
The Complexity of Deciding Statistical Properties of Samplable

Distributions

Thomas Watson∗

February 18, 2015

Abstract

We consider the problems of deciding whether the joint distribution sampled by a given cir-
cuit satisfies certain statistical properties such as being i.i.d., being exchangeable, being pairwise
independent, having two coordinates with identical marginals, having two uncorrelated coordi-
nates, and many other variants. We give a proof that simultaneously shows all these problems
are C

=
P-complete, by showing that the following promise problem (which is a restriction of all

the above problems) is C
=
P-complete: Given a circuit, distinguish the case where the output

distribution is uniform and the case where every pair of coordinates is neither uncorrelated
nor identically distributed. This completeness result holds even for samplers that are depth-3
circuits.

We also consider circuits that are d-local, in the sense that each output bit depends on at
most d input bits. We give linear-time algorithms for deciding whether a 2-local sampler’s joint
distribution is fully independent, and whether it is exchangeable.

We also show that for general circuits, certain approximation versions of the problems of
deciding full independence and exchangeability are SZK-complete.

We also introduce a bounded-error version of C
=
P, which we call BC

=
P, and we investigate

its structural properties.

1 Introduction

Testing for independence of random variables is a fundamental problem in statistics. Theoretical
computer scientists have studied this and other analogous problems from two main viewpoints.
The first viewpoint is property testing of distributions, which is a black-box model in which a
tester is given samples and tries to distinguish between some statistical property being “close” or
“far” from satisfied. Some important works giving upper and lower bounds for property testing
of distributions include [BFR+13, BFF+01, BDKR05, BKR04, RS09, AAK+07, RRSS09, Val11,
RX10, LRR13, DDS+13, CDVV14].

The other viewpoint is the white-box model in which a tester is given a description of a distri-
bution (from which it could generate its own samples). This could potentially make some problems
easier, but there are complexity-theoretic results showing that several such problems are compu-
tationally hard, particularly when the input is a succinct description of a distribution. One of
the most general and natural ways to succinctly specify a distribution is to give the code of an

∗Department of Computer Science, University of Toronto. Supported by funding from NSERC.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 124 (2013)



efficient algorithm that takes “pure” randomness and transforms it into a sample from the distribu-
tion. (This gives a polynomial-size specification of a distribution over a potentially exponential-size
set.) For arbitrary circuit samplers, the papers [SV03, GSV99, GV99, Wat15] contain completeness
results for various approximation problems concerning statistical distance, Shannon entropy, and
min-entropy. See [GV11] for a survey of both the black-box and the white-box viewpoints.

In this paper we consider a wide array of “exact” problems concerning statistical properties
of the joint distribution produced by a given sampler. Such problems include deciding whether
the joint distribution is i.i.d., exchangeable, pairwise independent, and many other variants. Ex-
changeability is a very important and useful concept with many different applications in pure and
applied probability [Kin78, Ald10], but it has been less-often studied in the theoretical computer
science community. A joint distribution over a finite domain is called exchangeable if it is invariant
under permuting the coordinates. It is fairly straightforward to see that a finite distribution is
exchangeable iff it is a mixture of distributions that arise from drawing a sequence of colored balls
without replacement from an urn1 [DF80]. When each coordinate is a single bit, exchangeability
is equivalent to the probability of a string only depending on the Hamming weight. We feel it is
natural to pose complexity-theoretic questions about exchangeability.

We prove that the aforementioned wide array of problems, and more generally a single problem
we call Panoptic-Stats which is at most as hard as any of those problems, are complete for the
complexity class C=P. This class was introduced in [Wag86] as part of the counting hierarchy, and
it can be viewed as a class that captures “exact counting” of NP witnesses. The class C=P is at least
as hard as the polynomial-time hierarchy, since PH ⊆ BP · C=P [TO92] and even PH ⊆ ZP · C=P
[Tar93]. It is at most as hard as “threshold counting”, since C=P ⊆ PP, and it is not substantially
easier, since PP ⊆ NPC=P. The class C=P has been given several names and characterizations; it
equals the classes2 coNQP [FGHP98] and ES [BHR99].

In many areas of complexity theory, when arbitrary small-size circuits are too unwieldy to rea-
son about, we restrict our attention to more stringent complexity measures that are combinatorially
simple enough to reason about and obtain unconditional results. The two major categories of such
complexity measures are parallel time, and space. One model of efficient parallel time computation
is AC0 (constant-depth unbounded fan-in circuits with AND, OR, and NOT gates). Papers that
study AC0 circuits that sample distributions include [Vio12, LV12, Vio14, BIL12]. Another (gen-
erally more restrictive) model of efficient parallel time computation is locally-computable functions,
where each output bit depends on at most a bounded number of input bits. Papers that study
locally-computable functions as samplers include [Vio12, DGRV11, DW12, Vio14, Wat15] as well
as a large collection of papers investigating the possibility of implementing pseudorandom gener-
ators locally. (See [DW12] for an extensive list of past work on the power of locally-computable
functions, including whether they can implement PRGs, one-way functions, and extractors.) The
most common model for logarithmic-space samplers is one with streaming/one-way access to the
pure random input bits. Topics that have been studied concerning such logspace samplers include
compression [TVZ05], extraction [KRVZ11], and min-entropy estimation [Wat15]. One more paper
worth mentioning is [BMV08], which considers Markov random fields as succinct descriptions of

1This is a finite analogue of De Finetti’s Theorem.
2NQP is a nondeterministic version of quantum polynomial time. It differs from QMA, an alternative such

version, in that NQP is defined in terms of zero vs. non-zero probability of acceptance by a quantum algorithm
(like the nondeterminism-based definition of NP), whereas QMA is defined in terms of a quantum algorithm given
a quantum state as a witness (like the verification-based definition of NP). These two classes are not known to be
comparable.
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distributions (though these descriptions would not be considered “samplers”).
We prove that our C=P-completeness results hold even when restricted to samplers that are

AC0-type circuits with depth 3 and top fan-in 2 (i.e., each output gate has fan-in at most 2). We
also consider 2-local samplers (where each output bit depends on at most 2 of the pure random input
bits) such that each coordinate of the sampled joint distribution is a single bit. We give polynomial-
time (in fact, linear-time) algorithms for deciding whether such a sampler’s distribution is fully
independent, and whether it is exchangeable. These seem to be the first-of-a-kind algorithmic
results on deciding statistical properties of succinctly described distributions.

We also consider approximate versions of the problems discussed above: deciding whether the
joint distribution of a given sampler is statistically close to or far from satisfying a property. It
was shown in [GSV99] that for the property of being uniform, the problem is complete for the class
NISZK (non-interactive statistical zero-knowledge). It was shown in [SV03] that the problem of
deciding whether a pair of samplable distributions are statistically close or far is complete for the
class SZK (statistical zero knowledge). We prove that with suitable parameters, the approximate
versions of the full independence and exchangeability problems (for general circuit samplers) are
also SZK-complete.

In this paper we also consider a “bounded-error” version of C=P, which we call BC=P and
which does not seem to have been defined or studied in the literature before. Although it does
not appear to be directly relevant to statistical properties of samplable distributions, we take the
opportunity to study this class and prove that it is closed under several operations (disjunction,
conjunction, union, and intersection).

2 Results

If D is a joint distribution over ({0, 1}k)n, we let Di (for i ∈ {1, . . . , n}) denote the ith coordinate,
which is marginally distributed over {0, 1}k . For each of the computational problems we consider,
the input is a circuit S : {0, 1}r → ({0, 1}k)n (and we assume that the values of k and n are part
of the description of the circuit). We call such a circuit a (k, n)-sampler, and if it has size ≤ s
we also call it a (k, n, s)-sampler. Plugging a uniformly random string into S yields a joint output
distribution, which we denote by S(U).

We formulate computational problems using the framework of promise problems. Throughout
this paper, when we talk about reductions and completeness, we are always referring to determin-
istic polynomial-time mapping reductions. We refer to the texts [AB09, Gol08] for expositions of
standard complexity classes and completeness.

We state our completeness results for exact problems in Section 2.1 and prove them in Section 3.
We state our algorithmic results for exact problems in Section 2.2 and prove them in Section 4.
We state our completeness results for approximate problems in Section 2.3 and prove them in
Section 5. We consider a new complexity class, BC=P, in Section 6, and we list some open problems
in Section 7.

2.1 Exact Completeness Results

For a joint distributionD over ({0, 1}k)n, we say thatDi,Dj are uncorrelated if they have covariance
0, in other words E(Di ·Dj) = E(Di) ·E(Dj) (when {0, 1}k is interpreted as binary representations
of integers from 0 to 2k − 1). Uncorrelated is the same as independent if k = 1. We consider the
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following extreme notion of a distribution being nonuniform.

Definition 1. A joint distribution is discordant if there are ≥ 2 coordinates and every pair of
coordinates is neither uncorrelated nor identically distributed.

Definition 2. Panoptic-Stats is the following promise problem.

Panoptic-StatsYES =
{

S : S(U) is uniform
}

Panoptic-StatsNO =
{

S : S(U) is discordant
}

We say that promise problem Π is a generalization of promise problem Π′, or that Π′ is a
restriction of Π, if Π′

YES ⊆ ΠYES and Π′
NO ⊆ ΠNO.

Fact 1. Panoptic-Stats is generalized by all the following languages, which are defined in a
natural way.

Uniform, Iid, Fully-Independent, Identically-Distributed, Exchangeable,
K-Wise-Uniform, K-Wise-Independent, K-Wise-Exchangeable,
2-Wise-Uncorrelated, K-Exists-Uniform, K-Exists-Independent,
K-Exists-Identically-Distributed, K-Exists-Exchangeable,
2-Exists-Uncorrelated, Non-Discordant

For example, S ∈ Uniform ⇐⇒ S(U) is uniform. Also, K ≥ 2 is any constant (unrelated to k).
Technical caveat: To ensure the K-Wise- and K-Exists- problems generalize Panoptic-Stats,
they are defined in terms of a property holding for every or some (respectively) set of min(K,n)
coordinates.

We prove that Panoptic-Stats and all the languages listed in Fact 1 are complete for the
complexity class C=P (defined below). In fact, the C=P-hardness of each of the individual languages
in Fact 1 is fairly simple to prove, but the C=P-hardness of Panoptic-Stats shows two things:
(1) that this phenomenon is very robust, not dependent on some fragile aspects of the properties
being decided, and (2) that only one proof is needed to show the C=P-hardness of all the languages
in Fact 1.

