate low-degree long code so that they are well-
distributed amongst the coordinates of that low-degree long code. Let us proceed with the formal description
of the PCP construction.

15

Let G = (U, V,E) be a LABEL-COVER instance with parameter ` as promised in Theorem 5. The
integer d is a degree parameter to be chosen later (it will be a multiple of 4).

For each v ∈ V we add a block of variables corresponding to P ′(`, 3d/4) (recall that P ′(`, 3d/4)
contains for each g ∈ P (`, 3d/4) exactly one of g and 1 + g). For each u ∈ U , we add two blocks
of variables, one corresponding to P ′(3`, d/4) and another corresponding to P ′(3`, d)/I(u) (where I(u)

denotes the ideal corresponding to node u described in Section 2.5).
Let us denote m = 3`. An assignment for the variables is described by a collection of functions

A(v) : P ′(`, 3d/4) → {−1, 1} for each v ∈ V , and functions C(u) : P ′(m, d/4) → {−1, 1}, B(u) :
P ′(m, d)/I(u) → {−1, 1} for each u ∈ U . We can extend the functions in the natural way to assume we
have access to functions A(v) : P (`, 3d/4) → {−1, 1}, C(u) : P (m, d/4) → {−1, 1} that are folded over
{−1, 1}, and a function B(u) : P (m, d)→ {−1, 1} that is folded over {−1, 1} and I(u).

We now describe our PCP, which we call 4SAT-PCP :

1. Choose a random edge (u, v) in the LABEL-COVER instance, and let πuv : Fm2 → F`2 be the associated
projection.

For notational simplicity, we denote π = πuv, A = A(v), B = B(u) and C = C(u).

2. Sample functions f ∈ P (`, 3d/4), g ∈ P (m, d/4), g̃ ∈ P (m, d) and h ∈ P (m, 3d/4), where each
function is chosen independently at random from its respective domain.

3. Denote g′ = g̃ + gh+ (1 + g)(1 + f ◦ π) and note that g′ ∈ P (m, d).

Accept iff at least one of A(f), C(g), B(g̃), and B(g′) equals −1.

Before proceeding to the analysis of the above PCP, let us pause to make the following remark concern-
ing the choice of degree parameters in the test.

Remark 24. In the above test, we pick the degree of g to be d/4 and the degree of h, f to be 3d/4. Ad-
mittedly, it will be aesthetically nicer to pick them to have degrees d/2 each. We made this choice for a
somewhat technical reason which we hint at now. The soundness analysis of the test is based on killing
the contribution of the “high frequency” Fourier coefficients B̂(β) corresponding to β that is ∆-far from
P (m,m − d − 1) for some proximity parameter ∆. Theorem 17 (see Remark 18) would only allow us to
handle ∆ � 2d/2 if we picked g to have degree d/2. So we have to handle β with wt(β) = 2d/2 in the
“low-frequency” part of the analysis (eg. (19) in the ensuing soundness analysis). But as there are polyno-
mials of degree m− d/2− 1 with weight at least 2d/2, this weight bound is consistent with β(1 + g) being
a nonzero polynomial in P (m,m − d/2 − 1) in which case its representative in Λ(m, d/2) equals 0. This
causes trouble in the rest of the analysis (steps (20) and beyond).

Remark 25. It turns out that one can make a simpler test where we pick f ∈ P (`, d), and set g′ = g̃ +
gh + (1 + f ◦ π). This was realized in the follow-up work [11]. The completeness of the test (Lemma 26
below) is clear in this case also. With this modification, we can in fact take g, h to have degree d/2 and the
soundness analysis goes through, thus removing the degree asymmetry mentioned in Remark 24 above. The
same holds for the test in Section 5.

4.1 Completeness

We first establish the perfect completeness of the test which also explains the logic behind the test.

16

Lemma 26. If G is satisfiable, then there are tables A(v), B(u), and C(u) for which the test 4SAT-PCP
accepts with probability 1. In particular, there are tables so that the four bits read by the verifier are never
all equal to 1.

Proof. Given a perfectly satisfying assignment for G, let us assign each A(v) to be SC`,3d/4(a), the degree-
3d/4 low-degree long code of a, where a ∈ F`2 is the label for v. Similarly, define B(u) = SCm,d(b) and
C(u) = SCm,d/4(b) where b is the label for u. For the choice of edge (u, v), the condition checked by the
test amounts to

f(a) = 1 ∨ g(b) = 1 ∨ g̃(b) = 1 ∨ g′(b) = 1 . (15)

To prove (15) holds, let us assume f(a) = g(b) = 0 and then argue that in this case g̃(b) 6= g′(b) (which in
particular means one either g̃(b) or g′(b) equals 1). Indeed

g̃(b) + g′(b) = g(b)h(b) + (1 + g(b))(1 + f(a)) = 1

when f(a) = g(b) = 0. Note that we have shown the more stringent condition A(f) = −1 or C(g) = −1
or B(g̃) 6= B(g′) always holds in the completeness case.

4.2 Soundness

We now turn to the soundness analysis. We prove that if the original LABEL-COVER instance G is highly
unsatisfiable, then the test does not accept any proof with probability noticeably larger than 15/16 (which is
the probability with which completely random tables are accepted). The formal theorem follows.

Theorem 27. If every assignment for G satisfies at most a fraction 2−Ω(`) of the edges, and d = 4dlog2 `e,
then the test 4SAT-PCP accepts with probability at most 15

16 + 2−Ω(`).