To prove the C=P-hardness of Panoptic-Stats, it suffices to prove hardness for the case
n = 2. However, hardness for n = 2 does not seem to directly imply hardness for a larger number
of coordinates; it is desirable to prove hardness even when restricted to samplers that are small in
terms of the number of coordinates n. We formalize this by introducing a new parameter m and
viewing k, n, s as functions of m. Thus m can be thought of as indexing a family of parameter
settings.

Definition 3. We say that a triple of functions κ(m), ν(m), σ(m) : N → N is polite if the functions
are monotonically nondecreasing, polynomially bounded in m, computable in time polynomial in m,
and σ(m) ≥ m.

Definition 4. Panoptic-Stats
κ,ν,σ is the restriction of Panoptic-Stats to (k, n, s)-samplers

with k = κ(m), n = ν(m), and s ≤ σ(m) for some m, where κ, ν, σ is assumed to be polite.

We now state the definition of our central complexity class, C=P. We use a standard model of
computation in which randomized algorithms have access to independent unbiased coin flips.
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Definition 5. prC=P is the class of all promise problems for which there exists a polynomial-
time randomized algorithm M that accepts with probability 1

2 on YES instances, and accepts with
probability 6= 1

2 on NO instances. Also, C=P is defined as the class of languages in prC=P.

Observation 1. prC=P is the class of all promise problems reducible to the following promise
problem, Uniform-Bit.

Uniform-BitYES =
{

S : S is a (1, 1)-sampler and S(U) is uniform
}

Uniform-BitNO =
{

S : S is a (1, 1)-sampler and S(U) is nonuniform
}

Proof. Suppose Π ∈ prC=P is witnessed by M taking an input x and a uniformly random string y
of some polynomial length. To reduce Π to Uniform-Bit, map x to Sx where Sx(y) = M(x, y).
Conversely, suppose Π reduces to Uniform-Bit. Then Π ∈ prC=P is witnessed by M that takes
x, runs the reduction to get a (1, 1)-sampler Sx, and runs Sx on a uniformly random input.

Theorem 1. Panoptic-Stats
κ,ν,σ is prC=P-hard for every polite κ, ν, σ with κν ≤ o(σ).

Theorem 2. Panoptic-Stats
κ,ν,σ is prC=P-hard even when restricted to samplers that are AC0-

type circuits with depth 3 and top fan-in 2, for every polite κ, ν, σ with κν + ν2 ≤ o(σ).

Theorem 3. All the languages listed in Fact 1 are in C=P.

Consequently, all the languages listed in Fact 1 are C=P-complete, even when restricted to
(κ, ν, σ)-samplers (like in Definition 4) with polite κ, ν, σ satisfying κν ≤ o(σ) (for general circuit
samplers) or satisfying κν + ν2 ≤ o(σ) (for depth-3 circuits with top fan-in 2).

We mention that some problems concerning conditional independence are also C=P-complete.
For example, deciding whether the first n − 1 coordinates of S(U) are fully independent condi-
tioned on the last coordinate is at least as hard as the corresponding non-conditional problem. An-
other problem concerning conditional independence is whether S(U) forms a (time-inhomogeneous)
Markov chain (assuming n ≥ 3). The construction in our proof of Theorem 1 also shows that this
problem is C=P-hard. Both these problems are in C=P by the same techniques used in the proof
of Theorem 3.

2.2 Exact Algorithmic Results

We say a (k, n, s)-sampler is d-local if each of the kn output bits depends on at most d of the uni-
formly random input bits. For d-local samplers, if dk ≤ O(log s) then some statistical properties,
such as being pairwise independent or having identically distributed marginals, can be decided triv-
ially in polynomial time. We now prove that some other properties, namely being fully independent
or being exchangeable, can be decided in polynomial time when d = 2 and k = 1. (Admittedly,
our algorithms are not very “algorithmic”; we prove combinatorial characterizations for which it is
trivial to check whether a given sampler satisfies the characterization.)

Theorem 4. There exists a linear-time algorithm for deciding whether the joint distribution of a
given 2-local (1, n)-sampler is fully independent.

Theorem 5. There exists a linear-time algorithm for deciding whether the joint distribution of a
given 2-local (1, n)-sampler is exchangeable.
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When d = 2 and k = 1, we can also improve the efficiency of the trivial quadratic-time algorithm
for deciding pairwise independence.

Theorem 6. There exists a linear-time reduction from the problem of deciding whether the joint
distribution of a given 2-local (1, n)-sampler is pairwise independent, to the element distinctness
problem. Hence the former problem can be solved in deterministic O(n log n) time and in zero-error
randomized expected linear time.

One can also consider logspace samplers that have streaming/one-way access to their random
input bits, and which are usually modeled as layered read-once branching programs representing
a certain type of (time-inhomogeneous) Markov chain. For logspace samplers, some statistical
properties, such as being pairwise independent or having identically distributed marginals, can be
decided in polynomial time by straightforward dynamic programming algorithms; the complexities
of deciding full independence and exchangeability remain open.

2.3 Approximate Completeness Results

We quantify approximation in terms of statistical distance (also known as total variation distance).

Definition 6. The statistical distance between two distributions D(1),D(2) over the same set is
defined as

∥

∥D(1) −D(2)
∥

∥ = maxevents E

∣

∣Pr[D(1) ∈ E]− Pr[D(2) ∈ E]
∣

∣

= maxevents E

(

Pr[D(1) ∈ E]− Pr[D(2) ∈ E]
)

= 1
2 ·

∑

outcomes w

∣

∣Pr[D(1) = w]− Pr[D(2) = w]
∣

∣.

We say D(1),D(2) are c-close if
∥

∥D(1) −D(2)
∥

∥ ≤ c, and f -far if
∥

∥D(1) −D(2)
∥

∥ ≥ f .

We prove that for appropriate parameters, approximate versions of the full independence and
exchangeability problems are prSZK-complete (for arbitrary circuit samplers). We do not reproduce
the original definition of prSZK, but we make use of the characterization of this class proved by Sahai
and Vadhan [SV03]. The following is our general formulation of the approximate full independence
problem.

Definition 7. For functions 0 ≤ c(k, n, s) < f(k, n, s) ≤ 1, Fully-Independentc,f is the follow-
ing promise problem.3

Fully-Independent
c,f
YES =

{

S : S is a (k, n, s)-sampler and S(U) is c(k, n, s)-close
to some fully independent distribution over ({0, 1}k)n

}

Fully-Independent
c,f
NO =

{

S : S is a (k, n, s)-sampler and S(U) is f(k, n, s)-far
from every fully independent distribution over ({0, 1}k)n

}

Theorem 7. Fully-Independent
c,f is prSZK-hard for all constants 0 < c < f < 1

4 .

Theorem 8. Fully-Independent
c,f ∈ prSZK where c = c′/(n + 1), for all constants 0 < c′ <

f2 < 1.

3The superscripts have a different meaning than the superscripts in Definition 4.
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We have, for example, that Fully-Independent
0.05/(n+1), 0.24 is prSZK-complete. The con-

tainment in prSZK follows from Theorem 8. Although the prSZK-hardness does not follow from
the statement of Theorem 7, the proof indeed yields this; we stated Theorem 7 using constants for
the sake of simplicity and clarity. (It is open to prove Theorem 8 with constant c.)

Definition 8. For functions 0 ≤ c(k, n, s) < f(k, n, s) ≤ 1, Exchangeable
c,f is the following

promise problem.

Exchangeable
c,f
YES =

{

S : S is a (k, n, s)-sampler and S(U) is c(k, n, s)-close
to some exchangeable distribution over ({0, 1}k)n

}

Exchangeable
c,f
NO =

{

S : S is a (k, n, s)-sampler and S(U) is f(k, n, s)-far
from every exchangeable distribution over ({0, 1}k)n

}

Theorem 9. Exchangeable
c,f is prSZK-hard for all constants 0 < c < f < 1

2 .

Theorem 10. Exchangeable
c,f ∈ prSZK for all constants 0 < 2c < f2 < 1.

Consequently, for example, Exchangeable0.12, 0.49 is prSZK-complete.

3 Proofs of Exact Completeness Results

We prove a key lemma in Section 3.1. Then we use the key lemma to prove Theorem 1 and
Theorem 2 in Section 3.2. Then we prove Theorem 3 in Section 3.3.

3.1 The Key Lemma

The following is the key lemma in the proof of Theorem 1. It can be interpreted qualitatively as a
certain type of amplification.

Lemma 1. There is an algorithm that takes as input a (1, 1, s)-sampler S and an integer n ≥ 2,
runs in time O(n+ s), and outputs a (1, n,O(n + s))-sampler T such that the following both hold.

S(U) is uniform =⇒ T (U) is uniform

S(U) is nonuniform =⇒ T (U) is discordant

Proof. Let T perform the following computation.

run S and let b be its output
choose bits a1, a2, . . . , an uniformly at random
if there exists an ℓ < n such that aℓ = 0 then

let ℓ∗ be the least such ℓ
output a1, . . . , aℓ∗ , b, aℓ∗+2, . . . , an

else output a1, . . . , an

It is straightforward to see that if S(U) is uniform then T (U) is uniform. Now suppose S(U)
is nonuniform, say Pr[S(U) = 1] = p 6= 1

2 . For brevity we define D = T (U). Consider any two
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coordinates Di and Dj where i < j. For technical reasons in the analysis below, if ℓ∗ does not exist
then we define ℓ∗ to be an arbitrary value > n.

We first show that Di and Dj are not identically distributed. If i > 1 then

Pr[Di = 1]

= Pr
[

Di = 1
∣

∣ ℓ∗ = i− 1
]

· Pr[ℓ∗ = i− 1] + Pr
[

Di = 1
∣

∣ ℓ∗ 6= i− 1
]

· Pr[ℓ∗ 6= i− 1]

= p · 1
2i−1 + 1

2 ·
(

1− 1
2i−1

)

.

Similarly, Pr[Dj = 1] = p · 1
2j−1 + 1

2 ·
(

1− 1
2j−1

)

. Since p 6= 1
2 , and since Pr[Di = 1] and Pr[Dj = 1]

are different convex combinations of p and 1
2 , that means they are not equal. More formally,

Pr[Di = 1]− Pr[Dj = 1] =
(

p− 1
2

)(

1
2i−1 − 1

2j−1

)

6= 0.