Proof. The probability that the test 4SAT-PCP accepts equals

1− E
u,v,f,g,h,g̃

[(
1 +A(f)

2

)(
1 + C(g)

2

)(
1 +B(g̃)

2

)(
1 +B(g′)

2

)]
where we use the shorthand g to denote 1 + g, g′ = g̃ + gh + g f ◦ π, and as in the test A denotes A(v),
B = B(u) and C = C(u).

Let us now fix a choice of edge (u, v) ∈ E and focus on the inner expectation over just f, g, h, g̃.
Expanding out the product, by the mutual independence of triples (f, g, g̃) and (f, g, g′), and the fact that
A,B,C are all folded over {−1, 1}, all of the product terms which don’t include both B(g̃) and B(g′)
equal 0. The distribution of (g, g̃, g′) is identical to that of (g, g̃, g′), as can be seen by replacing f, h by the
identically distributed f, h. This together withB(g′) = −B(g′) implies that Ef,g,h,g̃

[
C(g)B(g̃)B(g′)

]
= 0.

The distribution of (f, g̃, g′) can also be seen to be identical to that of (f, g̃, g′), which implies

E
f,g,h,g̃

[
A(f)B(g̃)B(g′)

]
= 0 .

After these simplifications, conditioned on picking (u, v) ∈ E, the probability p(u,v) that the test accepts is
given by

p(u,v) =
15

16
− 1

16
E

f,g,h,g̃

[
A(f)C(g)B(g̃)B(g̃ + gh+ g f ◦ π)

]
︸ ︷︷ ︸

Θ(u,v)

. (16)

17

Writing the Fourier expansions of B as given by Fact 9, we can expand the inner expectation as

Θ(u,v) =
∑
β1,β2

B̂(β1)B̂(β2) E
f,g,h

[
A(f)C(g)χγ(g)χβ2(gh+ g f ◦ π)

]
Ẽ
g

[
χβ1(g̃)χβ2(g̃)

]
(17)

summed over β1, β2 ∈ Λ(m, d). The expectation over g̃ is 0 unless β1 = β2 by Fact 8, in which case it
equals 1.

Simplifying (17) using this, we get

Θ(u,v) =
∑

β∈Λ(m,d)

B̂(β)2 E
g

[
C(g) E

h

[
χβ(gh)

]
E
f

[
A(f)χβ(g f ◦ π)

]]
(18)

For terms with wt(β) > 2d/2, we have the absolute value of the expectation over g in (18) is at most

E
g

[
|C(g)|

∣∣E
h

[χβ(gh)]
∣∣ ∣∣E

f
[A(f)χα(f)χβ(g f ◦ π)]

∣∣] 6 E
g
[
∣∣E
h

[χβ(gh)]
∣∣] 6 2−2d/4

using Theorem 17. Since
∑

β B̂(β)2 6 1, we can conclude

Θ(u,v) >

(∑
β:wt(β)<2d/2

B̂(β)2 E
g

[
C(g) E

h

[
χβ(gh)

]
E
f

[
A(f)χβ(g f ◦ π)

]])
− 2−2d/4 . (19)

When wt(β) < 2d/2, we have wt(βg) < 2d/2 as well. This means the closest polynomial of degree
m − 3d/4 − 1 to βg is 0, and so βg ∈ Λ(m, 3d/4). Writing the Fourier expansion of A as A(f) =∑

α∈Λ(`,3d/4) Â(α)χα(f), we can simplify

E
f

[
A(f)χβ(g f ◦ π)

]
=
∑
α

Â(α)E
f

[
χα(f)χβg(1 + f ◦ π)

]
= Â(π2(βg))(−1)wt(π2(βg)) (20)

using Fact 10.
Likewise χβ(gh) = χβg(h), and so Eh

[
χβ(gh)

]
= 1 if βg = 0, and 0 otherwise. Putting together this

fact and (20), the expectation over g in (19) equals

E
g

[
C(g)(−1)wt(π2(βg))Â(π2(βg)) 1(βg = 0)

]
= E

g

[
C(g)(−1)wt(π2(β))Â(π2(β)) 1(βg = 0)]

]
> −|Â(π2(β))|

where we use 1(E) for the indicator of an event E. Plugging this into (19), we get

Θ(u,v) > −
(∑
β:wt(β)<2d/2

|Â(π2(β))| B̂(β)2

)
− 2−2d/4 (21)

Since B is folded over {−1, 1}, Fact 14 implies that B̂(β) = 0 when wt(β) is even. Combining (21) and
(16), the probability that the test accepts is

E
(u,v)∈E

[
p(u,v)

]
6

15

16
+

1

16
· 2−2d/4 +

1

16
· E

(u,v)

[∑
β:wt(β)<2d/2

wt(β) odd

|Â(π2(β))| B̂(β)2

]

6
15

16
+ 2−2d/4 +

√√√√√ E
(u,v)

[∑
β:wt(β)<2d/2

wt(β) odd

Â(π2(β))2B̂(β)2

]
(22)

18

where in the second step we used Cauchy-Schwarz inequality and
∑

β B̂(β)2 6 1. As wt(π2(β)) and wt(β)
have the same parity, when wt(β) is odd, π2(β) 6= 0. Appealing to Lemma 15, the quantity inside the square
root in (22), divided by 2d, gives a lower bound on the optimum fraction of edges that can be satisfied in the
LABEL-COVER instance G. As the latter is at most 2−Ω(`), we conclude that

E
(u,v)∈E

[
p(u,v)

]
6

15

16
+ 2−2d/4 + 2d−Ω(`) .

Therefore for d = 4dlog2 `e, the test accepts with probability at most 15
16 + 2−Ω(`).