On the other hand, suppose i = 1. Then Pr[Di = 1] = 1
2 , and Pr[Dj = 1] is a nontrivial convex

combination of p and 1
2 and is thus not equal to Pr[Di = 1]. In either case, Di and Dj are not

identically distributed.
Now we show that Di and Dj are correlated. Suppose j = i+1. Then Pr

[

Dj = 1
∣

∣ Di = 1
]

= 1
2 ,

and

Pr
[

Dj = 1
∣

∣ Di = 0
]

= Pr
[

Dj = 1
∣

∣ ℓ∗ = i, Di = 0
]

· Pr
[

ℓ∗ = i
∣

∣ Di = 0
]

+

Pr
[

Dj = 1
∣

∣ ℓ∗ < i, Di = 0
]

· Pr
[

ℓ∗ < i
∣

∣ Di = 0
]

= p · Pr
[

ℓ∗ = i
∣

∣ Di = 0
]

+ 1
2 ·

(

1− Pr
[

ℓ∗ = i
∣

∣ Di = 0
])

.

(Technically Pr
[

Dj = 1
∣

∣ ℓ∗ < i, Di = 0
]

is undefined if i = 1, but then 1−Pr
[

ℓ∗ = i
∣

∣ Di = 0
]

= 0
anyway so the final equation above still holds.) It follows that

Pr
[

Dj = 1
∣

∣ Di = 0
]

− Pr
[

Dj = 1
∣

∣ Di = 1
]

=
(

p− 1
2

)

· Pr
[

ℓ∗ = i
∣

∣ Di = 0
]

6= 0

since p 6= 1
2 and Pr

[

ℓ∗ = i
∣

∣ Di = 0
]

> 0. On the other hand, suppose j > i + 1. Then
Pr

[

Dj = 1
∣

∣ Di = 0
]

= 1
2 , and

Pr
[

Dj = 1
∣

∣ Di = 1
]

= Pr
[

Dj = 1
∣

∣ ℓ∗ = j − 1, Di = 1
]

· Pr
[

ℓ∗ = j − 1
∣

∣ Di = 1
]

+

Pr
[

Dj = 1
∣

∣ ℓ∗ 6= j − 1, Di = 1
]

· Pr
[

ℓ∗ 6= j − 1
∣

∣ Di = 1
]

= p · Pr
[

ℓ∗ = j − 1
∣

∣ Di = 1
]

+ 1
2 ·

(

1− Pr
[

ℓ∗ = j − 1
∣

∣ Di = 1
])

.

It follows that

Pr
[

Dj = 1
∣

∣ Di = 1
]

− Pr
[

Dj = 1
∣

∣ Di = 0
]

=
(

p− 1
2

)

· Pr
[

ℓ∗ = j − 1
∣

∣ Di = 1
]

6= 0

since p 6= 1
2 and Pr

[

ℓ∗ = j − 1
∣

∣ Di = 1
]

> 0. In either case, Di and Dj are correlated since
Pr

[

Dj = 1
∣

∣ Di = 0
]

6= Pr
[

Dj = 1
∣

∣ Di = 1
]

.

Lemma 2. Lemma 1 holds even when T is required to be an AC0-type circuit with depth 3 and top
fan-in 2, except that the size of T and the running time of the algorithm both become O(n2 + s).
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Proof. The construction and analysis are the same as in the proof of Lemma 1, but we need more
care in implementing T . First, we use a standard reduction to convert S into a 3-CNF F that
accepts the same number of inputs as S (but has more input bits). Thus, for some polynomially
large q, S accepts a uniformly random input with probability 1

2 iff F accepts a uniformly random
input with probability 1

2q . Let x1, x2, . . . , xr denote the input bits of F . Construct a new CNF
F ′ with input bits x0, x1, . . . , xr by taking F and including x0 in each of the clauses (yielding a
4-CNF), then adding a new clause (x0 ∨ x1 ∨ · · · ∨ xq). Since

Pr[F ′ accepts] = 1
2 · Pr[F accepts] + 1

2 · Pr
[

(x1 ∨ · · · ∨ xq) accepts
]

it follows that F accepts with probability 1
2q iff F ′ accepts with probability 1

2 . Now to implement
T , we include a copy of F ′ as well as the random input bits a1, a2, . . . , an. The 1st output bit of T
is just a1. For the ith output bit when i > 1, we have a multiplexer that selects the output of F ′ if
(a1 ∧ a2 ∧ · · · ∧ ai−2 ∧ ai−1) is true, and selects ai otherwise. Overall, T is an OR-AND-OR circuit
(with negations pushed to the inputs) where each output gate has fan-in at most 2.

3.2 prC=P-Hardness

We need one final corollary before we are ready to put the pieces together to prove Theorem 1 and
Theorem 2.

Corollary 1. Lemma 1 and Lemma 2 also hold when the algorithm is additionally given an integer
k ≥ 1 and is required to output a (k, n)-sampler T , except that the size of T and the running time
of the algorithm both become O(kn+ s) (for Lemma 1) or O(kn + n2 + s) (for Lemma 2).

Proof. If T ′ is the output of the algorithm from Lemma 1 or Lemma 2, we can trivially modify
it into a sampler T that prepends independent uniformly random bit strings of length k − 1 to
the n coordinates. In the YES case, T (U) is still uniform. Consider the NO case. The property
that no two coordinates are identically distributed is inherited from T ′. To see that coordinates
T (U)i, T (U)j are still correlated, abbreviate T (U) as D and T ′(U) as D′, and let Di = D′

i + I and
Dj = D′

j+J where I, J are independent uniformly random even numbers in the range {0, . . . , 2k−2},
and note that

E(DiDj) = E(D′
iD

′
j) + E(D′

iJ) + E(ID′
j) + E(IJ)

= E(D′
iD

′
j) + E(D′

i) E(J) + E(I) E(D′
j) + E(I) E(J)

6= E(D′
i) E(D

′
j) + E(D′

i) E(J) + E(I) E(D′
j) + E(I) E(J)

=
(

E(D′
i) + E(I)

)(

E(D′
j) + E(J)

)

= E(Di) E(Dj).

Proof of Theorem 1. We reduce Uniform-Bit to Panoptic-Stats
κ,ν,σ. Let c be the constant

factor in the big O in Corollary 1. Given a (1, 1, s)-sampler S, we first find the smallest m such
that c ·

(

κ(m)ν(m) + s
)

≤ σ(m). Such an m exists and is O(s) because κν ≤ o(σ) and σ(m) ≥ m
for all m. Then we run the algorithm from Corollary 1 (based on Lemma 1) with k = κ(m) and
n = ν(m) to get T of size at most c ·

(

κ(m)ν(m) + s
)

≤ σ(m). Thus the following both hold.

S ∈ Uniform-BitYES =⇒ T ∈ Panoptic-Stats
κ,ν,σ
YES

S ∈ Uniform-BitNO =⇒ T ∈ Panoptic-Stats
κ,ν,σ
NO

9



The reduction’s running time is polynomial sincem,κ(m), ν(m), σ(m) are all polynomially bounded
in s and computable in time polynomial in s, and since the algorithm from Corollary 1 runs in time
O(kn+ s).

Proof of Theorem 2. We reduce Uniform-Bit to Panoptic-Stats
κ,ν,σ restricted as in the state-

ment of Theorem 2. Let c be the constant factor in the big O in Corollary 1. Given a (1, 1, s)-
sampler S, we first find the smallest m such that c ·

(

κ(m)ν(m) + ν(m)2 + s
)

≤ σ(m). Such an m
exists and is O(s) because κν + ν2 ≤ o(σ) and σ(m) ≥ m for all m. Then we run the algorithm
from Corollary 1 (based on Lemma 2) with k = κ(m) and n = ν(m) to get a depth-3, top fan-in 2
circuit T of size at most c ·

(

κ(m)ν(m) + ν(m)2 + s
)

≤ σ(m). Thus the following both hold.

S ∈ Uniform-BitYES =⇒ T ∈ Panoptic-Stats
κ,ν,σ
YES

S ∈ Uniform-BitNO =⇒ T ∈ Panoptic-Stats
κ,ν,σ
NO

The reduction’s running time is polynomial sincem,κ(m), ν(m), σ(m) are all polynomially bounded
in s and computable in time polynomial in s, and since the algorithm from Corollary 1 runs in time
O(kn+ n2 + s).

3.3 Containment in C=P

In the proof of Theorem 3 we use the following lemma, which states that C=P is closed under
exponential conjunctions and polynomial disjunctions. We supply a folklore proof of this lemma in
Section A.1.

Lemma 3. If L ∈ C=P then both of the following hold.

• ∀qL ∈ C=P for every polynomial q, where ∀qL =
{

x : (x, y) ∈ L for all y ∈ {0, 1}q(|x|)
}

.

• ∨L ∈ C=P where ∨L =
{

(x1, . . . , xℓ) : xi ∈ L for some i
}

.

Proof of Theorem 3. The arguments are very similar, so we just give three representative examples:
Fully-Independent, K-Wise-Exchangeable, and 2-Exists-Uncorrelated. First we men-
tion a useful tool: If S1, S2 are (1, 1)-samplers, then we define Equ(S1, S2) to be a (1, 1)-sampler
that picks i ∈ {1, 2} uniformly at random, runs Si, and negates the output if i = 2. Hence
Equ(S1, S2)(U) is uniform iff S1(U), S2(U) are identically distributed.

Now we prove that Fully-Independent ∈ C=P. Note that Fully-Independent = ∀qL
where, if we view S as (say) a (k, n)-sampler, and y as (an appropriately encoded description of)
an element of ({0, 1}k)n (so q is linear in the size of S), then

(S, y) ∈ L ⇐⇒ Pr[S(U) = y] =
∏n

i=1 Pr[S(U)i = yi].

Thus by Lemma 3 it suffices to show that L ∈ C=P. A reduction from L to Uniform-Bit just
outputs Equ(S1, S2), where S1 runs S and accepts iff the output is y, and S2 runs S for n times
and accepts iff for all i, the ith coordinate of the output of the ith run is yi.