Picking ` = 2b
√

log lognc/4 and d = b
√

log lognc, the size of the 4SAT instance produced is at most
polynomial in N 6 n3`2(3`)d 6 n2O(

√
log logn)

, and the reduction runs in NO(1) time. As a function of N ,
we have ` > 2Ω(

√
log logN). Combining the completeness Lemma 26 and the soundness Theorem 27, we

can conclude Theorem 3 showing a 1 vs. 15
16 + 2−2Ω(

√
log logN)

gap for 4SAT. In comparison, Håstad’s result
using the long code [13] can establish an inapproximability gap of 1 vs. 15

16 + 1/(logN)c for some small
absolute constant c > 0.

5 6-query covering PCP using low-degree long code

In this section, we prove Theorem 2, showing it is hard to decide if a given instance of a ϕ-CSP has covering
number 1 or at least k = 2O(

√
log logn), where the predicate ϕ is defined by

ϕ(a, b, c, d, e, f) = (a 6= b) ∨ (c 6= d) ∨ (e 6= f) .

Before moving to the proof, let us mention that since this predicate involves monotone Boolean oper-
ations over inequality constraints on the variables, it makes sense to assign variables with any number of
colors (rather than Boolean values only). Given a ϕ-CSP instance over variables X , such that the variables
occur without negations, we say it is c-colorable if there is a coloring of the variables ψ : X → {1, 2, . . . , c}
such that every constraint is satisfied. It is easy to generalize the connection in [12] to this case, showing that
the logarithm of this version of the chromatic number is equal to its covering number. Thus, an equivalent
statement of Theorem 2 is the following.

Theorem 28. Given aϕ-CSP instance withN vertices, then, assuming thatNP 6⊆ DTIME(n2O(
√

log logn)
),

there is no polynomial time algorithm to distinguish between the following two cases:

• The instance can be colored with c = 2 colors.

• The instance cannot be colored even with 22Ω(
√

log logN)
colors.

Every 4SAT instance is always trivially covered by any pair of satisfying assignment and its complement,
so the covering number of 4SAT is always at most 2. So 4SAT-PCP from the previous section cannot give
the desired coloring hardness. However, we now show that a small change to the test gives us the desired
PCP with a total of 6 queries. Specifically, we will replace the condition A(f) = −1 with the check
A(f1) 6= A(f1 + f), and the condition C(g) = −1 with the check C(g1) 6= C(g1 + g), for independent
uniformly random functions f1, g1.

As in Section 4 we begin with a LABEL-COVER instanceG = (U, V,E), and place low-degree long code
tables for the vertices of G. Namely, for each v ∈ V , a table A(v) : P (`, 3d/4) → {−1, 1}, and for each

19

u ∈ U , two tables C(u) : P (m, d/4) → {−1, 1} and B(u) : P (m, d)/I(u) → {−1, 1} (where m = 3`).
The fact that we are working with a constrained coloring predicate prevents us from folding the tables over
{−1, 1}. Once again, we extend B(u) to all of P (m, d) by defining B(h) = B(h + I(u)), and assume that
B(u) : P (m, d)→ {−1, 1} is folded over I(u).

We now describe our PCP, which we call 6-NE-PCP

1. Choose a random edge (u, v) in the LABEL-COVER instance, and let πuv : Fm2 → F`2 be the associated
projection.

For notational simplicity, we denote π = πuv, A = A(v), B = B(u) and C = C(u).

2. Sample functions f, f1 ∈ P (`, 3d/4), g, g1 ∈ P (m, d/4), g̃ ∈ P (m, d) and h ∈ P (m, 3d/4),
where each function is chosen independently at random from its respective domain. Denote g′ =
g̃ + gh+ (1 + g)(1 + f ◦ π) and note that g′ ∈ P (m, d).

3. Accept iff
(A(f1) 6= A(f1 + f)) ∨ (C(g1) 6= C(g1 + g)) ∨ (B(g̃) 6= B(g′)) . (23)

Perfect Completeness. Given a perfectly satisfying assignment for G, let us assign each A(v) to be
SC`,3d/4(a), the degree-3d/4 low-degree long code of a, where a ∈ F`2 is the label for v. Similarly, de-
fine B(u) = SCm,d(b) and C(u) = SCm,d/4(b) where b is the label for u. For the choice of edge (u, v), the
condition checked by the test amounts to

(f1(a) 6= f1(a) + f(a)) ∨ (g1(b) 6= g1(b) + g(b)) ∨ (g̃(b) 6= g′(b)) .

This equation clearly holds if f(a) = 1 or g(b) = 1. Otherwise, if f(a) = g(b) = 0 we claim that
g̃(b) 6= g′(b). Indeed

g̃(b) + g′(b) = g(b)h(b) + (1 + g(b))(1 + f(a)) = 0 + 1 = 1

when f(a) = g(b) = 0.

Soundness analysis. As in Section 4, it can be proved that when the LABEL-COVER instance G is highly
unsatisfiable, no choice of tables can make the 6-NE-PCP test accept with probability more than 7/8 (again
random tables are accepted with this probability, so this bound is tight). Given our interest in covering
soundness we now show that even a large number of proofs cannot cover every test made by the verifier.
The formal statement follows.

Theorem 29. If every assignment of labels to the LABEL-COVER instance G satisfies at most a fraction
2−Ω(`) of the edges, and d = 4dlog `e, then there exists k = Ω(`) such that for every set of k tables there is
some check (23) that is violated by all of them.