Now we prove that K-Wise-Exchangeable ∈ C=P. Note that K-Wise-Exchangeable =
∀qL where, if we view S as (say) a (k, n)-sampler, and y = (I, π, w) as (an appropriately encoded
description of) a subset I ⊆ {1, . . . , n} of size min(K,n), a permutation π on {1, . . . ,min(K,n)},
and an element w ∈ ({0, 1}k)min(K,n) (so q is certainly polynomial in the size of S), then

(

S, (I, π, w)
)

∈ L ⇐⇒ Pr[S(U)I = w] = Pr[S(U)I = π(w)]

10



where S(U)I is the restriction to coordinates indexed by I, and π(w) ∈ ({0, 1}k)min(K,n) is obtained
by permuting the coordinates of w by π. Thus by Lemma 3 it suffices to show that L ∈ C=P. A
reduction from L to Uniform-Bit just outputs Equ(S1, S2), where S1 runs S and accepts iff the
output restricted to I is w, and S2 runs S and accepts iff the output restricted to I is π(w).

Now we prove that 2-Exists-Uncorrelated ∈ C=P. Note that if we define the language L =
{

(S, i, j) : S(U)i and S(U)j are uncorrelated
}

, then 2-Exists-Uncorrelated reduces to ∨L by
mapping a (k, n)-sampler S to

(

(S, 1, 2), (S, 1, 3), (S, 1, 4), . . . , (S, n − 1, n)
)

. Thus by Lemma 3 it
suffices to show that L ∈ C=P. A reduction from L to Uniform-Bit just outputs Equ(S1, S2),
where S1 runs S yielding some y ∈ ({0, 1}k)n and accepts with probability 1

22k
· yi · yj so that

Pr[S1(U) = 1] = 1
22k

· E
(

S(U)i · S(U)j
)

,

and S2 runs S twice (independently) yielding some y(1) and y(2) and accepts with probability
1

22k
· y

(1)
i · y

(2)
j so that

Pr[S2(U) = 1] = 1
22k

· E(S(U)i) · E(S(U)j).

4 Proofs of Exact Algorithmic Results

We prove Theorem 4, Theorem 5, and Theorem 6 in Section 4.1, Section 4.2, and Section 4.3, re-
spectively.

First we introduce some terminology to describe 2-local samplers. Each output bit depends on
either zero, one, or two input bits. Output bits that depend on zero input bits are constants (0
or 1). The nonconstant output bits can be modeled with an undirected graph (multi-edges and
self-loops allowed) as follows. The input bits are indexed by the nodes. Each output bit depending
on one input bit is a self-loop, labeled with a function from {0, 1} to {0, 1} (either the identity
or negation). Each output bit depending on two input bits is an edge between those two nodes,
labeled with a function from {0, 1}2 to {0, 1}. There are three types of such functions that depend
on both bits: AND-type (accepting one of the four inputs), XOR-type (accepting two of the four
inputs), and OR-type (accepting three of the four inputs).

4.1 Full Independence for 2-Local Samplers

We prove Theorem 4. Consider a 2-local (1, n)-sampler S, and assume without loss of generality
that S has no constant output bits. We claim that S(U) is fully independent iff both of the following
conditions hold.

(i) The graph is a forest, ignoring self-loops.

(ii) Each connected component of the graph has at most one of the following: a self-loop, an
AND-type edge, or an OR-type edge.

It is trivial to check in linear time whether these conditions hold.
First we assume that (i) and (ii) both hold, and show that S(U) is fully independent. The

different connected components of the graph are certainly fully independent of each other, so we
can focus on showing that the coordinates of a single connected component are fully independent. If
there is a self-loop, an AND-type edge, or an OR-type edge in the connected component, then let e

11



be that edge. Otherwise, let e be any edge in the connected component. We show that conditioned
on e evaluating to any particular bit, the joint distribution of the remaining edges in e’s connected
component is uniform. This implies that the whole joint distribution of the connected component
is fully independent.

Suppose e is a self-loop at some node v, so we are conditioning on v being some particular bit.
Ignoring e itself, we can view e’s connected component as a tree rooted at v with only XOR-type
edges. After the conditioning, there is a bijection between the set of all assignments of values
to the edges (excluding e) and the set of all assignments of values to the nodes (excluding v)
in e’s connected component: An assignment to nodes (together with the conditioned value of v)
determines an assignment to edges. Furthermore, every assignment to edges arises from some
assignment to nodes, because for any assignment to edges, we can start at v and work our way
downward to the leaves, uniquely specifying the value of each node in terms of the values of its
parent and the edge to its parent. Since the sets have the same size, we have exhibited a bijection
between them. This means that conditioned on either value of e, the joint distribution of all the
other edges in e’s connected component is uniform.

Now suppose e = {u, v} is not a self-loop. We show that, in fact, conditioned on any one of
the four assignments of values to the pair u, v, the joint distribution of all the other edges in e’s
connected component is uniform. Removing e results in two new connected components, each of
which is a tree of XOR-type edges, one rooted at u and the other rooted at v. Let U denote the
set of nodes in u’s new connected component excluding u itself, and let V denote the set of nodes
in v’s new connected component excluding v itself. By the argument from the previous paragraph
(when e was a self-loop), a uniformly random assignment to U induces a uniformly random assign-
ment to the edges in u’s new connected component, and similarly for V . Since assignments to U
and V are chosen independently of each other, this means that the values of all the edges in e’s
original connected component (except e itself) are jointly uniformly distributed (conditioned on
any particular assignment to u, v, and hence conditioned on any particular assignment to e).

Now we prove the converse by assuming that (i) and (ii) do not both hold, and showing that
S(U) is not fully independent. Let us refer to self-loops, AND-type edges, and OR-type edges as
non-XOR-type edges. If (i) and (ii) do not both hold, then at least one of the following conditions
holds.

(A) There is a cycle consisting entirely of XOR-type edges.

(B) There is a cycle with exactly one AND-type edge or OR-type edge.

(C) There is a path between two non-XOR-type edges.

Suppose (A) holds. Let e be an edge on the cycle. Then e’s marginal distribution is uniform, but
conditioning on any particular values of the other edges on the cycle determines whether or not
e’s endpoints are the same bit as each other, and thus fixes the value of e. Hence S(U) is not
fully independent. Suppose (B) holds. Let ℓ denote the number of nodes on the cycle. Then the
probability that all edges on the cycle evaluate to 1 must be an integer multiple of 1

2ℓ
(since they

only depend on ℓ input bits), but the product of the marginal probabilities that each edge on the
cycle evaluates to 1 must be either 1

2ℓ+1 (if there is an AND-type edge) or 3
2ℓ+1 (if there is an OR-

type edge). Hence S(U) is not fully independent. Suppose (C) holds. Without loss of generality,
all intermediate edges on the path are XOR-type. Let e1 and e2 be the two non-XOR-type edges,
which we consider to be part of the path. Let ℓ denote the number of nodes on the path. Then the

12



probability that all edges on the path evaluate to 1 must be an integer multiple of 1
2ℓ

(since they
only depend on ℓ input bits), but the product of the marginal probabilities that each edge on the
path evaluates to 1 must be either 1

2ℓ+1 (if neither e1 nor e2 is OR-type) or 3
2ℓ+1 (if exactly one of

e1, e2 is OR-type) or 9
2ℓ+1 (if both e1 and e2 are OR-type). Hence S(U) is not fully independent.

4.2 Exchangeability for 2-Local Samplers

We prove Theorem 5. We begin with a lemma.

Lemma 4. A joint distribution D over ({0, 1}1)n is exchangeable iff both of the following conditions
hold.

(1) The marginals Di are all identically distributed.

(2) For all i 6= j, if Pr[Di 6= Dj] > 0 then the joint distribution of the other n− 2 coordinates is
the same when conditioned on (Di = 1,Dj = 0) as it is when conditioned on (Di = 0,Dj = 1).

Proof of Lemma 4. Suppose D is exchangeable. Then (1) holds trivially. To see that (2) holds,
consider i 6= j such that Pr[Di 6= Dj ] > 0. First note that since Di,Dj are identically distributed,
Pr[Di = 1,Dj = 0] = Pr[Di = 0,Dj = 1] > 0. For some arbitrary particular bits bh (for h 6∈ {i, j}),
let E denote the event that Dh = bh for all h 6∈ {i, j}. Then we have

Pr
[

E
∣

∣ Di = 1,Dj = 0
]

=
Pr

[

E and Di = 1,Dj = 0
]

Pr[Di = 1,Dj = 0]

=
Pr

[

E and Di = 0,Dj = 1
]

Pr[Di = 0,Dj = 1]

= Pr
[

E
∣

∣ Di = 0,Dj = 1
]

where Pr
[

E and Di = 1,Dj = 0
]

= Pr
[

E and Di = 0,Dj = 1
]

holds by exchangeability. This
shows that (2) holds.

For the converse, suppose (1) and (2) both hold. Since every permutation is a composition
of transpositions, it suffices to show that the joint distribution is invariant under transposing
coordinates. Let D′ be obtained from D by transposing some coordinates i 6= j. For some arbitrary
particular bits bh (for h ∈ {1, . . . , n}), let E denote the event that Dh = bh for all h ∈ {1, . . . , n},
and let E′ denote the event that D′

h = bh for all h ∈ {1, . . . , n}. To show that D and D′ are equal
as distributions, we just need to show that Pr[E] = Pr[E′]. If bi = bj then this certainly holds since
E and E′ are the same event. If bi 6= bj and Pr[Di 6= Dj ] = 0 then Pr[E] = Pr[E′] = 0. Finally,
suppose bi 6= bj and Pr[Di 6= Dj ] > 0. Assume bi = 1 and bj = 0; the other case is symmetric. Since
Di,Dj are identically distributed by (1), it follows that Pr[Di = 1,Dj = 0] = Pr[Di = 0,Dj = 1] =
Pr[D′

i = 1,D′
j = 0] > 0. Also note that

Pr
[

E
∣

∣ Di = 1,Dj = 0
]

= Pr
[

E′
∣

∣ D′
i = 1,D′

j = 0
]

by (2) and the definition of D′. Putting the pieces together, we have

Pr[E] = Pr
[

E
∣

∣ Di = 1,Dj = 0
]

· Pr[Di = 1,Dj = 0]

= Pr
[

E′
∣

∣ D′
i = 1,D′

j = 0
]

· Pr[D′
i = 1,D′

j = 0]

= Pr[E′].

This finishes the proof of Lemma 4.
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Now we present the proof of Theorem 5. Consider a 2-local (1, n)-sampler S. If condition (1)
from Lemma 4 does not hold for S(U), then we can reject outright. Otherwise, there are five cases
corresponding to the marginal probability that any particular coordinate is 1.

Case 0:

If all output bits of S are constant 0 then S(U) is trivially exchangeable.

Case 1/4:

In this case, each edge of the graph is AND-type. When two AND-type edges share an endpoint,
we say that they agree on the endpoint if the unique assignments that make the two edges evaluate
to 1 agree on the value of the node. We assume without loss of generality that the graph has no
nodes of degree 0. We claim that S(U) is exchangeable iff at least one of the following conditions
holds.

(i) The edges are all disjoint.

(ii) The graph is a star, and all edges agree on the central node.4

(iii) The graph is a triangle, and there is agreement at all nodes.5

(iv) The graph is a triangle, and there is disagreement at all nodes.

(v) There are only three nodes u, v, w, and there are no {u,w} edges, there are at most two {u, v}
edges and they agree on v and disagree on u, there are at most two {v,w} edges and they
agree on v and disagree on w, and the {u, v} edges disagree with the {v,w} edges on v.

(vi) There are only two nodes, and no two edges agree on both nodes.

(vii) There are only two nodes, and all edges agree on both nodes.

It is trivial to check in linear time whether at least one of these conditions holds.
First we assume at least one of the conditions holds, and argue that S(U) is exchangeable.

If (i) holds then S(U) is i.i.d. where each coordinate has 1
4 probability of being 1, and this is

exchangeable. If (ii) holds then S(U) is a uniform mixture of the uniform distribution and the
constant all 0’s distribution, so S(U) is exchangeable since it is a mixture of i.i.d.’s. If (iii) holds
then outputs of Hamming weight 1 each have probability 1

8 , and outputs of Hamming weight 2 each
have probability 0, so S(U) is exchangeable since the probability of an output only depends on the
Hamming weight. If (iv) or (v) or (vi) holds then an edge evaluating to 1 forces all other edges
to evaluate to 0, so S(U) is all 0’s with probability 1 − n

4 and is otherwise uniformly distributed
on strings of Hamming weight 1, so S(U) is exchangeable. If (vii) holds then S(U) is all 1’s with
probability 1

4 and all 0’s with probability 3
4 , which is exchangeable.

We prove the converse with two lemmas, which show that the following conditions are the only
obstacles to exchangeability. We write ∃e1, e2, e3 with the tacit assumption that these are three
distinct edges.

4A star does not include multi-edges.
5A triangle does not include multi-edges.
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(A) ∃e1, e2, e3 such that e1, e3 are not disjoint, and e2, e3 are disjoint.

(B) ∃e1, e2, e3 all sharing an endpoint on which e1, e2 disagree, and such that e3 does not share
its other endpoint with e1 or with e2.

(C) ∃e1, e2, e3 such that e1, e3 share both endpoints, and e2 shares exactly one endpoint with
them, and they all agree on the common node.

(D) ∃e1, e2, e3 forming a triangle, such that e1, e3 agree and e2, e3 disagree.

(E) ∃e1, e2, e3 such that e1, e3 share and agree on both endpoints, and e2 either does not share
both endpoints or does not agree on both endpoints.

Lemma 5. If none of (i)–(vii) hold then at least one of (A)–(E) holds.

Proof. Assume none of (i)–(vii) hold. Suppose the graph is not connected. Then since (i) fails,
there are two edges that are not disjoint, and there is also another edge not in their connected
component, so (A) holds. Henceforth suppose the graph is connected.

Suppose there are at least four nodes. If there is a simple path of length three, then (A) holds,
so suppose there is no such path. Then the graph is “star-like”, meaning it would be a star if
multi-edges were replaced with single edges. If there is not complete agreement on the central node
then (B) holds; otherwise, since (ii) fails, there must be multi-edges and so (C) holds.

Now suppose there are exactly three nodes and there is a triangle. If there are no multi-edges,
then since (iii) and (iv) fail, (D) holds. If there is a multi-edge pair, then either these two edges
disagree on some endpoint, in which case (D) holds, or they agree on both endpoints, in which case
(E) holds.

Now suppose there are exactly three nodes and there is no triangle. Since the graph is connected,
there is a length-2 path, say {u, v}, {v,w}. Since (v) fails, either there are two {u, v} edges that
disagree on v, in which case (B) holds, or there are two {u, v} edges that agree on both u and v, in
which case (E) holds, or analogous situations happen with {v,w}, or all edges agree on v and there
are either two {u, v} edges or two {v,w} edges, in which case (C) holds. Note that there cannot
be just one {u, v} edge and just one {v,w} edge, since if they agreed then (ii) would hold, and if
they disagreed then (v) would hold.

Finally, if there are exactly two nodes then since (vi) and (vii) fail, (E) holds.

Lemma 6. If at least one of (A)–(E) holds, then S(U) is not exchangeable.

Proof. Assuming at least one of (A)–(E) holds, we use condition (2) from Lemma 4 to refute
exchangeability of S(U) by showing that the marginal probability that e3 = 1 (more precisely,
the random variable indexed by e3 evaluates to 1) changes when we go from conditioning on
(e1 = 1, e2 = 0) to conditioning on (e1 = 0, e2 = 1).

If (A) holds and e1, e3 share both endpoints then it goes either from 1 to 0 (if e1, e3 agree on
both endpoints) or from 0 to 1

3 . If (A) holds and e1, e3 share only one endpoint and e1, e2 are
disjoint then it goes either from 1

2 to 1
6 (if e1, e3 agree) or from 0 to 1

3 . If (A) holds and e3, e1, e2
form a simple path then it goes either from 1

2 to 0 (if e1, e3 agree and e1, e2 agree) or from 1
2 to 1

4
(if e1, e3 agree and e1, e2 disagree) or from 0 to 1

2 (if e1, e3 disagree and e1, e2 agree) or from 0 to 1
4 .

If (B) holds then it goes either from 1
2 to 0 (if e1, e3 agree) or from 0 to 1

2 . If (C) holds then it
goes either from 1 to 0 (if e1, e3 agree on both endpoints) or from 0 to 1. If (D) holds then it goes
either from 1 to 0 (if e1, e2 agree) or from 1

2 to 0. If (E) holds then it goes from 1 to 0.
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Interestingly, the above analysis shows that in Case 1/4, S(U) is “globally exchangeable” iff it
is “locally exchangeable” in the sense that every set of three coordinates is exchangeable.

Case 1/2:

In this case, each edge of the graph is either XOR-type or a self-loop. We say that XOR-type
multi-edges agree if they compute the same function, and similarly we say that multi-self-loops
agree if they compute the same function. We assume without loss of generality that the graph has
no nodes of degree 0. We claim that S(U) is exchangeable iff at least one of the following conditions
holds.

(i) The graph is a forest ignoring self-loops, and there is at most one self-loop per connected
component.

(ii) The graph is a simple cycle.6

(iii) The graph is a simple path but with two self-loops, one at each end.

(iv) There are only two nodes, no self-loops, and all edges agree.

(v) There are only two nodes, no self-loops, and only two edges, which disagree.

(vi) There is only one node, with agreeing self-loops.

(vii) There is only one node, with only two self-loops, which disagree.

It is trivial to check in linear time whether at least one of these conditions holds.
First we assume at least one of the conditions holds, and argue that S(U) is exchangeable. If

(i) holds then S(U) is uniform by the characterization in the proof of Theorem 4. If (ii) or (iii)
holds then S(U) is the same as conditioning the uniform distribution on having a particular parity,
so S(U) is invariant under permuting coordinates (by commutativity and associativity of addition
over GF (2)). If (iv) or (vi) holds then S(U) is all 1’s with probability 1

2 and all 0’s with probability
1
2 , which is exchangeable. If (v) or (vii) holds then S(U) is uniform over the two possibilities 01
and 10, which is exchangeable.

We prove the converse with two lemmas, which show that the following conditions are the only
obstacles to exchangeability.

(A) ∃ a cycle C of XOR-type edges, and an edge e that is either a self-loop or has at least one
endpoint not on C.

(B) ∃ a path P (of zero or more XOR-type edges), two self-loops with one at each end of P , and
an edge e at least one of whose nodes is not on P .

(C) ∃ three XOR-type edges all sharing both endpoints, such that some but not all of these edges
agree.

(D) ∃ three self-loops all sharing the same node, such that some but not all of these edges agree.

6A simple cycle does not include multi-edges or self-loops, unless it has length 2, in which case it is a multi-edge
pair.
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Lemma 7. If none of (i)–(vii) hold then at least one of (A)–(D) holds.

Proof. Assume none of (i)–(vii) hold. If there is only one node, then since (vi) and (vii) fail, (D)
holds. Henceforth suppose there are at least two nodes. Since (i) fails, the graph has either a cycle
of XOR-type edges, or two self-loops in the same connected component.

If it has a cycle of XOR-type edges, then let C be a shortest such cycle. Since (ii) fails, there
exists another edge. If there exists another edge e that is either a self-loop or has at least one
endpoint not on C, then (A) holds. Otherwise, all other edges are XOR-type with both endpoints
on C. If C had length at least three, this would contradict the minimal nature of C. Hence there
are only two nodes, with no self-loops and with at least three XOR-type edges (two of them forming
C). Then since (iv) and (v) fail, (C) holds.

On the other hand, if the graph is a forest ignoring self-loops but has two self-loops in the same
connected component, then consider two such self-loops that are closest, and let P be the unique
path between them. If P has length zero (so the self-loops are at the same node), then (B) holds
since we are assuming there are at least two nodes (and the other node is incident to some edge e).
Otherwise, since (iii) fails, there exists another edge e. If e were XOR-type with both endpoints on
P , then there would be a cycle of XOR-type edges (contradicting the assumption that the graph
is a forest ignoring self-loops), and if e were another self-loop on P then this would contradict the
minimal nature of P (since P has length ≥ 1). Thus at least one of e’s nodes is not on P , so (B)
holds.

Lemma 8. If at least one of (A)–(D) holds, then S(U) is not exchangeable.

Proof. Assuming at least one of (A)–(D) holds, we use condition (2) from Lemma 4 to refute
exchangeability of S(U) by exhibiting edges e1, e2 for which the joint distribution of the evaluations
of the other edges changes when we go from conditioning on (e1 = 1, e2 = 0) to conditioning on
(e1 = 0, e2 = 1).

If (A) holds then let e1 = e and e2 be any edge on C. The joint distribution of the other
edges on C (besides e2) goes from being uniform conditioned on having a particular parity to being
uniform conditioned on having the opposite parity.