Proof. Suppose there are k proofs such that every check (23) accepts at least one of them. Let ρ = 1/2k.
Then, viewing these k proofs as a 2k-coloring, we can choose a subset consisting of exactly a fraction ρ of the
locations of each of the A(v)-tables, and similarly for the B(u) and C(u)-tables, such that no check (23) has
all 6 queries amongst the chosen locations. (To see this simply take the most popular color class in each of the
tables, and in each table choose arbitrarily a ρ-sized subset of this color class). To express this analytically,
let F (v) : P (`, 3d/4)→ {0, 1} be the indicator function of this subset restricted toA(v), and similarly define

20

indicator functions G(u) : P (m, d/4) → {0, 1} and H(u) : P (m, d) → {0, 1} corresponding to the tables
C(u) and B(u) respectively. Further, H(u) can be assumed to be folded over I(u). By construction, we have
for every u, v

E
f

[F (v)(f)] = E
g
[G(u)(g)] = E

h
[H(u)(h)] = ρ . (24)

and

δ
def
= E

u,v

[
E
[
F (v)(f1)F (v)(f1 + f)G(u)(g1)G(u)(g1 + g)H(u)(g̃)H(u)(g̃ + gh+ g f ◦ πuv)

]]
= 0 , (25)

where the inner expectation is over the choice of all the functions f, f1, g, g1, g̃, h. Our goal is to prove that
(24) and (25) imply ρ 6 2−Ω(`). We now analyze the inner expectation in (25) for a fixed (u, v), call it
Γ(u,v). Let us use the shorthand

F = F (v), G = G(u), H = H(u), and π = πuv .

Define the “self-corrected” versions F̃ and G̃ of the tables F and G as

F̃ (f) = E
f1

[F (f1)F (f1 + f)] and G̃(g) = E
g1

[G(g1)G(g1 + g)]

respectively. Note that the tables F̃ and G̃ take values in the interval [0, 1].
As in the proof of Theorem 27, using Fourier expansion and eliminating some zero terms, the expectation

Γ(u,v) can be written as the sum∑
β∈Λ(m,d)

Ĥ(β)2 E
g

[
G̃(g) E

h

[
χβ(gh)

]
E
f

[
F̃ (f)χβ(gf ◦ π)

]]
︸ ︷︷ ︸

Υg

. (26)

The β = 0 term equals

Ĥ(0)2 E
g
[G̃(g)] E

f
[F̃ (f)] =

(
E
h

[H(h)]
)2 (

E
g
[G(g)]

)2 (
E
f

[F (f)]
)2

= ρ6 using (24) . (27)

Our goal is to prove that the rest of the terms (for β 6= 0) in (26) have a very small contribution. To this
end, we proceed similarly to the proof of Theorem 27. First, the terms in (26) with wt(β) > 2d/2 can be
bounded in absolute value by Eg

[
|Eh χβ(gh)|

]
6 2−2d/4 due to Theorem 17. For terms with wt(β) < 2d/2,

note that
E
h

[χβ(gh)] = E
h

[χβg(h)] = 0

unless βg = 0. This follows from Fact 7 because wt(βg) < 2d/2 and so βg cannot be a nonzero polynomial
of degree P (m,m− 3d/4− 1). Expanding F̃ (f) =

∑
α F̂ (α)2χα(f), we can simplify the expected value

Υg in (26) as

Υg = E
g

[
G̃(g) 1(βg = 0) E

f

[∑
α

F̂ (α)2χα(f)χβg(f ◦ π)
]]

= E
g

[
G̃(g) 1(βg = 0) (−1)wt(π2(β))F̂ (π2(β))2

]
(using Fact 10)

>

{
0 when wt(β) is even
−F̂ (π2(β))2 when wt(β) is odd

(28)

21

where in the last step we use the fact that wt(β) and wt(π2(β)) have the same parity.
Combining (26), (27), and (28), we can lower bound δ from (25) as

δ > ρ6 − 2−2d/4 −
∑

β:wt(β)<2d/2

wt(β) odd

F̂ (π2(β))2Ĥ(β)2 .

Appealing to Lemma 15, the sum in the above expression is at most 2d−Ω(`) when the LABEL-COVER

instance G is at most 2−Ω(`)-satisfiable. Recalling δ = 0 and ρ = 1/2k, we conclude k > Ω(`) when
d = Θ(log `).

Picking parameters as in Section 4.2 we get a proof of Theorem 2 (alternatively stated as Theorem 28 at
the beginning of this section).

6 Concluding remarks

We have shown some new hardness of approximation results based on the low-degree long code, with
an eye towards hardness of approximate hypergraph coloring. The elegant connection discovered in [2]
between the strong analyis of Reed-Muller testing due to [5] and the soundness of low-degree long code
constructions has also proved fruitful. Indeed, in a follow-up paper by the second author and coauthors [11]
our results have been pushed further to show various hardness of approximate hypergraph coloring results
(with quantitatively similar hardness factors), thereby answering the most immediate question left open by
our work.

It is clear that replacing the long code by the low-degree version yields quantitative improvements but
it is still not clear how far these can be pushed. In particular, can one derandomize the long code further
and move closer to NΩ(1) (or at least 2(logN)Ω(1)

) hardness for hypergraph coloring or related problems?
Recently, Khot and Saket were able to use a different “outer verifier” together with the degree-2 long code
to prove hardness of 2(logN)Ω(1)

-coloring 2-colorable 12-uniform hypergraphs [20].
In addition to the quantitative bottleneck currently given by the low-degree long code, our starting point

LABEL-COVER being the result of parallel repetition caused the reduction to be (slightly) super-polynomial.
It is interesting whether the parallel-repetition-based LABEL-COVER can be replaced by an outer PCP that
makes more than 2 (but constant) number of queries, a la [7]. Such PCPs have nearly polynomial hardness
gaps but without the super polynomial blow up in the reduction. Two difficulties that would need to be
addressed are: first, these PCPs make O(1) queries and not just two, so one needs to be able to simulate
such constraints with long codes; and second, the constraint structure is not direct product so it might be
harder to use the low-degree long code to fold over such constraints.

It seems inevitable, although we are not aware of a formal connection, that for reaching hardness of
approximation to within polynomial factors we might have to first resolve the barrier of the sliding-scale
conjecture, see [4, 22].

7 Acknowledgement

We are grateful to the anonymous referee for many thoughtful and helpful comments, and for catching a bug
in the original soundness argument of Appendix B.

22

References

[1] Sanjeev Arora and Carsten Lund. Approximation Algorithms for NP-hard Problems, chapter Hardness
of Approximations. PWS Publishing, 1996. 7

[2] Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and David Steurer.
Making the long code shorter. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of
Computer Science, pages 370–379, 2012. 3, 4, 8, 22

[3] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonapproximability: Towards
tight results. SIAM J. Comput., 27(3):804–915, 1998. 3, 11

[4] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient probabilistic check-
able proofs and applications to approximation. In Proceedings of the 26th Annual ACM Symposium on
Theory of Computing, page 820, 1994. 22

[5] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuckerman.
Optimal testing of Reed-Muller codes. In Proceedings of the 51th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 488–497, 2010. 4, 12, 14, 22

[6] Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory Comput.
Syst., 43(2):136–158, 2008. 5

[7] Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. PCP characterizations of NP:
Toward a polynomially-small error-probability. Computational Complexity, 20(3):413–504, 2011. 22

[8] Irit Dinur and Venkatesan Guruswami. PCPs via low-degree long code and hardness for constrained
hypergraph coloring. In Proccedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science, pages 340–349, 2013. 1, 6

[9] Irit Dinur and Gillat Kol. Covering CSPs. In Proceedings of the 28th Conference on Com-
putational Complexity, pages 207–218, 2013. Longer version appears as ECCC TR12-088 at
http://eccc.hpi-web.de/report/2012/088. 4

[10] Irit Dinur, Oded Regev, and Clifford D. Smyth. The hardness of 3-uniform hypergraph coloring.
Combinatorica, 25(5):519–535, 2005. 6

[11] Venkatesan Guruswami, Prahladh Harsha, Johan Håstad, Srikanth Srinivasan, and Girish Varma.
Super-polylogarithmic hypergraph coloring hardness via low-degree long codes. In Proceedings of
the 46th ACM Symposium on Theory of Computing (STOC), 2014. 6, 16, 22

[12] Venkatesan Guruswami, Johan Håstad, and Madhu Sudan. Hardness of approximate hypergraph col-
oring. SIAM J. Comput., 31(6):1663–1686, 2002. 4, 5, 19, 26

[13] Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001. 3,
5, 11, 15, 19, 25, 26

[14] Johan Håstad. On the NP-hardness of Max-Not-2. SIAM J. Comput., 43(1):179–193, 2014. 5

23

[15] Daniel M. Kane and Raghu Meka. A PRG for lipschitz functions of polynomials with applications
to sparsest cut. In Proceedings of the ACM Symposium on Theory of Computing, pages 1–10, 2013.
Available as http://arxiv.org/abs/1211.1109. 3

[16] Subhash Khot. Hardness results for approximate hypergraph coloring. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, pages 351–359, 2002. 5, 6

[17] Subhash Khot. Hardness results for coloring 3 -colorable 3 -uniform hypergraphs. In Proceedings of
43rd Symposium on Foundations of Computer Science, pages 23–32, 2002. 5, 6, 27

[18] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, pages 767–775, 2002. 3

[19] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability re-
sults for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007. 3

[20] Subhash Khot and Rishi Saket. Hardness of coloring 2-colorable 12-uniform hypergraphs with
2(logn)Ω(1)

colors. Electronic Colloquium on Computational Complexity (ECCC), 21:51, 2014. 6,
22

[21] Subhash Khot and Rishi Saket. Hardness of finding independent sets in 2-colorable and almost 2-
colorable hypergraphs. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1607–1625, 2014. 6

[22] Dana Moshkovitz. The projection games conjecture and the NP-hardness of ln n-approximating set-
cover. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques - 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM
2012, pages 276–287, 2012. 22

[23] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions with low
influences: invariance and optimality. Ann. Math., 171(1):295–341, 2010. 3

[24] Rishi Saket. Hardness of finding independent sets in 2-colorable hypergraphs and of satisfiable CSPs.
In Proceedings of the 29th annual IEEE Conference on Computational Complexity, CCC ’14, 2014.
To appear; available as arXiv preprint arXiv:1312.2915. 6

A 3LIN PCP using low-degree long code

In this section we will use the low-degree long code code to prove the following theorem.

Theorem 30. Given a system of linear equations over F2 with 3 variables per equation, of size N , it is
quasi-NP-hard to distinguish between the following cases:

• There is an assignment satisfying at least 1− 1/2Ω(
√

log logN) fraction of the equations.

• Every assignment satisfies at most 1/2 + 1/22Ω(
√

log logN)
fraction of the equations.

More than proving the theorem, our goal is to illustrate how to replace the long code by the low-degree
long code code in the simplest of Håstad’s PCP constructions.