If (B) holds then let e1 = e and e2 be one of the two self-loops at the ends of P . The joint
distribution of the other edges on P , together with the self-loop at the other end of P , goes from
being uniform conditioned on having a particular parity to being uniform conditioned on having
the opposite parity.

If (C) or (D) holds then call the edges e1, e2, e3 where e1, e2 disagree and e2, e3 agree. Then the
marginal probability that e3 evaluates to 1 goes from 0 to 1.

Case 3/4:

In this case, each edge of the graph is OR-type. Let S denote the circuit obtained from S by
negating every output bit. Then S(U) is exchangeable iff S(U) is exchangeable. Every edge of the
graph for S is AND-type, so we can use the characterization from Case 1/4 to decide in linear time
whether S(U) is exchangeable.

Case 1:

If all output bits of S are constant 1 then S(U) is trivially exchangeable.
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4.3 Pairwise Independence for 2-Local Samplers

We prove Theorem 6. Consider a 2-local (1, n)-sampler S, and assume without loss of generality
that S has no constant output bits. We claim that S(U) is pairwise independent iff both of the
following conditions hold.

(i) The graph has no multi-edges.

(ii) For each node v of the graph, there is at most one of the following among the edges incident
to v: a self-loop, an AND-type edge, or an OR-type edge.

It is trivial to check in linear time whether condition (ii) holds. Condition (i) is an instance of the
element distinctness problem, which is the problem of deciding whether a list of numbers (encoding
pairs of nodes, in our situation) has no duplicates. The element distinctness problem can be solved
in deterministic O(n log n) time by sorting, and it can be solved in zero-error randomized expected
linear time.7 We supply a folklore proof of the following lemma in Section A.2.

Lemma 9. The element distinctness problem has a zero-error randomized expected linear-time
algorithm.

We now verify that (i) and (ii) characterize pairwise independence. First we assume that (i)
and (ii) both hold, and show that the evaluations of two arbitrary edges e1, e2 are independent. If
e1, e2 are disjoint then this is immediate; otherwise they share a node v. Since (i) and (ii) hold, the
characterization in the proof of Theorem 4 implies that the edges incident to v are fully independent
of each other; in particular e1, e2 are independent. Conversely, suppose (i) and (ii) do not both hold.
A simple case analysis shows that if two edges form a multi-edge pair, or if they share a node and
neither is XOR-type, then they cannot be independent, and so S(U) is not pairwise independent.

5 Proofs of Approximate Completeness Results

We prove Theorem 7 and Theorem 8 in Section 5.1, and we prove Theorem 9 and Theorem 10 in
Section 5.2.

Definition 9. For functions 0 ≤ c(s) < f(s) ≤ 1, Statistical-Distance
c,f is the following

promise problem.

Statistical-Distance
c,f
YES =

{

S : S is a (k, 2, s)-sampler and S(U)1, S(U)2 are c(s)-close
}

Statistical-Distance
c,f
NO =

{

S : S is a (k, 2, s)-sampler and S(U)1, S(U)2 are f(s)-far
}

Without loss of generality, S(U) is independent.

Sahai and Vadhan [SV03] proved the following two theorems.

Theorem 11. Statistical-Distance
c,f is prSZK-hard for all constants 0 < c < f < 1.

Theorem 12. Statistical-Distance
c,f ∈ prSZK for all constants 0 < c < f2 < 1.

7As usual, we assume a model of computation where arithmetic operations and array look-ups take constant time.
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More generally, Sahai and Vadhan proved that for all functions c, f computable in time poly-
nomial in s, the problem Statistical-Distance

c,f is prSZK-hard if c = 2−so(1) , f = 1 − 2−so(1) ,
and is in prSZK if c ≤ f2 − s−O(1). This can be used to improve the parameters (as functions of s)

in our theorems. For example, in Theorem 7, c can be 2−so(1) and f can be 1
4 − 2−so(1) . We chose

to state our theorems using constants (except Theorem 8, where the 1/(n+1) factor is needed) for
simplicity and clarity. It is awkward to handle reductions when the c, f functions depend on the
size of one circuit for one problem but on the size of a different circuit for the other problem.

5.1 Approximate Full Independence

We now prove Theorem 7 and Theorem 8.

Proof of Theorem 7. We reduce Statistical-Distance
2c,4f (which is prSZK-hard by Theorem 11)

to Fully-Independent
c,f . Given a (k, 2)-sampler S, let D = S(U). The reduction outputs a sam-

pler S′ that outputs (b, w) where b ∈ {1, 2} is chosen uniformly at random and w ∈ {0, 1}k is a
sample from Db. This yields a distribution D′ = S′(U) over {1, 2} × {0, 1}k , but D′ can be viewed
as a distribution over ({0, 1}k)2 by embedding {1, 2} into {0, 1}k .

First we show that if S ∈ Statistical-Distance
2c,4f
YES then S′ ∈ Fully-Independent

c,f
YES.

Suppose ‖D1−D2‖ ≤ 2c. Let D∗ be the independent distribution whose first coordinate is uniform
over {1, 2} and whose second coordinate is D1. For any event E ⊆ {1, 2} × {0, 1}k and b ∈ {1, 2},
let Eb =

{

z ∈ {0, 1}k : (b, z) ∈ E
}

. We have Pr[D′ ∈ E] = 1
2 · Pr[D1 ∈ E1] +

1
2 · Pr[D2 ∈ E2] and

Pr[D∗ ∈ E] = 1
2 · Pr[D1 ∈ E1] +

1
2 · Pr[D1 ∈ E2]. This implies that

∣

∣Pr[D′ ∈ E]− Pr[D∗ ∈ E]
∣

∣ = 1
2 ·

∣

∣Pr[D2 ∈ E2]− Pr[D1 ∈ E2]
∣

∣ ≤ 1
2 · 2c = c

where the inequality follows by ‖D1 −D2‖ ≤ 2c. Hence ‖D′ −D∗‖ ≤ c.

Now we show that if S ∈ Statistical-Distance
2c,4f
NO then S′ ∈ Fully-Independent

c,f
NO.

Suppose ‖D′ − D∗‖ < f for some distribution D∗ (not necessarily the same as above) that is
independent. Assume Pr[D∗

1 = 1] ≤ Pr[D∗
1 = 2] (the other case is symmetric). For any event

E ⊆ {0, 1}k, we have

Pr[D1 ∈ E] = 2 · Pr
[

D′ ∈ {1} × E
]

< 2 ·
(

Pr
[

D∗ ∈ {1} × E
]

+ f
)

≤ 2 ·
(

Pr
[

D∗ ∈ {2} × E
]

+ f
)

< 2 ·
(

Pr
[

D′ ∈ {2} × E
]

+ 2f
)

= 2 ·
(

1
2 · Pr[D2 ∈ E] + 2f

)

= Pr[D2 ∈ E] + 4f

where the third line follows by independence and by the assumption that Pr[D∗
1 = 1] ≤ Pr[D∗

1 = 2].
Hence by the second equality in Definition 6, ‖D1 −D2‖ < 4f .

The proof of Theorem 8 uses the following lemma.

Lemma 10. Suppose D is a distribution over ({0, 1}k)n. If D is c-close to some fully independent
distribution D∗, then D is (n + 1)c-close to the distribution D′ that is fully independent and has
the same marginals as D.
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Lemma 10 can be proven using a simple hybrid argument. The case n = 2 was proven in
[BFF+01], but the same argument works for general n; we omit the details.

Proof of Theorem 8. We reduce Fully-Independent
c,f to Statistical-Distance

c′,f (which is
in prSZK by Theorem 12). Given a (k, n)-sampler S, construct a (k, n)-sampler S′ that runs S
independently n times and outputs (w1, . . . , wn) where wi is the i

th coordinate of the output of the
ith run. Let D = S(U) and D′ = S′(U), and note that D′ is as in the statement of Lemma 10.

The reduction outputs a (kn, 2)-sampler Ŝ whose first coordinate is a sample from D and whose

second coordinate is a sample from D′. If S ∈ Fully-Independent
c,f
YES then by Lemma 10, ‖D−

D′‖ ≤ (n + 1)c = c′ and hence Ŝ ∈ Statistical-Distance
c′,f
YES. If S ∈ Fully-Independent

c,f
NO

then ‖D −D′‖ ≥ f since D′ is fully independent, and hence Ŝ ∈ Statistical-Distance
c′,f
NO .

5.2 Approximate Exchangeability

We now prove Theorem 9 and Theorem 10.

Proof of Theorem 9. We reduce Statistical-Distance
c,2f (which is prSZK-hard by Theorem 11)

to Exchangeable
c,f . Given a (k, 2)-sampler S and letting D = S(U) where, without loss of

generality, D1,D2 are independent, the reduction is the identity map.
First we show that if S ∈ Statistical-Distance

c,2f
YES then S ∈ Exchangeable

c,f
YES. Suppose

‖D1 −D2‖ ≤ c. Let D∗ be the independent distribution over ({0, 1}k)2 both of whose marginals
are D1. Since D∗ is i.i.d., it is exchangeable. For any event E ⊆ ({0, 1}k)2 and y ∈ {0, 1}k , let
Ey =

{

z ∈ {0, 1}k : (y, z) ∈ E
}

. By independence, we have Pr[D ∈ E] =
∑

y∈{0,1}k Pr[D1 =
y] · Pr[D2 ∈ Ey] and Pr[D∗ ∈ E] =

∑

y∈{0,1}k Pr[D1 = y] · Pr[D1 ∈ Ey]. This implies that

∣

∣Pr[D ∈ E]− Pr[D∗ ∈ E]
∣

∣ ≤
∑

y∈{0,1}k Pr[D1 = y] ·
∣

∣Pr[D2 ∈ Ey]− Pr[D1 ∈ Ey]
∣

∣

≤
∑

y∈{0,1}k Pr[D1 = y] · c

= c

where the second inequality follows by ‖D1 −D2‖ ≤ c. Hence ‖D −D∗‖ ≤ c.

Now we show that if S ∈ Statistical-Distance
c,2f
NO then S ∈ Exchangeable

c,f
NO. Suppose

‖D −D∗‖ < f for some distribution D∗ (not necessarily the same as above) that is exchangeable.
In particular, D∗

1,D
∗
2 are identically distributed. We trivially have ‖D1 − D∗

1‖ ≤ ‖D − D∗‖ and
‖D2−D∗

2‖ ≤ ‖D−D∗‖. Thus by the triangle inequality, ‖D1−D2‖ ≤ ‖D1−D∗
1‖+‖D2−D∗

2‖ < 2f .

The proof of Theorem 10 uses the following lemma.

Lemma 11. Suppose D is a distribution over ({0, 1}k)n. If D is c-close to some exchangeable
distribution D∗, then D is 2c-close to the distribution D′ obtained by drawing a sample from D
then permuting the coordinates according to a uniformly random permutation.

Proof of Lemma 11. For a multiset W ⊆ {0, 1}k of size n, we say that w ∈ ({0, 1}k)n is an ordering
of W if the multiset

{

wi : i ∈ {1, . . . , n}
}

equals W . Let Ord(W ) denote the set of all orderings
of W . Let d∗+W be the sum of Pr[D = w] − Pr[D∗ = w] over all w ∈ Ord(W ) such that Pr[D =
w] − Pr[D∗ = w] > 0, and let d∗−W be the sum of Pr[D∗ = w] − Pr[D = w] over all w ∈ Ord(W )
such that Pr[D∗ = w]− Pr[D = w] > 0. Then by the third equality in Definition 6, we have

‖D −D∗‖ = 1
2 ·

∑

multisets W ⊆ {0, 1}k of size n

(

d∗+W + d∗−W
)

. (1)
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Letting d′+W and d′−W be the analogous quantities with D′ instead of D∗, we have

‖D −D′‖ = 1
2 ·

∑

multisets W ⊆ {0, 1}k of size n

(

d′+W + d′−W
)

. (2)

Now fix some W . Note that since D∗ is exchangeable, all elements of Ord(W ) have the same
probability under D∗; call this probability p∗W . If w is an element of Ord(W ) then permuting the
coordinates of w uniformly at random yields a uniformly random element of Ord(W ). Thus all
elements of Ord(W ) have the same probability under D′, namely

p′W = 1
|Ord(W )| ·

∑

w∈Ord(W ) Pr[D = w].

If p′W ≥ p∗W then d′+W ≤ d∗+W by definition. If p′W ≤ p∗W then d′−W ≤ d∗−W by definition. We also have

0 =
(
∑

w∈Ord(W ) Pr[D = w]
)

− |Ord(W )| · p′W

=
∑

w∈Ord(W )

(

Pr[D = w]− p′W
)

= d′+W − d′−W

which implies that d′+W = d′−W ≤ max(d∗+W , d∗−W ). Hence
(

d′+W + d′−W
)

≤ 2 ·max(d∗+W , d∗−W ) ≤ 2 ·
(

d∗+W +
d∗−W

)

. Since this holds for all W , we get ‖D −D′‖ ≤ 2 · ‖D −D∗‖ by (1) and (2).

We mention that the constant factor of 2 in Lemma 11 is tight, by the following example.
Suppose k = 1, and suppose D is uniformly distributed over a set of n strings, one of which
has Hamming weight 1 and the other n − 1 of which have Hamming weight n − 1. Let D∗ be
uniformly distributed over the strings of Hamming weight n−1. Note that D∗ is exchangeable, and
‖D−D∗‖ = 1

n . However, D
′ has probability 1

n2 on each string of Hamming weight 1, and probability
n−1
n2 on each string of Hamming weight n−1, and thus ‖D−D′‖ = 2(1− 1

n) ·
1
n = 2(1− 1

n) ·‖D−D∗‖.

Proof of Theorem 10. For any constant c′ such that 2c < c′ < f2, we reduce Exchangeable
c,f

to Statistical-Distance
c′,f (which is in prSZK by Theorem 12). Given a (k, n)-sampler S,

construct a (k, n)-sampler S′′ that performs the following computation.

for i = 1, . . . ,
⌈

log2
(

1
c′−2c

)⌉

do

choose π ∈ {0, 1}⌈log2(n!)⌉ uniformly at random
if π < n! then

interpret π as a permutation on {1, . . . , n}
run S to get w = (w1, . . . , wn)
halt and output

(

wπ(1), . . . , wπ(n)

)

end

end

halt and output the all 0’s element of ({0, 1}k)n

Let D = S(U), let D′ be as in the statement of Lemma 11, and let D′′ = S′′(U). Conditioned
on halting inside the for loop, D′′ has the same distribution as D′. In each iteration, there is > 1

2
probability that π < n! and the computation of S′′ halts. Hence the probability the computation
halts on the last line (after failing to halt inside the for loop) is < c′ − 2c. This implies that
‖D′ −D′′‖ < c′ − 2c.
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The reduction outputs a (kn, 2)-sampler Ŝ whose first coordinate is a sample from D and

whose second coordinate is a sample from D′′. If S ∈ Exchangeable
c,f
YES then by Lemma 11,

‖D−D′‖ ≤ 2c, so by the triangle inequality ‖D−D′′‖ ≤ ‖D−D′‖+‖D′−D′′‖ < 2c+(c′−2c) = c′

and hence Ŝ ∈ Statistical-Distance
c′,f
YES. If S ∈ Exchangeable

c,f
NO then ‖D −D′′‖ ≥ f since

D′′ is exchangeable, and hence Ŝ ∈ Statistical-Distance
c′,f
NO .

6 BC=P

We now consider the bounded-error version of C=P, which does not seem to have been defined or
studied in the literature before.8

Definition 10. prBC=P is the class of all promise problems reducible to the following promise
problem, Bounded-Uniform-Bit.

Bounded-Uniform-BitYES =
{

S : S is a (1, 1)-sampler and S(U) is uniform
}

Bounded-Uniform-BitNO =
{

S : S is a (1, 1)-sampler and
∣

∣Pr[S(U) = 1]− 1
2

∣

∣ ≥ 1
4

}

BC=P is defined as the class of languages in prBC=P.

We now investigate the structural properties of BC=P. We begin with the following amplifi-
cation result for BC=P, which is somewhat less trivial than usual amplification results. Then we
apply this lemma to obtain closure properties of BC=P.

Lemma 12. For all languages L, the following are equivalent.

(1) For some polynomial q, there is a reduction that takes x and outputs a (1, 1)-sampler S such
that the following both hold.9

x ∈ L =⇒ S(U) is uniform

x 6∈ L =⇒
∣

∣Pr[S(U) = 1]− 1
2

∣

∣ ≥ 1
q(|x|)

(2) L ∈ BC=P.

(3) For every polynomial Q, there is a reduction that takes x and outputs a (1, 1)-sampler S such
that the following both hold.

x ∈ L =⇒ S(U) is uniform

x 6∈ L =⇒ Pr[S(U) = 1] ≤ 1
2Q(|x|)

Proof. Clearly (3) ⇒ (2) ⇒ (1), so we just need to demonstrate (1) ⇒ (3). Assume (1). By the
standard trick for making C=P have “1-sided error” (see Section A.1), it follows that there is a
similar reduction mapping x to some (different) (1, 1)-sampler S that achieves Pr[S(U) = 1] ≤
1
2 −

1
q(|x|)2

in the case x 6∈ L. Construct a new circuit S′ that performs the following computation.

8A more extreme version, in which YES instances have acceptance probability 1
2
and NO instances have acceptance

probability 0, has been studied before and is known as C==P[half] [BB92] and HalfP [BS00].
9It is not convenient to phrase this as a reduction to a problem, because the bound 1

q(|x|)
depends on the size of

x, not the size of S.
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let m = 2q(|x|)4Q(|x|) and t =
(

1
2 − 1

2q(|x|)2

)

·m

choose a uniformly random bit b
if b = 0 then run S independently m times, and accept iff ≥ t of these runs accept
else accept with probability 1− 1

2m
∑m

i=⌈t⌉

(m
i

)

Note that the values of m, t, and
∑m

i=⌈t⌉

(m
i

)

can be precomputed in polynomial time and hard-

wired into S′. If S accepts with probability 1
2 then the probability that ≥ t of m runs of S accept

is 1
2m

∑m
i=⌈t⌉

(m
i

)

. Hence if x ∈ L then S′ accepts with probability 1
2 . If S accepts with probability

≤ 1
2 − 1

q(|x|)2
then by a standard concentration bound, the probability that ≥ t of m runs of S

accept is ≤ 2−m/2q(|x|)4 = 1
2Q(|x|) . Also by a standard concentration bound,

(

1 − 1
2m

∑m
i=⌈t⌉

(m
i

))

≤

2−m/2q(|x|)4 = 1
2Q(|x|) . Hence if x 6∈ L then S′ accepts with probability ≤ 1

2 ·
1

2Q(|x|) +
1
2 ·

1
2Q(|x|) = 1

2Q(|x|) .
The reduction for (3) just outputs S′.

Note that coRP ⊆ BC=P. The 1-sided error property in part (3) of Lemma 12 implies that
BC=P ⊆ BPP. Thus BC=P is presumably closed under complement (since presumably P =
BC=P = BPP [IW97]), but proving this seems out of reach. We now apply Lemma 12 to prove
that BC=P is closed under union, intersection, disjunction (i.e., ∨L ∈ BC=P if L ∈ BC=P, where
∨L =

{

(x1, . . . , xℓ) : xi ∈ L for some i
}

), and conjunction (i.e., ∧L ∈ BC=P if L ∈ BC=P, where
∧L =

{

(x1, . . . , xℓ) : xi ∈ L for all i
}

). The proof of Lemma 3 in Section A.1 showing that C=P
is closed under disjunction does not work to show that BC=P is closed under disjunction.

Theorem 13. BC=P is closed under disjunction.

Proof. Assuming L ∈ BC=P, we exhibit a reduction witnessing ∨L ∈ BC=P. Given (x1, . . . , xℓ), by
padding we may assume without loss of generality that the xi’s all have the same length n ≥ ℓ. By
(2) ⇒ (3) in Lemma 12, there is a reduction that takes xi and outputs Ci such that the following
both hold.

xi ∈ L =⇒ Pr[Ci(U) = 1] = 1
2

xi 6∈ L =⇒ Pr[Ci(U) = 1] ≤ 1
4n

Our reduction witnessing ∨L ∈ BC=P runs the above reduction for L on each xi to obtain the
circuits Ci, then outputs a circuit S that runs each Ci independently and combines their results
with a parity gate. If (x1, . . . , xℓ) ∈ ∨L then S is taking the parity of ℓ independent bits at least
one of which is uniform, so S(U) is uniform. If (x1, . . . , xℓ) 6∈ ∨L then letting z1, . . . , zℓ denote S’s
random input, we have

Pr[S(U) = 1] = Prz1,...,zℓ
[
⊕ℓ

i=1Ci(zi) = 1
]

≤ Prz1,...,zℓ
[

Ci(zi) = 1 for some i
]

≤
∑ℓ

i=1 Przi [Ci(zi) = 1]

≤ ℓ · 1
4n

≤ 1
4 .