We describe a reduction from an instance of LABEL-COVER to a system of linear equations over F2 with
three variables per equation.

24

The Reduction. Let G = (U, V,E) be a LABEL-COVER instance with parameter ` as promised in Theo-
rem 5. The integer d will be a degree parameter that we will choose later.

For each v ∈ V we add a block of variables corresponding to P ′(`, d) (recall that P ′(`, d) contains
for each g ∈ P (`, d) exactly one of g and 1 + g). For each u ∈ U let I(u) be the ideal spanned by
f

(u)
1 , . . . , f

(u)
` viewed as functions over m = 3` bits such that f (u)

i only looks at the three relevant bits
numbered 3i+ 1, 3i+ 2, 3i+ 3. For each u we add a block of variables corresponding to P ′(m, d)/I(u).

An assignment for the variables is given by a collection of functions A(v) : P (`, d) → {−1, 1} per v,
and B(u) : P (m, d) → {−1, 1} per u and, such that B(u) is folded over I(u) and over {−1, 1}, and A(v) is
folded over {−1, 1} (see Fact 13).

The equations are conveniently described by a randomized test. Recall that L(m, d) ⊆ P (m, d) denotes
the set of products of d linearly independent affine forms.

1. Choose a random edge (u, v) in the LABEL-COVER instance, and let πuv : F 3`
2 → F`2 be the associated

projection,

2. Choose a random g ∈ P (`, d), and a random h ∈ P (m, d).

3. Choose t independently random functions ξ1, . . . , ξt ∈ L(m, d), and let ξ = ξ1 + · · ·+ ξt.

4. Accept iff A(v)(g)B(u)(h)B(u)(h+ ξ + g ◦ πuv) = 1.

To analyze this reduction we follow Håstad’s analysis of 3LIN using long codes [13], just replacing the
analysis of the effect of the noise function in the soundness proof with Proposition 16.

Completeness. Given a perfectly satisfying assignment for the initial LABEL-COVER, let us assign each
B(u) = SC(b) where b is the label for u, and A(v) = SC(a) where a is the label for v. In that case we get,
since g ◦ πuv(b) = g(a),

A(v)(g)B(u)(h)B(u)(h+ ξ + g ◦ πuv) = (−1)g(a)+h(b)+h(b)+ξ(b)+g◦πuv(b) = (−1)ξ(b)

which equals 1 with probability at least 1− wt(ξ)
2m > 1− t2−d = 1− 2−d/4.

Soundness. We next show that an assignment to the 3LIN system that satisfies (1 + ε)/2 of the equations,
can be decoded into an assignment for the initial LABEL-COVER instance that satisfies poly(ε/2d) fraction
of the constraints. So assume a 3LIN assignment with

ε 6 E
u,v,g,h,ξ

[A(g)B(h)B(h+ ξ + g ◦ πuv)]. (29)

(where we omit the dependence of A,B on u, v from the notation). Plugging in the Fourier expansion of A
and B, for each v, u the expectation over g, h, ξ can be written as∑

α,β,γ

Â(α)B̂(β)B̂(γ) E
g,h,ξ

[χα(g)χβ(h)χγ(h+ ξ + g ◦ πuv)],

summed over all α ∈ Λ(`, d), and β, γ ∈ Λ(m, d). The expectation is zero unless α = β and γ = π2(α)
(see Fact 10). So (29) becomes

ε 6
∑
β

B̂(β)2Â(π2(β))E
ξ
[χβ(ξ)] 6

∑
β

B̂(β)2Â(π2(β))ρ(β)t. (30)

25

where the last inequality follows from Proposition 16 with ρ(β) = max

{
1− wt(β)

2d
, ρ0

}
.

If wt(β) > 2d/2 for large enough d, then ρ(β) 6 1 − 1/2d/2 and ρ(β)t 6 exp(−2d/4) for t = 23d/4.
Using Cauchy-Schwarz inequality and Parseval’s equality

∑
β B̂(β)2 6 1, we can bound the sum of all

terms for which wt(β) > 2d/2 by exp(−2d/8) so we are left with

ε− exp(2−d/8) 6
∑

wt(β)62d/2

B̂(β)2Â(π2(β)) 6
√ ∑

wt(β)62d/2

B̂(β)2Â(π2(β))2 , (31)

where the last step we again used Cauchy-Schwarz inequality and Parseval’s equality. As B is folded over
{−1, 1}, the terms with wt(β) even in (31) are 0. Therefore we can restrict the summation to wt(β) (and
therefore also wt(π2(β))) odd, which in particular means π2(β) 6= 0. Appealing to Lemma 15, we can find
a labeling satisfying (ε− exp(−2d/8))2/2d/2 fraction of the LABEL-COVER constraints.

Therefore we conclude that in the soundness case, every assignment to the 3LIN instance satisfies at
most 1

2 + 2d−Ω(`) + exp(−2d/8) fraction of the constraints.

Parameters. Finally we pick parameters suitably to deduce Theorem 30. Let us pick ` = 2b
√

log lognc/8

and d = b
√

log lognc. The size of 3LIN instance produced will be at most polynomial in N 6 n3`2(3`)d 6

n2O(
√

log logn)
, and the reduction will run in NO(1) time. As a function of N , we have ` > 2Ω(

√
log logN). As

the completeness is 1−2−Ω(d) and the soundness is 1/2+2−Ω(`) +2−2Ω(d)
, the bounds claimed in Theorem

30 follow.