Theorem 14. BC=P is closed under conjunction.
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Proof. Assuming L ∈ BC=P, we exhibit a reduction witnessing ∧L ∈ BC=P. We are given
(x1, . . . , xℓ). Lemma 12 implies that BC=P can have 1-sided error, so there is a reduction that
takes xi and outputs Ci such that the following both hold.

xi ∈ L =⇒ Pr[Ci(U) = 1] = 1
2

xi 6∈ L =⇒ Pr[Ci(U) = 1] ≤ 1
4

Our reduction witnessing ∧L ∈ BC=P runs the above reduction for L on each xi to obtain the
circuits Ci, then outputs a circuit S that chooses i ∈ {1, . . . , ℓ} uniformly at random and outputs
the same bit as an execution of Ci. Thus Pr[S(U) = 1] = 1

ℓ

∑ℓ
i=1 Pr[Ci(U) = 1]. If (x1, . . . , xℓ) ∈ ∧L

then S(U) is uniform since Pr[Ci(U) = 1] = 1
2 for all i. If (x1, . . . , xℓ) 6∈ ∧L then Pr[S(U) = 1] ≤

ℓ−1
ℓ · 1

2 +
1
ℓ ·

1
4 = 1

2 − 1
4ℓ . By (1) ⇒ (2) in Lemma 12, ∧L ∈ BC=P.

Corollary 2. BC=P is closed under union and intersection.

Proof. This follows by the same proof techniques used for Theorem 13 and Theorem 14. Alterna-
tively, this follows in a black-box fashion from Theorem 13 and Theorem 14: Assuming L1 ∈ BC=P
and L2 ∈ BC=P, we also have L ∈ BC=P where L =

{

(x, i) : i ∈ {1, 2} and x ∈ Li

}

, and thus
∨L ∈ BC=P and ∧L ∈ BC=P. But L1 ∪L2 reduces to ∨L, and L1 ∩L2 reduces to ∧L, both by the
same trivial reduction that maps x to

(

(x, 1), (x, 2)
)

. Hence L1∪L2 ∈ BC=P and L1∩L2 ∈ BC=P.

7 Open Problems

There are plenty of open problems concerning the complexity of deciding statistical properties of
joint distributions with low-complexity samplers. To the best of our knowledge, none of these
problems has ever been studied before, so the best bounds are what hold trivially or follow directly
from results discussed in this work.

What can be said about depth-2 circuits? For example, for each of the languages listed in
Fact 1, it is consistent with current knowledge that, when restricted to depth-2 circuit samplers,
the language could be in P or C=P-complete. What about d-local samplers when d > 2 or k > 1?
For example, is there a polynomial-time algorithm for deciding whether the joint distribution of
a given 3-local (1, n)-sampler is fully independent? What are the complexities of deciding full
independence and exchangeability for logspace samplers? What about samplers where each input
bit influences at most a bounded number of output bits?

There are also plenty of open problems concerning the complexity of approximately deciding
statistical properties of samplable distributions. Can quantitative improvements in our results be
obtained (e.g., improvements in the bounds of 1

4 in Theorem 7 and 1
2 in Theorem 9)? What is

the complexity of the exact-versus-far (as opposed to close-versus-far) versions of these problems?
What about deciding whether a joint distribution is close or far from being pairwise indepen-
dent? What can be said about versions of these problems where k is constrained to be 1? What
about approximate problems restricted to low-complexity samplers? Can we prove any interesting
approximate algorithmic results?

For general circuit samplers, what is the complexity of deciding whether or not a distribution
is a mixture of i.i.d. distributions? It is not clear whether this problem is in C=P. Of course,
i.i.d. corresponds to drawing balls from an urn with replacement, and when changed to without
replacement the problem becomes equivalent to exchangeability, which is decidable in C=P.

Are there other interesting structural properties or applications of BC=P?
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A Folklore Proofs

We use this appendix to supply some folklore proofs.

A.1 Closure of C=P

We supply a folklore proof of Lemma 3, which is used in the proof of Theorem 3. Assume L ∈ C=P.
First we prove that ∀qL ∈ C=P.

There is a deterministic polynomial-time algorithm that takes as input x and outputs a circuit
C(y, z) where |y| = q(|x|), such that the following both hold.

x ∈ ∀qL =⇒ ∀y : Prz[C(y, z) = 1] = 1
2

x 6∈ ∀qL =⇒ ∃y : Prz[C(y, z) = 1] 6= 1
2

The circuit C runs the reduction witnessing L ∈ C=P on (x, y), then runs the output of the
reduction on z. Now let C be the same as C but with the output negated. We construct a new
circuit A(y, z′) that for all y satisfies

Prz′ [A(y, z
′) = 1] = 1

2 ·
(

Prz[C(y, z) = 1]2 + Prz[C(y, z) = 1]2
)

by randomly choosing either C or C and running it twice independently. We also construct a new
circuit B(y, z′) that for all y satisfies

Prz′ [B(y, z′) = 1] = 1
2 ·

(

2 · Prz[C(y, z) = 1] · Prz[C(y, z) = 1]
)

by running both C and C independently. Thus we have

Prz′ [A(y, z
′) = 1]− Prz′ [B(y, z′) = 1] = 1

2 ·
(

Prz[C(y, z) = 1]− Prz[C(y, z) = 1]
)2

which implies the following.

x ∈ ∀qL =⇒ ∀y : Prz′ [A(y, z
′) = 1]− Prz′ [B(y, z′) = 1] = 0

x 6∈ ∀qL =⇒











∃y : Prz′ [A(y, z
′) = 1]− Prz′ [B(y, z′) = 1] > 0

and

∀y : Prz′ [A(y, z
′) = 1]− Prz′ [B(y, z′) = 1] ≥ 0

Now we construct a circuit S(y, z′′) such that

Prz′′ [S(y, z
′′) = 1] = 1

2 ·
(

Prz′ [A(y, z
′) = 1] + (1− Prz′ [B(y, z′) = 1])

)
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by randomly choosing either A or B to run, and negating the output if B was chosen. This implies
the following.

x ∈ ∀qL =⇒ ∀y : Prz′′ [S(y, z
′′) = 1] = 1

2 =⇒ Pry,z′′ [S(y, z
′′) = 1] = 1

2

x 6∈ ∀qL =⇒











∃y : Prz′′ [S(y, z
′′) = 1] > 1

2

and

∀y : Prz′′ [S(y, z
′′) = 1] ≥ 1

2

=⇒ Pry,z′′ [S(y, z
′′) = 1] > 1

2

The reduction witnessing ∀qL ∈ C=P just outputs S, which has y, z′′ as the random input bits.
Now we prove that ∨L ∈ C=P. Given x1, . . . , xℓ, we run the reduction witnessing L ∈ C=P on

each xi to get circuits Ci(z) such that xi ∈ L ⇐⇒ Prz[Ci(z) = 1] = 1
2 . We define C

(0)
i = Ci and

let C
(1)
i be the same as Ci but with the output negated. Then we have

(x1, . . . , xℓ) ∈ ∨L ⇐⇒
∏ℓ

i=1

(

Prz
[

C
(0)
i (z) = 1

]

− Prz
[

C
(1)
i (z) = 1

])

= 0.

We construct a new circuit A(z′) that satisfies

Prz′ [A(z
′) = 1] = 1

2ℓ−1

∑

even parity b ∈ {0, 1}ℓ
∏ℓ

i=1 Prz
[

C
(bi)
i (z) = 1

]

by randomly choosing an even parity b then running each C
(bi)
i independently. We also construct

a new circuit B(z′) that satisfies

Prz′ [B(z′) = 1] = 1
2ℓ−1

∑

odd parity b ∈ {0, 1}ℓ
∏ℓ

i=1 Prz
[

C
(bi)
i (z) = 1

]

by randomly choosing an odd parity b then running each C
(bi)
i independently. This implies that

(x1, . . . , xℓ) ∈ ∨L ⇐⇒ Prz′ [A(z
′) = 1]− Prz′ [B(z′) = 1] = 0.

Now we construct a circuit S(z′′) such that

Prz′′ [S(z
′′) = 1] = 1

2 ·
(

Prz′ [A(z
′) = 1] + (1− Prz′ [B(z′) = 1])

)

by randomly choosing either A or B to run, and negating the output if B was chosen. This implies
that (x1, . . . , xℓ) ∈ ∨L ⇐⇒ Prz′′ [S(z

′′) = 1] = 1
2 . The reduction witnessing ∨L ∈ C=P just

outputs S.

A.2 The Element Distinctness Problem

We supply a folklore proof of Lemma 9, which is used in the proof of Theorem 6. Consider the
following algorithm.
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Input: x1, x2, . . . , xn ∈ {1, 2, . . . ,M}
Output: are x1, x2, . . . , xn distinct?

1 execute the following two while loop computations in parallel until one of them halts:
2 while true do
3 choose a hash function f : {1, . . . ,M} → {1, . . . , n} pairwise independently
4 if the number of pairs i < j such that f(xi) = f(xj) is ≤ 2n then
5 if ∃(i < j) such that f(xi) = f(xj) and xi = xj then halt and output “no”
6 else halt and output “yes”

7 end

8 end
9 while true do

10 choose a pair of indices i < j uniformly at random
11 if xi = xj then halt and output “no”

12 end

Note that the algorithm never outputs an incorrect answer. If the number of pairs i < j
such that xi = xj is ≥ n

2 then the second while loop halts after ≤
(n
2

)

/n
2 = n − 1 iterations in

expectation. Otherwise, the expectation (over the choice of f) of the number of pairs i < j such
that f(xi) = f(xj) is <

n
2 +

(n
2

)

· 1
n < n, and so the first while loop has > 1

2 probability of halting
in each iteration and thus halts after < 2 iterations in expectation. Line 4 takes linear time by
building lists of input elements that hash to each bucket, and Line 5 takes linear time by brute
force (or sorting) on each bucket, so the first while loop would take linear time in expectation.
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