B Hardness of hypergraph coloring, based on the long code

The result of Section 5 showed a covering CSP of arity 6 for which it is hard to tell if the instance is satisfiable
or has covering number exceeding exp(Ω(

√
log logN)). The constraints of the CSP were for the form

(x1 6= x2)∨(y1 6= y2)∨(z1 6= z2). In this section, our goal is show a similar super-constant hardness for the
covering CSP “monotone Not-all-Equal-8SAT” whose constraints check that the 8 variables in their scope
are not all equal. The motivation is that this directly corresponds to showing hardness results for coloring 2-
colorable 8-hypergraphs. Note that the test made by the construction 6-NE-PCP has a “tripartite” structure
with the queries of each check coming from all three parts. This means that the corresponding hypergraph
is always trivially 2-colorable.

To get a result for hypergraph coloring, we need a test that makes all its queries on a single side. In this
section, we describe and analyze such a test. However, this test needs access to the long code of the labels,
and we have not been able to design a similar test using only the low-degree long code. As a result, we will
only show hardness of distinguishing satisfiable instances from those with covering number Ω(log logN).
In coloring terms, we show that (logN)c-coloring a 2-colorable 8-uniform hypergraph is hard for some
absolute constant c > 0. The previous best result for 2-colorable hypergraphs showed hardness of coloring
with O(log logN) colors [12] (but it worked for 4-uniform hypergraphs).

We reiterate that there is no use of the low-degree long code in this section. The ingredients needed
in this section were available circa 1997 after Håstad’s work [13], and are similar to those of his result on
4SAT. One simple but useful trick we make use of is to work with the 0-1 indicator vector of the candidate
independent set in the soundness analysis (instead of working with k proofs to establish large covering

26

number). This approach was used in [17] to show a super-constant hardness for coloring 3-colorable 3-
uniform hypergraphs.

Let G = (U, V,E) be a LABEL-COVER instance with parameter ` as promised in Theorem 5. Let
m = 3`. Our test will use long code tables only on the “larger” U side. Specifically, for each u ∈ U we
will have a table D(u) : Fm/Iu where I(u) is the ideal spanned by the constraints that must be satisfied by
the label to u. We won’t assume these tables are folded over {−1, 1} (this is important so we get a Not-
All-Equal-8SAT instance without negations, i.e., an instance of 8-set splitting). Once again, we will extend
D(u) to all of Fm by defining B(u)(h) = D(u)(h+ I(u)), and assume that B(u) : Fm → {−1, 1} is folded
over I(u).

We now describe our PCP which we call 8-SS-PCP:

1. Pick a random v ∈ V , and independently sample (with replacement) two random neighbors u, u′ ∈ U
of v.

For notational simplicity, denote B = D(u) and C = D(u′). Also let π = πuv : Fm2 → F`2 be the
associated projection from the label of u to that of v, and similarly let π′ = πu′v be the projection
from the label of u′ to that of v.

2. Sample f ∈ F`, g1, g2, g3, h1, h2, h3 ∈ Fm uniformly and independently at random.

3. Sample g4 ∈ Fm as follows: For y ∈ Fm2 , if g1(y) 6= g2(y) then set g4(y) randomly, else set
g4(y) = 1 + f(π(y)) + g3(y).

4. Sample h4 ∈ Fm as follows: For y ∈ Fm2 , if h1(y) 6= h2(y) then set h4(y) randomly, else set
h4(y) = f(π′(y)) + h3(y).

5. Accept if (B(g1) 6= B(g2)) ∨ (B(g3) 6= B(g4)) ∨ (C(h1) 6= C(h2)) ∨ (C(h3) 6= C(h4)).

Perfect completeness. Given a perfectly satisfying assignment for the initial LABEL-COVER, let us assign
each D(u) to be the long code of the label for u. If a, a′ are the labels assigned to the nodes u, u′ chosen
by 8-SS-PCP and b the label to v, the above check made by 8-SS-PCP amounts to checking that not all
of {gi(a), hi(a

′)}4i=1 are equal. To prove this, suppose g1(a) = g2(a). By the definition of g3, this means
g4(a) = 1+f(b)+g3(a). If f(b) = 0, we would have g4(a) 6= g3(a). Similarly, assuming h1(a′) = h2(a′),
we would have h4(a′) 6= h3(a′) when f(b) = 1. Thus at least one of the pairs (g1(a), g2(a)), (g3(a), g4(a)),
(h1(a′), h2(a′)) or (h3(a′), h4(a′)) are not equal. Note that we would clearly have perfect completeness for
the weaker check of not-all-equal.

Covering soundness. For the soundness, we will be prove that for some ρ = 2−Ω(`), every subset consisting
of ρ fraction of the vertices in the hypergraph must contain a hyperedge (i.e., one of the 8-query patterns
made by 8-SS-PCP). Let A be 0-1 characteristic function of a subset S of fraction ρ of vertices, and let
A(u) be the restriction of A to the long code table associated with u ∈ U . Each A(u) will be folded over
I(u), and we have Eu Eg[A(u)(g)] = ρ for g chosen uniformly at random from Fm.

The probability that all 8 queries fall inside S, which is the fraction of hyperedges inside S, is given by

δ
def
= E

v,u,u′

[
E

f,gi,hi
[B(g1)B(g2)B(g3)B(g4)C(h1)C(h2)C(h3)C(h4)]

]
(32)

where we denote B = A(u) and C = A(u′) for notational simplicity. Let us expand the inner expectation

27

over the functions f, gi, hi for a fixed v, u, u′ using Fourier analysis as

∑
βi,γi

(4∏
i=1

(
B̂(βi)Ĉ(γi)

)
E
[4∏
i=1

χβi(gi)
4∏
i=1

χγi(hi)
])

(33)

summed over βi, γi ∈ Fm for 1 6 i 6 4. In what follows, we will also equivalently treat βi, γi as subsets
of Fm2 (equal to the support of the respective functions). We will now argue that the only nonzero terms in
the above sum are when β3 = β4, β1 = β2 ⊆ β3 (and similarly for the γi’s). Indeed, if y ∈ β3 \ β4, then

E
[∏4

i=1 χβi(gi)
∏4
i=1 χγi(hi)

]
has a factor of E[(−1)g3(y)] which is 0 (as the value g3(y) is independent of

everything else in the product). A similar argument holds if β4 \ β3 6= ∅. Thus we must have β3 = β4 = β
(say) for the expectation in (33) to be nonzero. If there exists a y ∈ β1 \ β (resp. β2 \ β), then the
distribution of g1(y) (resp. g2(y)) is independent of the rest of the values in the product, again making
E
[∏4

i=1 χβi(gi)
∏4
i=1 χγi(hi)

]
= 0. Thus we must have β1, β2 ⊆ β. Finally, if there exists y ∈ β1 \ β2,

then g1(y) is still uniformly distributed given the values of gi on βi for i = 2, 3, 4, and so once again the
relevant expectation will be 0. Using similar arguments for the γi’s, we can simplify (33) as∑

β1⊆β
γ1⊆γ

B̂(β1)2B̂(β)2Ĉ(γ1)2Ĉ(γ)2 E
[
χβ1(g1 + g2)χβ(g3 + g4)χγ1(h1 + h2)χγ(h3 + h4)

]
. (34)

Now, if g1(y) 6= g2(y) for some y ∈ β, then g4(y) is independent of g3(y), making E[(−1)g3(y)+g4(y)] = 0,
and the inner expectation in (34) above is 0 as well. Thus, the expectation vanishes unless g1(y) = g2(y)
for all y ∈ β and h1(z) = h2(z) for all z ∈ γ. These requirements on g1, g2, h2, h2 are met with probability
2−wt(β) · 2−wt(γ), and in this case, we have

χβ(g3 + g4) = χβ(1 + f ◦ π) = (−1)wt(β)χπ2(β)(f) ,

and χγ(h3+h4) = χπ′2(γ)(f). Here π2(β) : F`2 → F2 is defined as before to be π2(β)(x) =
∑

y∈π−1(x) β(y)

(and similarly for π′2(γ)). Therefore, (34) simplifies further to∑
β1⊆β
γ1⊆γ

B̂(β1)2B̂(β)2Ĉ(γ1)2Ĉ(γ)2(−1)wt(β)2−wt(β)2−wt(γ) E
f

[χπ2(β)(f)χπ′2(γ)(f)] .

As Ef [χα(f)χα′(f)] = 0 when α 6= α′ and 1 otherwise, we can simplify (32) and obtain

δ = E
v,u,u′

[∑
β1⊆β; γ1⊆γ
π2(β)=π′2(γ)

B̂(β1)2B̂(β)2Ĉ(γ1)2Ĉ(γ)2(−1)wt(β)2−wt(β)2−wt(γ)

]
. (35)

As B̂(0) = Eg[B(g)] and Ĉ(0) = Eh[C(h)], the term with β = γ = 0 above equals
(
Eg[B(g)]

)4(Eg[C(h)]
)4.

Taking expectation over v, u, u′, and using the regularity of the instance, the terms with β = γ = 0 con-
tribute at least

(
Eu,g[A(u)(g)]

)8
= ρ8 to (35). Our goal is to prove that the other terms have a very small

contribution.
The terms with wt(β) even in (35) are positive and so can be ignored in any lower bound on δ. When

wt(β) is odd, wt(π2(β)) is also odd, and in particular π2(β) 6= 0. Using these facts and
∑

β1⊆β B̂(β1)2 6 1,

28

∑
γ1⊆γ Ĉ(γ1)2 6 1 in (35), we get the lower bound:

δ > ρ8 − E
v,u,u′

[∑
β,γ

π2(β)=π′2(γ)6=0

B̂(β)2Ĉ(γ)2 2−wt(β)2−wt(γ)

]

> ρ8 − 2` − E
v,u,u′

[∑
β,γ;wt(β),wt(γ)<`

π2(β)=π′2(γ)6=0

B̂(β)2Ĉ(γ)2

]
. (36)

An argument similar to Lemma 15 shows that the expectation in (36) is at most 2−Ω(`). Therefore, δ > 0
when ρ > 1/2k for some k = Θ(`). In other words, the hypergraph consisting of the query patterns of
8-SS-PCP does not have an independent set of density 2−Ω(`).

Parameter choices. Picking ` = blog log nc/4, the size of the instance produced will be N = nO(`)223`
6

nO(log logn). When the LABEL-COVER instance is satisfiable, the hypergraph will be 2-colorable, and in the
soundness case, the hypergraph will contain no independent set of size N/(log n)Ω(1). Therefore we can
conclude the following result.

Theorem 31 (Restating Theorem 4). Assume that NP does not admit nO(log logn) time algorithms. There
is an absolute constant c > 0 such that the following holds. Given a 8-uniform hypergraph on N vertices,
there is no polynomial time algorithm to distinguish between the following two cases:

• The hypergraph can be colored with 2 colors so that every hyperedge is bichromatic.

• The hypergraph does not have an independent set with N/(logN)c vertices, and in particular any
coloring of the vertices with (logN)c colors will have a monochromatic hyperedge.

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

